NonLinear Quantum Transport Quantum Impurities and Circuit Quantum Electrodynamics

Trieste July 2014

School on nonlinear Quantum Dynamics

Outline of the Presentation

Quantum Impurities Dissipation and Dynamics

Circuit Quantum Electrodynamics: Stochastic Schrodinger Approach (drive, baths)

NonLinear Quantum Transport: Brownian motion out of equilibrium

Sample two-state systems

Intrinsic two-state

Nuclei spin S=1/2

Polarization of photon (electromagnetic cavity)

Truncated two-state

ROLE OF DISSIPATION?

Spin-boson model; analogue of Caldeira-Leggett (CL) problem

 Model the environment by quantum harmonic oscillators

Bosonic bath

s = 1 ohmic case

$$H_{CL} = hS_z + \Delta(S_+ + S_-) + S_z \sum_i \lambda_i x_i + H_B$$

A. Leggett et al. Rev. Mod. Phys. **59**, 1 (1987) U. Weiss book, quantum dissipative systems, 1999

$$\frac{1}{2} \left\langle \sum_{i} \lambda_{i} x_{i}(t) \cdot \sum_{i} \lambda_{i} x_{i}(0) \right\rangle_{\omega}$$

= $\hbar J(\omega) \operatorname{coth}(\omega/2k_{B}T)$
Ohmic dissipation
 $J(\omega) = \alpha \pi \hbar \omega/2$
Dissipation strength

- s = 1 ohmic case
- s < 1 sub-ohmic situation
- s > 1 super-ohmic situation

COLD-ATOMIC Quantum IMPURITIES

A. Recati et al. PRL **94**, 040404 (2005) Peter Orth, Ivan Stanic, Karyn Le Hur, PRA (2008) Single Atom: Ph. Grangier et al. Science **30**9, 454 (2005) A. Fuhrmanek, Y. R. P. Sortais, P. Grangier, A. Browaeys Phys. Rev. A 82, 023623 (2010).

D. Porras, F. Marquardt, J. von Delft, J. I. Cirac (2007),... M. Knap et al. Phys. Rev. X 2, 041020 (2012)

M. Knap, D. A. Abanin, E. Demler, PRL 111, 265302 (20) J. Bauer, C. Salomon, E. Demler PRL 111, 215304 (2013)

Talk by E. Demler Dicke model: lecture J. Keeling

RC circuits

M. Buettiker, H. Thomas, and A. Pretre, Phys. Lett. A 180, 364 - 369,(1993)
J. Gabelli *et al.*, Science **313**, 499 (2006); G. Feve et al. 2007 (LPA ENS)
J. Gabelli et al. Rep. Progress 2012
C. Mora and K. Le Hur, Nature Phys. 6, 697 (2010)
Y. Hamamoto, et al. Phys. Rev. B **81**, (2010) 153305

Y. Etzioni, B. Horovitz, P. Le Doussal, PRL **106**, 166803 (2011)

M. Filippone, KLH, C. Mora; P. Dutt, T. Schmidt, C. Mora, KLH, 2013

Hybrid Photon-Nano Systems, Impurities with Photons

K. Le Hur, Phys. Rev. B 85, 140506(R) (2012)
A. Leclair, F. Lesage, S. Lukyanov and H. Saleur (1997)
M. Goldstein, M. H. Devoret, M. Houzet and L. I. Glazman, 2012
Grenoble: S. Florens, H. Baranger, N. Roch and collaborators
M. Hofheinz et al. arXiv:1102.0131
M. Delbecq et al. PRL 107, 256804 (2011)
M. Schiro & KLH, arXiv 1310.8070, PRB 2014

Collaboration with C.-H. Chung, P. Woelfle, M. Vojta, G. Finkelstein PRL 2009, PRB 2013

> similar experiments at LPN Marcoussis F. Pierre group

Theory: I. Safi & M. Albert

<u>H. T. Mebrahtu, I. V. Borzenets, H. Zheng, Y. V. Bomze, A. I.</u> <u>Smirnov, S. Florens, H. U. Baranger, G. Finkelstein</u> Nature Physics, 9 732 (2013)

Quantum phase transition in CL model

Classical phase transition tuned by temperature

> liquid-solid liquid-gas

> > . . .

- Quantum phase transition at T = 0 tuned by intrinsic parameters
 - Metal-insulating in 2DEG
 - Insulating-superconducting in high-temperature superconducting cuprates
 - Spin ordered disordered in quantum spin models

Analogy to another quantum impurity Kondo problem

$$H_{Kondo} = hS_z^{(imp)} + J_{\perp}[S_+^{(imp)}S_-^{(e)} + h.c.] + J_zS_z^{(imp)}S_z^{(e)} + H_e$$

 $H_{CL} = \Delta S_x + hS_z + S_z \sum \lambda_i x_i + H_B$

S. Chakravarty PRL 49, 681 (1982); A.J. Bray and I.A. Moore PRL 49, 1545 (1982) Guinea, Hakim, Muramatsu PRB 1986

Kosterlitz-Thouless transition:

2D XY models: Superconductors, ⁴He, Cold atomic bosons

 $H = -J\sum_{<i;j>} cos(\phi_i \text{-} \phi_j)$

SC order parameter = $|\Psi|exp(i\varphi)$ S_x+iS_y = exp(i φ)

KT transition: High Temperature disordered phase (free vortices) Low-Temperature quasi-long range order

Universal Jump of Superfluid density at T_{KT}

(vortex fugacity)

^{h θ (-t)S_z α =1/2:Dynamical crossover}

A. Leggett et al. Rev. Mod. Phys. **59**, 1 (1987)

To study the spin dynamics it is convenient to perform a polaronic transformation $U = \exp(-i\sigma_z \Omega/2)$ where $\Omega = \sum_i (c_i/m_i\omega_i^2)p_i$, such that the transformed Hamiltonian $H' = U^{-1}HU$ takes the precise form [1]

$$H' = -\frac{1}{2}\Delta \left(\sigma_{+}e^{-i\Omega} + \sigma_{-}e^{i\Omega}\right) + \sum_{i} \left(\frac{p_{i}^{2}}{2m_{i}} + \frac{1}{2}m_{i}\omega_{i}^{2}x_{i}^{2}\right).$$
(1.11)

In the Heisenberg picture, the equations of motion for $\sigma_{\pm}(t)$ are easily obtained. Integrating and substituting them into the equation of motion for the transverse polarization $\sigma_x(t)$, then one gets the exact formula:

$$\dot{\sigma}_z(t) = -\frac{1}{2}\Delta^2 \int_{-\infty}^t \left(e^{-i\Omega(t)} e^{i\Omega(t')} \sigma_z(t') + \sigma_z(t') e^{-i\Omega(t')} e^{i\Omega(t)} \right) dt'. \quad (1.12)$$

On the other hand, to solve this equation, one usually uses approximations [17]. The first approximation generally consists to insert the free bath dynamics when computing the commutator:

$$[\Omega(t), \Omega(t')] = i \sum_{j} \left(\frac{c_j^2}{m_j \omega_j^3}\right) \sin(\omega_j (t - t')).$$
(1.13)

The next step is to average (1.12) with respect to the bath and to decouple the environmental exponentials from the spin. Using that:

$$\langle \Omega(t)\Omega(t') + \Omega(t')\Omega(t) \rangle = \sum_{j} \frac{c_j^2}{m_j \omega_j^3} \coth\left(\frac{1}{2}\beta\omega_j\right) \cos(\omega_j(t-t')), \quad (1.14)$$

this leads to the evolution equation [17]:

$$P(t) = \langle \sigma_{z}(t) \rangle \qquad \dot{P}(t) + \int^{t} \mathcal{F}(t - t') P(t') dt' = 0, \qquad (1.15)$$

where the function \mathcal{F} obeys $\mathcal{F}(t) = \Delta^2 \cos(A_1(t)) \exp(-A_2(t))$, and

$$A_1(t) = \frac{1}{\pi} \int_0^{+\infty} \sin(\omega t) \frac{J(\omega)}{\omega^2} d\omega$$
(1.16)
$$A_2(t) = \frac{1}{\pi} \int_0^{+\infty} (1 - \cos(\omega t)) \coth\left(\frac{\beta\omega}{2}\right) \frac{J(\omega)}{\omega^2} d\omega.$$

Through the Laplace transform one obtains (C denotes a Bromwich contour):

$$P(t) = \frac{1}{2\pi i} \int_C d\lambda e^{\lambda t} \frac{1}{\lambda + \mathcal{F}(\lambda)}.$$
(1.17)

At zero temperature and in the scaling limit $\Delta/\omega_c \ll 1$, one finds [1]:

Many-body Lamb shift: **important**

$$\mathcal{F}(\lambda) = \Delta_e \left(\frac{\Delta_e}{\lambda}\right)^{1-2\alpha},\tag{1.18}$$

where $\Delta_e = \Delta_r \left(\cos(\pi\alpha)\Gamma(1-2\alpha)\right)^{\frac{1}{2(1-\alpha)}}$; we have introduced the renormalized transverse field $\Delta_r = \Delta(\Delta/\omega_c)^{\alpha/1-\alpha}$ which is proportional to the Kondo energy scale T_K . This expression of P(t) coincides with the formula of P(t)obtained via the Non-Interacting Blip Approximation (NIBA) [1].

For $\alpha \to 0$, one recovers perfect Rabi oscillations $P(t) = \cos(\Delta t)$ whereas for $\alpha = 1/2$ one gets a pure relaxation $P(t) = \exp(-(\pi \Delta^2 t/(2\omega_c)))$, which is in accordance with the non-interacting resonant level model [1]. For $0 < \alpha < 1/2$, the spin displays coherent oscillations (due to a pair of simple poles) leading to $P_{coh}(t) = a \cos(\zeta t + \phi) \exp(-\gamma t)$ with the quality factor [1]:

$$\frac{\zeta}{\gamma} = \cot\left(\frac{\pi\alpha}{2(1-\alpha)}\right). \tag{1.19}$$

This quality factor has also been found using conformal field theory [18].

Results: Analytical Approach & tricky NRG numerics

P. Orth, A. Imambekov, K. Le Hur, stochastic Equation, 2010, 2013 D. Roosen, P. Orth, K. Le Hur, W. Hofstetter, time-dependent NRG 2010

Cavity & Circuit QED: 1 mode of light ...

Coupling atoms to the EM field

coupling strength can be enhanced by confining field to a cavity

> 2g = vacuum Rabi frequency γ = atomic relaxation rate κ = photon escape rate

|2+> √2g

Jaynes-Cummings Hamiltonian

$$H = \frac{1}{2}\omega_a\sigma_z + \omega_ra^{\dagger}a + g\left(\sigma_-a^{\dagger} + \sigma_+a\right) + \left(H_{\text{drive}} + H_{\text{baths}}\right)$$

J. M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2001)

R. J. Schoelkopf, S. M. Girvin, Nature 451, 664 (2008); D. Vion et al. (SPEC Saclay) 2002; J. Martinis ...

Jaynes-Cummings Ladder

in the base
$$|n, +_z\rangle$$
 and $|n + 1, -_z\rangle$

$$H = \begin{pmatrix} n\omega_0 + \frac{\Delta}{2} & \frac{g}{2}\sqrt{n+1} \\ \frac{g}{2}\sqrt{n+1} & (n+1)\omega_0 - \frac{\Delta}{2} \end{pmatrix}$$

We have the following eigenvalues and eigenstates (N > 1):

$$E_{N+} = N\omega_{0} - \frac{\delta}{2} + \frac{1}{2}\sqrt{\delta^{2} + Ng^{2}} \qquad |N+\rangle = \alpha_{n}|N-1, +_{z}\rangle + \beta_{n}|N, -_{z}$$

$$E_{N-} = N\omega_{0} - \frac{\delta}{2} - \frac{1}{2}\sqrt{\delta^{2} + Ng^{2}} \qquad |N-\rangle = -\beta_{n}|N-1, +_{z}\rangle + \alpha_{n}|N, -_{z}$$

$$|N-\rangle = -\beta_{n}|N-1, +_{z}\rangle + \alpha_{n}|N, -_{z}$$

$$|N-\rangle = -\beta_{n}|N-1, +_{z}\rangle + \alpha_{n}|N, -_{z}$$

$$N = a^{\dagger}a + \frac{1}{2}(\sigma^{z} + 1)$$

$$\beta_{N} = \cos(1/2\tan^{-1}\frac{g\sqrt{N}}{\delta}) \text{ and } \alpha_{N} = \sin(1/2\tan^{-1}\frac{g\sqrt{N}}{\delta})$$

$$\delta = \omega_{0} - \Delta \text{ is the detuning}$$

$$\frac{Photon Blockade:}{Photons go one by one}$$

$$nonlinearities$$

Driven & Dissipative Rabi Model in circ-QED $\left(\frac{g}{\omega_0} \simeq 10^{-1}\right)$

Coherent drive

$$H = \frac{\Delta}{2}\sigma^{z} + \omega_{0}a^{\dagger}a + \frac{g}{2}\sigma^{x}(a+a^{\dagger}) + c(t)(a+a^{\dagger}) + \sum_{k}\omega_{k}a_{k}^{\dagger}a_{k} + \lambda_{k}(a_{k}+a_{k}^{\dagger})\frac{\sigma^{x}}{2}.$$

The U(1) symmetry of the JC model breaks down to a discrete Z_2 symmetry

Loic Henriet, Zoran Ristivojevic, Peter P. Orth, KLH 2014 (arXiv:1401.4558)

Recent Developments in the strong-coupling limit:

- D. Braak: Analytical Solution of Rabi model, Phys. Rev. Lett. 107,100401 (2011)
- F. A. Wolf et al. Phys. Rev. A 87, 023835 (2013)
- A. Moroz, Ann. Phys. (N.Y.) 338, 319-340 (2013)
- M. Tomka et al. arXiv:1307.7876
- P. Nataf and C. Ciuti PRL **104**, 023601 (2010)
- M. Schiro et al. Phys. Rev. Lett. 109, 053601 (2012) (Array situation)

Gaussian Bath: Feynman-Vernon path integral approach (1963)

A. Leggett et al. Rev. Mod. Phys. 59, 1 (1987); U. Weiss book, quantum dissipative systems, 1999

We integrate out the **BATH** (quadratic action) and follow the spin real-time dynamics

$$\langle \sigma_f | \rho_S(t) | \sigma'_f \rangle = \int \mathcal{D}\sigma(.) \int \mathcal{D}\sigma'(.) \mathcal{A}(\sigma) \mathcal{A}^*(\sigma') F[\sigma, \sigma']$$

The bath effect is all contained in the **INFLUENCE** FUNCTIONAL (connection to Ising models, Anderson-Yuval-Hamann and Dyson):

$$F[\sigma,\sigma'] = \exp\left(-\frac{1}{\pi}\int_{t_0}^t ds \int_{t_0}^s ds' \left[-iL_1(s-s')\xi(s)\eta(s') + L_2(s-s')\xi(s)\xi(s')\right]\right)$$
$$\frac{\pi\langle X(t)X(0)\rangle_T = L_2(t) - iL_1(t)}{X = \sum_n \lambda_n (b_n^{\dagger} + b_n) + \text{photon part}}$$
$$L_1(t) = \int_0^\infty d\omega J(\omega) \sin \omega t$$
$$L_2(t) = \int_0^\infty d\omega J(\omega) \cos \omega t \coth \beta \omega/2$$

Stochastic Method: Fast View

 $J(\omega)$ spectral function of the environment (light & dissipative bath)

$$J(\omega) = \pi g^2 \delta(\omega - \omega_0) + 2\pi \alpha \omega e^{-\frac{\omega}{\omega_c}}$$

Trick: Decouple Interactions through Hubbard-Stratonovitch Transformation (analogy to disorder averaging)

$$2\langle \sigma^x(t) \rangle - 1 = 2\langle \sigma^x(t) \rangle - 1 = \langle \Phi_f | T e^{-i \int_0^t ds W(s)} | \Phi_i \rangle$$

$$W(t) = \frac{\Delta}{2} \begin{pmatrix} 0 & e^{-h_{\xi} + h_{\eta}} & -e^{h_{\xi} + h_{\eta}} & 0\\ e^{h_{\xi} - h_{\eta}} & 0 & 0 & -e^{h_{\xi} + h_{\eta}}\\ -e^{-h_{\xi} - h_{\eta}} & 0 & 0 & e^{-h_{\xi} + h_{\eta}}\\ 0 & -e^{-h_{\xi} - h_{\eta}} & e^{h_{\xi} - h_{\eta}} & 0 \end{pmatrix}$$

$$\frac{\xi(t)h_{\xi}(s)}{\xi(t)h_{\eta}(s)} \propto iQ_{1}(t-s) \qquad (\text{vector = 4 states of spin reduced density matrix})$$

h

h

Dynamics of the Spin can be obtained via a Schrodinger Equation

$$i\partial_t |\Phi(t)\rangle = W(t) |\Phi(t)\rangle$$

See also G. B. Lesovik, A. V. Lebedev, A. Imambekov JETP Lett. 75, p. 474, (2002). A. Imambekov, V. Gritsev, E. Demler, Phys. Rev. A 77, 063606 (2008). J.T. Stockburger, H. Grabert Phys. Rev. Lett. 88, 170407 (2002). Non-Markovian Approach

<u>Note:</u> This is a numerically exact Approach, Drive & Non-Markovian Effects captured Little Price to Pay: Numerical Convergence Different from J. Dalibard, Y. Castin, K. Molmer, Phys. Rev. Lett. **68**, 580 (1992)

Applications: Landau-Zener problem with dissipation Peter Orth, Adilet Imambekov, Karyn Le Hur PRB 2010 and 2013

Dissipative Driven Rabi models: Loic Henriet, Zoran Ristivojevic, Peter P. Orth,KLH Necessity to introduce 2 stochastic fields 2014 (arXiv:1401.4558 to appear)

$$\begin{split} \rho_S(t_0) &= |+_z\rangle \langle +_z| & \underline{\text{JC case}} \text{: Rabi oscillations between 1- \& 1+ \text{ states}} \\ \langle \sigma^z(t) \rangle &= 1 - 2\sin^2(\sqrt{g^2 + \delta^2} \frac{t}{2}) \left[1 - \cos^2(\tan^{-1} \frac{g}{\delta})\right] \end{split}$$

A. Houck lab at princeton

Other Realizations of Dirac Photons in Artificial Graphene:

M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne PRL 110, 033902 (2013) T. Jacqmin et al Phys. Rev. Lett **112**, 1116402 (2014) (LPN Marcoussis)

D. L. Underwood, W. E. Shanks, J. Koch and A. A. Houck, Phys. Rev. A 86, 023837 (2012).

Artificial Gauge Fields with Light

Cold Atoms:

 A. L. Fetter RMP 2009; J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg RMP 2011; _I Bloch et al. Nature (2012); Juzeliunas & Spielman NJP (2012);...
 D. Cocks, P. Orth, S. Rachel, M. Buchhold, KLH, W. Hofstetter PRL 2012

• Ways to implement magnetic fields & gauge fields

N. Goldman et al. Phys. Rev. Lett. 103, 035301 (2009)

M. Aidelsburger et al. arXiv:1110.5314 (Muenich's group, PRL)

J. Struck et al. arXiv:1203.0049 (Hamburg's group)

Laser-assisted tunneling in optical superlattice PRL 107, 255301 (2011)

Floquet Topological Insulators: Recent review J. Cayssol, B. Dora, F. Simon, R. Moessner, arXiv:1211.5623

Nonlinearities in Hybrid Systems: Brownian motion out of equilibrium

Marco Schiro & KLH 2014

FIG. 1: Schematic figure of the hybrid quantum impurity system consisting of a quantum dot hybridized to biased metallic leads and capacitively coupled to an electromagnetic resonator.

Anderson-Holstein model

Experiment at ENS Paris

Group of T. Kontos

also ETH Zuerich, Princeton LPN Marcoussis

M. Delbecq et al 2011

Example of Nonlinear Quantum Transport

P. Dutt, J. Koch, J. E. Han, KLH Annals of Physics 326, 2963-99 (2011) Generalization to gradients of temperature: P. Dutt & KLH, 2013

Fig. 6. The current-voltage curves for the Anderson model for $U/\Gamma = 0.0, 1.0, 2\pi$ and 4π , where $\Gamma = 1$. The inset shows the behavior of the curves for low bias. In the limit $\Phi \rightarrow 0$ the slope of the curves tend to 1, which corresponds to the value of the conductance quantum.

See also Diagrammatic MC in Keldysh scheme:

P. Werner, T. Oka and A. J. Millis, 2009-2010
M. Schiro & M. Fabrizio, 2008
T. Schmidt, Muehlbacher, Urban and Komnik 2011

Effective Boltzmann-Gibbs description of steady states (other works)

Hershfield 1993; Andrei, Doyon, Schiller, Anders, D. Bernard; C. Aron and G. Kotliar...

Feedback on the circuit Quantum Electrodynamics?

$$\mathcal{H} = \sum_{kl} \omega_k \, b_{kl}^{\dagger} \, b_{kl} + \left(a + a^{\dagger}\right) \sum_{kl} \, g_k \, \left(b_{kl}^{\dagger} + b_{kl}\right) + \mathcal{H}_{sys}$$

Anderson-Holstein model

$$t(\omega) \equiv \frac{\langle V_R^{out}(\omega) \rangle}{\langle V_L^{in}(\omega) \rangle} = i J(\omega) \chi_{xx}^R(\omega) \qquad \lambda x n + \omega_0 a^{\dagger} a$$

Input-Ouput Theory:

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).

K. Le Hur, Phys. Rev. B 85, 140506 (2012).

$$\tan\varphi(\omega) \equiv \frac{\operatorname{Im} t(\omega)}{\operatorname{Re} t(\omega)} = \frac{\operatorname{Re} \chi_{xx}^{R}(\omega)}{\operatorname{Im} \chi_{xx}^{R}(\omega)}.$$

Transport of electrons & Anderson-Holstein model ; see A. Mitra, Aleiner and A. Millis

The retarded photon Green's function can be written in Fourier space in terms of the photon self-energy $\Pi^{R}(\omega)$ as

$$\chi_{xx}^{R}(\omega) = \frac{\omega_0}{\omega^2 - \omega_0^2 - \omega_0 \Pi^R(\omega)}$$
(15)

where $\Pi^{R}(\omega)$ includes both the effects of frequency renormalization and the damping due to the environment.

$$\Pi^{R}(t,t') = \Lambda^{R}(t,t') \equiv \lambda^{2} \chi_{el}(t-t')$$
(17)

with $\chi_{el}(t-t') = -i\theta(t-t')\langle [n(t), n(t')] \rangle_{el}$ the electronic charge susceptibility. For an Anderson Impurity Model which exhibits a Fermi-Liquid type of ground state this must satisfy the Korringa-Shiba relation⁵⁷ which implies

$$\operatorname{Im}\chi_{el}(\omega) = \pi\omega \left[\left(\operatorname{Re}\chi_{el\uparrow}(0)\right)^2 + \left(\operatorname{Re}\chi_{el\downarrow}(0)\right)^2 \right] .$$
(18)

At low-frequency: importance in RC circuits **Anderson model**, M. Fillipone, KLH, C. Mora Phys. Rev. Lett. **107**, 176601 (2011)

Marco Schiro & KLH, Phys. Rev. B **89**, 195127 (2014)

Damping rate of photons at large bias in 1/V⁴

Effective Langevin Description

Integration of electron degrees of freedom (resonant level model; Kondo limit)

$$V_{eff}(x) = \frac{\lambda x}{2} + \frac{\omega_*^2 x^2}{2} + \eta x^3 + g x^4$$

No interaction On dot

$$\omega_*^2 = \omega_0^2 - \frac{\lambda^2}{\pi} \sum_{\alpha} \frac{\Gamma_{\alpha}}{\left(\varepsilon_0 - \mu_{\alpha}\right)^2 + \Gamma^2}$$

$$\eta = \frac{2\lambda^3}{\pi} \sum_{\alpha} \frac{\Gamma_{\alpha} \left(\varepsilon_0 - \mu_{\alpha}\right)}{\left(\varepsilon_0 - \mu_{\alpha}\right)^2 + \Gamma^2}$$

and finally the anharmonicity

$$g = \frac{2\lambda^4 \, \Gamma_\alpha}{\pi} \sum_{\alpha} \frac{\Gamma^2 - \left(\varepsilon_0 - \mu_\alpha\right)^2}{\left[\Gamma^2 + \left(\varepsilon_0 - \mu_\alpha\right)^2\right]^3} \,.$$

Kondo Limit: NCA

A. Rosch, J. Kroha and P. Woelfle T_K being the Kondo temperature.

$$\Gamma_{\star} \sim \frac{V}{\log^2{(V/T_K)}} \left[1 + \frac{2}{\log{(V/T_K)}} + \ldots \right]$$

Large bias voltage limit: Brownian motion out of equilibrium

$$\ddot{x}_c = -\omega_0 x_c - F(x_c) - \gamma(x_c) \dot{x}_c + \xi(t)$$

$$\langle \xi(t)\,\xi(t')\rangle = D(x_c)\delta(t-t')$$

bias voltage. We see the small and large bias behaviours (compared to the electronic lifetime Γ) are characterized by two different power laws, $T_{eff} \sim V$ at small bias when T_{eff} is almost set by the noise $D(V) \sim V$ while $T_{eff} \sim V^4$ at large voltage when the noise as we have seen saturates while the dissipation decays fast $\gamma(V) \sim 1/V^4$.

 $T_{eff}(V) = \frac{D(V)}{4\gamma(V)}$

Transport in Nano-Matter: QPCs, dots and quantum wires

Quantum impurity models:

Transport: current and noise commonly accessible

Thermopower: L. Molenkamp et al (2005) Low-D Luttinger liquids Luttinger liquid introduction: T. Giamarchi's book; Haldane (1981) Talk by A. Mirlin, nonlinearities

Quantum wires in cQED cavities Inducing new long-range physics; probing Majorana fermions Loic Herviou, Christophe Mora & KLH

Noise, FCS & Entanglement Entropy

Current and (thermodynamic) entropy production: P. Mehta & N. Andrei

Klich-Levitov, Gaussian case D=1: 2009 H. F. Song, S. Rachel, C. Flindt, N. Laflorencie I. Klich & KLH, 2012 (general case)

D=1: Results from CFT (**Calabrese-Cardy**): entropy grows logarithmically with time

D=0.5: Higher cumulants matter, but the entropy maintains its logarithmic growth **noise: Lower bound on the full entanglement entropy**

New results for entanglement spectrum:

A. Petrescu et al. arXiv:1405.7816

Yale 2010

<u>Picture</u> J. F. Dars A. Papillaut **CNRS** Book Le Plus Grand des Hasards

Ecole Polytechnique, CPHT (since 2012):

Loic Henriet PhD student

Loic Herviou Master and PhD student, co-direction with C. Mora, ENS Tianhan Liu, PhD, co-direction with B.Douçot LPTHE (topological insulators) Alexandru Petrescu, Yale and CPHT X (work also on artificial gauge fields) Zoran Ristivojevic, post-doctoral associate (CNRS Toulouse)

Other Collaborators related to the Talk: P. Orth (KIT Karlsruhe) & A. Imambekov; M. Schiro (Columbia, IPHT), W. Hofstetter (Frankfurt), M. Filippone (Berlin), C. Mora (LPA ENS), P. Dutt, T. Schmidt (Basel), J. Koch, J. Han, C.-H. Chung, M. Vojta, P. Woelfle ...

Summary of the Presentation

Quantum Impurities (done)

Examples of Non-Trivial Dynamics (done)

Circuit Quantum Electrodynamics (done)

NonLinear Quantum Transport (done)

Supplementary Slides on Stochastic Method

FUNCTIONAL APPROACH

Method

We extend here a non-perturbative stochastic method ⁹ to evaluate the exact dynamics of the spin.

• Functional integration of bosonic degrees of freedom \rightarrow evaluation of the spin-reduced density matrix $\rho_{S}(t) = tr_{B} \left[U(t, t_{0}) \rho_{tot}(t_{0}) U^{\dagger}(t, t_{0}) \right].$

• The influence of the environment is contained in the Feynman-Vernon¹⁰ influence functional $F[\sigma, \sigma']$:

$$\langle \sigma_f | \rho_S(t) | \sigma'_f \rangle = \int D\sigma D\sigma' A[\sigma] A[\sigma']^* F[\sigma, \sigma']$$

Double spin path similar to Keldysh contour

9. G. B. Lesovik et al., JETP Lett, **75**, 474 (2002), J. T. Stockburger et al. Phys. Rev. Lett. **88**, 170407 (2002), P. P. Orth, et al., Phys. Rev. B **87**, 014305 (2013).
10. R. P. Feynman and F. L. Vernon, Ann. Phys. (N.Y.), **24**, 118, (1963).

200

FV INFLUENCE FUNCTIONAL-1/3

$$F[\sigma,\sigma'] = \exp\left\{-\frac{1}{\pi}\int_0^t ds \int_0^s ds' [-iL_1(s-s')\xi(s)\eta(s') + L_2(s-s')\xi(s)\xi(s')]\right\}$$

With η and ξ the symmetric and anti-symetric spin paths :

 $\begin{array}{l} \eta(s) = \frac{1}{2} \left[\sigma(s) + \sigma'(s) \right] \\ \xi(s) = \frac{1}{2} \left[\sigma(s) - \sigma'(s) \right] \end{array}$

$$L_1(t) = \int_0^\infty d\omega J(\omega) \sin \omega t$$
$$L_2(t) = \int_0^\infty d\omega J(\omega) \cos \omega t \coth \beta \omega/2$$

$$A_{\xi=0}^{\eta=1} A_{\xi=0}^{\eta=0} B$$

$$B_{\xi=+1}$$

$$C_{\xi=-1}^{\eta=0} A_{\xi=0}^{\eta=-1} D$$

FV INFLUENCE FUNCTIONAL-2/3

11. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys, **59**, 1 (1987).

FV INFLUENCE FUNCTIONAL-3/3

Finally, the probability to find back the system in state $|+\rangle$ at time *t* is given by the development :

$$p(t) = \langle +|\rho_{S}(t)|+\rangle = \sum_{n=0}^{\infty} \left(\frac{i\Delta}{2}\right)^{2n} \int_{t_{0}}^{t} dt_{2n} \dots \int_{t_{0}}^{t_{2}} dt_{1} \sum_{\{\Xi_{j},\Upsilon_{j}\}} F_{n}[\{\Xi_{j}\},\{\Upsilon_{j}\},\{t_{j}\}]$$

$$F_{n}[\{\Xi_{j}\},\{\Upsilon_{j}\},\{t_{j}\}] = e^{\frac{i}{\pi}\sum_{j>k=0}^{2n}\Xi_{j}\Upsilon_{k}Q_{1}(t_{j}-t_{k})}e^{\frac{1}{\pi}\sum_{j>k=1}^{2n}\Xi_{j}\Xi_{k}Q_{2}(t_{j}-t_{k})}$$

Stochastic decoupling :

$$F_n[\{\Xi_j\}, \{\Upsilon_j\}, \{t_j\}] = \prod_{j=1}^{2n} \exp[h_{\xi}(t_j)\Xi_j + h_{\eta}(t_j)\Upsilon_j]$$

with h_{ξ} and h_{η} two complex gaussian random fields which verify :

 $rac{h_{\xi}(t)h_{\xi}(s)}{h_{\xi}(t)h_{\eta}(s)} \propto Q_2(t-s)
onumber \ Q_2(t-s)$

$$p(t) = \sum_{n} \left(\frac{i\Delta}{2}\right)^{2n} \int_{t_0}^t dt_{2n} \dots \int_{t_0}^{t_2} dt_1 \sum_{\{\Xi_j, \Upsilon_j\}} \prod_{j=1}^{2n} \exp\left[h_{\xi}(t_j)\Xi_j + h_{\eta}(t_j)\Upsilon_j\right]$$

$$p(t) = \overline{\langle \Phi_f | e^{-i \int_0^t ds W(s)} | \Phi_i
angle}; \quad W = V_0 \left(egin{array}{ccccc} 0 & e^{-h_{\xi} + h_{\eta}} & e^{h_{\xi} + h_{\eta}} & 0 \ e^{h_{\xi} - h_{\eta}} & 0 & 0 & e^{h_{\xi} + h_{\eta}} \ e^{-h_{\xi} - h_{\eta}} & 0 & 0 & e^{-h_{\xi} + h_{\eta}} \ 0 & e^{-h_{\xi} - h_{\eta}} & e^{h_{\xi} - h_{\eta}} & 0 \end{array}
ight)$$

W : effective spin Hamiltonian in the space of states $\{A, B, C, D\}$. $|\Phi_i\rangle = (e^{h_\eta(\mathbf{t_0})}, 0, 0, 0)^T$ and $\langle \Phi_f | = (e^{-h_\eta(\mathbf{t_{2n}})}, 0, 0, 0)$ (these choices account for the asymmetry between blips and sojourns).

p(t) is then given by the stochastic average $\overline{\langle \Phi_f | \Phi(t) \rangle}$ where $| \Phi(t) \rangle$ is the solution of the stochastic Schödinger equation :

$$i\partial_t |\Psi\rangle = W |\Psi\rangle,$$

with initial condition $|\Phi_i\rangle$.

Systems of interacting photons: Theory surveys

M. Hartmann et al., Laser & Photonics Review 2, 527 (2008)
 A. Tomadin & R. Fazio, J. Opt. Soc. Am B 27, A130 (2010)
 J. Larson ; I. Carusotto and C. Ciuti, RMP 2012

realizations: superfluidity of polaritons **Stanford** at Grenoble-EPFL, LKB ENS, LPN Marcoussis, PIttsburg

- * photonic band gap cavities
- * arrays of silicon micro-cavities
- * fibre based cavities

* cQED Array current realization (A. Houck; H. Tureci; J. Koch 2012 & S. Schmidt, J. Koch 2012)

some pros and cons

- + tunability
- + access to single lattice site
- must be treated as open system
- + interesting: transitions between different steady states

Interacting photons:

M. Lukin, E. Demler et al: Fermionizing light

A BASIC EXAMPLE: THE NOISY BARRIER

1

Nonlinear Quantum Transport: example

Analogy with a Luttinger liquid: I. Safi and H. Saleur, Phys. Rev. Lett. 93, 126602 (2004)

See Ingold-Nazarov Single Charge Tunneling Coulomb Blockade phenomena in Nanostructures Eds H. Grabert-M. Devoret 1992

FIG. 4: Current-voltage characteristics for the noisy tunnel barrier. For $R \ll R_K$ one observe a clear deviation from Ohm's formula as a result of prominent quantum fluctuations in the environment induced when one tries to add in an electron (hole) in the left electrode. When R increases, charging effects at the tunnel junction will lead to Coulomb blockade.

$$\Gamma(V) = \frac{\exp(-2\gamma_e/\alpha)}{\Gamma(2+2/\alpha)} \frac{V}{R_t} \left[\frac{\pi}{\alpha} \frac{e|V|}{E_c}\right]^{2/\alpha}.$$

01

