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Geometry, Light Response and Quantum Transport in Topological States of
Matter

Topological states of matter are characterized by a gap in the bulk of the system referring to an insu-
lator or a superconductor and topological edge modes as well which find various applications in
transport and spintronics. The bulk-edge correspondence is associated to a topological number. The
table of topological states include the quantum Hall effect and the quantum anomalous Hall effect,
topological insulators and topological superconductors in various dimensions and lattice geometries.
Here, we discuss classes of states which can be understood from mapping onto a spin-1/2 particle in
the reciprocal space of wave-vectors. We develop a geometrical approach on the associated Poin-
care-Bloch sphere, developing smooth fields, which shows that the topology can be encoded from the
poles only. We show applications for the light-matter coupling when coupling to circular polarizations and develop a relation with
quantum transport and the quantum Hall conductivity. The formalism allows to include interaction effects. We show our recent
developments on a stochastic approach to englobe these interaction effects and discuss applications for the Mott transition of the
Haldane and Kane-Mele models. Then, we develop a model of coupled spheres and show the possibility of fractional topological
numbers as a result of interactions between spheres and entanglement allowing a superposition of two geometries, one encircling
a topological charge and one revealing a Bell or EPR pair. Then, we show applications of the fractional topological numbers

C = 1/2in bilayer honeycomb models describing topological semi-metals characterized by a quantized Berry phase at one Dirac
point.
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Topological Bloch bands

Quantum Hall Effect and Chern Insulator

Haldane model '\t‘

Ho = Z( 1)'Mc!ci— Z tic) ¢— Z e'%icl ¢ >\<t1

<iy> <ig>
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988) <
No net flux M = Semenoff mass L %

Realized in quantum materials, graphene, cold atoms, light systems

Phase diagrams of interacting
Bosonic & Fermionic Models

l. Vasic, A. Petrescu, K. Le Hur, W. Hofstetter,
Phys. Rev. B 91, 094502 (2015) w

Ph. Klein, A. Grushin, K. Le Hur, PRB 2021
arXiv:2002.01742
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Spin-1/2 analogy

Hu(k) = —d (k) - 5,

We have introduced the field ¥(k) = (ba(k),bs(k))"
of Fourier transforms of the annihilation operators for
bosons on sublattices A and B. We wrote Hy in the
basis of Pauli matrices 6 = (0,,0,,0.) in terms of

d(k) = (t1 Zcoskai,tlZsinkai,—2t22sinkbi) .

The non-trivial topology of the Bloch bands translates

to a nonzero winding number of the map d = d/|d| from
the torus (the first Brillouin zone) to the unit sphere. ?
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Topology

Euler characteristic is defined as
x=V-FE+F

where V' is the number of vertices (corners), £ edges and F' faces.

Take a cube. What is the Euler characteristic? Is this non-zero? )} = 2

Sphere

OR Euler characteristic for an orientable surface:
X=2—12g

where g can be seen simply as the number of holes. For a sphere, one may say that in that case
g =0 and y = 2. We want to make a link between g and topological properties of the lattice.

Question: Can we change a sphere in a coffee cup?




Topological Properties on the sphere

From the analogy of the Bohr’s quantization for the angular momentum or wave-vector in a
closed orbit trajectory, one may introduce an observable on the sphere traducing the behavior of

the wave-vector (M. Berry, 1984)

A =i(y[V[y)

F?|_> .L:)QTV

From the analogy with Gauss’ law, we want to show that a radial magnetic field acting on the surface
of the sphere S? produces a topological charge at the center of the sphere. A radial magnetic field
on the sphere has the same properties as the Haldane model in k-space. The model on the sphere

is then H = —d - S with S = h/26

—

d = do(sinf cos ¢, sinf sin p, cos ).

Remind briefly the matrix form:

?_ E( cosf e ¥sinf )

e¥sinfl —cosf

=iy

The ground state corresponds to the state

. 0 . 0
H)q = e%/2 COS§H’>2 + et/ sin§|—)z.

+1



Geometry in the Quantum

The surface S? can be decomposed as a north (north’) hemisphere and south (south’) hemispheres
and the fields A are smooth on S?', such that

1 1
C=—— V x And*n — — V x Agd’n.
27 north’ 27 south’
On north’, we have from Stokes’ theorem:
] VxA d2n——i 27rdA ( 49)+l 2WdA(O)

This form assumes that the field is uniquely defined on the boundary path at the north pole with
Ap(0) = Any(e,0). The right-hand side then corresponds to the two boundary paths encircling
north’. Similarly, we have for south’

1 2T

1 . 1 27
V x Agd®n = +g/0 dpAs,(p, ) — 2 dpA, ().

2w south’

The field is uniquely defined on the boundary path at the south pole with A,(7) = Ag,(p, 7). We
can then define the smooth fields as

{S'go(‘Pv 0) — AS(p(‘Pv gc) - Atp(w) A N\( >

Chern number

1

C=— V x Ad?n.

27!' S2/

/

F-VaR

-

bW
5VLp(909 0) = Ath(‘Pa oc) = Acp(o) .SIM DO tﬂ. Md/) /’1da'ﬂ

A sy =0




fA' - dl = }[A - dl — A (pole) - dl.

1 2T , | 1 2T , |
=5 . dep N¢(@,9c)+—,ﬁ/0 dpAg, (¢, 0c)

) .2t KW

N = S g om.><“‘° ~n0Q% 1183
; 0
Sp = — cos’ 9 (almost) accepted by Communication

Physics, Nature Journal Toda
Therefore, we obtain that for any boundary with 6.: Y ey

B §
L= do(Ay, — As,) =C %& o

27T0

We can therefore move the 2 circles close to the small disks at north and south poles and reveal
the additivity of Berry phases. Producing edge states in k-space is also interesting to probe the
light-matter coupling response where light is circularly polarized. The physics is analogous to the
nuclear magnetic resonance.



Equivalent formulation in terms of the poles

1 2 1 2w 1 2w
V x Ayd*n = _2_7"/0 dpAn,(p,0c) + 2_71’/0 dpAp(0)— 0

20 Jore
—% - V x A3d2n = +% 02" d99A34,o(y0~9c) — % /027r d‘PA‘p("r)'
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D. Schroer et al. PRL 2014 (Boulder, K. Lehnert)
P. Roushan et al. Nature (John Martinis, Santa Barbara) 2014
Theory: A. Polkovnikov, V. Gritsev, M. Kolodrubetz

Q Qubit Drive

Measure

L. Henriet, A. Sclocchi, P. P. Orth, K. Le Hur PRB 2017

Qubit + Cavity
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Smooth Fields on the Sphere and Topological Observables 9‘
ma) = hic" - hak”/at = eF — o '
T = X E

| = m «f(”; o/ A=Y g — <E

E = Fe,

K

—

x

e T T e e
-7 T = 2 (@)@ - e )O0) = 7 § 5 ('/)*(T, iz — V0 ‘”%)

Then, we define for a fixed angle ¢

ie e o* g i

such that
T50) = § 6 (7,0, 6) — 75(0,4)

Therefore, we observe a relation between the transverse current density and the smooth fields:

e

Ji (0) = T fd¢A:ﬁ,9<0c (0, ¢)




T
— - S d =d=
AP /0 dtj AP=—e/O dt/BZ%th 4‘ EI\- ;

§=sien = 6/ ﬁU(Q), |7,)2= Ip Ay = PV Ap
B

v = (e/R)E x F with [v| = (¢/R)E|Fy| |

Narghuo - dutfingin (1354)

IAP| = J,T = eC

TR - _(eC),,‘_e2 T*
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Light-Matter Coupling

Circular

Dichroism e .
Jones Polarizations A= Aoe twt(em — Zey)

Hy = Age™*|a)(b| + h.c.

Realization in Hamburg:
Luca Asteria et al. Nature Physics 2019
H+(UJ) = H_(—W)

2
Ty (k) = 2| (ul6He |1)25(el — e — ).

Fermi golden’s rule /+°odwifdl Z (Ty(k,w) -T_(-k,w)) g, 2_7"
: an k=K, K’ 2 G

Aic.

D. Tran, A. Dauphin, A. G. Grushin, P. Zoller, N. Goldman Sciences Advances 2017

quasimomentum



Relation to Transport

(0) = 2 (a (k) = () = 5.0% (k).

From Ehrenfest Theorem

d ... 2 oM o
G700 =7 (et Az~ + 405 ).

Yy

](k)—g(A e Aﬂ).

apy " 3px
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2

2T AO
Le=F 2 T
k=K, K’

Ales— ek ).

(o0, *35.)
apy ap:r:

Link with Quantum Hall conductivity
Thouless, Kohmoto, Nightingale, deNijs

Within our approach, the sum is performed only on the Dirac points.
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DHVlng Iﬂ COId atOmS Munich’s group

T. Li et al. Science 2016, arXiv:1509.02185

il | e q(t) = q(0) + Ft/h

6 -
l% Bermy phase degenerate Wilson line W

levels

B = (D7 DF|Dy) = (um|ug).

lug,) = cos —|1) + sin 92 ei%a|2).

Increasing force
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Topological Insulators & Quantum Spin Hall Effect

+ Time-reversal invariant band insulator W""’}’"""}
+ Strong spin-orbit interaction AL:G V”‘”‘”‘W”/ Jrimeston
Z | Gapless helical edge mode (Kramers pair)

-p

IB
D /p-spin electrons

WYW down-spin electrons
/ @Y 7
‘ )

Interaction Effects + Mott Physics : S. Rachel and K. Le Hur (2010); W. Wu et al. (CDMFT, 2012); F. Assaad et al. (2010, QMC)
Analytical Solution of Mott Transition: J. Hutchinson, Ph. Klein, K. Le Hur (2021), to appear
/ ( ) op 02 O/T\-alfm rmod.LQ

Kane-Mele Model 2005, 2006; L. Fu




= _(Hy o'+ Hy - 0%) £7f(0)0'0

= (H sinf cos ¢, H sin fsin ¢, H cos § + M;),

Fractional Topological Numbers -

Joel Hutchinson and Karyn Le Hur, arXiv:2002.11823

(w I7)

Einstein- Podolsky Rosen

Ct = —(Ay(m) — AL(0)). H/>

. %((oz;(e —0)) - (0%(6 = w»).
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(BD= —2H - My - My +7£(0)
Ey = —M; + My —7f(0)

Eyy = My — My — 7£(0)

ELL =2H + M; + M> +'rf(0)

1

ETT =2H — My — My + Tf(ﬂ') . . rev/H

—M1 + My — 7 f(m)

(Ex)- My — M — i f(r)

E; = —2H + My + My + 7

H-M<r

Joel Hutchinson & Karyn Le Hur
Model arXiv 2002.11823
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Time-dependent protocol
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S M,{‘ Bo:Jr The Hamiltonian of this system is given by
a - ano.

h z T _ T
&)‘LX,M,. “1071566 Hog = —§[H001 +H,; 01 +Hy 092 —g(0705 +003)],

(5)
/\/ ﬂt/'UL FXZA«C» where 1 and 2 refer to qubit 1 (Q1) and qubit 2 (Q2)

a Parameter space b Hilbert space
(Magnetic field) (Bloch sphere)

20 00 0s 10 15 20



Proximity Effects with Graphene

Haldane layer

normalized Berry curvature

Graphene layer
r=0,C,=0 r=04, C;=-1

£ |0.75

¢ Joso
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FIG. 1. Berry curvature in the Brillouin zone for the Haldane
and graphene layers at » = 0 and small r, showing the Berry
phase jump effect [35]. Here, t; = 1 and t» = 1/3.

I-.Svng- Ioltnadion R Oj?’ﬂ;f

A t(f‘-alckAO'W /M -/a—/yl\a.cﬂ. 18 /G‘ | ?
Peng Cheng, Philipp Klein, K. Plekhanov, K. Sengstock, M. Aidelsburger, C. Weitenberg and Karyn Le Hur,
Phys. Rev. B 100, 08110 (R) (2019). Collaboration with Munich and Hamburg.




Bilayer system with M;=M,

% . (d)lzla wLQ)H(k) (zkl) ’
k2

# where z/);rci = (c};Ai,c};Bi) and

M/\_—_ M 2 H(k) = ((d+Ml£)-cr rl ) |

rl (d+Msz2)-o

Joel Hutchinson & Karyn Le Hur
arXiv 2002.11823
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Time-reversal invariant semimetals
S. Young and C. Kane, PRL 115, 126803 (2015)

Also measurable with circular dichroism of light
Jones formalism

D. Tran, A. Grushin, P. Zoller & N. Goldman 2017
L. Asteria et al (Hamburg’s group)

Ph. Klein, A. Grushin & K. Le Hur, 2021



Summary of geometry and Transport

, e (eC) e? '
TY — —v* (As(0) — Ap(m)) = v = —CF
o~
This formula is correct and is applicable in a given plane (sub-system j) from the poles (Dirac points)
s 1 1
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Figure 9: Top: Local density of states for a disk geometry with 30-site radius with M; = M, = /3/3t;
and r = 1.4¢, showing the edge mode and additional bulk states coming from the nodal ring semimetal
in the reciprocal space. Bottom: Local density of states shifted very slightly from the line of symmetry:
M, = M, + 0.2, My = v/3/3t; and r = 1.4¢; in the blue region of the phase diagram, showing the single
chiral edge mode.



Rational Numbers also occur for spin arrays

Resonating Valence Bond States
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Figure 12: Partial Chern numbers as a function of the coupling 7 measured in a five-spins quantum circuit
simulation with nearest-neighbour Ising interactions and periodic boundary conditions. To time-evolve the
spins (qubits), we use a Trotter decomposition with 800 time steps and sweep velocity v = 0.03H. The bias
field for all qubits is fixed to M = 0.6 H. For r > H — M ~ 0.4 we verify the presence of the topological
phase with C? = 3/5 = 0.6 in agreement with Eq. (114).
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Conclusion

Geometry of the sphere is also useful to understand topology of spin-1/2 models
- Application in quantum Transport

- Response to Circularly Polarized Light quantized

- Stochastic Approach to include Interaction Effects

from the curved space, interactions between spheres
Applications: mesoscopic & atomic systems, topological semimetals

Thanks to the group members and new developments soon ...
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