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We introduce topology from the two inequivalent Dirac points K and K′ of the graphene. The
2× 2 form of the matrix Hamiltonian in k-space allows an analogy to the Bloch sphere of a spin-
1/2 particle which will be useful for the characterisation of the topology. The Hamiltonian for the
spin-1/2 particle is defined as H =

∑
kH(k) with H(k) = −d(k) · σ, such that the energy of the

particle is minimized when aligned with the field. For graphene, we have the d-vector

d =

t∑
δi

cos(k · δi), t
∑
δi

sin(k · δi), 0

 ,

where −t represents the hopping term between nearest neighbors.

Figure 1: Haldane model on the honeycomb lattice, definition of primitive lattice vectors a1 =
a
2 (3,
√

3) and a2 = a
2 (3,−

√
3), Brillouin zone. From the form of the nearest-neighbor vector δ3 =

(−a, 0) and the identities δ1 − δ3 = a1 and δ2 − δ3 = a2, you can determine all the δis.

1. Close to the Dirac points K = 2π
3a (1, 1√

3
) and K′ = 2π

3a (1,− 1√
3
), verify that the Hamiltonian

takes the following form in the Hilbert space formed by the two sublattices’ wavefunctions:

H(k) = −d · σ = vF

(
0 Π∗

Π 0

)
where k = K + p, Π = |p|eiϕ̃ = px + ipy and vF = 3

2 ta with for simplicity ~ = 1 or h = 2π.
Deduce H(k) close to K′.

2. Now, we introduce the second-nearest-neighbor term t2e
iφ from the definitions of the figure

with φ = π/2 such that on a given triangle the phase accumulated is non-zero 1. If we invert the
direction on a path, then one should modify φ → −φ. Taking into account the 6 second nearest-
neighbors defined through the vectors b1, b2 and b3, show that the ‘effective’ magnetic field d in
k-space acquires a dz contribution equal to 2t2

∑
bj

sin(k · bj). Justify that the system has a zero

magnetic flux in a unit (honeycomb) cell. Justify that the system is an insulator in the bulk at the
Fermi energy EF = 0.

3. Evaluate the dz term at the Dirac points K and K′ and show that there is an energy gap
such that dz(K) = −dz(K′) = m with m = 3

√
3t2. On the figure, we have b1 = a

2 (3,−
√

3),

b2 = −a
2 (3,
√

3) and b3 = (0,
√

3a).

All the topological properties around the Dirac points can be described through the d vector
and the observables linked to the pseudo-spin in the sub-lattice space. We have a two-dimensional
plane (kx, ky) which may be mapped on a torus through application of periodic boundary conditions

1Here, is a link to the Haldane model: F. D. M Haldane https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.61.2015
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or on a sphere S2. As we show below, the sphere allows a simple calculation of the topological
number and a simple understanding of adding Berry phases in the topological phase.

4. To study the topological response, we define a map from (ky, kx) → (θ, ϕ) on the Riemann
sphere S2, representing here the Poincaré-Bloch sphere of the spin-1/2, such that

H(k) = −d · σ = −|d|
(

cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
.

On the sphere, the two stationnary eigenstates |ψ+〉 and |ψ−〉 are:

|ψ+〉 = e−iϕ/2 cos θ/2|a〉+ eiϕ/2 sin θ/2|b〉
|ψ−〉 = −e−iϕ/2 sin θ/2|a〉+ eiϕ/2 cos θ/2|b〉.

We have simplified the notations |ψAk〉 = |a〉 and |ψBk〉 = |b〉.
Justify why the K and K′ points can be described by θ = 0 and θ = π respectively on S2.

What is the lowest energy state on the sphere and give an interpretation on the lattice.

5. From Amphi2, we introduce the topological number or Chern number

C =
1

2π

∫
S2

∇×A · erd2s =
1

2π

∫ 2π

0
dϕ

∫ π

0
dθFθϕ,

where er is the unit vector along the radial direction with d2s = dϕdθ, A = 〈ψ|i∇|ψ〉 is related to
the Berry phase with |ψ〉 = |ψ+〉 or |ψ−〉 and ∇ = (∂/∂ϕ, ∂/∂θ) and Fθϕ = ∂θAϕ−∂ϕAθ. Calculate
Aϕ(θ) and verify that Aθ = 0. Evaluate directly C for the lowest energy band and check that it is
equal to C = Aϕ(0)−Aϕ(π) = 1 where Aϕ(0) = limθ→0Aϕ(θ) and Aϕ(π) = limθ→πAϕ(θ).

6. Justify that one can measure C from the spin magnetization at the poles and averaging on
an ensemble of spins.

7. Here, we discuss transport properties and apply an electric field along the polar angle. Write
Newton’s equation for a charge e particle and verify the Karplus-Luttinger velocity from the def-
inition of the topological number (see Amphi). Evaluate the quantum Hall conductivity for the
crystal.

2See Introduction in Review K. Le Hur, arXiv:2209.15381
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