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Preface

The Greek and Roman gods, supposedly, resented those mortals endowed with
superlative gifts and happiness, and punished them. The life and achievements
of Rufus Bowen (1947–1978) remind us of this belief of the ancients. When
Rufus died unexpectedly, at age thirty-one, from brain hemorrhage, he was a
very happy and successful man. He had great charm, that he did not misuse,
and superlative mathematical talent. His mathematical legacy is important,
and will not be forgotten, but one wonders what he would have achieved if he
had lived longer. Bowen chose to be simple rather than brilliant. This was the
hard choice, especially in a messy subject like smooth dynamics in which he
worked. Simplicity had also been the style of Steve Smale, from whom Bowen
learned dynamical systems theory.

Rufus Bowen has left us a masterpiece of mathematical exposition: the slim
volume Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
(Springer Lecture Notes in Mathematics 470 (1975)). Here a number of results
which were new at the time are presented in such a clear and lucid style that
Bowen’s monograph immediately became a classic. More than thirty years
later, many new results have been proved in this area, but the volume is as
useful as ever because it remains the best introduction to the basics of the
ergodic theory of hyperbolic systems.

The area discussed by Bowen came into existence through the merging of
two apparently unrelated theories. One theory was equilibrium statistical me-
chanics, and specifically the theory of states of infinite systems (Gibbs states,
equilibrium states, and their relations as discussed by R.L. Dobrushin, O.E.
Lanford, and D. Ruelle). The other theory was that of hyperbolic smooth dy-
namical systems, with the major contributions of D.V. Anosov and S. Smale.
The two theories came into contact when Ya.G. Sinai introduced Markov par-
titions and symbolic dynamics for Anosov diffeomorphisms. This allowed the
poweful techniques and results of statistical mechanics to be applied to smooth
dynamics, an extraordinary development in which Rufus Bowen played a ma-
jor role. Some of Bowen’s ideas were as follows. First, only one-dimensional
statistical mechanics is discussed: this is a richer theory, which yields what is
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needed for applications to dynamical systems, and makes use of the powerful
analytic tool of transfer operators. Second, Smale’s Axiom A dynamical sys-
tems are studied rather than the less general Anosov systems. Third, Sinai’s
Markov partitions are reworked to apply to Axiom A systems and their con-
struction is simplified by the use of shadowing. The combination of simpli-
fications and generalizations just outlined led to Bowen’s concise and lucid
monograph. This text has not aged since it was written and its beauty is as
striking as when it was first published in 1975.

Jean-René Chazottes has had the idea to make Bowen’s monograph more
easily available by retyping it. He has scrupulously respected the original
text and notation, but corrected a number of typos and made a few other
minor corrections, in particular in the bibliography, to improve usefulness
and readability. In his enterprise he has been helped by Jerôme Buzzi, Pierre
Collet, and Gerhard Keller. For this work of love all of them deserve our
warmest thanks.

Bures sur Yvette, mai 2007 David Ruelle
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0

INTRODUCTION

The main purpose of these notes is to present the ergodic theory of Anosov and
Axiom A diffeomorphisms. These diffeomorphisms have a complicated orbit
structure that is perhaps best understood by relating them topologically and
measure theoretically to shift spaces. This idea of studying the same example
from different viewpoints is of course how the subjects of topological dynamics
and ergodic theory arose from mechanics. Here these subjects return to help
us understand differentiable systems.

These notes are divided into four chapters. First we study the statistical
properties of Gibbs measures. These measures on shift spaces arise in modern
statistical mechanics; they interest us because they solve the problem of de-
termining an invariant measure when you know it approximately in a certain
sense. The Gibbs measures also satisfy a variational principle. This princi-
ple is important because it makes no reference to the shift character of the
underlying space. Through this one is led to develop a “thermodynamic for-
malism” on compact spaces; this is carried out in chapter two. In the third
chapter Axiom A diffeomorphisms are introduced and their symbolic dynam-
ics constructed: this states how they are related to shift spaces. In the final
chapter this symbolic dynamics is applied to the ergodic theory of Axiom A
diffeomorphisms.

The material of these notes is taken from the work of many people. I have
attempted to give the main references at the end of each chapter, but no doubt
some are missing. On the whole these notes owe most to D. Ruelle and Ya.
Sinai.

To start, recall that (X,B, µ) is a probability space if B is a σ-field of
subsets of X and µ is a nonnegative measure on B with µ(X) = 1. By an
automorphism we mean a bijection T : X → X for which

(i) E ∈ B iff T−1E ∈ B,

(ii) µ(T−1E) = µ(E) for E ∈ B .
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If T : X → X is a homeomorphism of a compact metric space, a natural
σ-field B is the family of Borel sets. A probability measure on this σ-field is
called a Borel probability measure. Let M (X) be the set of Borel probability
measures on X and MT (X) the subset of invariant ones, i.e. µ ∈ MT (X) if
µ(T−1E) = µ(E) for all Borel sets E. For any µ ∈ M (X) one can define
T ∗µ ∈M (X) by T ∗µ(E) = µ(T−1E).

Remember that the real-valued continuous functions C (X) on the compact
metric space X form a Banach space under ‖f‖ = maxx∈X |f(x)|. The weak
∗-topology on the space C (X)∗ of continuous linear functionals α : C (X)→ R
is generated by sets of the form

U(f, ε, α0) = {α ∈ C (X)∗ : |α(f)− α0(f)| < ε}

with f ∈ C (X), ε > 0, α0 ∈ C (X)∗.

Riesz Representation. For each µ ∈M (X) define αµ ∈ C (X)∗ by αµ(f) =∫
fdµ. Then µ↔ αµ is a bijection between M (X) and

{α ∈ C (X)∗ : α(1) = 1 and α(f) ≥ 0 whenever f ≥ 0} .

We identify αµ with µ, often writing µ when we mean α(µ). The weak ∗-
topology on C (X)∗ carries over by this identification to a topology on M (X)
(called the weak topology).

Proposition. M (X) is a compact convex metrizable space.

Proof. Let {fn}∞n=1 be a dense subset of C (X). The reader may check that
the weak topology on M (X) is equivalent to the one defined by the metric

d(µ, µ′) =

∞∑
n=1

2−n ‖fn‖−1
∣∣∣∣∫ fndµ−

∫
fndµ

′
∣∣∣∣ . ut

Proposition. MT (X) is a nonempty closed subset of M (X).

Proof. Check that T ∗ : M (X) →M (X) is a homeomorphism and note that
MT (X) = {µ ∈ M (X) : T ∗µ = µ}. Pick µ ∈ M (X) and let µn = 1

n (µ +
T ∗µ+ · · ·+ (T ∗)n−1µ). Choose a subsequence µnk converging to µ′ ∈M (X).
Then µ′ ∈MT (X). ut

Proposition. µ ∈MT (X) if and only if∫
(f ◦ T ) dµ =

∫
fdµ for all f ∈ C (X) .

Proof. This is just what the Riesz Representation Theorem says about the
statement T ∗µ = µ. ut
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GIBBS MEASURES

A. Gibbs distribution

Suppose a physical system has possible states 1, . . . , n and the energies of these
states are E1, . . . , En. Suppose that this system is put in contact with a much
larger “heat source” which is at temperature T . Energy is thereby allowed to
pass between the original system and the heat source, and the temperature T
of the heat source remains constant as it is so much larger than our system.
As the energy of our system is not fixed any of the states could occur. It is
a physical fact derived in statistical mechanics that the probability pj that
state j occurs is given by the Gibbs distribution

pj =
e−βEj∑n
i=1 e

−βEi
,

where β = 1
kT and k is a physical constant.

We shall not attempt the physical justification for the Gibbs distribution,
but we will state a mathematical fact closely connected to the physical rea-
soning.

1.1. Lemma. Let real numbers a1, . . . , an be given. Then the quantity

F (p1, . . . , pn) =

n∑
i=1

−pi log pi +

n∑
i=1

piai

has maximum value log
∑n
i=1 e

ai as (p1, . . . , pn) ranges over the simplex
{(p1, . . . , pn) : pi ≥ 0, p1 + · · · + pn = 1} and that maximum is assumed
only by

pj = eaj

(∑
i

eai

)−1
.
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This is proved by calculus. The quantity H(p1, . . . , pn) =
∑n
i=1−pi log pi is

called the entropy of the distribution (p1, . . . , pn) (note: ϕ(x) = −x log x is
continuous on [0, 1] if we set ϕ(0) = 0.) The term

∑n
i=1 piai is of course the

average value of the function a(i) = ai. In the statistical mechanics case ai =
−βEi, entropy is denoted S and average energy E. The Gibbs distribution
then maximizes

S − βE = S − 1

kT
E,

or equivalently minimizes E − kTS. This is called the free energy. The prin-

ciple that “nature minimizes entropy” applies when energy is fixed, but when

energy is not fixed “nature minimizes free energy.” We will now look at a

simple infinite system, the one-dimensional lattice. Here one has for each in-

teger a physical system with possible states 1, 2, . . . , n. A configuration of the

system consists of assigning an xi ∈ {1, . . . , n} for each i:

· ·
x−2·

x−1· x0· x1· x2· x3· · ·
Thus a configuration is a point

x = {xi}+∞i=−∞ ∈
∏
Z
{1, . . . , n} = Σn .

We now make assumptions about energy:

(1) associated with the occurrence of a state k is a contribution Φ0(k) to the
total energy of the system independent of which position it occurs at;

(2) if state k1 occurs in place i1, and k2 in i2, then the potential energy due to
their interaction Φ∗2(i1, i2, k1, k2) depends only on their relative position,
i.e., there is a function Φ2 : Z× {1, . . . , n} × {1, . . . , n} → R so that

Φ∗2(i1, i2, k1, k2) = Φ2(i1 − i2; k1, k2)

(also: Φ2(j; k1, k2) = Φ2(−j; k2, k1)).
(3) all energy is due to contributions of the form (1) and (2).

Under these hypotheses the energy contribution due to x0 being in the 0th
place is

φ∗(x) = Φ0(x0) +
∑
j 6=0

1

2
Φ2(j;xj , x0).

(We “give” each of x0 and xk half the energy due to their interaction). We
now assume that ‖Φ2‖j = supk1,k2 |Φ(j; k1, k2)| satisfies

∞∑
j=1

‖Φ2‖j <∞ .



1 GIBBS MEASURES 5

Then φ∗(x) ∈ R and depends continuously on x when {1, . . . , n} is given the
discrete topology and Σn =

∏
Z{1, . . . , n} the product topology.

If we just look at x−m . . . x0 . . . xm we have a finite system (n2m+1 possible
configurations) and an energy

Em(x−m, . . . , xm) =

m∑
j=−m

Φ0(xj) +
∑

−m≤j<k≤m

Φ2(k − j;xk, xj)

and the Gibbs distribution µm assigns probabilities proportional to
e−βEm(x−m,...,xm). Now just suppose that for each x−m, . . . , xm the limit

µ(x−m . . . xm) = lim
k→∞

∑
{µk(x′−k . . . x

′
k) : x′i = xi ∀|i| ≤ m}

exists. Then µ ∈ M (Σn) and it would be natural to call µ the Gibbs distri-
bution on Σn (for the given energy and β). If we are given x = {xi}∞i=−∞,
then instead of Em(x−m, . . . , xm) one might add in the contributions by in-
teractions of xj (−m ≤ j ≤ m) with all other xk’s, i.e.,

m∑
j=−m

(
Φ0(xj) +

∞∑
k=−∞

1

2
Φ2(k − j;xk, xj)

)
.

If we define the (left) shift homeomorphism σ : Σn → Σn by σ{xi}∞i=−∞ =
{xi+1}∞i=−∞, then this expression is just

∑m
j=−m φ

∗(σjx). This expression
differs from Em(x−m, . . . , xm) by at most

m∑
j=−m

 ∞∑
k=j+m+1

1

2
‖Φ2‖k +

∞∑
k=m−j+1

1

2
‖Φ2‖k

 ≤ ∞∑
k=1

k‖Φ2‖k .

Thus, if C =
∑∞
k=1 k‖Φ2‖k <∞ then Em(x−m, . . . , xm) differs from∑m

j=−m φ
∗(σjx) by at most C. If we used

∑m
j=−m φ

∗(σjx) instead of
Em(x−m, . . . , xm) in the Gibbs distribution µm, the probabilities would
change by factors in [e−2C , e2C ]. The point is that taking xi into consider-
ation for i /∈ [−m,m] may change µm, but not drastically if one assumes∑∞
k=1 k‖Φ2‖k <∞.
We want now to state a theorem we have been leading up to. For φ : Σn →

R continuous define

varkφ = sup{|φ(x)− φ(y)| : xi = yi ∀ |i| ≤ k} .

As φ is uniformly continuous, limk→∞ varkφ = 0.

1.2. Theorem. Suppose φ : Σn → R and there are c > 0, α ∈ (0, 1) so that
varkφ ≤ cαk for all k. Then there is a unique µ ∈Mσ(Σn) for which one can
find constants c1 > 0, c2 > 0, and P such that
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c1 ≤
µ{y : yi = xi ∀ i = 0, . . . ,m}

exp
(
−Pm+

∑m−1
k=0 φ(σkx)

) ≤ c2
for every x ∈ Σn and m ≥ 0.

This measure µ is written µφ and called Gibbs measure of φ. Up to
constants in [c1, c2] the relative probabilities of the x0 . . . xm’s are given

by exp
∑m−1
k=0 φ(σkx). For the physical system discussed above one takes

φ = −βφ∗. In statistical mechanics Gibbs states are not defined by the above
theorem. We have ignored many subtleties that come up in more complicated
systems (e.g., higher dimensional lattices), where the theorem will not hold.
Our discussion was a gross one intended to motivate the theorem; we refer to
Ruelle [9] or Lanford [6] for a refined outlook.

For later use we want to make a small generalization of Σn before we prove
the theorem. If A is an n× n matrix of 0’s and 1’s, let

ΣA = {x ∈ Σn : Axixi+1
= 1 ∀i ∈ Z} .

That is, we consider all x in which A says that xixi+1 is allowable for every
i. One easily sees that ΣA is closed and σΣA = ΣA. We will always assume
that A is such that each k between 1 and n occurs at x0 for some x ∈ ΣA.
(Otherwise one could have ΣA = ΣB with B an m×m matrix and m < n.)

1.3. Lemma. σ : ΣA → ΣA is topologically mixing (i.e., when U, V are
nonempty open subsets of ΣA, there is an N so that σmU ∩ V 6= ∅ ∀m ≥ N)
if and only if AM > 0 (i.e., AMi,j > 0 ∀i, j) for some M .

Proof. One sees inductively that Ami,j is the number of (m + 1)-strings
a0a1 . . . am of integers between 1 and n with

(a)Aakak+1
= 1 ∀k,

(b) a0 = i, am = j.

Let Ui = {x ∈ ΣA : x0 = i} 6= ∅.
Suppose ΣA is mixing. Then ∃Ni,j with Ui ∩ σnUj 6= ∅ ∀n ≥ Ni,j . If

a ∈ Ui ∩ σnUj , then a0a1 . . . an satisfies (a) and (b); so Ami,j > 0 ∀i, j when
m ≥ maxi,j Ni,j .

Suppose AM > 0 for some M . As each number between 1 and n occurs as
x0 for some x ∈ ΣA, each row of A has at least one positive entry. From this
it follows by induction that Am > 0 for all m ≥M .

Consider open subsets U , V of ΣA with a ∈ U , b ∈ V . There is an r so
that

U ⊃ {x ∈ ΣA : xk = ak ∀|k| ≤ r}
V ⊃ {x ∈ ΣA : xk = bk ∀|k| ≤ r} .

For t ≥ 2r + M , m = t − 2r ≥ M and Am > 0. Hence find c0, . . . , cm with
c0 = br, cm = a−r, Ackck+1

= 1 for all k. Then

x = · · · b−2b−1b0 · · · brc1 · · · cm−1a−r · · · a0a1 · · ·

is in ΣA and x ∈ σtU ∩ V . So ΣA is topologically mixing. ut
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Let FA be the family of all continuous φ : ΣA → R for which varkφ ≤ bαk
(for all k ≥ 0) for some positive constants b and α ∈ (0, 1). For any β ∈ (0, 1)
one can define the metric dβ on ΣA by dβ(x, y) = βN where N is the largest
nonnegative integer with xi = yi for every |i| < N . Then FA is just the set
of functions which have a positive Hölder exponent with respect to dβ . The
theorem we are interested in then reads

1.4. Existence of Gibbs measures. Suppose ΣA is topologically mixing and
φ ∈ FA. There is unique σ-invariant Borel probability measure µ on ΣA for
which one can find constants c1 > 0, c2 > 0 and P such that

c1 ≤
µ{y : yi = xi for all i ∈ [0,m)}

exp
(
−Pm+

∑m−1
k=0 φ(σkx)

) ≤ c2

for every x ∈ ΣA and m ≥ 0.

This theorem will not be proved for some time. The first step is to reduce
the φ’s one must consider.

Definition. Two functions ψ, φ ∈ C (ΣA) are homologous with respect to σ
(written ψ ∼ φ) if there is a u ∈ C (ΣA) so that

ψ(x) = φ(x)− u(x) + u(σx) .

1.5. Lemma. Suppose φ1 ∼ φ2 and Theorem 1.4 holds for φ1. Then it holds
for φ2 and µφ1 = µφ2 .

Proof. ∣∣∣∣∣
m−1∑
k=0

φ1(σkx)−
m−1∑
k=0

φ2(σkx)

∣∣∣∣∣ =

∣∣∣∣∣
m−1∑
k=0

u(σk+1x)− u(σkx)

∣∣∣∣∣
= |u(σmx)− u(x)| ≤ 2‖u‖ .

The exponential in the required inequality changes by at most a factor of
e2‖u‖ when φ1 is replaced by φ2. Thus the inequality remains valid with c1,
c2 changed and P , µ unchanged. ut

1.6. Lemma. If φ ∈ FA, then φ is homologous to some ψ ∈ FA with ψ(x) =
ψ(y) whenever xi = yi for all i ≥ 0.

Proof. For each 1 ≤ t ≤ n pick {ak,t}∞k=−∞ ∈ ΣA with a0,t = t. Define
r : ΣA → ΣA by r(x) = x∗ where

x∗k =

{
xk for k ≥ 0
ak,x0 for k ≤ 0 .

Let
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u(x) =

∞∑
j=0

(φ(σjx)− φ(σjr(x))) .

Since σjx and σjr(x) agree in places from −j to +∞,

|φ(σjx)− φ(σjr(x))| ≤ varjφ ≤ bαj .

As
∑∞
j=0 bα

j <∞, u is defined and continuous. If xi = yi for all |i| ≤ n, then,
for j ∈ [0, n],

|φ(σjx)− φ(σjy)| ≤ varn−jφ ≤ bαn−j

and
|φ(σjr(x))− φ(σjr(y))| ≤ bαn−j .

Hence

|u(x)− u(y)| ≤
[n2 ]∑
j=0

|φ(σjx)− φ(σjy) + φ(σjr(x))− φ(σjr(y))|+ 2
∑
j>[n2 ]

αj

≤ 2b

 [n2 ]∑
j=0

αn−j +
∑
j>[n2 ]

αj

 ≤ 4b α[n2 ]

1− α
·

This shows that u ∈ FA. Hence ψ = φ− u+ u ◦ σ is in FA also. Furthermore

ψ(x) = φ(x) +

∞∑
j=−1

(
φ(σj+1r(x))− φ(σj+1x)

)
+

∞∑
j=0

(
φ(σj+1x)− φ(σjr(σx))

)
= φ(r(x)) +

∞∑
j=0

(
φ(σj+1r(x))− φ(σjr(σx))

)
.

The final expression depends only on {xi}∞i=0, as we wanted. D. Lind cleaned
up the above proof for us. ut

Lemmas 1.5 and 1.6 tell us that in looking for a Gibbs measure µφ for
φ ∈ FA (i.e., proving Theorem 1.4) we can restrict our attention to functions
φ for which φ(x) depends only on {xi}∞i=0.

B. Ruelle’s Perron-Frobenius Theorem

We introduce now one-sided shift spaces. One writes x for {xi}∞i=0 (we will
continue to write x for {xi}∞i=−∞ but never for both things at the same time).
Let

Σ+
A =

{
x ∈

∞∏
i=0

{1, . . . , n} : Axi,xi+1
= 1 for all i ≥ 0

}
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and define σ : Σ+
A → Σ+

A by σ(x)i = xi+1. σ is a finite-to-one continuous
map of Σ+

A onto itself. If φ ∈ C (Σ+
A ) we get φ ∈ C (ΣA) by φ({xi}∞i=−∞) =

φ({xi}∞i=0). Suppose φ ∈ C (ΣA) satisfies φ(x) = φ(y) whenever xi = yi
for all i ≥ 0. Then one can think of φ as belonging to C (Σ+

A ) as follows:
φ({xi}∞i=0) = φ({xi}∞i=−∞) where xi for i ≤ 0 are chosen in any way subject

to {xi}∞i=−∞ ∈ ΣA. The functions C (Σ+
A ) are thus identified with a certain

subclass of C (ΣA). We saw in Lemmas 1.5 and 1.6 that one only needs to get
Gibbs measures for φ ∈ C (Σ+

A ) ∩FA in order to get them for all φ ∈ FA.
In this section we will prove a theorem of Ruelle that will later be used

to construct and study Gibbs measures. For φ ∈ C (Σ+
A ) define the operator

L = Lφ on C (Σ+
A ) by

(Lφf)(x) =
∑

y ∈σ−1x

eφ(y)f(y) .

It is the fact that σ is not one-to-one on Σ+
A that will make this operator

useful.

1.7. Ruelle’s Perron-Frobenius Theorem [10, 11]. Let ΣA be topolog-
ically mixing, φ ∈ FA ∩ C (Σ+

A ) and L = Lφ as above. There are λ > 0,
h ∈ C (Σ+

A ) with h > 0 and ν ∈ M (Σ+
A ) for which Lh = λh, L∗ν = λν,

ν(h) = 1 and

lim
m→∞

‖λ−mLmg − ν(g)h‖ = 0 for all g ∈ C (Σ+
A ) .

Proof. Because L is a positive operator and L1 > 0, one has that G(µ) =
(L∗µ(1))−1L∗µ ∈ M (Σ+

A ) for µ ∈ M (Σ+
A ). There is a ν ∈ M (Σ+

A ) with
G(ν) = ν by the Schauder-Tychonoff Theorem (see Dunford and Schwartz,
Linear Operators I, p. 456): Let E be a nonempty compact convex subset of
a locally convex topological vector space. Then any continuous G : E → E
has a fixed point. In our case G(ν) = ν gives L∗ν = λν with λ > 0.

We will prove 1.7 via a sequence of lemmas. Let b > 0 and α ∈ (0, 1) be any
constants so that varkφ ≤ bαk for all k ≥ 0. Set Bm = exp

(∑∞
k=m+1 2bαk

)
and define

Λ = {f ∈ C (Σ+
A ) : f ≥ 0, ν(f) = 1 , f(x) ≤ Bmf(x′),

whenever xi = x′i for all i ∈ [0,m]} .

1.8. Lemma. There is an h ∈ Λ with Lh = λh and h > 0.

Proof. One checks that λ−1Lf ∈ Λ when f ∈ Λ. Clearly λ−1Lf ≥ 0 and

ν(λ−1Lf) = λ−1L∗ν(f) = ν(f) = 1 .

Assume xi = x′i for i ∈ [0,m]. Then

Lf(x) =
∑
j

eφ(jx)f(jx)
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where the sum ranges over all j with Ajx0
= 1. For x′ the expression runs

over the same j; as jx and jx′ agree in places 0 to m+ 1

eφ(jx)f(jx) ≤ eφ(jx
′)ebα

m+1

Bm+1f(jx′) ≤ Bmeφ(jx
′)f(jx′)

and so
Lf(x) ≤ BmLf(x′) .

Consider any x, z ∈ Σ+
A . Since AM > 0 there is a y′ ∈ σ−Mx with y′0 = z0.

For f ∈ Λ

LMf(x) =
∑

y∈σ−Mx

exp

(
M−1∑
k=0

φ(σky)f(y)

)

≥ e−M‖φ‖f(y′) .

Let K = λMeM‖φ‖B0. Then 1 = ν(λ−MLMf) ≥ K−1f(z) gives ‖f‖ ≤ K as z
is arbitrary. As ν(f) = 1, f(z) ≥ 1 for some z and we get inf λ−MLMf ≥ K−1.

If xi = x′i for i ∈ [0,m] and f ∈ Λ, one has

|f(x)− f(x′)| ≤ (Bm − 1)K → 0

as m → ∞, since Bm → 1. Thus Λ is equicontinuous and compact by
the Arzela-Ascoli Theorem. Λ 6= ∅ as 1 ∈ Λ. Applying Schauder-Tychonoff
Theorem to λ−1L : Λ → Λ gives us h ∈ Λ with Lh = λh. Furthermore
inf h = inf λ−MLMh ≥ K−1. ut

1.9. Lemma. There is an η ∈ (0, 1) so that for f ∈ Λ one has λ−MLMf =
ηh+ (1− η)f ′ with f ′ ∈ Λ.

Proof. Let g = λ−MLMf − ηh where η is to be determined. Provided η‖h‖ ≤
K−1 we will have g ≥ 0. Assume xi = x′i for all i ∈ [0,m]. We want to pick η
so that g(x) ≤ Bmg(x′), or equivalently

(?) η(Bmh(x′)− h(x)) ≤ Bmλ−MLMf(x′)− λ−MLMf(x) .

We saw above that Lf1(x) ≤ Bm+1 e
bαm+1Lf1(x′) ≤ Bm+1 e

bαmLf1(x′) for
any f1 ∈ Λ. Applying this to f1 = λ−M+1LM−1f one has

λ−MLMf(x) ≤ Bm+1 e
bαmλ−MLMf(x′) .

Now h(x) ≥ B−1m h(x′) because h ∈ Λ. To get (?) it is therefore enough to
have

η(Bm −B−1m )h(x′) ≤ (Bm −Bm+1e
bαm) λ−MLMf(x′)

or
η(Bm −B−1m )‖h‖ ≤ (Bm −Bm+1e

bαm)K−1 .
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There is an L so that the logarithms of Bm, B−1m and Bm+1e
bαm are in [−L,L]

for all m. Let u1, u2 be positive constants such that

u1(x− y) ≤ ex − ey ≤ u2(x− y) for all x, y ∈ [−L,L], x > y .

For (?) to hold it is enough for η > 0 to satisfy

η‖h‖u1(logBm + logBm) ≤ K−1u2(logBm − log(Bm+1e
bαm))

or

η‖h‖u1
(

4bαm+1

1− α

)
≤ K−1u2bαm

or
η ≤ u2(1− α)(4αu1‖h‖K)−1 . ut

1.10. Lemma. There are constants A > 0 and β ∈ (0, 1) so that

‖λ−nLnf − h‖ ≤ Aβn

for all f ∈ Λ, n ≥ 0.

Proof. Let n = Mq + r, 0 ≤ r < M . Inductively one sees from Lemma 1.9
and Lh = λh that, for f ∈ Λ,

λ−MqLMqf = (1− (1− η)q)h+ (1− η)qf ′q

where f ′q ∈ Λ. As ‖f ′q‖ ≤ K one has

‖λ−MqLMqf − h‖ ≤ (1− η)q(‖h‖+K)

and

‖λ−nLnf − h‖ = ‖λ−rLr(λ−MqLMqf − h)‖
≤ A(1− η)q+1

≤ Aβn,

where
A = (1− η)−1(‖h‖+K) sup

0≤r<M
‖λ−rLr‖

and
βM = 1− η . ut

1.11. Lemma. Let Cr = {f ∈ C (Σ+
A ) : varrf = 0}. If F ∈ Λ, f ∈ Cr, f ≥ 0

and fF 6≡ 0, then ν(fF )−1λ−rLr(fF ) ∈ Λ.
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Proof. Assume xi = x′i for i ∈ [0,m]. Then

Lr(fF )(x) =
∑

j1···jrx
exp

(
r−1∑
k=0

φ(σk(j1 · · · jrx))

)
f(j1 · · · jrx)F (j1 · · · jrx)

where j1 · · · jr runs over all r-strings of symbols for which j1 · · · jrx ∈ Σ+
A .

In the expression for Lr(fF )(x′) one has j1 · · · jr running over the same
r-strings. Now f(j1 · · · jrx) = f(j1 · · · jrx′) as f ∈ Cr, F (j1 · · · jrx) ≤
Bm+rF (j1 · · · jrx′), and φ(σk(j1 · · · jrx)) ≤ φ(σk(j1 · · · jrx′)) + varm+r−kφ.
Since

Bm+r exp

(
r−1∑
k=0

varm+r−kφ

)
≤ Bm+r exp

 m+r∑
j=m+1

bαj

 ≤ Bm,
each term in the above expression for Lr(fF )(x) is bounded by Bm times the
corresponding term for Lr(fF )(x′). Hence Lr(fF )(x) ≤ BmLr(fF )(x′).

One must still show ν(fF ) > 0. Reasoning as in the proof of 1.8 (with
Lr(fF ) in place of f) we get

λrν(fF ) = ν(λ−MLM+r(fF )) ≥ K−1Lr(fF )(z),

for any z. But (fF )(w) > 0 gives Lr(fF )(σrw) > 0 and so ν(fF ) > 0. ut

1.12. Lemma. For f ∈ Cr, F ∈ Λ and n ≥ 0,

‖λ−n−rLn+r(fF )− ν(fF )h‖ ≤ Aν(|fF |)βn .

For g ∈ C (Σ+
A ) one has limm→∞ ‖λ−mLmg − ν(g)h‖ = 0.

Proof. Write f = f+ − f− with f+, f− ≥ 0 and f+, f− ∈ Cr. Then

‖λ−n−rLn+r(f±F )− ν(f±F )h‖ ≤ Aν(|f±F |)βn.

For f±F ≡ 0, this is obvious; for f±F 6≡ 0 we apply Lemmas 1.11 and 1.10.
These inequalities add up to give us the first statement of the lemma.

Given g and ε > 0 one can find r and f1, f2 ∈ Cr so that f1 ≤ g ≤ f2 and
0 ≤ f2 − f1 ≤ ε. As |ν(fi)− ν(g)| < ε, the first statement of the lemma with
F = 1 gives

‖λ−mLm(fi)− ν(g)h‖ ≤ ε(1 + ‖h‖)

for large m. Since λ−mLmf1 ≤ λ−mLmg ≤ λ−mLmf2,

‖λ−mLmg − ν(g)h‖ ≤ ε(1 + ‖h‖)

for large m. ut

The proof of 1.7 is finished.
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C. Construction of Gibbs measures

We continue to assume that φ ∈ FA ∩ C (Σ+
A ) and ν, h, λ are as in Ruelle’s

Perron-Frobenius Theorem. Then µ = hν is a probability measure on Σ+
A ;

µ(f) = ν(hf) =
∫
f(x)h(x) dν(x).

1.13. Lemma. µ is invariant under σ : Σ+
A → Σ+

A .

Proof. We need to show that µ(f) = µ(f ◦ σ) for f ∈ C (Σ+
A ). Notice that

((Lf) · g)(x) =
∑

y∈σ−1x

eφ(y)f(y)g(x)

=
∑

y∈σ−1x

eφ(y)f(y)g(σy)

= L(f · (g ◦ σ))(x) .

Using this

µ(f) = ν(hf)

= ν(λ−1Lh · f)

= λ−1ν(L(h · (f ◦ σ)))

= λ−1(L∗ν)(h · (f ◦ σ))

= ν(h · (f ◦ σ))

= µ(f ◦ σ) . ut

Because µ is σ-invariant on Σ+
A there is a natural way to make µ into a

measure on ΣA. For f ∈ C (ΣA) define f∗ ∈ C (Σ+
A ) by

f∗({xi}∞i=0) = min{f(y) : y ∈ ΣA, yi = xi for all i ≥ 0} .

Notice that for m,n ≥ 0 one has

‖(f ◦ σn)∗ ◦ σm − (f ◦ σn+m)∗‖ ≤ varnf .

Hence

|µ((f ◦σn)∗)−µ((f ◦σn+m)∗)| = |µ((f ◦σn)∗ ◦σm)−µ((f ◦σn+m)∗)| ≤ varnf

which approaches 0, as n→∞, since f is continuous.
Hence µ̃(f) = limn→∞ µ((f ◦ σn)∗) exists by the Cauchy criterion. It is
straightforward to check that µ̃ ∈ C (ΣA)∗. By the Riesz Representation The-
orem we see that µ̃ defines a probability measures on ΣA, which we will denote
by µ despite the possible ambiguity. Note that

µ̃(f ◦ σ) = lim
n→∞

µ((f ◦ σn+1)∗) = µ̃
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proving that µ̃ is σ-invariant. Also µ̃(f) = µ(f) for f ∈ C (ΣA)∗.
Recall that µ is ergodic if µ(E) = 0 or 1 whenever E is a Borel set with

σ−1E = E. One calls µ mixing if

lim
n→∞

µ(E ∩ σ−nF ) = µ(E)µ(F ),

for all Borel sets E and F . It is clear that mixing implies ergodicity and a
standard argument shows that the mixing condition only need be checked for
E and F in a basis for the topology.

1.14. Proposition. µ is mixing for σ : ΣA → ΣA.

Proof. Writing Smφ(x) =
∑m−1
k=0 φ(σkx) one checks inductively that for f ,

g ∈ C (Σ+
A ) one has

(Lmf)(x) =
∑

y∈σ−mx

eSmφ(y)f(y) .

Then

((Lmf) · g)(x) =
∑

y∈σ−mx

eSmφ(y)f(y)g(σmy)

= Lm(f · (g ◦ σm)) .

Let
E = {y ∈ ΣA : yi = ai, r ≤ i ≤ s} ,

F = {y ∈ ΣA : yi = bi, u ≤ i ≤ v} .

In checking the mixing condition for E and F we may assume r = u = 0
because µ is σ-invariant. We want to calculate

µ(E ∩ σ−nF ) = µ(χE ·χσ−nF )

= µ(χE · (χF ◦ σ
n))

= ν(hχE · (χF ◦ σ
n))

= λ−nL∗nν(hχE · (χF ◦ σ
n))

= ν(λ−nLn(hχE · (χF ◦ σ
n)))

= ν(λ−nLn(hχE) ·χF ) .

Now

|µ(E ∩ σ−nF )− µ(E)µ(F )| = |µ(E ∩ σ−nF )− ν(hχE)ν(hχF )|
= |ν

(
(λ−nLn(hχE)− ν(hχE)h)χF

)
|

≤ ‖λ−nLn(hχE)− ν(hχE)h‖ ν(F ) .

Because χE ∈ Cs Lemma 1.12 gives, for n ≥ s,
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‖λ−nLn(hχE)− ν(hχE)h‖ ≤ Aµ(E)βn−s

where β ∈ (0, 1). One then has

|µ(E ∩ σ−nF )− µ(E)µ(F )| ≤ A′µ(E)µ(F )βn−s

for n ≥ s where A′ = A (inf h)−1. Thus µ(E ∩ σ−nF )→ µ(E)µ(F ). ut

1.15. Lemma. Let a =
∑∞
k=0 varkφ < ∞. If x, y ∈ ΣA with xi = yi for

i ∈ [0,m), then
|Smφ(x)− Smφ(y)| ≤ a .

Proof. Define y′ by

y′i =

{
yi for i ≥ 0
xi for i ≤ 0 .

Since φ ∈ C (Σ+
A ), φ(σky′) = φ(σky) for k ≥ 0. Hence

|Smφ(x)− Smφ(y)| ≤
m−1∑
k=0

|φ(σkx)− φ(σky′)|

≤
m−1∑
k=0

varm−1−kφ

≤ a . ut

We now complete the proof of 1.4.

1.16. Theorem. µ is a Gibbs measure for φ ∈ FA ∩ C (Σ+
A ).

Proof. Let E = {y ∈ ΣA : yi = xi for i ∈ [0,m)}. For any z ∈ Σ+
A there is

at most one y′ ∈ σ−mz with y′ ∈ E. Thus, using 1.15,

Lm(hχE)(z) =
∑

y∈σ−mz

eSmφ(y)h(y)χE(y)

≤ eSmφ(x)ea ‖h‖

and so

µ(E) = ν(hχE)

= λ−mν(Lm(hχE))

≤ λ−meSmφ(x)ea ‖h‖ .

Thus take c2 = ea‖h‖. On the other hand, for any z ∈ Σ+
A there is at least

one y′ ∈ σ−m−Mz with y′ ∈ E. Then

Lm+M (hχE)(z) ≥ eSm+Mφ(y
′)h(y′)

≥ e−M‖φ‖−a (inf h) eSmφ(x)
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and
µ(E) = λ−m−Mν(Lm+M (hχE)) ≥ c1λ−meSmφ(x)

where c1 = λ−Me−M‖φ‖−a. We have verified the desired inequalities on mea-
sures of cylinder sets given in 1.4 with P = log λ.

Suppose now that µ′ is any other measure satisfying the inequalities in
Theorem 1.4 with constants c′1, c′2, P ′. For x ∈ ΣA let Em(x) = {y ∈ ΣA :
yi = xi for all i ∈ [0,m)}. Let Tm be a finite subset of ΣA so that ΣA =⋃
x∈Tm Em(x) disjointly. Then

c′1e
−P ′m

∑
x∈Tm

eSmφ(x) ≤
∑
x∈Tm

µ′(Em(x))

= 1

≤ c′2e
−P ′m

∑
x∈Tm

eSmφ(x) .

From this one sees that P ′ = limm→∞
1
m log

(∑
x∈Tm e

Smφ(x)
)

. One can

apply the same reasoning to µ; hence P ′ = P as they equal the same limit.
The estimates on µ′(Em(x)) and µ(Em(x)) give us µ′(Em(x)) ≤ dµ(Em(x))

where d = c′2c
−1
1 . Taking limits this extends to µ′(E) ≤ dµ(Em) for all Borel

sets E. In particular µ′(E) = 0 when µ(E) = 0. By the Radon-Nikodym
Theorem µ′ = fµ for some µ-integrable f . Applying σ one has

µ′ = σ∗µ′

= (f ◦ σ) σ∗µ

= (f ◦ σ)µ .

As the Radon-Nikodym derivative is unique up to µ-equivalence, f ◦ σ a.e.
= f .

Because µ is ergodic this gives f equivalent to some constant c.
1 = µ′(ΣA) =

∫
c dµ = c and µ = µ′. ut

D. Variational principle

We will describe Gibbs measures as those maximizing a certain quantity, in a
way analogous to Lemma 1.1. If C = {C1, . . . , Ck} is a partition of a measure

space (X,B, µ) (i.e., the Ci’s are pairwise disjoint and X =
⋃k
i=1 Ci), one

defines the entropy

Hµ(C) =

k∑
i=1

(−µ(Ci) logµ(Ci)) .

If D is another (finite) partition,

C ∨D = {Ci ∩Dj : Ci ∈ C , Dj ∈ D}.
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1.17. Lemma. Hµ(C ∨D) ≤ Hµ(C) +Hµ(D).

Proof.

Hµ(C ∨D)−Hµ(C) =
∑
i,j

(−µ(Ci ∩Dj) logµ(Ci ∩Dj))−
∑
i

(−µ(Ci) logµ(Ci))

=
∑
i,j

−µ(Ci ∩Dj) log
µ(Ci ∩Dj)

µ(Ci)

=
∑
j

∑
i

µ(Ci)

(
−µ(Ci ∩Dj)

µ(Ci)
log

µ(Ci ∩Dj)

µ(Ci)

)
·

The function ϕ(x) = −x log x (ϕ(0) = 0) is con-
cave on [0, 1] as ϕ′′(x) < 0 for x ∈ (0, 1). From this
it follows that

ϕ(a1x1 + a2x2) ≥ a1ϕ(x1) + a2ϕ(x2)

when x1, x2 ∈ [0, 1], a1 + a2 = 1. Inductively
one sees that ϕ(

∑n
i=1 aixi) ≥

∑n
i=1 aiϕ(xi) when∑n

i=1 ai = 1 and ai ≥ 0.

Applying this to ai = µ(Ci) and xi =
µ(Ci∩Dj)
µ(Ci)

we get

∑
i

µ(Ci) ϕ

(
µ(Ci ∩Dj)

µ(Ci)

)
≤ ϕ

(∑
i

µ(Ci ∩Dj)

)
= ϕ(µ(Dj)) .

So
Hµ(C ∨D)−Hµ(C) ≤

∑
j

ϕ(µ(Dj)) = Hµ(D) . ut

1.18. Lemma. Suppose {am}∞m=1 is a sequence satisfying inf amm > −∞,
am+n ≤ am + an for all m,n. Then limm→∞

am
m exists and equals infm

am
m .

Proof. Fix m > 0. For j > 0, write j = km+ n with 0 ≤ n < m. Then

aj
j

=
akm+n

km+ n
≤ akm

km
+
an
km
≤ kam

km
+
an
km
·

Letting j →∞, k →∞ one gets

lim sup
j

aj
j
≤ am

m
·

Thus lim supj
aj
j ≤ infm

am
m . As lim infj

aj
j ≥ infm

am
m , one gets that limj

aj
j

exists and equals infm
am
m · ut
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1.19. Lemma. If D is a (finite) partition of (X,B, µ) and T an automor-
phism of (X,B, µ), then

hµ(T,D) = lim
m→∞

1

m
Hµ(D ∨ T−1D ∨ · · · ∨ T−m+1D)

exists.

Proof. Let am = Hµ(D ∨ T−1D ∨ · · · ∨ T−m+1D). Then

am+n ≤ Hµ(D∨T−1D∨· · ·∨T−m+1D)+Hµ(T−mD∨· · ·∨T−m−n+1D) ≤ am+an

since
T−mD ∨ · · · ∨ T−m−n+1D = T−m(D ∨ · · · ∨ T−n+1D)

and µ is T -invariant. ut

Definition. Let µ ∈Mσ(ΣA) and U = {U1, . . . , Un} where Ui = {x ∈ ΣA :
x0 = i}. Then s(µ) = hµ(σ,U) is called the entropy of µ.

Suppose now that φ ∈ C (ΣA) and that a0a1 · · · am−1 are integers between
1 and n satisfying Aakak+1

= 1. Write

sup
a0a1···am−1

Smφ = sup

{
m−1∑
k=0

φ(σkx) : x ∈ ΣA, xi = ai for all 0 ≤ i < m

}

and

Zm(φ) =
∑

a0a1···am−1

exp

(
sup

a0a1···am−1

Smφ

)
.

1.20. Lemma. For φ ∈ C (ΣA), P (φ) = limm→∞
1
m logZm(φ) exists (called

the pressure of φ).

Proof. Notice that

sup
a0a1···am+n−1

Sm+nφ ≤ sup
a0a1···am−1

Smφ + sup
am···am+n−1

Snφ .

From this one gets Zm+n(φ) ≤ Zm(φ)Zn(φ); the terms in Zm+n(φ) are
bounded by terms in Zm(φ)Zn(φ) and Zm(φ)Zn(φ) may have more terms,
all positive. Apply Lemma 1.18 to am = logZm(φ) (notice am ≥ −m‖φ‖). ut

1.21. Proposition. Suppose φ ∈ C (ΣA) and µ ∈Mσ(ΣA). Then

s(µ) +

∫
φ dµ ≤ P (φ) .
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Proof. As
∫
φ ◦ σkdµ =

∫
φdµ, 1

m

∫
Smφdµ =

∫
φdµ where Smφ(x) =∑m−1

k=0 φ(σkx). Hence

s(µ) +

∫
φ dµ ≤ lim

m→∞

1

m

(
Hµ(U ∨ · · · ∨ σ−m+1U) +

∫
Smφ dµ

)
.

Now U ∨ · · · ∨ σ−m+1U partitions points x ∈ ΣA according to x0x1 · · ·xm−1.
Thus

Hµ(U ∨ · · · ∨ σ−m+1U) +

∫
Smφ dµ

≤
∑

a0···am−1

µ(a0 · · · am−1)(− logµ(a0 · · · am−1)) + sup
a0a1···am−1

Smφ

≤ logZm(φ) by Lemma 1.1 .

Now let m→∞. ut

1.22. Theorem. Let φ ∈ FA, ΣA topologically mixing and µφ the Gibbs mea-
sure of φ. Then µφ is the unique µ ∈Mσ(ΣA) for which

s(µ) +

∫
φ dµ = P (φ) .

Proof. Given a0 · · · am−1, pick x with xi = ai (i = 0, . . . ,m− 1) and

Smφ(x) = sup
a0a1···am−1

Smφ .

Now, as µ = µφ is the Gibbs measure,

µ{y ∈ ΣA : yi = ai ∀ 0 ≤ i < m}
exp(−Pm+ Smφ(x))

∈ [c1, c2] .

Summing the measure of these sets over all possible a0 · · · am−1’s gives 1; so

c1 exp(−Pm)Zm(φ) ≤ 1 ≤ c2 exp(−Pm)Zm(φ)

or
Zm(φ)

exp(Pm)
∈ [c−12 , c−11 ] .

It follows that P (φ) = limm→∞
1
m logZm(φ) = P .

If yi = xi for all i = 0, . . . ,m− 1, then

|Smφ(y)− Smφ(x)| ≤
m−1∑
k=0

|φ(σky)− φ(σky)|

≤ var0φ+ var1φ+ · · ·+ var[m2 ]φ+ var
m−[m2 ]φ+ · · ·+ var0φ

≤ 2c

[m2 ]∑
k=0

αk ≤ 2c

1− α
= d .
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Hence, if B = {y ∈ ΣA : yi = ai for all i = 0, . . . ,m− 1}, then for x ∈ B,

−µ(B) logµ(B) +

∫
B

Smφ dµ ≥ −µ(B) [ logµ(B)− Smφ(x) + d ]

≥ −µ(B) [ log
(
c2e
−Pm+Smφ(x)

)
− Smφ(x) + d ]

≥ µ(B)(Pm− log c2 − d) .

Since

Hµ(U ∨ · · · ∨ σ−m+1U) +

∫
Smφ dµ

=
∑
B

(
− µ(B) logµ(B) +

∫
B

Smφ dµ
)

≥
∑
B

µ(B)(Pm− log c2 − d) = Pm− log c2 − d,

we get

s(µ) +

∫
φ dµ = lim

m→∞

1

m

(
Hµ(U ∨ · · · ∨ σ−m+1U) +

∫
Smφ dµ

)
≥ lim

m→∞

1

m
(Pm− log c1 − d) = P = P (φ) .

The reverse inequality was in Proposition 1.21. So

s(µφ) +

∫
φ dµφ = P (φ) .

To prove uniqueness we will need a couple of lemmas.

1.23. Lemma. Let X be a compact metric space, µ ∈ M (X), and D =
{D1, . . . , Dn} a Borel partition of X. Suppose {Cm}∞m=1 is a sequence of par-
titions so that diam(Cm) = maxC∈Cm diam(C) → 0 as m → ∞. Then there
are partitions {Em1 , . . . , Emn } so that

1. each Emi is a union of members of Cm,
2. limm→∞ µ(Emi ∆Di) = 0 for each i.

Proof. Pick compacts K1, . . . ,Kn with Ki ⊂ Di and µ(Di\Ki) < ε. Let
δ = infi 6=j d(Ki,Kj) and consider m with diam(Cm) ≤ δ

2 . Divide the elements
C ∈ Cm into groups whose unions are Em1 , . . . , E

m
n so that

C ⊂ Emi if C ∩Ki 6= ∅ .

As diam(Cm) ≤ δ
2 any C ∈ Cm can intersect at most one Ki. Put a C hitting

no Ki in any Emi you like. Then Emi ⊃ Ki and

µ(Emi ∆Di) = µ(Di\Emi )+µ(Emi \Di) ≤ ε+ µ

(
X\

n⋃
i=1

Ki

)
≤ (n+1) ε . ut
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1.24. Lemma. Suppose 0 ≤ p1, . . . , pm ≤ 1, s = p1 + · · · + pm ≤ 1 and
a1, . . . , am ∈ R. Then

m∑
i=1

pi(ai − log ai) ≤ s

(
log

m∑
i=1

eai − log s

)
.

Proof. This generalizes 1.1. One shows by calculus that the left side is maxi-
mized at pi = seai∑

j e
aj · ut

Proof of Theorem 1.22 (continued). Let ν ∈Mσ(ΣA) satisfy s(ν)+
∫
φ dν = P .

First suppose ν is singular with respect to µ. Then there is a Borel set B with

σ(B) = B, µ(B) = 0 and ν(B) = 1. Let Cm = σ−[m2 ]+1
U∨· · ·∨U∨· · ·∨σ[m2 ]U.

Then diam(Cm) → 0 (use dβ metric). Applying 1.23 to {B,X\B} one finds
sets Em which are unions of elements of Cm and satisfy (µ+ ν)(B∆Em)→ 0.

As µ + ν is σ-invariant and σ−m+[m2 ]B = B one has (µ + ν)(B∆Fm) → 0

where Fm = σ−m+[m2 ]Em is a union of members of U ∨ · · · ∨ σ−m+1U. Since
s(ν) = inf 1

mHν(U ∨ · · · ∨ σ−m+1U) one has

P = P (φ) = s(ν) +

∫
φ dν ≤ 1

m

(
Hν(U ∨ · · · ∨ σ−m+1U) +

∫
Smφ dν

)
or

mP ≤
∑

B∈U∨···∨σ−m+1U

[
−ν(B) log ν(B) +

∫
B

Smφ dν

]
.

Picking xB ∈ B one has Smφ ≤ Smφ(xB) + d on B and so

mP ≤ d+
∑
B

ν(B)(Smφ(x
B

)− log ν(B))

≤ d+
∑

B⊂Fm
ν(B)(Smφ(xB)− log ν(B))

+
∑

B⊂X\Fm
ν(B)(Smφ(xB)− log ν(B)).

Applying 1.24

mP − d ≤ ν(Fm) log
∑

B⊂Fm
exp(Smφ(x

B
))

+ ν(X\Fm) log
∑

B⊂X\Fm
exp(Smφ(xB)) + 2K∗ .

where K∗ = sup0≤s≤1(−s log s). Rearranging terms:
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−2K∗ −d ≤ ν(Fm) log
∑

B⊂Fm
exp

(
Smφ(x

B
)−mP

)
+ ν(X\Fm) log

∑
B⊂X\Fm

exp
(
Smφ(x

B
)−mP

)
≤ ν(Fm) log

∑
B⊂Fm

c−12 µ(B) + ν(X\Fm) log
∑

B⊂X\Fm
c−12 µ(B)

≤ log c−12 + ν(Fm) logµ(Fm) + ν(X\Fm) logµ(X\Fm) .

Letting m→∞, ν(Fm)→ 1, µ(Fm)→ 0 and the above inequality is contra-
dictory.

In general, for ν′ ∈Mσ(ΣA), write ν′ = βν + (1 − β)µ′ where β ∈ (0, 1),
ν ∈ Mσ(ΣA) is singular w.r.t. µ and µ′ ∈ Mσ(ΣA) is absolutely continuous
w.r.t. µ. As ν and µ′ are supported on disjoints sets

Pν′(φ) = βPν(φ) + (1− β)Pµ′(φ),

where Pν(φ) = s(ν) +
∫
φ dν. Suppose Pν′(φ) = P . Since Pν(φ) ≤ P and

Pµ′(φ) ≤ P (Prop. 1.21), we have Pν(φ) = P or β = 0. We just saw that

Pν(φ) 6= P . Thus ν′ = µ′ and write ν′ = dν′

dµ µ. Then the dν′

dµ is σ-invariant up

to equivalence as ν′, µ are both invariant and the Radon-Nikodym derivative
is unique up to equivalence. So dν′

dµ is constant and ν′ = µ. ut

E. Further properties

In this section we look at more examples of the good behavior of Gibbs mea-
sures. Throughout we assume µ = µφ with φ ∈ FA and σ|ΣA topologically
mixing.

Two partitions P and Q are called ε-independent if∑
P∈P,Q∈Q

|µ(P ∩Q)− µ(P )µ(Q)| < ε .

Let U = {U1, . . . , Un} be the partition of ΣA with

Uj = {x ∈ ΣA : x0 = j} .

The partition U is called weak-Bernoulli (for σ and µ) if for every ε > 0 there
is an N(ε) so that

P = U ∨ σ−1U ∨ · · · ∨ σ−sU and Q = σ−tU ∨ · · · ∨ σ−t−rU

are ε-independent for all s ≥ 0, r ≥ 0, t ≥ s + N(ε). A well-known theorem
of Friedman and Ornstein [4] states that if U is weak-Bernoulli, then (σ, µ) is
conjugate to a Bernoulli shift.
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1.25. Theorem. U is weak-Bernoulli for the Gibbs measure µ = µφ.

Proof. We may assume that φ ∈ C (Σ+
A ) as before. For P ∈ P we have χP ∈

Cr. As in the proof of 1.14, for Q ∈ Q

|µ(P ∩Q)− µ(P )µ(Q)| ≤ A′µ(P )µ(Q)βt−s

where β ∈ (0, 1). Summing over P,Q∑
P,Q

|µ(P ∩Q)− µ(P )µ(Q)| ≤ A′βt−s ≤ ε

when t− s is large. ut

Because µ is mixing, µ(f · (g ◦ σn))→ µ(f)µ(g) as n→∞ for f, g contin-
uous (in fact L2) functions. The above proof used that this convergence was
exponentially fast for characteristic functions of cylinder sets. This exponen-
tial convergence will now be carried over to functions in FA. For α ∈ (0, 1)
let Hα be the family of f ∈ C (ΣA) with varkf ≤ cαk for some c. Hα is a
Banach space under the norm

‖f‖α = ‖f‖+ sup
k≥0

(α−kvarkf) .

1.26. Exponential Cluster Property. For fixed α ∈ (0, 1) there are con-
stants D and γ ∈ (0, 1) so that

|µ(f · (g ◦ σn))− µ(f)µ(g)| ≤ D‖f‖α‖g‖αγn

for all f, g ∈Hα, n ≥ 0.

Proof. For k ≥ 0 and x ∈ ΣA, let

Ek(x) = {y ∈ Σa : yi = xi for all |i| ≤ k} .

Define fk(x) = µ(Ek(x))−1
∫
Ek(x)

f dµ. Then µ(fk) = µ(f) and ‖f − fk‖ ≤
‖f‖ααk. Hence

|µ(f · (g ◦ σn))− µ(f)µ(g)| ≤
|µ(fk · (gk ◦σn))−µ(fk)µ(gk)|+ |µ((f −fk) · (g ◦σn))|+ |µ(fk · ((g−gk)◦σn))|

≤ |µ(fk · (gk ◦ σn))− µ(fk)µ(gk)|+ 2αk‖f‖α‖g‖α.
Now fk is measurable with respect to the partition P = {Ek(x)}x; i.e., fk =∑
P∈P aPχP . Also gk =

∑
P∈P bPχP . Hence

|µ(fk · (gk ◦ σn))− µ(fk)µ(gk)| ≤
∑
P,Q∈P

|aP bP | |µ(P ∩ σ−nQ)− µ(P )µ(Q)|

≤ ‖f‖‖g‖A′βn−2k

≤ ‖f‖α‖g‖αA′βn−2k .

Letting k = [n/3] we get the result with γ = max(α1/3, β1/3). ut
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1.27. Central Limit Theorem. For ψ ∈ FA there is a ξ = ξ(ψ) ∈ [0,∞) so
that

µ

{
x ∈ ΣA :

1√
n

(Snψ(x)− nµ(ψ)) < r

}
n→∞−→ 1

ξ
√

2π

∫ r

−∞
e−x

2/2ξ2 dx .

For ξ = 0, convergence is asserted for r 6= 0 and the expression on the right
is taken to be 0 for r < 0 and 1 for r > 0.

Remark. We omit the proof, referring the reader to M. Ratner [13]. It is
interesting to know when ξ(ψ) = 0. This happens (see [13]) precisely when

ψ − µ(ψ) = u ◦ σ − u

has a solution u ∈ L2(µ). It is interesting that in case such u can be found
one can find u ∈ FA and so ψ is homologous to a constant. The reasoning for
this is very roundabout and it would be good to find a nice direct proof.

1.28. Theorem. Let ΣA be topologically mixing and φ, ψ ∈ FA. The following
are equivalent:

(i) µφ = µψ.
(ii) There is a constant K so that Smφ(x)−Smψ(x) = mK whenever σmx = x.
(iii)There are a constant K and a u ∈ FA so that

φ(x) = ψ(x) +K + u(σx)− u(x) for all x ∈ ΣA.

(iv)There are constants K and L so that |Smφ(x) − Smψ(x) −mK| ≤ L for
all x and all m > 0.

If these conditions hold, then K = P (φ)− P (ψ).

Proof. (iii) ⇒ (iv) is obvious and (iv) ⇒ (i) is just like Lemma 1.5. Assume
µφ = µψ and σmx = x. From the definition of a Gibbs measure and µφ = µψ
one sees that

exp(−P (φ)j + Sjφ(x))

exp(−P (ψ)j + Sjψ(x))
∈ [d1, d2],

where d1 > 0, d2 > 0 are independent of x and j. This is equivalent to

|Sjφ(x)− Sjψ(x)− j(P (φ)− P (ψ))| ≤M

for some M independent of j, x. If σmx = x, letting j = km, Sjφ(x) =
kSmφ(x) and

M > k |Smφ(x)− Smψ(x)−m(P (φ)− P (ψ))| .

Letting k →∞ we get (ii) with K = P (φ)− P (ψ).
Now assume (ii). In proving (iii) we will need the following standard

lemma.
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1.29. Lemma. If T : X → X is a topologically transitive continuous map of
a compact metric space, then there is a point x ∈ X so that

if U 6= ∅ is open, N > 0, then Tnx ∈ U for some n ≥ N .

Proof. As X is 2nd countable, let U1, U2, . . . be a basis for the topology. By
transitivity, the open set

Vi,N =
⋃
n≥N

T−nUi

is dense in X. By Baire Category Theorem there is an x ∈
⋂
i,N Vi,N . ut

Continuing the proof of (iii) from (ii), let x be as in the lemma for X = ΣA,
T = σ (topological mixing is stronger than transitivity). Let η = φ−ψ−K ∈
FA. Let Γ = {σkx : k ≥ 0} and define u : Γ → R by

u(σkx) =

k−1∑
j=0

η(σjx) .

As Γ is dense in ΣA, Γ must be infinite (except in the trivial case of ΣA =one
point) and x is not periodic. Thus σkx 6= σmx for m 6= k and u is well defined
on Γ . We will estimate varr(u|Γ ). Suppose y = σkx, and z = σmx (m > k)
agree in places −r to r. Then xk+s = xm+s for all |s| ≤ r. Define w ∈ ΣA by

wi = xt for i ≡ t (modm− k) , k ≤ t ≤ m.

Then σm−kw = w and w, x agree in places k − r to m + r; hence σjx, σjw
agree in places k − r − j through m+ r − j. Now

u(w)− u(y) =

m−1∑
j=k

η(σjx) .

Since (ii) gives
m−1∑
j=k

η(σjw) = 0 ,

|u(z)− u(y)| ≤
m−1∑
j=k

|η(σjx)− η(σjw)|

≤ varrη + varr+1η + · · ·+ varr+1η + varrη

≤ 2

∞∑
s=r

varsη.

Since η ∈ FA, varsη ≤ cαs for some α ∈ (0, 1) and
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varr(u|Γ ) ≤ 2c

∞∑
s=r

αs =
2c

1− α
αr .

So u is uniformly continuous on Γ and therefore extends uniquely to a con-
tinuous u : ΣA = Γ → R. Because varru = varr(u|Γ ), u ∈ FA. For z ∈ Γ ,

u(σz)− u(z) = η(z)

and this equation extends to ΣA by continuity. ut
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2

GENERAL THERMODYNAMIC
FORMALISM

A. Entropy

In Section D of Chapter 1, we defined the number hµ(T,D) when T is an
endomorphism of a probability space and D a finite measurable partition. We
now define the entropy of µ w.r.t. T by

hµ(T ) = sup
D

hµ(T,D),

where D ranges over all finite partitions. We will now turn to some computa-
tional lemmas.

We define

Hµ(C|D) = Hµ(C ∨D)−Hµ(D)

= −
∑
i

µ(Di)
∑
j

µ(Cj ∩Di)

µ(Di)
log

(
µ(Cj ∩Di)

µ(Di)

)
≥ 0 .

Lemma 1.17 says that Hµ(C|D) ≤ Hµ(C). We write C ⊂ D if each set in C

is a union of sets in D.

2.1. Lemma.

(a)Hµ(C|D) ≤ Hµ(C|E) if D ⊃ E.
(b)Hµ(C|D) = 0 if D ⊃ C.
(c) Hµ(C ∨D|E) ≤ Hµ(C|E) +Hµ(D|E).
(d)Hµ(C) ≤ Hµ(D) +Hµ(C|D).

Proof. Letting ϕ(x) = −x log x, Hµ(C|D) =
∑
j

∑
i µ(Di) ϕ

(
µ(Cj∩Di)
µ(Di)

)
.

Since E ⊂ D, one can rewrite this as

Hµ(C|D) =
∑
j

∑
E∈E

µ(E)
∑
Di⊂E

µ(Di)

µ(E)
ϕ

(
µ(Cj ∩Di)

µ(Di)

)
·
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By the concavity of ϕ (see the proof of Lemma 1.17) one has ϕ(
∑
aixi) ≥∑

aiϕ(xi) where

ai =
µ(Di)

µ(E)
, xi =

µ(Cj ∩Di)

µ(Di)
·

Hence

Hµ(C|D) ≤
∑
j

∑
E∈E

µ(E) ϕ

(
µ(Cj ∩ E)

µ(E)

)
= Hµ(C|E) .

To see (b) one notes that C ∨D = D when D ⊃ C. For (c) one writes

Hµ(C ∨D|E) = Hµ(C ∨D ∨ E)−Hµ(D ∨ E) +Hµ(D ∨ E)−Hµ(E)

= Hµ(C|D ∨ E) +Hµ(D|E)

≤ Hµ(C|E) +Hµ(D|E)

by (a). Finally

Hµ(C) = Hµ(C ∨D)−Hµ(D|C)

≤ Hµ(C ∨D) = Hµ(D) +Hµ(C|D) . ut

2.2. Lemma. Let T be an endomorphism of a probability space (X,B, µ), C
and D finite partitions. Then

(a)Hµ(T−kC|T−kD) = Hµ(C|D) for k ≥ 0,
(b)hµ(T,C) ≤ hµ(T,D) +Hµ(C|D),
(c) hµ(T,C ∨ · · · ∨ T−nC) = hµ(T,C).

Proof. As µ is T -invariant,

Hµ(T−kC|T−kD) = Hµ(T−kC ∨ T−kD)−Hµ(T−kD)

= Hµ(C ∨D)−Hµ(D) = Hµ(C|D) .

Using Lemma 2.1

Hµ(C ∨ · · · ∨ T−m+1C) ≤ Hµ(D ∨ · · · ∨ T−m+1D)

+Hµ(C ∨ · · · ∨ T−m+1C|D ∨ · · · ∨ T−m+1D)

≤ Hµ(D ∨ · · · ∨ T−m+1D)

+

m−1∑
k=0

Hµ(T−kC|D ∨ · · · ∨ T−m+1D)

≤ Hµ(D ∨ · · · ∨ T−m+1D) +

m−1∑
k=0

Hµ(T−kC|T−kD)

= Hµ(D ∨ · · · ∨ T−m+1D) +mHµ(C|D) .

Dividing by m and letting m→∞,
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hµ(T,C) ≤ hµ(T,D) +Hµ(C|D) .

Set D = C ∨ · · · ∨ T−nC. Then

1

m
Hµ(D ∨ · · · ∨ T−m+1D) =

1

m
Hµ(C ∨ · · · ∨ T−m−n+1C) .

Letting m→∞, (as m
m+n → 1) we get

hµ(T,D) = hµ(T,C) . ut

2.3. Lemma. Let X be a compact metric space, µ ∈ M (X), ε > 0 and C a
finite Borel partition. There is a δ > 0 so that Hµ(C|D) < ε whenever D is a
partition with diam(D) < δ.

Proof. Let C = {C1, . . . , Cn}. In Lemma 1.23 we showed that, for any α > 0,
one could find δ > 0 such that whenever D satisfies diam(D) < δ there is a
E = {E1, . . . , En} ⊂ D with

µ(Ei∆Ci) < α .

The expression

Hµ(C|E) =
∑
i,j

µ(Ej) ϕ

(
µ(Cj ∩ Ei)
µ(Ei)

)
depends continuously upon the numbers

µ(Cj ∩ Ei) and µ(Ei) =
∑
j

µ(Cj ∩ Ei)

and vanishes when µ(Cj ∩ Ei) = δij µ(Ei). Hence, for α small, Hµ(C|E) < ε.
Then Hµ(C|D) ≤ Hµ(C|E) < ε by 2.1 (a). ut

2.4. Proposition. Suppose T : X → X is a continuous map of a com-
pact metric space, µ ∈ MT (X) and that Dn is a sequence of partitions with
diam(Dn)→ 0. Then

hµ(T ) = lim
n→∞

hµ(T,Dn) .

Proof. Of course hµ(T ) ≥ lim supn hµ(T,Dn). Consider any partition C. By
Lemmas 2.2 (b) and 2.3

hµ(T,C) ≤ lim inf
n

hµ(T,Dn) .

Varying C, hµ(T ) ≤ lim infn hµ(T,Dn). ut

A homeomorphism T : X → X is called expansive if there exists ε > 0 so
that

d(T kx, T ky) ≤ ε for all k ∈ Z ⇒ x = y .
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2.5. Proposition. Suppose T : X → X is a homeomorphism with expansive
constant ε. Then hµ(T ) = hµ(T,D) whenever µ ∈MT (X), and diam(D) ≤ ε.

Proof. Let Dn = TnD ∨ · · · ∨ D ∨ · · · ∨ T−nD. Then diam(Dn) → 0 using
expansiveness. Hence hµ(T ) = limn hµ(T,Dn). But hµ(T,Dn) = hµ(T,D) by
Lemma 2.2 (c). ut

Consider the case of σ : ΣA → ΣA and standard partition U = {U1, . . . , Un}
where Ui = {x ∈ ΣA : x0 = i}. Then σ is expansive and 2.5 gives that
hµ(σ) = hµ(σ,U) for µ ∈ Mσ(ΣA). Now hµ(σ,U) is what we denoted by
s(µ) in Chapter 1. That s(µ) = hµ(σ) implies that the number s(µ) does
not depend on the homeomorphism σ and partition U, but only on σ as an
automorphism of the probability space (ΣA,B, µ) (because of the definition
of hµ(σ)).

2.6. Lemma. hµ(Tn) = nhµ(T ) for n > 0.

Proof. Let C be a partition and E = C ∨ · · · ∨ T−n+1C. Then

nhµ(T,C) = lim
m→∞

n

nm
Hµ(C ∨ · · · ∨ T−nm+1C)

= lim
m→∞

1

m
Hµ(E ∨ T−nE ∨ · · · ∨ T (−m+1)nE)

= hµ(Tn,E) ≤ hµ(Tn) = nhµ(T ) .

Varying C, nhµ(T ) ≤ hµ(Tn). On the other hand

hµ(Tn,C) ≤ hµ(Tn,E)

by 2.2 (b) and 2.1 (b). Hence

hµ(Tn) = sup
C

hµ(Tn,C) ≤ n sup
C

hµ(T,C) = nhµ(T ) . ut

B. Pressure

Throughout this section T : X → X will be a fixed continuous map on the
compact metric space X. We will define the pressure P (φ) of φ ∈ C (X) in a
way which generalizes Section D in Chapter 1.

Let U be a finite open cover of X, Wm(U) the set of all m-strings

U = Ui0Ui1 · · ·Uim−1

of members of U. One writes m = m(U),

X(U) = {x ∈ X : T kx ∈ Uik for k = 0, . . . ,m− 1}
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Smφ(U) = sup

{
m−1∑
k=0

φ(T kx) : x ∈ X(U)

}
.

In case X(U) = ∅, we let Smφ(U) = −∞. We say that Γ ⊂ Wm(U) covers X
if X =

⋃
U∈Γ X(U). Finally one defines

Zm(φ,U) = inf
Γ

∑
U∈Γ

exp(Smφ(U)),

where Γ runs over all subsets of Wm(U) covering X.

2.7. Lemma. The limit

P (φ,U) = lim
m→∞

1

m
logZm(φ,U)

exists and is finite.

Proof. If Γm ⊂Wm(U) and Γn ⊂Wn(U) each cover X, then

ΓmΓn = {UV : U ∈ Γm, V ∈ Γn} ⊂Wm+n(U)

covers X. One sees that

Sm+nφ(UV) ≤ Smφ(U) + Snφ(V)

and so∑
UV∈ΓmΓn

exp(Sm+nφ(UV)) ≤
∑

U∈Γm

exp(Smφ(U))
∑
V∈Γn

exp(Snφ(V)).

Thus
Zm+n(φ,U) ≤ Zm(φ,U) Zn(φ,U)

and Zm(φ,U) ≥ e−m‖φ‖. Hence am = logZm(φ,U) satisfies the hypotheses of
Lemma 1.18. ut

2.8. Proposition. The limit

P (φ) = lim
diam(U)→0

P (φ,U)

exists (but may be +∞).

Proof. Suppose V is an open cover refining U, i.e., every V ∈ V lies in some
U(V ) ∈ U. For V ∈ Wm(V) let U(V) = U(Vi0) · · ·U(Vim−1

). If Γm ⊂ Wm(V)
covers X, then U(Γm) = {U(V) : V ∈ Γm} ⊂Wm(U) covers X.
Let γ = γ(φ,U) = sup{|φ(x)− φ(y)| : x, y ∈ U for some U ∈ U}.
Then Smφ(U(V)) ≤ Smφ(V) + mγ and so Zm(φ,U) ≤ emγZm(φ,V), which
gives
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P (φ,U) ≤ P (φ,V) + γ .

Now for any U, all V with small diameter refine U and so

P (φ,U)− γ(φ,U) ≤ lim inf
diam(V)→0

P (φ,V) .

Letting diam(U)→ 0, γ(φ,U)→ 0 and

lim sup
diam(U)→0

P (φ,U) ≤ lim inf
diam(V)→0

P (φ,V) .

We are done. ut

In cases where confusion may arise we write the topological pressure P (φ)
as PT (φ).

2.9. Lemma. Let Snφ(x) =
∑n−1
k=0 φ(T kx). Then

PTn(Snφ) = nPT (φ) for n > 0 .

Proof. Let V = U ∨ · · · ∨ T−n+1U. Then Wm(V) and Wmn(U) are in one-
to-one correspondence; for U = Ui0Ui1 · · ·Uimn−1

let V = Vi0 · · ·Vim−1
where

Vik = Uikn ∩ T−1Uikn+1
∩ · · · ∩ T−n+1Uikn+n−1

. One sees that X(U) = X(V)

and STmnφ(U) = ST
n

m (Snφ)(V). Thus one gets

ZTmn(φ,U) = ZT
n

m (Snφ,V) and nPT (φ,U) = PTn(Snφ,V) .

As diam(U)→ 0, diam(V)→ 0 and so nPT (φ) = PTn(Snφ). ut

We now come to our first interesting result about the pressure P (φ).

2.10. Theorem. Let T : X → X be a continuous map on a compact metric
space and φ ∈ C (X). Then

hµ(T ) +

∫
φ dµ ≤ PT (φ),

for any µ ∈MT (X).

We will first need a couple of lemmas.

2.11. Lemma. Suppose D is a Borel partition of X such that each x ∈ X is
in the closures of at most M members of D. Then

hµ(T,D) +

∫
φ dµ ≤ PT (φ) + logM .
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Proof. Let U be a finite open cover of X each member of which intersects
at most M members of D. Let Γm ⊂ Wm(U) cover X. For each B ∈ Dm =
D ∨ · · · ∨ T−m+1D pick xB ∈ B with

∫
B
Smφ dµ ≤ µ(B) Smφ(xB). Now

hµ(T,D) +

∫
φ dµ ≤ 1

m

(
Hµ(Dm) +

∫
Smφ dµ

)
≤ 1

m

∑
B

µ(B)(− logµ(B) + Smφ(xB))

≤ 1

m
log
∑
B

exp(Smφ(xB))

by Lemma 1.1. For each xB pick UB ∈ Γm with xB ∈ X(UB). This map
B → UB is at most Mm to one. As Smφ(xB) ≤ Smφ(UB), one has

hµ(T,D) +

∫
φ dµ ≤ 1

m
log

∑
U∈Γm

Mm exp(Smφ(U))

≤ logM +
1

m
logZm(φ,U) .

Letting m→∞ and then diam(U)→ 0, we obtain the desired inequality. ut

2.12. Lemma. Let A be a finite open cover of X. For each n > 0 there is a
Borel partition Dn of X so that

(a)D lies inside some member of T−kA for each D ∈ Dn and k = 0, . . . , n−1,
(b) at most n|A| sets in Dn can have a point in all their closures.

Proof. Let A = {A1, . . . , Am} and g1, . . . , gm be a partition of unity subor-
dinate to A. Then G = (g1, . . . , gm) : X → sm−1 ⊂ Rm where sm−1 is an
m − 1 dimensional simplex. Now U = {U1, . . . , Um} is an open cover where
Ui = {x ∈ sm−1 : xi > 0} and G−1Ui ⊂ Ai. Since (sm−1)n is nm − n
dimensional, there is a Borel partition D∗n of (sm−1)n so that

(a’) each member of D∗n lies in some Ui1 × · · · × Uin , and
(b’) at most nm members of D∗n can have a common point in all their closures.

Then Dn = L−1D∗n works where

L = (G,G ◦ T, . . . , G ◦ Tn−1) : X → (sm−1)n . ut

Proof of 2.10. Let C be a Borel partition and ε > 0. By Lemma 2.3 find an
open cover A so that Hµ(C|D) < ε whenever D is a partition every member of
which is contained in some member of A. Fix n > 0, let E = C∨ · · · ∨T−n+1C

and Dn as in Lemma 2.12. Then (see the proof of 2.6)
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hµ(T,C) +

∫
φ dµ ≤ 1

n

(
hµ(Tn,E) +

∫
Snφ dµ

)
≤ 1

n

(
hµ(Tn,Dn) +

∫
Snφ dµ

)
+

1

n
Hµ(E|Dn)

≤ 1

n
(PTn(Snφ) + log(n|A|)) +

1

n
Hµ(E|Dn)

by Lemma 2.11. Now

Hµ(E|Dn) ≤
n−1∑
k=0

Hµ(T−kC|Dn) .

Since Dn refines T−kA for each k, one has Hµ(T−kC|Dn) < ε (since µ is
T -invariant, T−kA bears the same relation to T−kC as A to C). Hence, using
2.9,

hµ(T,C) +

∫
φ dµ ≤ PT (φ) +

1

n
log(n|A|) + ε .

Now let n→∞ and then ε→ 0. ut

2.13. Proposition. Let T1 : X1 → X1, T2 : X2 → X2 be continuous maps on
compact metric spaces, π : X1 → X2 continuous and onto satisfying π ◦ T1 =
T2 ◦ π. Then

PT2
(φ) ≤ PT1

(φ ◦ π)

for φ ∈ C (X2).

Proof. For U an open cover of X2 one sees that

PT2
(φ,U) = PT1

(φ ◦ π, π−1U) .

As in the proof of 2.8

PT1(φ ◦ π, π−1U) ≤ PT1(φ ◦ π) + γ(φ ◦ π, π−1U) .

But γ(φ◦π, π−1U) = γ(φ,U)→ 0 as diam(U)→ 0. Hence, letting diam(U)→
0 we get PT2(φ) ≤ PT1(φ ◦ π). ut

C. Variational principle

Let U be a finite open cover of X. We say that Γ ⊂ W ∗(U) =
⋃
m>0Wm(U)

covers K ⊂ X if K ⊂
⋃

U∈Γ X(U). For λ > 0 and Γ ⊂W ∗(U) define

Z(Γ, λ) =
∑
U∈Γ

λm(U) exp(Sm(U)φ(U)).
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2.14. Lemma. Let P = P (φ,U) and λ > 0. Suppose that Z(Γ, λ) < 1 for
some Γ covering X. Then λ ≤ e−P .

Proof. As X is compact we may take Γ finite and Γ ⊂
⋃M
m=1Wm(U). Then

Z(Γn, λ) ≤ Z(Γ, λ)n where Γn = {U1U2 · · ·Un : Ui ∈ Γ}. Letting Γ ∗ =⋃∞
n=1 Γ

n, one has

Z(Γ ∗, λ) =

∞∑
n=1

Z(Γn, λ) <∞ .

Fix N and consider x ∈ X. Since Γ covers X, one can find U = U1U2 · · ·Un ∈
Γ ∗ with

(a) x ∈ X(U), and
(b)N ≤ m(U) < N +M .

Let U∗ be the first N symbols of U. Then

SNφ(U∗) ≤ Sm(U)φ(U) +M‖φ‖ .

For ΓN the set of U∗ so obtained,

λN
∑
ΓN

expSNφ(U∗) ≤ max
{

1, λ−M
}
eM‖φ‖ Z(Γ ∗, λ),

or λNZN (φ,U) ≤ constant. It follows that λ ≤ e−P . ut

Let δx be the unit-measure concentrated on the point x. Define

δx,n = n−1(δx + δTx + · · ·+ δTn−1x)

and V (x) = {µ ∈M (X) : δx,nk → µ for some nk →∞} .

V (x) 6= ∅ as M (X) is a compact metric space. Now T ∗δx,n = δTx,n and for
f ∈ C (X), |T ∗δx,n(f)−δx,n(f)| = n−1|f(Tnx)−f(x)| ≤ 2n−1‖f‖. This shows
V (x) ⊂MT (X).

Let E be a finite set, a = (a0, . . . , ak−1) ∈ Ek. One defines the distribution
µa on E by

µa(e) = k−1(number of j with aj = e)

and H(a) = −
∑
e∈E

µa(e) logµa(e) .

2.15. Lemma. Let x ∈ X, µ ∈ V (x), U a finite open cover of X and ε > 0.
There are m and arbitrarily large N for which one can find U ∈ WN (U)
satisfying the following

(a) x ∈ X(U),
(b)SNφ(U) ≤ N(

∫
φdµ+ γ(U) + ε),
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(c) U contains a subword of length km ≥ N −m which, when viewed as a =
a0, . . . , ak−1 ∈ (Um)k satisfies

1

m
H(a) ≤ hµ(T ) + ε.

Proof. Let U = {U1, . . . , Uq}. Recall that

γ(U) = sup{|φ(y)− φ(z)| : y, z ∈ Ui for some i} .

Pick a Borel partition C = {C1, . . . , Cq} with Ci ⊂ Ui. There is an m so that

1

m
Hµ(C ∨ · · · ∨ T−m+1C) ≤ hµ(T,C) +

ε

2
≤ hµ(T ) +

ε

2
·

Let δx,nj → µ. For n′ > n one has

δx,n′ =
n

n′
δx,n +

n′ − n
n′

δTnx,n′−n .

If we replaced nk by the nearest multiple of m, this formula shows that µ
would still be the limit. Thus we assume nj = mkj .

Let D1, . . . , Dt be the nonempty members of C∨· · ·∨T−m+1C and for each
Di find a compact Ki ⊂ Di with µ(Di\Ki) < β (β > 0 small). Each Di is
contained in some member of U∨ · · · ∨T−m+1U and one can find an open set
Vi ⊃ Ki for which this is still true. Furthermore we may assume Vi ∩ Vj = ∅
for i 6= j. Now enlarge each Vi to a Borel set V ∗i still contained in a member
of U ∨ · · · ∨ T−m+1U and so that {V ∗1 , . . . , V ∗t } is a Borel partition of X.

Now fix nj = mkj . Let Mi be the number of s ∈ [0, nj) with T sx ∈ V ∗i
and Mi,r the number of such s ≡ r (mod m).
Define

pi,r = Mi,r/kj

and pi = Mi/nj = 1
m (pi,0 + · · ·+ pi,m−1) . As δx,nj → µ, one has

lim inf
j→∞

pi ≥ µ(Ki) ≥ µ(Di)− β,

and lim supj→∞ pi ≤ µ(Ki)+ tβ ≤ µ(Di)+ tβ. For β small enough and j large
enough one has

1

m

(
−
∑
i

pi log pi

)
≤ 1

m

(
−
∑
i

µ(Di) logµ(Di)

)
+
ε

2

≤ hµ(T ) + ε .

By the concavity of ϕ(x) = −x log x (see 1.17)

ϕ(pi) ≥
m−1∑
r=0

1

m
ϕ(pi,r)
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and so ∑
i

ϕ(pi) ≥
1

m

m−1∑
r=0

∑
i

ϕ(pi,r) .

For some r ∈ [0,m) one must have
∑
i ϕ(pi,r) ≤

∑
i ϕ(pi) and so

1

m

∑
i

ϕ(pi,r) ≤ hµ(T ) + ε .

For N = nj + r with j large we form U = U0U1 · · ·UN−1 ∈ UN as follows. For
s < r pick Us ∈ U containing T sx. For each V ∗i we choose U0,i ∩ T−1U1,i ∩
· · · ∩ T−m+1Um−1,i ⊃ V ∗i . For s > r we write s = r + mp + q with p ≥ 0,
m > q ≥ 0, pick i with T r+mpx ∈ V ∗i and let Us = Uq,i. Letting

ap = U0,iU1,i · · ·Um−1,i

we have
U = U0 · · ·Ur−1a0a1 · · · akj−1 .

Now a = (a0a1 · · · akj−1) has its distribution µa on Um given by the proba-
bilities {pi,r}ti=1 and some zeros.
So

1

m
H(a) =

1

m

∑
i

ϕ(pi,r) ≤ hµ(T ) + ε.

We have yet to check (b). Since δx,nj → µ, for j large we will have
∣∣ 1
N δx,N (φ)−∫

φ dµ
∣∣ < ε or SNφ(x) ≤ N(

∫
φ dµ+ ε). As x ∈ X(U), SNφ(U) ≤ SNφ(x) +

Nγ(U). ut

2.16. Lemma. Fix a finite set E and h ≥ 0. Let R(k, h) = {a ∈ Ek : H(a) ≤
h}. Then

lim sup
k→∞

1

k
log |R(k, h)| ≤ h .

Proof. For any distribution ν on E and α ∈ (0, 1) consider

Rk(ν) = {a ∈ Ek : |µa(e)− ν(e)| < α ∀e ∈ E} .

Let µ be the Bernoulli measure on Σ =
∏∞
i=0E with the distribution

µ(e) = (1− α)ν(e) + α/|E| .

Each a ∈ Rk(ν) corresponds to a cylinder set Ca of Σ. Since each e ∈ E
occurs in a at most k(ν(e) + α) times,

µ(Ca) ≥
∏
e

µ(e)k(ν(e)+α) .

As the Ca are disjoint and have total measure 1,
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1 ≥ |Rk(ν)|
∏
e

µ(e)k(ν(e)+α),

or
1

k
log |Rk(ν)| ≤

∑
e

−(ν(e) + α) logµ(e)

≤ H(µ) +
∑
e

3α| logµ(e)| .

As µ(e) ≥ α/|E|, we get

1

k
log |Rk(ν)| ≤ H(µ) + 3α|E|(log |E| − logα) .

When α → 0, the second term on the right approaches 0 and H(µ) → H(ν)
uniformly in ν. Hence, for any ε > 0 one can find α small enough that

1

k
log |Rk(ν)| ≤ H(µ) + ε,

for all k and ν.
Once α is so chosen, let N be a finite set of distributions on E so that

(a)H(ν) ≤ h for ν ∈ N , and
(b) if H(ν′) ≤ h then for some ν ∈ N one has

|ν′(e)− ν(e)| < α for all e.

Then R(k, h) ⊂
⋃
ν∈N Rk(ν),

1

k
log |R(k, h)| ≤ 1

k
log |N |+ h+ ε

and lim sup
k→∞

1

k
log |R(k, h)| ≤ h+ ε.

Now let ε→ 0. ut

2.17. Variational Principle. Let T : X → X be a continuous map on a
compact metric space and φ ∈ C (X). Then

PT (φ) = sup
µ

(
hµ(T ) +

∫
φ dµ

)
where µ runs over MT (X).

Proof. Let U be a finite cover of X and ε > 0. For each m > 0 let Xm be the
set of points x ∈ X for which 2.15 holds with this m and some µ ∈ V (x). By
2.15 X =

⋃
mXm since V (x) 6= ∅. For u ∈ R let Ym(u) be the set of x ∈ Xm

for which 2.15 holds for some µ ∈ V (x) with
∫
φdµ ∈ [u− ε, u+ ε]. Set
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c = sup
µ

(
hµ(T ) +

∫
φ dµ

)
.

For x ∈ Ym(u) the µ satisfies hµ(T ) ≤ c− u+ ε.
The a ∈ (Um)k appearing in 2.15 (c) for x ∈ Ym(u) lie in R(k,m(c− u+

2ε),Um). The number of possibilities for U for any fixed N = km is hence at
most

b(N) = |E|m |R(k,m(c− u+ 2ε),Um)| .
By 2.16

lim sup
N→∞

1

N
log b(N) ≤ c− u+ 2ε .

Let Γ = Γm,u be the collection of all U showing up in the present situation
for some N greater than a fixed N0. Then Γ covers Ym(u) and

Z(Γ, λ) ≤
∞∑

N=N0

λN b(N) exp(N(u+ 2ε+ γ(U))) .

For large enough N0, b(N) ≤ exp(N(c− u+ 3ε)) and

Z(Γ, λ) ≤
∞∑

N=N0

λN exp(N(c+ 5ε+ γ(U))) .

≤
∞∑

N=N0

βN =
βN0

1− β
,

where β = λ exp(c+ 5ε+ γ(U)) < 1.
We have seen that for λ < exp(−(c + 5ε + γ(U))) any Ym(u) can be

covered by Γ ⊂ W ∗(U) with Z(Γ, λ) as small as desired. As X =
⋃∞
m=1Xm

and Xm = Ym(u1)∪ · · · ∪ Ym(ur) where u1, . . . , ur are ε-dense in [−‖φ‖, ‖φ‖],
taking unions of such Γ ′s we obtain a Γ covering X with Z(Γ, λ) < 1. By
Lemma 2.14, λ ≤ e−P (φ,U) or

P (φ,U) ≤ c+ 5ε+ γ(U) .

As ε was arbitrary, P (φ,U) ≤ c+ γ(U).
Finally

P (φ) ≤ lim
diam(U)→0

P (φ,U)

≤ lim
diam(U)→0

(c+ γ(U)) = c .

The inequality c ≤ P (φ) follows from Theorem 2.10. ut

2.18. Corollary. Suppose {Xα}α∈Λ is a family of compact subsets of X and
TXα ⊂ Xα for each α. Then

PT (φ) = sup
α
PT |Xα (φ|Xα) .
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Proof. If µ ∈MT (Xα), then µ ∈MT (X) and

PT (φ) ≥ hµ(T ) +

∫
φ dµ .

Hence

PT (φ) ≥ sup
µ∈MT (Xα)

(
hµ(T ) +

∫
φ dµ

)
= PT |Xα (φ|Xα) .

If x ∈ Xα, then V (x) ⊂MT (Xα) and so

c′ = sup

{
hµ(T ) +

∫
φ dµ : µ ∈

⋃
x∈X

V (x)

}
≤ sup

α
PT |Xα (φ|Xα) .

In the proof of 2.17 what was actually used about the number c was c ≥
hµ(T ) +

∫
φ dµ for µ ∈ V (x). So c′ would work just as well there to yield

PT (φ) ≤ c′. ut

D. Equilibrium states

If µ ∈MT (X) satisfies hµ(T )+
∫
φ dµ = PT (φ), then µ is called an equilibrium

state for φ (w.r.t. T ). The Gibbs state µφ of φ ∈ FA in Chapter 1 was shown
to be the unique equilibrium state for such a φ.

2.19. Proposition. Suppose that for some ε > 0 one has hµ(T,D) = hµ(T )
whenever µ ∈ MT (X) and diam(D) < ε. Then every φ ∈ C (X) has an
equilibrium state.

Proof. We show that µ 7→ hµ(T ) is upper semi-continuous on MT (X). Then
µ 7→ hµ(T ) +

∫
φdµ will be also, and the proposition follows from 2.17 and

the fact that an u.s.c. function on a compact space assumes its supremum.
Fixing µ ∈MT (X), α > 0, and D = {D1, . . . , Dn} with diam(D) < ε, one

has 1
mHµ(D∨ · · · ∨ T−m+1D) ≤ hµ(T ) + α for some m. Let β > 0 and pick a

compact set Ki0,...,im−1
⊂
⋂m−1
k=0 T

−kDik with

µ

(⋂
k

T−kDik

∖
Ki0,...,im−1

)
< β .

Then Di ⊃ Li =
⋃m−1
j=0

⋃
{T jKi0,...,im−1 : ij = i}. As the Li are disjoint

compact sets, one can find a partition D′ = {D′1, . . . , D′n} with diam(D′) < ε
and Li ⊂ int(D′i). One then has

Ki0,...,im−1
⊂ int

(⋂
k

T−kD′ik

)
.
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If ν is close to µ in the weak topology, one will have

ν

(⋂
k

T−kD′ik

)
≥ µ(Ki0,...,im−1

)− β

and
∣∣ν (⋂k T−kD′ik) − µ

(⋂
k T
−kDik

) ∣∣ ≤ 2βnm. For β small enough, this
implies

hν(T ) = hν(T,D′) ≤ 1

m
Hν(D′ ∨ · · · ∨ T−m+1D′)

≤ 1

m
Hµ(D ∨ · · · ∨ T−m+1D) + α ≤ hµ(T ) + 2α . ut

2.20. Corollary. If T is expansive, every φ ∈ C (X) has an equilibrium state.

Proof. Recall 2.5. ut

One notices that the condition in 2.19 has nothing to do with φ. Taking
φ = 0, one defines the topological entropy of T by

h(T ) = PT (0) .

The motivation for this chapter comes from two places: the theory of Gibbs
states from statistical mechanics and topological entropy from topological dy-
namics (see references). Conditions on φ become important for the uniqueness
of equilibrium state and then only after stringent conditions have been placed
on the homeomorphism T . The Axiom A diffeomorphisms will be close enough
to the subshifts σ : ΣA → ΣA so that one can prove uniqueness statements.
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3

AXIOM A DIFFEOMORPHISMS

A. Definition

We now suppose that f : M → M is a diffeomorphism of a compact C∞

Riemannian manifold M . Then the derivative of f can be considered a map
df : TM → TM where TM =

⋃
x∈M TxM is the tangent bundle of M and

dfx : TxM → Tf(x)M .

Definition. A closed subset Λ ⊂ M is hyperbolic if f(Λ) = Λ and each
tangent space TxM with x ∈ Λ can be written as a direct sum

TxM = Eux ⊕ Esx
of subspaces so that

(a)Df(Esx) = Esf(x), Df(Eux ) = Euf(x);

(b) there exist constants c > 0 and λ ∈ (0, 1) so that

‖Dfn(v)‖ ≤ cλn‖v‖ when v ∈ Esx , n ≥ 0

and
‖Df−n(v)‖ ≤ cλn‖v‖ when v ∈ Eux , n ≥ 0;

(c) Esx, Eux vary continuously with x.

Remark. Condition (c) actually follows from the others. Eu =
⋃
x∈ΛE

u
x

and Es =
⋃
x∈ΛE

s
x are continuous subbundles of TΛM =

⋃
x∈Λ TxM and

TΛM = Eu ⊕ Es.

A point x ∈M is non-wandering if

U ∩
⋃
n>0

fnU 6= ∅,

for every neighborhood U of x. The set Ω = Ω(f) of all non-wandering points
is seen to be closed and f -invariant. A point x is periodic if fnx = x for some
n > 0; clearly such an x is in Ω(f).
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Definition. f satisfies Axiom A if Ω(f) is hyperbolic and
Ω(f) = {x : x is periodic}.

This definition is due to Smale [14]. A type of f studied extensively by
Russian mathematicians is the Anosov diffeomorphism: f is Anosov if M
is hyperbolic [2]. We shall see a little later that such diffeomorphisms always
satisfy Axiom A. Right now we mention that it is unknown whether Ω(f) = M
for every Anosov f . The reader should study the examples in [14].

The Riemannian metric on M is used to state condition (b) in the def-
inition of hyperbolic set. The truth of this condition does not depend upon
which metric is used although the constants c and λ do. A metric is adapted
(to an Axiom A f) if Ω(f) is hyperbolic with respect to it with c = 1.

3.1. Lemma. Every Axiom A diffeomorphism has an adapted metric.

Proof. This lemma is due to Mather. See [8] for a proof. ut

We will always use an adapted metric. This will keep various estimates a
bit simpler. For x ∈M define

W s(x) = {y ∈M : d(fnx, fny)→ 0 as n→∞}
W s
ε (x) = {y ∈M : d(fnx, fny) ≤ ε for all n ≥ 0}

Wu(x) = {y ∈M : d(f−nx, f−ny)→ 0 as n→∞}
Wu
ε (x) = {y ∈M : d(f−nx, f−ny) ≤ ε for all n ≥ 0} .

The following stable manifold theorem is the main analytic fact behind the
behavior of Axiom A diffeomorphisms.

3.2. Theorem. Let Λ be a hyperbolic set for a C r diffeomorphism f . For
small ε > 0

(a)W s
ε (x), Wu

ε (x) are C r disks for x ∈ Λ with TxW
s
ε (x) = Esx, TxW

u
ε (x) =

Eux ;
(b) d(fnx, fny) ≤ λnd(x, y) for y ∈W s

ε (x), n ≥ 0, and
d(f−nx, f−ny) ≤ λnd(x, y) for y ∈Wu

ε (x), n ≥ 0;
(c) W s

ε (x), Wu
ε (x) vary continuously with x (in C r topology).

Proof. See Hirsch and Pugh [8]. ut

One consequence of 3.2 is that W s
ε (x) ⊂ W s(x) for x ∈ Λ. One then sees

that
W s(x) =

⋃
n≥0

f−nW s
ε (fnx)

for x ∈ Λ. Similarly

Wu(x) =
⋃
n≥0

fnWu
ε (f−nx) .
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3.3. Canonical Coordinates. Suppose f satisfies Axiom A. For any small
ε > 0 there is a δ > 0 so that W s

ε (x) ∩Wu
ε (y) consists of a single point [x, y]

whenever x, y ∈ Ω(f) and d(x, y) ≤ δ. Furthermore [x, y] ∈ Ω(f) and

[·, ·] : {(x, y) ∈ Ω(f)×Ω(f) : d(x, y) ≤ δ} −→ Ω(f)

is continuous.

Proof. See Smale [14]. The first statement follows because the intersection
W s
ε (x) ∩ Wu

ε (x) = {x} is transversal and such intersections are preserved
under small perturbation. To get [x, y] ∈ Ω(f) uses that the periodic points
are dense in Ω(f). In the Anosov case one of course has [x, y] ∈ M and thus
canonical coordinates on M (instead of Ω(f)) without any assumption on
periodic points. ut

3.4. Lemma. Let Λ be a hyperbolic set. Then there is an ε > 0 so that Λ is
expansive in M , i.e., if x ∈ Λ and y ∈M with y 6= x, then

d(fkx, fky) > ε for some k ∈ Z .

Proof. Otherwise y ∈ W s
ε (x) ∩Wu

ε (x). x is also in this intersection and so
y = x by 3.3. ut

B. Spectral decomposition

From now on f will always be an Axiom A diffeomorphism.

3.5. Spectral Decomposition. One can write Ω(f) = Ω1 ∪ Ω2 ∪ · · · ∪ Ωs
where the Ωi are pairwise disjoint closed sets with

(a) f(Ωi) = Ωi and f |Ωi is topologically transitive;
(b)Ωi = X1,i∪· · ·∪Xni,i with the Xj,i’s pairwise disjoint closed sets, f(Xj,i) =

Xj+1,i (Xnj+1,i = X1,i) and fni |Xj,i topologically mixing.

Proof ([14, 4]). For p ∈ Ω periodic let Xp = Wu(p) ∩Ω. Let δ be as in 3.3.
We claim that

Xp = Bδ(Xp) = {y ∈ Ω : d(y,Xp) < δ} .

As periodic points are dense in Ω, it is enough to see that a periodic q ∈
Bδ(Xp) is in Xp. Pick x ∈ Wu(p) ∩ Ω with d(x, q) < δ and consider x′ =
[x, q] ∈Wu(p) ∩W s(q) ∩Ω. Letting fmp = p and fnq = q, one has

fkmnx′ ∈ fkmnWu(p) = Wu(fkmnp) = Wu(p)

and d(fkmnx′, q) = d(fkmnx′, fkmnq)→ 0 as k →∞ .

So q ∈ Xp.
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Notice that fXp = Xf(p) since fWu(p) = Wu(f(p)). If q ∈ Xp as above,
then Wu

δ (q) ⊂ Xp and

Wu(q) =
⋃
k≥0

fkmnWu
δ (q)

⊂
⋃
k≥0

fkmnXp = Xp .

(Note that y ∈ Wu(q) iff f−kmny → q as k → ∞.) It follows that Xq ⊂ Xp.
If x′ is as above, then fkmnx′ ∈ Xq for large k as Xq = Bδ(Xq) is open in Ω.
As f imnXq = Xfimnq = Xq, one has f jmnx′ ∈ Xq for all j and

p = lim
j→−∞

f jmnx′ ∈ Xq = Xq .

The above argument with the roles of p and q reversed gives Xp ⊂ Xq. In
summary, if q ∈ Xp with p, q periodic, Xp = Xq.

Now any two Xp, Xq are either disjoint or equal. For if Xq ∩ Xq 6= ∅,
then this intersection is open in Ω and hence contains a periodic point r; then
Xp = Xr = Xq. Now

Ω =
⋃

p periodic

Bδ(Xp) =
⋃
p

Xp,

and so by compactness (the Xp are open) let

Ω = Xp1 ∪ · · · ∪Xpt

with the Xpj ’s pairwise disjoint. Then f(Xpj ) = Xfpj intersects and hence
equals some Xpi . So f permutes the Xpj ’s and the Ωi are just the union of
the Xpj ’s in the various cycles of the permutation.

The transitivity in (a) is implied by the mixing in (b). We finish by showing
fN : Xr → Xr is mixing whenever r is periodic and N positive with fNXr =
Xr. Suppose U, V are nonempty subsets of Xr open in Xr (i.e., in Ω). Pick
periodic points p ∈ U and q ∈ V , say fmp = p, fnq = q. For each 0 ≤ j < mn
with f jp ∈ Xr one can find a point x′j as in the beginning of this proof so
that

x′j ∈ f jU and fkmnx′j ∈ V for large k .

Writing tN = kmn+ j, 0 ≤ j ≤ mn, we have f jp = f tNp ∈ Xr and

fkmnx′j = f tN (f−jNx′j) ∈ f tNU ∩ V

provided k is large. Then f tNU ∩V 6= ∅ for large t and fN |Xr is topologically
mixing. ut

The Ωi in the spectral decomposition of Ω(f) are called the basic sets of
f . Notice that if g = fn and n is a multiple of every ni, then the basic sets
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of g are the Xj,i’s and g|Xj,i is mixing. We will at times restrict our attention
to mixing basic sets and recover the general case by considering fn.

A sequence x = {xi}bi=a (a = −∞ or b = +∞ is permitted) of points in
M is an α-pseudo-orbit if

d(fxi, xi+1) < α for all i ∈ [a, b− 1) .

A point x ∈M β-shadows x if

d(f ix, xi) ≤ β for all i ∈ [a, b] .

3.6. Proposition. For every β > 0 there is an α > 0 so that every α-pseudo-
orbit {xi}bi=a in Ω (i.e., every xi ∈ Ω) is β-shadowed by a point x ∈ Ω.

Proof. Let ε > 0 be a small number to be determined later and choose δ ∈
(0, ε) as in 3.3, i.e., W s

ε (x)∩Wu
ε (y)∩Ω 6= ∅ whenever x, y ∈ Ω with d(x, y) ≤ δ.

Pick M so large that λMε < δ/2 and then α > 0 so that:

if {yi}Mi=0 is an α−pseudo-orbit in Ω, then

d(f jy0, yj) < δ/2 for all j ∈ [0,M ] .

Consider first an α-pseudo-orbit {xi}rMi=0 with r > 0. Define x′kM recursively
for k ∈ [0, r] by x′0 = x0 and

x′(k+1)M = Wu
ε (fMx′kM ) ∩W s

ε (x(k+1)M ) ∈ Ω .

This makes sense: d(fMx′kM , f
MxkM ) ≤ λMε < δ/2 and d(fMxkM , x(k+1)M ) <

δ/2 by the choice of α; so d(fMx′kM , x(k+1)M ) < δ and x′(k+1)M exists. Now

set x = f−rMx′rM . For i ∈ [0, rM ] pick s with i ∈ [sM, (s+ 1)M), then

d(f ix, f i−sMx′sM) ≤
r∑

t=s+1

d(f i−tMx′tM , f
i−tM+Mx(t−1)M )

≤
r∑

t=s+1

ε λtM−i ≤ ελ

1− λ

where we used x′tM ∈Wu
ε (fMx′(t−1)M ). Since x′sM ∈W s

ε (xsM)

d(f i−sMx′sM , f
i−sMxsM) ≤ ε .

By the choice of α one has

d(f i−sMxsM , xi) < δ/2 .

By the triangle inequality

d(f ix, xi) ≤
ελ

1− λ
+ ε+

δ

2
·
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For small ε this is less that the given β.
Now any α-pseudo-orbit {xi}ni=0 in Ω extends to {xi}rMi=0 when rM ≥ n

by setting xi = f i−nxn for i ∈ (n, rM ]. An x ∈ Ω shadowing this extended
pseudo-orbit will shadow the original one. If {xi}bi=a is a finite α-pseudo orbit,
then so is {xj+a}b−aj=0 and x shadowing this one yields f−ax shadowing the

original. Thus the proposition holds for finite pseudo-orbits. If {xi}+∞i=−∞ is

an α-pseudo-orbit in Ω, then find x(m) ∈ Ω β-shadowing {xi}mi=−m and let x

be a limit point of the sequence x(m). Then x ∈ Ω β-shadows {xi}+∞i=−∞. ut

3.7. Corollary. Given any β > 0 there is an α > 0 so that the following
holds: if x ∈ Ω and d(fnx, x) < α, then there is an x′ ∈ Ω with fnx′ = x′

and
d(fkx, fkx′) ≤ β for all k ∈ [0, n] .

Proof. Let xi = fkx for i ≡ k (mod n), k ∈ [0, n). Then {xi}∞i=−∞ is an
α-pseudo-orbit. Let x′ ∈ Ω β-shadow it. Then d(f ix′, f ifnx′) ≤ d(f ix′, xi) +
d(xi, f

i+nx′) ≤ 2β and by expansiveness (Lemma 3.4) fnx′ = x′. ut

3.8. Anosov’s Closing Lemma. If f is an Anosov diffeomorphism, then f
satisfies Axiom A.

Proof. We must show that the periodic points are dense in Ω(f). We have
been assuming f satisfies Axiom A; however 3.3 is true also for Anosov dif-
feomorphisms and so then is 3.6 and 3.7, using M in place of Ω(f). If y is
a non-wandering point for an Anosov f , then for any γ one can find x with
d(x, y) < γ and d(fnx, x) < γ for some n. The periodic points x′ constructed
in 3.7 for such x converge to y. ut

3.9. Fundamental Neighborhood. Let f satisfy Axiom A. There is a
neighborhood U of Ω(f) so that⋂

n∈Z
fnU = Ω(f) .

Proof. Let β be small and α as in 3.6. Pick γ < α/2 so that

∀x, y ∈M , d(x, y) < γ implies d(fx, fy) < α/2 .

Let U = {y ∈ M : d(y,Ω) < γ}. If y ∈
⋂
n∈Z f

nU , pick xi ∈ Ω with
d(f iy, xi) < γ. Then

d(f iy, f ix) < β + γ for all i .

For small β and γ this implies y = x ∈ Ω by 3.4. ut

For Ωj a basic set of an Axiom A diffeomorphism one let

W s(Ωj) = {x ∈M : d(fnx,Ωj)→ 0 as n→∞}
and Wu(Ωj) = {x ∈M : d(f−nx,Ωj)→ 0 as n→∞} .
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Using the definition of non-wandering sets it is easy to check that fnx → Ω
and f−nx→ Ω as n→∞. As Ω = Ω1 ∪ · · · ∪Ωs is a disjoint union of closed
invariant sets one then sees that

M =

s⋃
j=1

W s(Ωj) =

s⋃
j=1

Wu(Ωj)

and that there are disjoint unions.

3.10. Proposition. W s(Ωj) =
⋃
x∈Ωj W

s(x) and Wu(Ωj) =
⋃
x∈Ωj W

u(x).
For ε > 0 there is a neighborhood Uj of Ωj so that⋂

k≥0

f−kUj ⊂W s
ε (Ωj) =

⋃
x∈Ωj

W s
ε (x)

and
⋂
k≥0

fkUj ⊂Wu
ε (Ωj) =

⋃
x∈Ωj

Wu
ε (x) .

Proof. Suppose fny → Ωj as n→∞; say d(fny,Ωj) < γ for all n ≥ N . Pick
xn ∈ Ωj for n ≥ N with d(xn, f

ny) ≤ γ; for n < N let xn = fn−NxN . The
{xn}∞n=−∞ is a pseudo-orbit in Ωj . Letting x ∈ Ωj shadow it, one gets

fNy ∈W s
ε (fNx) ⊂W s(fNx)

(provided γ was small enough). Then y ∈ f−NW s(fNx) = W s(x). The reverse
inclusion, W s(Ωj) ⊃

⋃
x∈Ωj W

s(x), is clear.

The proof for Wu(Ωj) is similar and we have proved the second statement
with Uj = {y ∈M : d(y,Ωj) < γ}. ut

C. Markov partitions

A subset R ⊂ Ωs is called a rectangle if it has small diameter and

[x, y] ∈ R whenever x, y ∈ R .

R is called proper if R is closed and R = int(R) (int(R) is the interior of R as
a subset of Ωs). For x ∈ R, let

W s(x,R) = W s
ε (x) ∩R and Wu(x,R) = Wu

ε (x) ∩R

where ε is small and the diameter of R is small compared to ε.

3.11. Lemma. Let R be a closed rectangle. As a subset of Ωs, R has boundary

∂R = ∂sR ∪ ∂uR

where
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∂sR = {x ∈ R : x /∈ int(Wu(x,R))}
∂uR = {x ∈ R : x /∈ int(W s(x,R))}

and the interiors of Wu(x,R), W s(x,R) are as subsets of Wu
ε (x)∩Ω, W s

ε (x)∩
Ω.

Proof. If x ∈ int(R), then Wu(x,R) = R∩(Wu
ε (x)∩Ω) is a neighborhood of x

in Wu
ε (x)∩Ω since R is a neighborhood of x in Ω. Similarly x ∈ int(Wu(x,R)).

Suppose x ∈ int(Wu(x,R)) and x ∈ int(W s(x,R)). For y ∈ Ωs near x the
points

[x, y] ∈W s
ε (x) ∩Ω and [x, y] ∈Wu

ε (x) ∩Ω

depend continuously on y. Hence for y ∈ Ωs close enough to x, [x, y] ∈ R and
[y, x] ∈ R. Then

y′ = [[y, x], [x, y]] ∈ R ∩W s
ε (y) ∩Wu

ε (y)

and y′ = y as W s
ε (y) ∩Wu

ε (y) = {y}. Thus x ∈ int(R). ut

Definition. A Markov partition of Ωs is a finite covering R = {R1, . . . , Rm}
of Ωs by proper rectangles with

(a) int(Ri) ∩ int(Rj) = ∅ for i 6= j,
(b) fWu(x,Ri) ⊃Wu(fx,Rj) and

fW s(x,Ri) ⊂W s(fx,Rj) when x ∈ int(Ri), fx ∈ int(Rj).

3.12. Theorem. Let Ωs be a basic set for an Axiom A diffeomorphism f .
Then Ωs has Markov partitions R of arbitrarily small diameter.

Proof. Let β > 0 be very small and choose α > 0 small as in Proposition 3.6,
i.e., every α-pseudo-orbit in Ωs is β-shadowed in Ωs. Choose γ < α/2 so that

d(fx, fy) < α/2 when d(x, y) < γ .

Let P = {p1, . . . , pr} be a γ-dense subset of Ωs and

Σ(P ) =

{
q ∈

∞∏
−∞

P : d(fqj , qj+1) < α for all j

}
.

For each q ∈ Σ(P ) there is a unique θ(q) ∈ Ωs which β-shadows q; for each
x ∈ Ωs there are q with x = θ(q).

For q, q′ ∈ Σ(P ) with q0 = q′0 we define q∗ = [q, q′] ∈ Σ(P ) by

q∗j =

{
qj for j ≥ 0
q′j for j ≤ 0 .

Then d(f jθ(q∗), f jθ(q)) ≤ 2β for j ≥ 0 and d(f jθ(q∗), f jθ(q)) ≤ 2β for j ≤ 0.
So θ(q∗) ∈W s

2β(θ(q)) ∩Wu
2β(θ(q′)), i.e.,
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θ[q, q′] = [θ(q), θ(q′)] .

We now see that Ts = {θ(q) : q ∈ Σ(P ), q0 = ps} is a rectangle. For
x, y ∈ Ts we write x = θ(q), y = θ(q′) with q0 = ps = q′0. Then

[x, y] = θ[q, q′] ∈ Ts .

Suppose x = θ(q) with q0 = ps and q1 = pt. Consider y ∈W s(x, Ts), y = θ(q′),
q0 = ps. Then

y = [x, y] = θ[q, q′] and

fy = θ(σ[q, q′]) ∈ Tt

as σ[q, q′] has q′ = pt in its zeroth position. Since fy ∈ W s
ε (fx) (diam(Ts) ≤

2β is small compared to ε), fy ∈W s
ε (fx, Tt). We have proved

(i) fW s(x, Ts) ⊂W s(fx, Tt).
A similar proof shows f−1Wu(fx, Tt) ⊂Wu(x, Ts), i.e.,
(ii) fWu(x, Ts) ⊃Wu(fx, Tt).
Each Ts is closed; this follows from the following lemma.

3.13. Lemma. θ : Σ(P )→ Ωs is continuous.

Proof. Otherwise there is a γ > 0 so that for every N one can find q
N
, q′
N
∈

Σ(P ) with qj,N = q′j,N for all j ∈ [−N,N ] but d(θ(q
N

), θ(q′
N

)) ≥ γ. If xN =
θ(q

N
) , yN = θ(q′) one has

d(f jxN , f
jyN) ≤ 2β ∀j ∈ [−N,N ] .

Taking subsequences we may assume xN → x and yN → y as N → ∞. Then
d(f jx, f jy) ≤ 2β for all j and d(x, y) ≥ γ; this contradicts expansiveness of
f |Ωs . ut

Now T = {T1, . . . , Tr} is a covering by rectangles and (i) and (ii) above
are like the Markov condition (b). However the Tj ’s are likely to overlap and
not be proper. For each x ∈ Ωs let

T(x) = {Tj ∈ T : x ∈ Tj} and T∗(x) = {Tk ∈ T : Tk∩Tj 6= ∅ for some Tj ∈ T(x)} .

As T is a closed cover of Ωs, Z = Ωs\
⋃
j ∂Tj is an open dense subset of Ωs.

In fact, using arguments similar to 3.11, one can show that

Z∗ = {x ∈ Ωs : W s
ε (x) ∩ ∂sTk = ∅ and Wu

ε (x) ∩ ∂uTk = ∅ for all Tk ∈ T∗(x)}

is open and dense in Ωs.
For Tj ∩ Tk 6= ∅, let

T 1
j,k = {x ∈ Tj : Wu(x, Tj) ∩ Tk 6= ∅, W s(x, Tj) ∩ Tk 6= ∅} = Tj ∩ Tk
T 2
j,k = {x ∈ Tj : Wu(x, Tj) ∩ Tk 6= ∅, W s(x, Tj) ∩ Tk = ∅}
T 3
j,k = {x ∈ Tj : Wu(x, Tj) ∩ Tk = ∅, W s(x, Tj) ∩ Tk 6= ∅}
T 4
j,k = {x ∈ Tj : Wu(x, Tj) ∩ Tk = ∅, W s(x, Tj) ∩ Tk = ∅}.
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If x, y ∈ Tj , then W s([x, y], Tj) = W s(x, Tj) and Wu([x, y], Tj) =
Wu(y, Tj); this implies Tnj,k is a rectangle open in Ωs and each x ∈ Tj ∩ Z∗
lies in int(Tnj,k) for some n. For x ∈ Z∗ define

R(x) =
⋂
{int(Tnj,k) : x ∈ Tj , Tk ∩ Tj 6= ∅ and x ∈ Tnj,k} .

Now R(x) is an open rectangle (x ∈ Z∗). Suppose y ∈ R(x) ∩ Z∗. Since
R(x) ⊂ T(x) and R(x) ∩ Tj = ∅ for Tj /∈ T(x), one gets T(y) = T(x). For
Tj ∈ T(x) = T(y) and Tk ∩ Tj 6= ∅, y lies in the same Tnj,k as x does since
Tnj,k ⊃ R(x); hence R(y) = R(x). If R(x) ∩ R(x′) 6= ∅ (x, x′ ∈ Z∗), there is a
y ∈ R(x) ∩ R(x′) ∩ Z∗; then R(x) = R(y) = R(x′). As there are only finitely
many Tnj,k’s there are only finitely many distinct R(x)’s. Let

R = {R(x) : x ∈ Z∗} = {R1, . . . , Rm} .

For x′ ∈ Z∗, R(x′) = R(x) or R(x′)∩R(x) = ∅; hence (R(x) \R(x))∩Z∗ = ∅.
As Z∗ is dense inΩs,R(x) \R(x) has no interior (inΩs) andR(x) = int(R(x)).
For R(x) 6= R(x′)

int
(
R(x)

)
∩ int

(
R(x′)

)
= R(x) ∩R(x′) = ∅ .

To show that R is Markov we are left to verify condition (b).
Suppose x, y ∈ Z∗ ∩ f−1Z∗, R(x) = R(y) and y ∈ W s

ε (x). We will show
R(fx) = R(fy). First T(fx) = T(fy). Otherwise assume fx ∈ Tj , fy /∈ Tj .
Let fx = θ(σq) with q1 = pj and q0 = ps. Then x = θ(q) ∈ Ts and by
inclusion (i) above
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fy ∈ fW s(x, Ts) ⊂W s(fx, Tj) ,

contradicting fy /∈ Tj . Now let fx, fy ∈ Tj and Tk ∩Tj 6= ∅. We want to show
that fx, fy belong to the same Tnj,k. As fy ∈ W s

ε (fx) we have W s(fy, Tj) =
W s(fx, Tj). We will derive a contradiction from

Wu(fy, Tj) ∩ Tk = ∅ , fz ∈Wu(fx, Tj) ∩ Tk .

Recall that fx = θ(σq), q1 = pj , q0 = ps. Then by inclusion (ii)

fz ∈Wu(fx, Tj) ⊂ fWu(x, Ts) or z ∈Wu(x, Ts) .

Let fz = θ(σq′); q′1 = pk and q0 = pt. Then z ∈ Tt and fW s(z, Tt) ⊂
W s(fz, Tk). Now Ts ∈ T(x) = T(y) and z ∈ Tt ∩ Ts 6= ∅.
Now z ∈ Wu(x, Ts) ∩ Tt and so there is some z′ ∈ Wu(y, Ts) ∩ Tt as x, y are
in the same Tns,t. Then

z′′ = [z, y] = [z, z′] ∈W s(z, Tt) ∩Wu(y, Ts),

and fz′′ = [fz, fy] ∈W s(fz, Tk)∩Wu(fy, Tj) (using fz, fy ∈ Tj a rectangle),
a contradiction. So R(fx) = R(fy).

For small δ > 0 the sets

Y1 =
⋃ W s

δ (z) : z ∈
⋃
j

∂sTj

 and Y2 =
⋃ Wu

δ (z) : z ∈
⋃
j

∂uTj


are closed and nowhere dense (like in the proof of 3.11). Now Z∗ ⊃ Ωs\(Y1∪Y2)
is open and dense. Furthermore if x /∈ (Y1 ∪ Y2) ∩ f−1(Y1 ∪ Y2) then x ∈
Z∗ ∩ f−1Z∗ and the set of y ∈W s(x,R(x)) with y ∈ Z∗ ∩ f−1Z∗ is open and
dense in W s(x,R(x) ) (as a subset of W s

ε (x)∩Ω). By the previous paragraph
R(fy) = R(fx) for such y; by continuity

fW s(x,R(x) ) ⊂ R(fx) .

As fW s(x,R(x) ) ⊂W s
ε (fx), fW s(x,R(x) ) ⊂W s(fx,R(fx) ).

If int(Ri) ∩ f−1int(Rj) 6= ∅, then this open subset of Ωs contains some x

satisfying the above conditions, Ri = R(x) and Rj = R(fx). For any x′ ∈
Ri ∩ f−1Rj one has W s(x′, Ri) = {[x′, y] : y ∈W s(x,Ri)} and

fW s(x′, Ri) = {[fx′, fy] : y ∈W s(x,Ri)}
⊂ {[fx′, z] : z ∈W s(fx,Rj)}
⊂ W s(fx′, Rj) .

This completes the proof of half of the Markov conditions (b). The other
half is proved similarly and the proof is omitted. Alternatively one could apply
the above to f−1, noting that Wu

f = W s
f−1 . ut
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D. Symbolic dynamics

Throughout this section R = {R1, . . . , Rm} will denote a Markov partition of
a basic set Ωs. One defines the transition matrix A = A(R) by

Aij =

{
1 if int(Ri) ∩ f−1int(Rj) 6= ∅
0 otherwise .

3.14. Lemma. Suppose x ∈ Ri, fx ∈ Rj, Aij = 1. Then fW s(x,Ri) ⊂
W s(fx,Rj) and fWu(x,Ri) ⊃Wu(fx,Rj).

Proof. This is just the same as the last part of the proof of 3.12. ut

Definition. ∂sR =
⋃
j ∂

sRj and ∂uR =
⋃
j ∂

uRj.

3.15. Proposition. f(∂sR) ⊂ ∂sR and f−1(∂uR) ⊂ ∂uR.

Proof. The set
⋃
j(int(Ri) ∩ f−1int(Rj)) is dense in Ri. For any x ∈ Ri one

can therefore find some j and xn ∈ int(Ri)∩f−1int(Rj) with limn→∞ xn = x.
Then Aij = 1, x ∈ Rij and fx ∈ Rj . Hence fWu(x,Ri) ⊃ Wu(fx,Rj). If
fx /∈ ∂sR, then Wu(fx,Rj) is a neighborhood of fx in W s

ε (fx) ∩ Ω and so
Wu(x,Ri) is a neighborhood of x in W s

ε (x)∩Ωs – that is x /∈ ∂sRi. We have
shown f(∂sR) ⊂ ∂sR. One gets f−1(∂uR) ⊂ ∂uR by a similar argument or
by applying the first argument to f−1 in place of f . ut

3.16. Lemma. Let D ⊂W s
δ (x)∩Ω and C ⊂Wu

δ (x)∩Ω. Then the rectangle

[C,D] is proper iff D = int(D) and C = int(C) as subsets of W s
δ (x) ∩Ω and

Wu
δ (x) ∩Ω respectively.

Proof. This is like 3.11. ut

Definition. Let R,S be two rectangles. S will be called a u-subrectangle of
R if

(a) S 6= ∅, S ⊂ R, S is proper, and
(b)Wu(y, S) = Wu(y,R) for y ∈ S.

3.17. Lemma. Suppose S is a u-subrectangle of Ri and Aij = 1. Then f(S)∩
Rj is a u-subrectangle of Rj.

Proof. Pick x ∈ Ri ∩ f−1Rj and set D = W s(x,Ri) ∩ S. Because S is a
u-subrectangle (condition (b)) one has

S =
⋃
y∈D

Wu(y,Ri) = [Wu(x,Ri), D] .

As S is proper and nonempty, by 3.16 D 6= ∅ and D = int(D). Now
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f(S) ∩Rj =
⋃
y∈D

(fWu(y,Ri) ∩Rj) .

By 3.14, f(y) ∈ Rj and fWu(y,Ri) ∩Rj = Wu(fy,Rj).
So f(S) ∩Rj =

⋃
y′∈f(D)W

u(y′, Rj) = [Wu(fx,Rj), f(D)].

Since Rj = [Wu(fx,Rj),W
s(fx,Rj)] is proper, one has Wu(fx,Rj) proper.

As f maps W s
ε (x)∩Ω homeomorphically onto a neighborhood in W s

ε (fx)∩Ω,
f(D) = int(f(D)) and so f(S) ∩ Rj is proper by 3.16. f(S) ∩ Rj 6= ∅ as
f(D) 6= ∅; if y′′ ∈ f(S) ∩ Rj , then y′′ ∈ Wu(y′, Rj) for some y′ ∈ f(D) and
Wu(y′′, Rj) = Wu(y′, Rj) ⊂ f(S) ∩ Rj . So f(S) ∩ Rj is a u-subrectangle of
Rj . ut

3.18. Theorem. For each a ∈ ΣA the set
⋂
j∈Z f

−jRaj consists of a single
point, denoted π(a). The map π : ΣA → Ωs is a continuous surjection, π◦σ =
f ◦π, and π is one-to-one over the residual set Y = Ωs\

⋃
j∈Z f

j(∂sR∪∂uR).

Proof. If a1a2 · · · an is a word with Aajaj+1
= 1, then inductively using 3.17

one sees that

n⋂
j=1

fn−jRaj = Ran ∩ f

n−1⋂
j=1

fn−1−jRaj


is a u-subrectangle of Ran . From this one gets that

Kn(a) =

n⋂
j=−n

f−jRaj

is nonempty and the closure of its interior. As Kn(a) ⊃ Kn+1(a) ⊃ · · · we
have

K(a) =

∞⋂
j=−∞

f−jRaj =

∞⋂
n=1

Kn(a) 6= ∅ .

If x, y ∈ K(a), then f jx, f jy ∈ Raj are close for all j ∈ Z and so x = y by
expansiveness. As

K(σa) =
⋂
j

f−jRaj+1
= f

⋂
j

f−jRaj


= fK(a),

one has π ◦ σ = f ◦ π. That π is continuous is proved like 3.13. As ∂sR∪ ∂uR
is nowhere dense, Y is residual. For x ∈ Y pick aj with f jx ∈ Raj . As x ∈ Y ,
f jx ∈ int(Raj ) and so Aajaj+1

= 1. Thus a = {aj} ∈ ΣA and x = π(a). If
x = π(b), then f jx ∈ Rbj and bj = aj because f jx /∈ ∂sR ∪ ∂uR; so π is
injective over Y . As π(ΣA) is a compact subset of Ωs containing a dense set
Y , π(ΣA) = Ωs. ut
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3.19. Proposition. σ : ΣA → ΣA is topologically transitive. If f |Ωs is topo-
logically mixing so is σ : ΣA → ΣA.

Proof. Let U, V be nonempty open in ΣA. For some a, b ∈ ΣA and N one has

U ⊃ U1 = {x ∈ ΣA : xi = ai ∀ i ∈ [−N,N ]}
V ⊃ V1 = {x ∈ ΣA : xi = bi ∀ i ∈ [−N,N ]} .

Now

∅ 6= int(KN (a)) =

N⋂
j=−N

f−j int(Raj ) = U2

and ∅ 6= int(KN (b)) =

N⋂
j=−N

f−j int(Rbj ) = V2 .

Also, if x = π(x) ∈ U2, then f jx ∈ Rxj and f jx ∈ int(Raj ) imply xj = aj ; so
π−1(U2) ⊂ U1. Similarly π−1(V2) ⊂ V1. Since f |Ωs is transitive, fnU2∩V2 6= ∅
for various large n. Then

∅ 6= π−1(fnU2 ∩ V2) = π−1(fnU2) ∩ π−1(V2)

⊂ fnU ∩ V .

This same argument shows that σ|ΣA is mixing if f |Ωs is. ut
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4

ERGODIC THEORY OF AXIOM A
DIFFEOMORPHISMS

A. Equilibrium states for basic sets

Recall that a function φ is Hölder continuous if there are constants a, θ > 0
so that

|φ(x)− φ(y)| ≤ a d(x, y)θ .

4.1. Theorem. Let Ωs be a basic set for an Axiom A diffeomorphism f and
φ : Ωs → R Hölder continuous. Then φ has a unique equilibrium state µφ
(w.r.t. f |Ωs). Furthermore µφ is ergodic; µφ is Bernoulli if f |Ωs is topologically
mixing.

4.2. Lemma. There are ε > 0 and α ∈ (0, 1) for which the following are true:
if x ∈ Ωs, y ∈M , and d(fkx, fky) ≤ ε for all k ∈ [−N,N ], then d(x, y) < αN .

Proof. See p. 140 of [12]. ut

Proof of 4.1. Let R be a Markov partition for Ωs of diameter at most ε, A
the transition matrix for R and π : ΣA → Ωs as in 3.D. Let φ∗ = φ ◦ π. If
x, y ∈ ΣA have xk = yk for k ∈ [−N,N ], then

fkπ(x) , fkπ(y) ∈ Rxk = Ryk for k ∈ [−N,N ] .

This gives d(π(x), π(y)) < αN , |φ∗(x)− φ∗(y)| ≤ a (αθ)N and φ∗ ∈ FA.
First we assume f |Ωs is mixing. Then σ|ΣA is mixing by 3.19 and we have a

Gibbs measure µφ∗ as in Chapter 1. Let Ds = π−1(∂sR) and Du = π−1(∂uR)
. Then Ds and Du are closed subsets of ΣA, each smaller than ΣA, and
σDs ⊂ Ds, σ

−1Du ⊂ Du. As µφ∗ is σ-invariant, µφ∗(σ
nDs) = µφ∗(Ds); using

σn+1Ds ⊂ σnDs one has

µφ∗

⋂
n≥0

σnDs

 = µφ∗(Ds) .
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Now
⋂
n≥0 σ

nDs has measure 0 or 1 as it is σ-invariant and µφ∗ is ergodic (see
1.14); since its complement (a nonempty open set) has positive measure by 1.4,
one gets µφ∗(Ds) = 0. Similarly one sees µφ∗(Du) = 0. Now let µφ = π∗µφ∗ ,
i.e., µφ(E) = µφ∗(π

−1E). Then µφ is f -invariant and the automorphisms of
the measure spaces (σ, µφ∗), (f, µφ) are conjugate since π is one-to-one except
on the null set

⋃
n∈Z σ

n(Ds ∪Du). In particular hµφ(f) = hµφ∗ (σ) and so (1)

hµφ(f) +

∫
φ dµφ = hµφ∗ (σ) +

∫
φ∗dµφ∗

= Pσ(φ∗) ≥ Pf (φ) .

Hence (2) Pσ(φ∗) = Pf (φ) and µφ is an equilibrium state for φ by Chapter 2.
Now µφ is Bernoulli because of 1.25.

4.3. Lemma. For any µ ∈Mf (Ωs) there is a ν ∈Mσ(ΣA) with π∗ν = µ.

Proof. This well-known fact is proved as follows. F (g ◦ π) = µ(g) =
∫
gdµ

defines a positive linear functional on a subspace of C (ΣA). By a modification
of the Hahn-Banach Theorem F extends to C (ΣA), still positive. As F (1) =
F (1 ◦ π) = 1, F is identified with some β ∈ M (ΣA). By compactness let
ν = limk→∞

1
nk

(β + σ∗β + · · · + (σnk−1)∗β). Then σ∗ν = ν and π∗ν = µ

(using π∗(σk)∗β = (fk)∗π∗β = (fk)∗µ = µ). ut

Proof of 4.1 (continued). Suppose µ is any equilibrium state of φ and pick
ν ∈Mσ(ΣA) with π∗ν = µ. Then hν(σ) ≥ hµ(f) and so

hν(σ) +

∫
φ∗ dν ≥ hµ(f) +

∫
φ dµ = P (φ) = P (φ∗) .

Thus ν is an equilibrium state for φ∗ and ν = µφ∗ by 1.22. Then µ = π∗µφ∗ =
µφ.

We have left the case Ωs = X1∪· · ·∪Xm with fXk = Xk+1 and fm|X1 mix-
ing. For µ ∈Mf (Ωs), one has µ(X1) = 1

m and so µ′ = m µ|X1 ∈Mfm(X1).
Conversely, if µ′ ∈Mfm(X1), then µ ∈Mf (Ωs) where

µ(E) =
1

m

m−1∑
k=0

µ′(X1 ∩ fkE) .

One checks that µ↔ µ′ defines a bijection Mf (Ωs)↔Mfm(X1), hµ′(f
m) =

mhµ(f), and
∫
Smφ dµ′ = m

∫
φ dµ. Finding µ maximizing hµ(f) +

∫
φ dµ

is equivalent therefore to finding µ′ maximizing hµ′(f
m) +

∫
Smφ dµ

′. For φ
Hölder on Ωs, Smφ will be Hölder on X1 and therefore one is done since X1

is a mixing basic set of fm. ut

1 The second equality follows from Theorem 1.22; The inequality comes from Propo-
sition 2.13 (note of the editor).

2 Using the variational principle 2.17 (note of the editor).
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4.4. Proposition. Let φ : Ωs → R be Hölder continuous and P = Pf |Ωs (φ).
For small ε > 0 there is a bε > 0 so that, for any x ∈ Ωs and for all n,

µφ
{
y ∈ Ωs : d(fky, fkx) < ε ∀ k ∈ [0, n]

}
≥ bε exp(−Pn+ Snφ(x)) .

Proof. Choose the Markov partition R above to have diam(R) < ε. Assume
first f |Ωs is mixing. Pick x ∈ ΣA with π(x) = x. Then

B =
{
y ∈ Ωs : d(fky, fkx) < ε ∀ k ∈ [0, n]

}
⊃ π

{
y ∈ ΣA : yk = xk ∀ k ∈ [0, n]

}
.

Applying 1.4 and P (φ∗) = P (φ) = P one gets

µφ(B) ≥ c1 exp(−Pn+ Snφ(x)) .

We leave it to the reader to reduce the general case to the mixing one as in
the proof of 4.1. ut

4.5. Proposition. Let φ, ψ : Ωs → R be two Hölder continuous functions.
Then the following are equivalent:

(i) µφ = µψ.
(ii) There are constants K and L so that |Smφ(x) − Smψ(x) −Km| ≤ L for

all x ∈ Ωs and all m ≥ 0.
(iii) There is a constant K so that Smφ(x) − Smψ(x) = Km when x ∈ Ωs

with fmx = x.
(iv) There is a Hölder function u : Ωs → R and a constant K so that φ(x)−

ψ(x) = K + u(fx)− u(x).

If these conditions hold, K = P (φ)− P (ψ).

Proof. Let φ∗ = φ ◦ π and ψ∗ = ψ ◦ π. We assume f |Ωs is mixing and leave
the reduction to this case to the reader. If µφ = µψ, then µφ∗ = µψ∗ and by
Theorem 1.28 there are K and L so that

|Smφ∗(x)− Smψ∗(x)−Km| ≤ L

for x ∈ ΣA. For x ∈ Ωs, picking x ∈ π−1(x), this gives us (ii).
Assume (ii) and fmx = x. Then

L ≥ |Smjφ(x)− Smjψ(x)−mjK| = j|Smφ(x)− Smψ(x)−mK| .

Letting j →∞ we get (iii). If (iv) is true, then

φ∗(x)− ψ∗(x) = K + u(π(σx))− u(π(x))

and µφ∗ = µψ∗ by Theorem 1.28. One then has µφ = π∗µφ∗ = π∗µψ∗ = µψ.
Now we assume (iii) and prove (iv). Let η(x) = φ(x)−ψ(x)−K and pick

x ∈ Ωs with dense forward orbit (Lemma 1.29). Let A = {fkx : k ≥ 0} and
define u : A→ R by
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u(fkx) =

k−1∑
j=0

η(f jx) .

For z ∈ A one has u(fz) − u(z) = η(z). Pick ε and α as in 4.2. By 3.7 there
is δ > 0 so that if y ∈ Ωs and d(fny, y) < δ, then there is a y′ ∈ Ωs with
fny′ = y′ and d(fky, fky′) < ε

2 for all k ∈ [0, n].
Let R be the maximum ratio that f expands any distance. Suppose y =

fkx, z = fmx with k < m and d(y, z) < ε/2RN . Providing N is large one has
z = fny, n = m−k, and d(fny, y) < δ. Then find y′ as above with fny′ = y′.
Then, as Snη(y′) = 0,

|u(z)− u(y)| =
∣∣Snη(y)− Snη(y′)

∣∣
≤

n−1∑
j=0

|η(f jy)− η(f jy′)| .

By the choice of R and y′ one sees that

d(f jy, f jy′) < ε for all j ∈ [−N,n+N ] .

For j ∈ [0, n) Lemma 4.2 gives

d(f jy, f jy′) < αmin{j+N,N+n−j} .

Because η is Hölder,

|η(f jy)− η(f jy′)| ≤ a αθmin{j+N,N+n−j}

|u(y)− u(z)| ≤ 2a

∞∑
r=N

αθr ≤ a′αθN .

Pick N so that d(y, z) ∈ [ε/2RN+1, ε/2RN ]. Taking γ > 0 so that (1/R)γ ≥ αθ
one has

|u(y)− u(z)| ≤ a′′d(y, z)γ .

Thus u is Hölder on A and extends uniquely to a Hölder function on Ā = Ωs.
The formula η(z) = u(fz)− u(z) extends to Ωs by continuity. ut

B. The case φ = φ(u)

Recall that M has a Riemannian structure and this induces a volume measure
m on M . We will assume for the remainder of this chapter that f : M → M
is a C 2 Axiom A diffeomorphism and Ωs is a basic set for f . For x ∈ Ωs let
φ(u)(x) = − log λ(x) where λ(x) is the Jacobian of the linear map

Df : Eux → Eufx

using inner products derived from the Riemannian metric.
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4.6. Lemma. If Ωs is a C 2 basic set, then φ(u) : Ωs → R is Hölder continu-
ous.

Proof. The map x 7→ Eux is Hölder (see 6.4 of [12]) and Eux 7→ φ(u)(x) is
differentiable, so the composition x 7→ φ(u)(x) is Hölder. ut

By Theorem 4.1 the function φ(u) has a unique equilibrium state which we
denote µ+ = µφ(u) . While φ(u) depends on the metric used, when fmx = x

Smφ
(u)(x) = − log Jac(Dfm : Eux → Eux )

does not depend on the metric (this Jacobian is the absolute value of the
determinant). By 4.5 one sees that the measure µ+ on Ωs and P (φ(u)) do not
depend on which metric is used.

4.7. Volume Lemma. Let

Bx(ε,m) =
{
y ∈M : d(fkx, fky) ≤ ε for all k ∈ [0,m)

}
.

If x ∈ Ωs is a C 2 basic set and ε > 0 is small, then there is a constant Cε so
that

m(Bx(ε,m)) ∈ [C−1ε , Cε] exp(Smφ
(u)(x))

for all x ∈ Ωs.

Proof. See 4.2 of [9]. ut

4.8. Proposition. Let Ωs be a C 2 basic set.

(a) Letting B(ε, n) =
⋃
x∈Ωs Bx(ε, n), one has (for small ε > 0)

Pf |Ωs (φ(u)) = lim
n→∞

1

n
logm(B(ε, n)) ≤ 0 .

(b) Let W s
ε (Ωs) =

⋃
x∈ΩsW

s
ε (x). If m(W s

ε (Ωs)) > 0, then

Pf |Ωs (φ(u)) = 0 and hµ+(f) = −
∫
φ(u)dµ+ .

Proof. Call E ⊂ M (n, ε)-separated if whenever y, z are two distinct points
in E, one can find k ∈ [0, n) with d(fky, fkz) > δ. Choose En(δ) maximal
among the (n, ε)-separated subsets of Ωs. For x ∈ Ωs one has x ∈ By(ε, n) for
some y ∈ En(δ); otherwise En(δ) ∪ {x} is (n, ε)-separated. Then Bx(ε, n) ⊂
By(δ + ε, n), B(ε, n) ⊂

⋃
y∈En(δ)By(δ + ε, n) and by 4.7

(?) m(B(ε, n)) ≤ Cδ+ε
∑
y∈En(δ) exp(Snφ

(u)(y)).

For δ ≤ ε,
⋃
y∈En(δ)By(δ/2, n) ⊂ B(ε, n) is a disjoint union and so
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(??) m(B(ε, n)) ≥ C−1δ/2
∑
y∈En(δ) exp(Snφ

(u)(y)).

Since φ(u) is Hölder, we have

|φ(u)(x)− φ(u)(y)| ≤ a d(x, y)θ

for some a, θ > 0 and all x, y ∈ Ωs. Suppose x ∈ By(ε, n) ∩ Ωs. Then for
j ∈ [0, n)

d(f jx, f jy) < αmin{j,n−j−1}

by Lemma 4.2. Hence

|Snφ(x)− Snφ(y)| ≤
n−1∑
j=0

|φ(u)(f jx)− φ(u)(f jy)|

≤ 2a

∞∑
k=0

αkθ = γ .

Fix δ ≤ ε and let U be an open cover of Ωs with diam(U) < δ. Let
Γ ⊂ Un cover Ωs. For each y ∈ En(δ) pick Uy ∈ Γ with y ∈ X(Uy). Then

Snφ
(u)(Uy) ≥ Snφ

(u)(y). If Uy = Uy′ , then d(fky, fky′) ≤ diam(U) < δ and
y = y′ as En(δ) is (n, δ)-separated. Thus∑

U∈Γ
exp(Snφ

(u)(U)) ≥
∑

y∈En(δ)

exp(Snφ
(u)(y)).

Using this together with (?) above one gets

P (φ(u),U) = lim
n→∞

1

n
log inf

Γ

∑
U∈Γ

exp(Snφ
(u)(U))

≥ lim sup
n→∞

1

n
logm(B(ε, n)) .

Letting diam(U)→ 0, one replaces P (φ(u),U) with P (φ(u)).
Now let U be an open cover and let δ be a Lebesgue number for U. For

each y ∈ En(δ) one can pick Uy ∈ Un with By(δ, n) ∩Ωs ⊂ X(Uy).
Let Γ = {Uy : y ∈ En(δ)}. Then Γ covers Ωs since every x ∈ Ωs lies in some
By(δ, n) with y ∈ En(δ). Also

Snφ
(u)(Uy) ≤ Snφ(u)(y) + γ

and so

Zn(φ(u),U) ≤
∑

Uy∈Γn
exp(Snφ

(u)(Uy))

≤ eγ
∑

y∈En(δ)

exp(Snφ
(u)(y)) .
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Using (??) we get

P (φ(u),U) = lim
n→∞

1

n
logZn(φ(u),U)

≤ lim inf
n→∞

1

n
logm(B(ε, n)) .

Noting that m(B(ε, n)) ≤ m(M), the proof of (a) is complete.
Now m(B(ε, n)) ≥ m(W s

ε (Ωs)) as W s
ε (Ωs) ⊂ B(ε, n). If m(W s

ε (Ωs)) > 0,
the formula from (a) yields P (φ(u)) = 0. Since µ+ is an equilibrium state for
φ(u),

hµ+(f) +

∫
φ(u)dµ+ = P (φ(u)) = 0 . ut

A basic set Ωs is an attractor if it has small neighborhood U with f(U) ⊂
U . By Proposition 3.10 this is equivalent to W s

ε (Ωs) being a neighborhood of
Ωs.

4.9. Lemma. Let Ωs be a C 1 basic set. If Wu
ε (x) ⊂ Ωs for some x ∈ Ωs,

then Ωs is an attractor. If Ωs is not an attractor there exists γ > 0 such that
for every x ∈ Ωs, there is y ∈Wu

ε (x) with d(y,Ωs) > γ.

Proof. If Wu
ε (Ωs) ⊂ Ωs, then

Ux =
⋃
{W s

ε (y) : y ∈Wu
ε (x)}

is a neighborhood of x in M (see Lemma 4.1 of [11]). Choose a periodic point
p ∈ Ux, say fmx = x. For some small β one has Wu

β (p) ⊂ Ux; if z ∈ Wu
β (p)

lies in W s
ε (y) (y ∈ Wu

ε (Ωs)), then d(fnz, fny) < ε and d(f−nz, f−np) < β
for n ≥ 0. By Theorem 3.9 one has z ∈ Ωs and Wu

β (p) ⊂ Ωs. Then also

Wu(p) =
⋃
k≥0 f

mkWu
β (p) ⊂ Ωs.

Now Xp = Wu(p) and Ωs = Xp ∪ fXp ∪ · · · ∪ fNXp for some N . For each

x ∈
⋃N
k=0 f

kWu(p) = Y one has Wu
ε (x) ⊂ Ωs and so Ux as defined above

is a neighborhood of x in M . Since W s
ε (x), Wu

ε (x) depend continuously on
x ∈ Ωs, one can find a δ > 0 independent of x so that Ux contains the 2δ-ball
Bx(2δ) about x in M for all x ∈ Y (see [11, Lemma 4.1]). Then

BΩs(δ) ⊂
⋃
{Ux : x ∈ Y } ⊂W s

ε (Ωs)

and Ωs is an attractor.
To prove (b) notice that the set

Vγ = {x ∈ Ωs : d(y,Ωs) > γ for some y ∈Wu
ε (x)}

is open because Wu
ε (x) varies continuously with x. Also Vγ increases when γ

decreases and
⋃
γ>0 Vγ = Ωs by statement (a). By compactness Vγ = Ωs for

some γ > 0. ut
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4.10. Second Volume Lemma. Let Ωs be a C 2 basic set. For small ε, δ > 0
there is a d = d(ε, δ) > 0 so that

m(By(δ, n)) ≥ d m(Bx(ε, n))

whenever x ∈ Ωs and y ∈ Bx(ε, n).

Proof. See 4.3 of [9]. ut

4.11. Theorem. Let Ωs be a C 2 basic set. The following are equivalent:

(a)Ωs is an attractor.
(b)m(W s(Ωs)) > 0.
(c) Pf |Ωs (φ(u)) = 0.

Proof. As W s(Ωs) =
⋃∞
n=0 f

−nW s
ε (Ωs), (b) is equivalent to m(W s

ε (Ωs)) > 0.
If Ωs is an attractor, then (b) is true since W s

ε (Ωs) is a neighborhood of Ωs.
(c) follows from (b) by Proposition 4.8 (b). We finish by assuming Ωs is not
an attractor and showing P (φ(u)) < 0.

Given a small ε > 0 choose γ as in 4.9. Pick N so that

fNWu
γ/4(x) ⊃Wu

ε (fNx)

for all x ∈ Ωs. Let E ⊂ Ωs be (γ, n)-separated. For x ∈ E there is a y(x, n) ∈
Bx(γ/4, n) with

d(fn+Ny(x, n), Ωs) > γ

(since fnBx(γ/4, n) ⊃Wu
γ/4(fnx) and fNWu

γ/4(fnx) ⊃Wu
ε (fN+nx)). Choose

δ ∈ (0, γ/4) so that d(fNz, fNy) < γ/2 whenever d(z, y) < δ. Then

By(x,n)(δ, n) ⊂ Bx(γ/2, n),

fn+NBy(x,n)(δ, n) ∩BΩs(γ/2) = ∅ .
Hence By(x,n)(δ, n) ∩B(γ/2, n+N) = ∅. Using the Second Volume Lemma

m(B(γ/2, n))−m(B(γ/2, n+N)) ≥
∑
x∈E

m(By(x,n)(δ, n))

≥ d(3γ/2, δ)
∑
x∈E

m(Bx(3γ/2, n))

≥ d(3γ/2, δ) m(B(γ/2, n)) .

Therefore, setting d = d(3γ/2, δ)

m(B(γ/2, n+N)) ≤ (1− d) m(B(γ/2, n))

and by Proposition 4.8 (a)

Pf |Ωs (φ(u)) ≤ 1

N
log(1− d) < 0 . ut

Remark. It is possible to find a C 1 basic set (a horseshoe) which is not an
attractor but nevertheless has m(W s(Ωs)) > 0 [8].
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C. Attractors and Anosov diffeomorphisms

Because M =
⋃r
k=1W

s(Ωk), Theorem 4.11 implies that m-almost all x ∈M
approach an attractor under the action of a C 2 Axiom A diffeomorphism f .
This leads us next to the following result.

4.12. Theorem. Let Ωs be a C 2 attractor. For m-almost all x ∈W s(Ωs) one
has

lim
n→∞

1

n

n−1∑
k=0

g(fkx) =

∫
g dµ+

for all continuous g : M → R (i.e., x is a generic point for µ+).

Proof. Let us write g(n, x) = 1
n

∑n−1
k=0 g(fkx) and g =

∫
g dµ+. Fix δ > 0 and

define the sets

Cn(g, δ) = {x ∈M : |g(n, x)− g| > δ}
E(g, δ) = {x ∈M : |g(n, x)− g| > δ for infinitely many n}

=

∞⋂
N=1

∞⋃
n=N

Cn(g, δ) .

Choose ε > 0 so that |g(x)− g(y)| < δ when d(x, y) < ε.
Now fix N > 0 and choose sets RN , RN+1, . . . successively as follows.

Let Rn (n ≥ N) be a maximal subset of Ωs ∩ Cn(g, 2δ) satisfying the condi-
tions:

(a)Bx(ε, n) ∩By(ε, k) = ∅ for x ∈ Rn, y ∈ Rk, N ≤ k < n,
(b)Bx(ε, n) ∩Bx′(ε, n) = ∅ for x, x′ ∈ Rn, x 6= x′.

If y ∈ W s
ε (Ωs) ∩ Cn(g, 3δ) (n ≥ N) and y ∈ W s

ε (z) with z ∈ Ωs, then
z ∈ Cn(g, 2δ) by the choice of ε. By the maximality of Rn one has

Bz(ε, n) ∩Bx(ε, k) 6= ∅ for some x ∈ Rk, N ≤ k ≤ n .

Then y ∈ Bz(ε, n) ⊂ Bz(ε, k) ⊂ Bx(2ε, k) and so

W s
ε (Ωs) ∩

∞⋃
n=N

Cn(g, 3δ) ⊂
∞⋃
k=N

⋃
x∈Rk

Bx(2ε, k) .

Using the Volume Lemma 4.7 one gets

m

(
W s
ε (Ωs) ∩

∞⋃
n=N

Cn(g, 3δ)

)
≤ c2ε

∞∑
k=N

∑
x∈Rk

exp(Skφ
(u)(x)).

The definition of Rn shows that VN =
⋃∞
k=N

⋃
x∈Rk Bx(ε, k) is a disjoint

union. The choice of ε gives Bx(ε, k) ⊂ Ck(g, δ) for x ∈ Rk ⊂ Ck(g, 2δ) and so
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VN ⊂
⋃∞
k=N Ck(g, δ). Since the measure µ+ is ergodic, the Ergodic Theorem

implies

0 = µ+(E(g, δ)) = lim
n→∞

µ+

( ∞⋃
n=N

Cn(g, δ)

)
and thus limN→∞ µ+(VN ) = 0. By 4.8 (b) one has Pf |Ωs (φ(u)) = 0 and then
by 4.4

µ+(VN ) ≥ bε
∞∑

k=M

∑
x∈Rk

exp(Skφ
(u)(x)).

As µ+(VN ) → 0, the sum on the right approaches 0 as N → ∞. Using the
inequality of the preceding paragraph one sees

lim
N→∞

m

(
W s
ε (Ωs) ∩

∞⋃
n=N

Cn(g, 3δ)

)
= 0 .

This in turn implies m(W s
ε (Ωs) ∩ E(g, 3δ)) = 0.

For δ′ > 3δ the set E(g, δ′) ∩ f−nW s
ε (Ωs) ⊂ f−n(E(g, 3δ) ∩W s

ε (Ωs)) has
measure 0 since f preserves measure (w.r.t. m). Thus

m(E(g, δ′) ∩W s(Ωs)) ≤
∞∑
n=0

m
(
E(g, δ′) ∩ f−nW s

ε (Ωs)
)

= 0 .

Fixing g still but letting δ′ = 1
m → 0 one gets limn g(n, x) = g for all x ∈

W s(Ωs) outside an m-null set A(g). Let {gk}∞k=1 be a dense subset of C (M);
for x ∈W s(Ωs)

∖⋃∞
k=1A(gk) one gets that limn g(n, x) = g for all g ∈ C (M).

ut

4.13. Corollary. Suppose f : M → M is a transitive C 2 Anosov diffeo-
morphism. If f leaves invariant a probability measure µ which is absolutely
continuous with respect to m, then µ = µ+.

Proof. In this case M = Ω = Ω1 is the spectral decomposition. Let g ∈ C (M).
By the Ergodic Theorem there is a function g∗ : M → R so that

lim
n→∞

1

n

n−1∑
k=0

g(fkx) = g∗(x)

for µ-almost all x. Let A be the set of x ∈M with

lim
n→∞

1

n

n−1∑
k=0

g(fkx) =

∫
gdµ+ .

Because m(A) = 1 and µ� m, µ(A) = 1. It follows that g∗(x) =
∫
gdµ+ for

µ-almost all x. Then
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gdµ =

∫
g∗dµ =

∫
gdµ+ .

As this holds for all g ∈ C (M), µ = µ+. ut

Remark. If M is connected, then M = Ω1 = X1 and f is mixing. So µ above
is Bernoulli.

4.14. Theorem. Let f be a transitive C 2 Anosov diffeomorphism. The fol-
lowing are equivalent:

(a) f admits an invariant measure of the form dµ = hdm with h a positive
Hölder function.

(b) f admits an invariant measure µ absolutely continuous w.r.t. m.
(c) Dfn : TxM → TxM has determinant 1 whenever fnx = x.

Proof. Clearly (a) implies (b). Assume (b) holds. Let λ(s)(x) be the Jacobian
of Df : Esf−1x → Esx and φ(s)(x) = log λ(s)(x). Now f−1 is Anosov with
Eux,f−1 = Esx,f an Esx,f−1 = Eux,f . Also

λ
(u)
f−1(x) = Jacobian Df−1 : Esx → Esf−1x

= λ(s)(x)−1

and so φ
(u)
f−1(x) = − log λ

(u)
f−1(x) = φ(s)(x). There is an invariant measure µ−

so that

lim
n→∞

1

n

n−1∑
k=0

g(f−kx) =

∫
g dµ−

for m-almost all x; µ− is the unique equilibrium state for φ
(u)
f−1 w.r.t. f−1.

Notice that equilibrium states w.r.t. f−1 are the same as those w.r.t. f ;
for Mf (M) = Mf−1(M) and hν(f) = hν(f−1). So µ− = µφ(s) . Applying 4.13
to both f and f−1 we see

µφ(u) = µ+ = µ = µ− = µφ(s) .

By 4.8 (b), P (φ(u)) = 0 = P (φ(s)). By 4.5 one has, for fnx = x,

n−1∑
k=0

φ(u)(fkx)−
n−1∑
k=0

φ(s)(fkx) = 0.

Exponentiating,

1 = (det Dfn|Eux ) (det Dfn|Esx) = (det Dfn|TxM ) .

Now assume (c) and let φ(x) = log Jac (Df : TxM → TfxM). Then
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Snφ(x) = log

n−1∏
k=0

Jac (Df : TfkxM → Tfk+1xM)

= log Jac (Dfn : TxM → TfkxM) = 0

when fkx = x. By Proposition 4.5 (with ψ = 0, K = 0) there is a Hölder
u : M → R with φ(x) = u(fx)− u(x). Let h(x) = eu(x).
Thinking of µ = hdm as the absolute value of a form

f∗(hdm)(fx) = h(x) eφ(x) dm(fx)

= h(fx) dm(fx) = (h dm)(fx) .

So µ is f -invariant. ut

Remark. Actually h above will be C 1. See [13, 14].

4.15. Corollary. Among the C 2 Anosov diffeomorphisms the ones that admit
no invariant measures µ� m are open and dense.

Proof. [18], page 36. We use condition 4.14 (c). Suppose fnx = x and
det(Dfn|TxM ) 6= 1. For f1 near f , f1 will be Anosov and have a periodic point
x1 near x with fn1 x1 = x1. Then det(Dfn1 |Tx1M ) will be near det(Dfn|TxM )
and not equal to one. We are using stability theory not covered in these notes.
On the other hand, if fnx = x with det(Dfn|TxM ) = 1, this condition is de-
stroyed by the right small perturbation of f . ut

In the case where f admits no invariant µ� m, the measure m is actually
dissipative [10].
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