## FROM NODAL LIQUID TO NODAL INSULATOR



# Université de Sherbrooke

Collaborators: Urs Ledermann and Maurice Rice John Hopkinson (Toronto)

Fonds de recherche sur la nature et les technologies Québec

GORDON, 2004, Oxford



CIAR The Canadian Institute for Advanced Research

## **Doped Mott insulator?**



## **Mott physics: U**

**Antiferro fluctuations: J** 

**SC fluctuations above Tc** 

Nernst effet?

Strange metal at optimal doping:  $\rho(T) \sim T$ 

Pseudo-gap phase  $T \leq T^*$ : reduct<sup>o</sup> of  $e^-$ , spin excitat<sup>o</sup>...;

possibly, an RVB spin liquid "Small Fermi surface" recent cond-mat of Anderson, Lee, Rice, Zhang, Randeria et Trivedi

# RVB <> BCS nicely connected

 $|\Psi\rangle = \exp(iS) P_G |BCS\rangle$ 

**P**<sub>G</sub> Gutzwiller projector

**BUT <ψlOlψ> difficult to compute...** 

## **EXCITATIONS?**

-Gutzwiller approximations: F.C. Zhang, Anderson -Variational Quantum Monte Carlo: M. Randeria -two-patch model in 2D: RG+exact diagonalization (<u>A. Laeuchli</u>, K. Honerkamp, and M. Rice) -quasi-1D or ladder-type approaches: my talk...

## **Two-leg ladder superconductor**



Shelton and Tsvelik, 1996

Dagotto & Rice, Science 271, 618 (1996)

1D system: no long-range order - <u>Bethe</u>, before the 2nd war

Undoped case: RVB system with Spin Gap P.W. Anderson, Science 235, 1196 (1987)

Doping: d-wave like superconductivity  $<\Delta^{\dagger}(x)\Delta(0)>\propto x^{-1/2}$ 

## weak-coupling approach for RVB



Limit of large  $\mathbf{t}_{\perp} \gg U$ 

#### Band structure:



bonding-antibonding bands  $\Psi_{1,2}$  $\Psi_{1,2} = \frac{1}{\sqrt{2}} \{ d_1 \pm d_2 \}$ 

$$\epsilon_j(k) = \mp t_\perp - 2t\cos(k)$$

Half-filling:  $\mathbf{v_1} = \mathbf{v_2}$ and  $k_{F1} + k_{F2} = \pi$ 

Large Doping:  $v_2 \ll v_1$ 

Half-filling: 7 Couplings diverge with a fixed ratio

"SO(8) Gross-Neveu Model" Spin- & Charge Gaps  $\propto \exp -\pi v_1/U$ 

Short-Range RVB insulating system with preformed Cooper pairs



Doping: Cooper pairs liberated Symmetry S0(6)

Symmetry S0(5) with Coulomb term

Lin-Balents-Fisher Schulz

**2D: Demler-Zhang** 



#### How to include the nodal direction?

## **Ladders: Route to High-Tc materials**

2-leg ladder, Nice prototype system:

"doping RVB material, d-wave superconductivity"

(Rice et al. - Schulz - Balents and MPA Fisher - Emery-Kivelson...)

## **3-leg ladder, still better:**

Focus both at nodal and antinodal points Possibility of truncation of FS and significance in real space (holes in a d-RVB state)

U. Ledermann, K. Le Hur and T.M. Rice, PRB 62, 16383 2000 J. Hopkinson and K. Le Hur, PRB 69, 245105 2004

## **Truncation of the Fermi surface**

$$\epsilon_j(k) = -2t\cos(k) - 2t_\perp\cos(k_{Fj}^y)$$

#### 2D Mapping

**2**L

2L

Longitudinal Fermi momentum of the band *j*:

$$\mathbf{k}_{Fj} = \pi - \arccos\left[\frac{t_{\perp}}{t}\cos\left(\frac{\pi j}{N+1}\right)\right]$$

Corresponding transverse Fermi momentum:

$$\mathbf{k}_{Fj}^y = \pm rac{\pi j}{N+1}$$

## for open boundaries in y direction



# Nodal liquidD-wave SC& preformed pairs<br/>insulating (2D, Balents et al.)

**U. Ledermann, K. Le Hur and T.M. Rice, PRB 62, 16383 2000** Strong U: T.M. Rice, S. Haas, M. Sigrist and F.C. Zhang, PRB 97 DMRG: White & Scalapino

## Picture in real space



Conduct<sup>o</sup> by holons at the edges: Cooper pairs frozen but resonating

> Nodal liquid fragile against disorder Karyn Le Hur, unpublished following Giamarchi & Schulz

# Effect of long-range repulsion?



Wigner crystal of holes?



#### **cond-mat/0406038**

A suggested 4×4 structure in underdoped cuprate superconductors: a Wigner supersolid.

> P. W. Anderson Department of Physics, Princeton University, Princeton, N.J. 08544, U. S. A. (Dated: June 3, 2004)

A wave function is proposed for the  $^{\circ}4 \times 4^{\circ}$  inhomogeneous structures observed on cuprate superconductors. It is based on the Gutzwiller-RVB technique proposed in recent papers, and consists of a Wigner solid of hole pairs embedded in a sea of *d*-wave spin singlet pairs. Arguments are given that the nodal quasiparticles may remain unscattered and even superconducting on such a structure.



## The need for *frustrated* hopping: Chemistry



4 band  $\Rightarrow$  1 band + 4t'cos(k<sub>x</sub>)cos(k<sub>y</sub>) +.. $\Rightarrow$  curved F.S. e $\leftrightarrow$ h symmetry broken **Opposite sign!** 

## **High-Tc: doped Mott insulators**



# Effect of t' on the 2-leg ladder physics

#### John Hopkinson& K. Le Hur, PRB 69, 245105 2004



**Breaking S0(8) symmetry but still <u>charge and spin gaps</u>** 

## **Revisiting the 3-leg Hubbard ladder with t'**

**Possibility to separate umklapp processes!** 





Hole doping Nodal liquid+D-Mott *Electron doping* **Nodal insulator+ d-wave pairing** 

**Interpretation in real space?** 

# Main message

Hole doped: pseudogap = d-RVB state from corners short-range magnetism

Electron doped: pseudogap = Mottness at the nodes dominant SDW





# Pictures in real space



Conduct<sup>o</sup> by holons at the edges: Cooper pairs frozen but resonating



Nodal Mott gap Electron resonating on outer chains

Electron doped case Cooper pairs conducting

#### **Close to half-filling: Antiferromagnetism**



Urs Ledermann, PhD

Spin gap suppression for N even

**Doping = Decrease N** 

**Expansion of phase coherence towards antinodal points**  Umklapps on whole FS Uniform Mott gap Long-range AF at T=0



3-leg ladder: beautiful prototype system Truncated Fermi surface: nodal- liquid or Mott gap Breaking p-h symmetry with t' hopping term

Many open questions in 2D:

### 2D: nodal liquid or Fermi arcs above Tc?

Thermal conductivity: d-wave symmetry above Tc ARPES: Fermi arcs

## Recent efforts from theory to understand high-Tc TPSC approach (Tremblay) Cluster DMFT (Kotliar) Variational Quantum Monte Carlo (Paramekanti, Trivedi, Randeria) 3-patch model in 2D?

# **N-leg ladder?**

Nband model with N Fermi velocities v<sub>j</sub>:

At half-filling: 
$$v_j = v_{\bar{j}} = 2\sqrt{t^2 - \{t_\perp \cos[\pi j/(N+1)]\}^2}$$
  
 $\bar{j} = N + 1 - j$ 

 $v_1 = v_N < v_2 = v_{N-1} < \dots$ These Fermi velocities will lead to a *hierarchy* of energy scales

hierarchy of energy-scales (insulating band pairs)  $\mathbf{T}_{j} \sim e^{-v_{j}/U}$ 

Band pairs flow towards a two-leg ladder Rigorous decoupling at weak U

U. Ledermann, K. Le Hur, and T.M. Rice PRB 62, 16383 2000



N even: Spin gap
"disordered d-wave superconductor": 2-chain
N odd: No spin gap
"deconfined spinons": Insulating Single chain

Even-Odd effect like for spin ladders  $SrCu_2O_3$  Spin gap /  $Sr_2Cu_3O_5$  No spin gap

# **Very-close to half-filling**



**3-band umklapp relevant:** tendancy to uniform Mott gap

Difficult to tackle theoretically **Precursor of AF in 2D** 

Pathology of our <u>weak-U</u> treatment: umklapps relevant only for specific dopings <u>Larger U:</u> Variational Quantum Monte Carlo, DMRG

# Expectation in 2D with t'

