Physics behind High-Tc superconductors

Why is the 2D Hubbard model difficult to solve? Can we increase Tc?

> Karyn Le Hur Yale

collaborator

T. Maurice Rice

Outline of the Talk

- BCS superconductors
- Introduction to High-Tc superconductors What is understood? What is not...
- <u>D-wave state</u>: Gutzwiller-type wave-function

Magnetic fluctuations mediate d-wave superconductivity

Our approach(es) to the phase diagram and results for the pseudogap phase

Karyn Le Hur and T. Maurice Rice, arXiv:0812.1581 (97 pages) published in Annals of Physics (also: relevant applications in optical lattices and cold atoms)

(below H_c: type I Scs below Hc₁: type II Scs)

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) = \vec{0}$$

$$\vec{M} = \chi \vec{H} \to \chi = -1$$

Perfect diamagnetism

London & London (1935) (transport without dissipation)

$$\vec{j}_s(\vec{r}) = -\frac{n_s e^2}{m} \vec{A}(\vec{r})$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j}_s$$

$$\vec{\nabla}^2 \vec{B} = \frac{1}{\lambda_L^2} \vec{B}$$

$$\lambda_L^2 = \frac{m}{\mu_0 n_s e^2}$$

(SI)

Brief history of Superconductivity

1911: Kamerlingh OmnesHg becomes superconducting at 4K1913: He won the Nobel price in physics

- 1933: Meissner effect
- 1941: niobium-nitride, T_c =16K

Ginzburg-Landau (1950) 2 types of superconductors: Abrikosov (1957)

Lattice Vibrations...

Simple model of screening: compute the full ε ... (1950)

 $V_{\vec{k},\vec{k'}} = \frac{4\pi e^2}{(\vec{k} - \vec{k'})^2 + k_c^2} \left(1 + \frac{\hbar^2 \omega^2 (k - k')}{(\epsilon_{\vec{k}} - \epsilon_{\vec{k'}})^2 - \hbar^2 \omega^2 (\vec{k} - \vec{k'})} \right)$ Thomas Fermi wave-vector Ion contribution Possible attractive interaction $\omega = (\epsilon_{\vec{k}} - \epsilon_{\vec{k}'})/\hbar < \omega(\vec{k} - \vec{k}') < \omega_D$ $\overset{*z}{\bigcirc} \overset{\varphi}{\longleftarrow} \overset{\varphi}{\longleftarrow} \overset{z}{\bigcirc} \overset{\varphi}{\longleftarrow} \overset{\varphi}{\to} \overset{$ Fröhlich (1950), Bardeen-Pines (1955),...

Basic steps of BCS theory

Tinkham or De Gennes book,...

$$E_{D} = \hbar \omega_{D}$$
$$H - \mu N = \sum_{\vec{k}\sigma} \xi_{\vec{k}} n_{\vec{k}\sigma} - \sum_{\vec{k}\vec{p}} V c^{\dagger}_{\vec{k}\uparrow} c^{\dagger}_{-\vec{k}\downarrow} c_{-\vec{p}\downarrow} c_{\vec{p}\uparrow}$$

$$|\psi_G\rangle = \prod_{\vec{k}} \left(u_{\vec{k}} + v_{\vec{k}} c^{\dagger}_{\vec{k}\uparrow} c^{\dagger}_{-\vec{k}\downarrow} \right) |\phi_0\rangle$$

Determination of BCS coefficients through variational approach

$$\begin{split} \Delta &= V \sum_{\vec{k}} \langle \Psi_G | c_{-\vec{k}\downarrow} c_{\vec{k}\uparrow} | \Psi_G \rangle = V \sum_{\vec{k}} u_{\vec{k}} v_{\vec{k}} = V \sum_{\vec{k}} \frac{\Delta}{2\sqrt{\xi_{\vec{k}}^2 + \Delta^2}} \\ \\ \frac{\Delta \sqrt{2\omega_D} \exp(-1/N_o V)}{\Delta \sqrt{2\omega_D} \exp(-1/N_o V)} \end{split}$$

Quasiparticle energy

 $E_{\vec{k}} = (\xi_{\vec{k}}^2 + \Delta^2)^{1/2}$

Zero temperature evaluation of the gap

BCS Theory, 1957

Bogoliubov, 1958

BCS theory assumes some attraction between electrons

Coupling of electrons to the vibrating crystal lattice (phonons)

Fermi liquid to SC at: $k_B T_c = 1.1 E_D \exp{-1/N(0)V}$ $2e^{\gamma}/\pi \approx 1.13$

 $\frac{1}{V} = \frac{1}{2} \sum_{\vec{k}} \frac{\tanh(\beta E_{\vec{k}}/2)}{E_{\vec{k}}}$

Gap at T=0 grows with T_c <u>Debye energy not high</u>: 100K

L. Cooper (1956) RG formulation (Shankar colloquium)

Anderson-Higgs 1963,1964

- Coupled CuO₂ layers
- Doping with holes leads to SC
- Nonmonotonic Tc versus doping
- Maximum Tc ~ 150 K
- Electronic SC without phonons?

1986

Normal phase is not a Fermi liquid at low doping: gap doesnot follow Tc!

Pseudogap: RVB-like

Planar cuprates

• Stochiometric Oxides: all $Cu^{2+} \rightarrow AF$ Mott Insulators.

J∼4t²/U

• Hole doped Oxides: $\sim 15\% Cu^{3+} \rightarrow \text{High-T}_{c}$ Superconductors.

t-J model or Hubbard model at large U

t-J model

$$H = -t \sum_{\langle i;j \rangle} d_{is}^{\dagger} d_{js} - \mu \sum_{i,s} d_{is}^{\dagger} d_{is} + J \sum_{\langle i;j \rangle} \vec{S}_i \vec{S}_j$$

Trial wavefunction and physical properties must reflect that the (effective) on-site interaction is large (Anderson, 1987)

Superconductivity can be described through PIBCS>, where

$$P = \prod_{i} (1 - n_{i\uparrow} n_{i\downarrow}) \qquad |BCS\rangle = \prod_{\vec{k}} (u_{\vec{k}} + v_{\vec{k}} d^{\dagger}_{\vec{k}} d^{\dagger}_{-\vec{k}}) |Vac\rangle$$

<u>Gutzwiller</u> approximation (1963): statistical weighting factors

$$H = -tg_t \sum_{\langle i;j \rangle} d_{is}^{\dagger} d_{js} - \mu \sum_{i,s} d_{is}^{\dagger} d_{is} + Jg_s \sum_{\langle i;j \rangle} \vec{S}_i \vec{S}_j$$

 $\frac{\langle d_{is}^{\dagger}d_{js}\rangle = g_t \langle d_{is}^{\dagger}d_{js}\rangle_0}{\langle \vec{S}_i \cdot \vec{S}_i \rangle = g_s \langle \vec{S}_i \cdot \vec{S}_i \rangle_0} \quad g_t = 2\delta/(1+\delta) \text{ and } g_s = 4/(1+\delta)^2 \quad \text{Rice et al. 1988}$

Renormalized mean-field theory

review: Anderson, Rice, Lee et al (2004)

$$\begin{split} H_{mf} &= -\sum_{\langle i;j\rangle} (tg_t + \chi_{ij}) d_{is}^{\dagger} d_{js} - \sum_{is} \mu d_{is}^{\dagger} d_{is} + \sum_{\langle i;j\rangle} \Delta_{ij} (d_{i\uparrow}^{\dagger} d_{j\downarrow}^{\dagger} - d_{i\downarrow}^{\dagger} d_{j\uparrow}^{\dagger}) + h.c. \\ \text{2 order parameters:} \quad \chi_{ij} &= (3g_s J/4) \langle d_{is}^{\dagger} d_{js} \rangle \text{ and } \Delta_{ij} \\ \Delta_{\vec{k}} &= \frac{3}{4} g_s J \sum_{\vec{k'}} \gamma_{\vec{k} - \vec{k'}} \frac{\Delta_{\vec{k'}}}{2E_{\vec{k'}}} \\ \chi_{\vec{k}} &= \frac{3}{4} g_s J \sum_{\vec{k'}} \gamma_{\vec{k} - \vec{k'}} \frac{\Delta_{\vec{k'}}}{2E_{\vec{k'}}} \\ (\Delta(\cos k_x - \cos k_y)) \text{ and } \gamma_{\vec{k}} &= 2(\cos k_x + \cos k_y) \\ \xi_{\vec{k}} &= g_t \epsilon_{\vec{k}} - \mu - \chi_{\vec{k}} \text{ and } \epsilon_{\vec{k}} &= -t\gamma_{\vec{k}} \\ (T_c)^2 &= \langle BCS | P(d_{i\uparrow}^{\dagger} d_{j\downarrow}^{\dagger} d_{i+l\uparrow} d_{j+l\downarrow}) P | BCS \rangle = g_t^2 \Delta^2 \end{split}$$

D-wave superconductivity...

Spin fluctuations make the singlet channel interaction more positive (repulsive) at (π,π) : $V_s(\pi,\pi)>0$

Very general argument!

See also spin fluctuation model Review D. Scalapino, 1999

"mean-field" theory of SC phase

- Superconducting $T_c = g_t \Delta$

 T_c must go to zero at zero doping: <u>insulator</u> Maximum T_c at optimal doping $T_c \sim g_t J/2 \sim 169 K$

- <u>d-wave quasiparticles</u>: coherent spectral weight Z goes to zero as g_t but Fermi velocity is almost doping independent

$$\frac{n_s(T)}{m} = \frac{n_s(T=0)}{m} - aT$$
$$a = \frac{2\ln 2}{\pi} \alpha^2 \frac{v_F}{v_\perp} \qquad \alpha^2 = 0.5$$

T_c follows n_s(T=0) ~ g_t and Δ Lee and Wen (1997); Millis, Girvin, et al (1998)

Brief Summary...

- Pairing glue in high-Tc cuprates: magnetic fluctuations (understood)
- Why high-Tc problem not declared as "Solved"? pseudogap phase remains mysterious (phase/gauge fluctuations, many other competing channels) <u>Attempt:</u> gauge theories, Lee, Wen, Nagaosa (RMP, 2006)

<u>Challenges:</u>

Pseudogap: friend or foe of SC? Rigorous theory of SC Pseudogap phase (RVB physics) and Fermi arcs

Our idea: 1) Quasi-1D to 2D

(phase fluctuations treated rigorously)

Why quasi-1D: RVB and SC

Dagotto and Rice, Science 271, 618 (1996)

Half-filling: exact wave-function

$$|RVB\rangle = P\sum_{i,j}F(i-j)\left(d^{\dagger}_{1i\uparrow}d^{\dagger}_{2j\downarrow} - d^{\dagger}_{1i\downarrow}d^{\dagger}_{2j\uparrow}\right)$$

Doping: superconductivity emerges

$$<\Delta(x)\Delta^{\dagger}(0)>\propto x^{-1/2}$$

(universal exponent for a few holes)

Weak and Strong Interactions share the same physics

Weak coupling regime

First, diagonalize the spectrum

$$\epsilon_j(k) = \mp t_\perp - 2t\cos(k)$$

Half-filling: $\mathbf{v_1} = \mathbf{v_2}$ and $k_{F1} + k_{F2} = \pi$

Large Doping: $v_2 \ll v_1$

Urs Ledermann & K. Le Hur, PRB **61**, 2497 (2000) M. P. A. Fisher, Les Houches Notes, 1998

2D Interpretation of couplings

Competing channels: RG approach

Example: RG for spinless fermions

Urs Ledermann & K. Le Hur, PRB 61, 2497 (2000)

Away from Half-filling

$$\begin{split} H_{Int} &= \int dk_1 dk_2 dk_3 dk_4 \delta(k_1 + k_3 - k_2 - k_4) \\ &\times [c_1 \Psi_{R1}^{\dagger}(k_1) \Psi_{R1}(k_2) \Psi_{L1}^{\dagger}(k_3) \Psi_{L1}(k_4) + c_2(1 \leftrightarrow 2) \\ &+ f_{12} (\Psi_{R1}^{\dagger}(k_1) \Psi_{R1}(k_2) \Psi_{L2}^{\dagger}(k_3) \Psi_{L2}(k_4) + 1 \leftrightarrow 2) \\ &+ c_{12} (\Psi_{R1}^{\dagger}(k_1) \Psi_{R2}(k_2) \Psi_{L1}^{\dagger}(k_3) \Psi_{L2}(k_4) + 1 \leftrightarrow 2)]. \end{split}$$

$$\frac{dc_{1}}{dl} = -\frac{1}{2\pi v_{2}}c_{12}^{2}$$

$$\frac{dc_{2}}{dl} = -\frac{1}{2\pi v_{1}}c_{12}^{2}$$

$$\frac{dc_{12}}{dl} = -\frac{1}{2\pi v_{1}}c_{12}^{2}$$

$$\frac{df_{12}}{dl} = \frac{1}{\pi (v_{1} + v_{2})}c_{12}^{2}$$

$$\frac{dc_{12}}{dl} = \frac{c_{12}}{\pi}\left(\frac{2f_{12}}{v_{1} + v_{2}} - \frac{c_{1}}{2v_{1}} - \frac{c_{2}}{2v_{2}}\right)$$

$$D' \sim te^{-l}$$

$$v_{1} - v_{2} = \frac{2t_{\perp}}{\tan(\pi n)}$$

Solvable set of differential equations + strong coupling treatment

Phase Diagram

(careful analysis of the strong-coupling theory)

Urs Ledermann & K. Le Hur, PRB **61**, 2497 (2000) (relevance to cold atom systems: noise correlations)

Extension to quasi-1D systems

Urs Ledermann, Karyn Le Hur, T. Maurice Rice, PRB **62**, 16383 (2000) J. Hopkinson and K. Le Hur, PRB **69**, 245105 (2004)

• Band/chain correspondence simple...

(chain)
$$d_{is} = \sum_{j} \sqrt{\frac{2}{N+1}} \sin\left(\frac{\pi j i}{N+1}\right) \Psi_{js}$$
 (band)

$$E_j(k) = -2t\cos k - 2t_\perp \cos(\pi j/(N+1))$$

$$v_i = 2t \sin(k_{Fi})$$
 $v_l = v_{\bar{l}} = 2\sqrt{t^2 - t_{\perp}^2 \cos(\pi l/(N+1))^2}$

Band pair:
$$\bar{l} = N + 1 - l$$
 $(k_{Fl} + k_{F\bar{l}}) = \pi$
 $\mu = 0$ $v_1 = v_N < v_2 = v_{N-1} < \dots$

Large N limit

• Van Hove singularity similar to 2D:

 $t_{\perp} = t \longrightarrow v_1 = v_N \sim 2\pi t/N$

 Quasi-1D approach is valid as long as energy difference between neighboring bands is larger than the largest energy scale: te^{-t/U}

 $U \ll t/\ln N, t_\perp/\ln N$

RG scheme: intra-band, inter-band scatterings (antiferromagnetic) Proper classification of the different interaction channels Strong coupling theory: pseudogap

Karyn Le Hur and T. Maurice Rice, arXiv: 0812.1581

<u>Half-filling:</u> Antiferromagnetism **AFM** channels D-wave Cooper channel π N-1 0 0 π π

Uniform Mott gap and quasi-long range order: $T_M = te^{-\lambda t/U}$

$$H = H_{Kin} - \frac{1}{2} \sum_{i,j} \int dx g_{ij} \vec{M}_i \cdot \vec{M}_j \qquad M_j^p = \Psi_{Rjs}^{\dagger} \tau_{ss'}^p \Psi_{L\bar{j}s'} + h.c.$$

Chain picture $\langle \vec{S}_i(x) \cdot \vec{S}_j(0) \rangle = (-1)^{i+j} \cos(\pi x) / x^{1/N}$

Extension of K. Le Hur, PRB 2001

Fermi liquid...

occurs when (4-band) AFM fluctuations and umklapp disappear completely

Forward scattering gives a contribution of order 1

Cooper processes, which favor the Fermi liquid, have a weight ~ N

$$\frac{dV(\theta_1,\theta_2)}{dl} = -\frac{1}{v_F}\int d\theta V(\theta_1,\theta)V(\theta,\theta_2)$$

 $\boldsymbol{\Theta}$ is the angle parametrizing the Fermi surface

Analogy to 2D: See Shankar

D-wave SC from RG

Intermediate regime

AFM processes irrelevant at low energy but reinforce Cooper channels at high energy: Important for 2D-like phase coherence (example of Kohn-Luttinger attraction)

D-wave Superconductivity

$$H = H_{Kin} + \sum_{i,j} \int dx V_{ij} \Delta_i^{\dagger} \Delta_j \qquad \Delta_i \sim e^{i\theta_i}$$

where $V_{ij} < 0$ for (i,j) $\leq N/2$ and (i,j)> N/2 and $V_{ij} > 0$ in all other cases

Strong-coupling theory: pseudogap

 4-band interactions (antiferromagnetism) become cut-off by the chemical potential

For each band pair $E_j(k) = \sqrt{M_j^2 + (v_j k)^2} \quad M_j \sim t e^{-v_j/U}$ SO(8) theory: Lin-Balents-Fisher

CHARGE SECTOR: SIMILAR TO SMALL N LIMIT Urs Ledermann, Karyn Le Hur, T. Maurice Rice, PRB **62**, 16383 (2000)

One can compute the electron Green's function exactly

2) Two dimensions: 2-patch model

 $\epsilon(\vec{k}) = -2t(\cos k_x + \cos k_y) + 4t'\cos k_x\cos k_y$

Similar fixed point: g_3, g_4 , and g_2 flow... D-Mott state for U>U_c = F(t/t') and F(x)=1/ln²(x) T.M. Rice et al.: numerical strong coupling analysis (A. Läuchli) Another proof: ladders with t' (J. Hopkinson and K. Le Hur, PRB **69**, 245105 (2004))

pseudogap & SC phase: Summary

Insulating antinodal RVB directions: Spin and Charge gap At weak U, a unique energy scale (quasi-1D theory & RG in 2-patch model)

Nodal directions: Fermi arcs

Luttinger theorem

The (hole-like) Fermi surface consists of 4 arcs: Fermi liquid Consistent with ARPES experiments, for example, on BSCCO

SC: proximity effects of the Fermi arcs with the RVB region Andreev scattering (Geshkenbein, Larkin et al. 1998; KLH 2001) Only the Fermi arcs become superconducting below Tc

$$H = \sum_{q} \varepsilon b_{q}^{\dagger} b_{q} + \sum_{p,q} V_{p,q} (b_{q}^{\dagger} c_{p\uparrow} c_{q-p\downarrow} + h.c.) + \sum_{p} \xi_{p} c_{p,\sigma}^{\dagger} c_{p,\sigma}$$

Conclusion

2 distinct gaps: D-Mott gap (T*) & SC gap (T_c) (SUPPORTED BY ARPES EXPERIMENTS, ANDREEV REFLECTION, AND RAMAN SCATTERING)

Thank you for your Attention!