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Anderson localization (AL) is a quantum interference phenomenon proposed to understand how disorder can lead to
the total cancelation of electron conduction. Its classical waves counterpart has been studied in acoustics, optics,
and electromagnetism, but direct observation with particles remains a challenge. We report here the observation of
three dimensional (3D) localization of ultracold atoms, in a disordered potential created by a speckle laser field. A
phenomenological analysis of our data allows us to identify a localized component and a diffusive component. The
localization we observe can be interpreted neither as classical trapping of particles with energy below the classical
percolation threshold in the disorder, nor as quantum trapping in local potential minima. In contrast, our data are
compatible with the self-consistent theory of AL applied to our specific situation, provided we introduce a heuristic
energy shift which remains to be interpreted.

A
nderson localization (AL) was proposed more than 50 years

ago 1 to understand how disorder can lead to the total can-
celation of electron conduction in certain materials. It is a

purely quantum, one-particle effect, which can be interpreted as due to
interference between the various amplitudes associated with the scatter-
ing paths of a matter wave propagating among impurities 2. Accord-
ing to the celebrated scaling theory 3, AL dramatically depends on the
dimension, and in the three-dimensional (3D) case, a mobility edge is
predicted. It is an energy threshold separating localized states, which
decay to zero at infinity and correspond to insulators, from extended
states, which correspond to conductors. However, determining the pre-
cise value of the mobility edge, and the corresponding critical behavior
around it, remains a challenge for microscopic theory, numerical simula-
tions, and experiments 2. The quest for AL has been pursued not only in
condensed matter physics 4, but also in wave physics 5, and experiments
have been carried out with light waves 6–9, microwaves 10, 11 and acoustic
waves 12. Following theoretical proposals 13–18, recent experiments 19, 20

have shown that ultracold atoms in optical disorder constitute a remark-
able system to study 1D localization 21, 22 or 2D diffusion 23, 24 of matter
waves in real space. Cold atoms in a ’kicked rotor’ situation have also
been used to demonstrate 1D dynamical localization 25, i.e., localisation
in p-space, and to study a mapping of 3D AL in that space 26. Here, we
report the observation of 3D localization of ultracold atoms of a Bose
Einstein Condensate (BEC), suspended against gravity, and released in
a 3D optical disordered potential with short correlation lengths in all di-
rections. Fluorescence imaging of the expanding cloud yields density
profiles composed of a steady localized part and a diffusive part. A phe-
nomenological analysis allows us to determine the localized fraction and
the diffusion coefficients of the diffusing part. The localization we ob-
serve cannot be interpreted as classical trapping of particles with energy
below the classical percolation threshold in the disorder, which is well
below the average energy of the atoms. Similarly, quantum trapping in
local potential minima is excluded, because the local potential wells are
too tight to support stationary states with energy less than the potential
wells depth. In contrast, our observations are compatible with the self-
consistent theory of AL 27, taking into account the specific features of
the experiment, in particular the broad energy distribution of the atoms
placed in the disordered potential, provided we introduce a heuristic en-

ergy shift, whose interpretation remains to be elucidated.

Experiment
Our scheme (Fig. 1a) is a generalization of the one that allowed us to
demonstrate AL in 1D 15, 19. It starts with a dilute BEC with several 104

atoms of 87Rb, initially in a shallow quasi-isotropic Gaussian optical trap
(Thomas-Fermi radii of the condensate of the order of 30 µm). It is in
thermal equilibrium with about the same number of uncondensed atoms.
When the trap is switched off, the atoms, in the |F = 2,mF = −2〉 hy-
perfine state of the ground electronic state, are kept suspended against
gravity by a magnetic field gradient. The residual component of the sus-
pending potential is isotropic and repulsive, of the form −mω2r2/2, with
ω ' 1.8 s−1 (m is the atom mass). The expelling force resulting from
that weak antitrapping potential is responsible for spatially inhomoge-
neous losses that increase with the distance to the center of the atom
cloud. These losses play a role only when the expansion is large (weak
or null disorder). When the expansion is small enough (strong disorder,
corresponding to the points at VR/h ≥ 400 Hz in Figures 2-5), the inho-
mogeneous losses are negligible compared with observed homogeneous
losses, characterized by an inverse decay time constant of ∼ 0.14 s−1. In
the quantitative analysis, we compensate the losses by rescaling our data
to a fixed total number of atoms.

In order to observe the evolution of the atomic cloud, we use a high
sensitivity EMCCD camera to image, along the x-axis, the fluorescence
obtained when applying for 50 µs a saturating resonant probe (Fig. 1a).
This yields the column density along x, i.e., ñ(y, z, t) =

∫
dx n(x, y, z, t)

[where n(x, y, z, t) is the atomic density of the atomic cloud]. Actually,
the observed 2D profile also results from a transverse averaging (perpen-
dicular to x) due to the finite resolution of the imaging system, and to
a numerical sliding average. The overall transverse resolution is 15 µm
(FWHM) in the y − z plane. The obtained profiles are fairly smooth, but
we have performed a supplementary averaging over 3 to 5 recordings in
order to increase the signal-to-noise ratio. We have not observed fluctua-
tions correlated with a change in the realization of the disorder. This can
be traced to the spatial averaging, and it is consistent with the fact that
each profile is a sum of many profiles associated with different atom en-
ergy components that probe different, uncorrelated, k-components of the
disordered potential. One can then consider that the observed profiles
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Figure 1 | Experiment. (a) A dilute Bose-Einstein condensate (BEC) of ultracold 87Rb atoms, initially trapped by the red-detuned crossed laser beams, is released
and submitted to a repulsive disordered potential. This potential is realized by the optical speckle field produced by two crossed, blue-detuned, wide coherent laser
beams along the x- and z- axes, which pass through diffusive plates and are focused onto the atoms. The (paramagnetic) atoms are suspended against gravity by a
magnetic field gradient (produced by the yellow coils), and the expansion of the atomic cloud can be observed for times as long as 6 s. The EMCCD camera images
the fluorescence produced by a resonant probe, and yields the atomic column density integrated along the x-axis (the transverse resolution in the y − z plane is
15 µm, FWHM). (b) False color representation of a realization of the disordered potential in the x = 0, y = 0, and z = 0 planes. (c) Plots of the 3D autocorrelation
function of the disordered potential in the x = 0, y = 0, and z = 0 planes (the equal level lines represent levels separated by 14% of the maximum value). The
correlation radii, along the main axes (axis y and the two bisecting lines of x − z), are 0.11 µm, 0.27 µm and 0.08 µm.

represent, within the experimental accuracy, an ensemble average over
different realizations of the disorder.

We first characterize the initial atomic cloud by observing its 3D
free expansion after switching off the trap, in the absence of disorder.
It has two contributions: the free ballistic evolution of the condensed
fraction, induced by the initial interaction energy, and the expansion of
the thermal wings reflecting the velocity distribution of the initial thermal
component. We then get the maximum velocity vmax ∼ 0.5 mm/s in the
expanding BEC (corresponding to an initial chemical potential of the
trapped BEC µin = 3mv2

max/4 of the order of µin/h ' 40 Hz, where h
is the Planck constant). A Gaussian fit to the velocity distribution in
the wings yields a rms velocity of ∼ 0.3 mm/s, i.e., a temperature of
T ∼ 1 nK (kBT/h ∼ 20 Hz, where kB is the Boltzmann constant).

In order to study localization, an optical disordered potential is
switched on, in less than 100 µs, at time ti = 50 ms after release. At
that time, the residual atom-atom interaction energy (Eint/h ∼ 1 Hz, es-
timated from the observed atomic density) has become small compared
to the disorder amplitude VR (see below). As shown in ref. 28, a well
controlled disordered potential can be obtained as the intensity of the
speckle field realized by passing a far detuned laser beam through a dif-
fusive plate 29. In order to create a 3D disorder with small correlation
lengths along all directions of space, we cross two coherent orthogo-
nal speckle fields of widths (at exp−2) ' 2.4 mm (see Fig. 1a). The
laser is far blue-detuned (wavelength of 532 nm, to be compared to the
87Rb resonance wavelength of 780 nm), so that the disordered poten-
tial is repulsive (positive or null at any point), and spontaneous emis-
sion is negligible. The two crossed speckles have the same polarization
(along the y-axis), giving an interference pattern (sketched in Fig. 1b)
that yields a disordered potential V(r) with a single-point probability
distribution P(V) = V−1

R exp(−V/VR), maximum at V = 0. This en-
sures that the classical percolation threshold is small enough (less than
10−2 VR) to eliminate the possibility of a classical trapping of the atoms
(see Methods). This is a major advantage of using two coherent crossed
speckles, rather than two speckles with orthogonal polarizations, or two
incoherent speckles, for which the classical percolation threshold would
be larger (the field amplitude distribution would not be Gaussian28, and

the exponential probability distribution above would not hold). The av-
erage value of the disordered potential is equal to its standard deviation
VR (named here the disorder ”amplitude”), and it can be varied up to
VR/h = 1.1 kHz. Figure 1c shows cuts of the autocorrelation function of
the disorder. A 3D Gaussian fit of the central peak of this autocorrelation
function yields standard rms radii of 0.11 µm, 0.27 µm, and 0.08 µm,
along the main axes (axis y and the two bisecting lines of x − z), with a
maximum anisotropy factor of about 3. Their geometric average provides
the characteristic correlation length σR ' 0.13 µm. The corresponding
correlation energy 17 ER = ~2/mσ2

R (ER/h ' 6.5 kHz) is larger than the
disorder amplitudes used in the experiment. We are thus in the quantum
disorder regime, in which local minima of the disordered potential do not
support bound states, eliminating the possibility of quantum trapping in
individual local minima.

We have studied how the expansion of the released atomic cloud is
affected when we apply the speckle potential with various values of the
disorder amplitude VR. Figure 2a shows the evolution of the observed
column density profiles for two different values of the disorder amplitude
VR. For the smaller value (VR/h = 135 Hz), we observe a diffusive
expansion (Fig. 2b). After 1.2 s, the density at the center has decreased
enough that it is no longer observable. In contrast, for the larger value
of the disorder amplitude (VR/h = 680 Hz) the diffusive expansion is
slower (Fig. 2b), and an almost steady peak survives at the center for
observation times as long as 6 s (Fig. 2c).

Phenomenological analysis of the data
In order to analyze these observations, we use a phenomenological
model, assuming that the observed profiles are the sum of two contri-
butions: (i) a steady localized part that is the replica of the initial profile
ñi(y, z), i.e., the BEC and its thermal wings at t = ti; (ii) a diffusive ex-
panding part ñD(y, z, t), whose contribution at the center decays towards
zero. More precisely, we assume that we can decompose the observed
column density as

ñ(y, z, t) = floc × ñi(y, z) + ñD(y, z, t). (1)

2



1.0

0.8

0.6

0.4

0.2

0.0

6543210

 

t−ti (s)

˜ n (
0,

0,
t)

˜ n i
(0

,0
)

15

10

5

0

x10
3
 

6543210

 
∆u

2 (µ
m

2 )

t−ti (s)

x103

b)

a)

1.0

0.8

0.6

0.4

0.2

0.0

3.02.01.00.0
1/t-ti (s

-1)

1.2 s0 s 0.4 s 0.8 s

0 s 2 s 4 s 6 s

VR/h = 135 Hz

VR/h = 680 Hz

200µm

200µm

c)
floc

VR/h = 135 Hz

VR/h = 135 Hz
VR/h = 680 Hz

VR/h = 680 Hz

Figure 2 | Evolution of the atomic cloud for two different amplitudes of the disorder. (a) Plots of the column density in the y − z plane, as observed by
fluorescence imaging along the x−axis (Fig. 1a) at various delays after application of the disorder. For a weak disorder (VR/h = 135 Hz), we observe an expansion
leading to the disappearance of any observable atomic density for times larger than 1.2 s. For a strong disorder (VR/h = 680 Hz), the atomic cloud is still well visible
after 6 s, and the profile shows a steady peak around the origin, superposed on a slowly expanding component. As shown in Fig. 2b, the expanding parts have a
diffusive behavior in both cases. (b) Time evolution of the mean squared widths along y (blue) and z (red) of the column density profiles, and their fits by straight
lines yielding the diffusion coefficients along y and z. The anisotropy of the disorder, visible on Fig. 1b, is reflected on the diffusion coefficients. (c) Evolution of the
column density at the center, and determination of its asymptotic value, yielding the localized fraction floc (asymptotic value of the fitted black solid line, see text).

This decomposition is supported by the observation (Fig. 2b) that the
measured rms sizes ∆u, along the u ∈ {y, z} axes, of the column den-
sity profiles, vary as ∆u(t)2 = ∆u(ti)2 + 2〈Du〉(t − ti). Linear fits al-
low us to measure the diffusion coefficients 〈Dy〉 and 〈Dz〉 (the brack-
ets signal that we obtain mean diffusion coefficients, resulting from an
average over the atoms energy distribution, see theoretical part below).
Figure 2c shows that the column density at the center tends asymptoti-
cally towards a finite value, which is determined by a fit to the function
ñ(0, 0, t)/ñi(0, 0) = A + B(t − ti)−1, where A refers to the localized part.
The (t− ti)−1 evolution is expected for a diffusive behavior of the column
density at the center when the size of the initial profile is negligible. It
results from the integration over one dimension of the (t − ti)−3/2 evo-
lution expected for the 3D density at the origin. Finally, as we will see
below, theory predicts that the localization lengths are smaller than the
resolution of the images, so that the profile of the localized part is the
replica of the initial profile, hence the form chosen for the first term in
equation (1). The constant A of the fit is then interpreted as the localized
fraction of atoms, floc. It is found equal to 22% for VR/h = 680 Hz, and
1% for VR/h = 135 Hz. In the absence of disorder (VR = 0), we fit the
central density by A + B(t − ti)−2, as expected for a ballistic expansion,
and find (A = 0), i.e., a null localized fraction.

The phenomenological analysis of the experimental data described

above has been carried out for different values of VR. Figure 3 shows that
the localized fraction, which is vanishingly small at very weak disorder,
increases rapidly with VR above VR/h ∼ 135 Hz, and reaches a nearly
saturating value slightly larger than 20% at VR/h ∼ 500 Hz. Note that the
inhomogeneous losses entail an overestimation of the condensed fraction
for VR/h < 400 Hz, so that correcting for it would result into a yet steeper
increase of the observed condensed fraction. Similarly, Figure 4 shows
that the measured average diffusion coefficients, 〈Du〉, exhibit a steep
decrease with the disorder amplitude VR around the value at which a
localized fraction appears, and reach almost constant values at VR/h ∼
500 Hz. These values of a few ~/3m are of the order of what is expected
just above the mobility edge17.

Theoretical description
We now compare the results of the phenomenological analysis of the
experimental data with results of the theory of quantum transport and
AL specifically applied to our situation, i.e., taking into account: i) the
spatial extension of the atomic gas at the initial time ti; ii) its energy
distribution induced by the sudden application of the disordered potential
at time ti; iii) the anisotropy of the 3D speckle potential. We write the
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Figure 3 | Localized fraction vs. disorder amplitude. The points give the lo-
calized fraction floc determined from the decay of the central density (Fig. 2c).
The error bars reflect the uncertainty on each individual fit and the fluctuations
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Figure 4 | Diffusion coefficient vs. disorder amplitude. The points indicate
the values of the diffusion coefficients, 〈Du〉, along the u = y, z axes (blue and
red points respectively), measured as explained in the text and in Fig. 2b. The
error bars reflect the effect of background noise on the mean squared widths.
The solid blue (y) and red (z) lines show the results of the theoretical calculation
of these coefficients, using the same heuristic energy shift as in Fig. 3.

spatial density of the atomic gas as 15, 16, 18

n(r, t) =

∫
dri

∫
dE Di(ri, E)P(r − ri, t − ti|E) , (2)

where Di(r, E) represents the semi-classical joint position-energy den-
sity just after the time ti when the speckle potential is switched on, and
P(r−ri, t− ti|E) is the (anisotropic) probability of quantum transport, i.e.,
the probability distribution that a particle of energy E, placed in point ri

at time ti, is found in point r at time t.
The function P(r, t|E), whose character changes from localized to

extended when the energy passes the mobility edge Ec, plays the cen-
tral role in AL. We calculate it in the framework of the self-consistent
approach, within the on-shell Born approximation 27. We use the same
method as detailed in ref. 30 (except that, here, we do not include the
real part of the self-energy). The incoherent (Boltzmann) diffusion ten-
sor is first calculated using microscopic quantum transport theory, taking

into account the exact correlation function of the 3D anisotropic speckle
potential 31. The terms corresponding to the quantum interference be-
tween the various diffusing paths are then incorporated in the form of
the Cooperon and Hikami contributions. This provides an equation for
the dynamic, quantum corrected diffusion tensor, D∗(E,Ω). Solving the
latter self-consistently in the long time limit (i.e., the low frequency limit
Ω→ 0), we obtain the mobility edge Ec and the expressions of the prob-
ability of quantum transport 27, 30, P(r, t|E). Within the above approxima-
tion, we find that Ec − VR ' 1.6V2

R/ER for our experimental parameters
(e.g., [Ec − VR]/h = 4.5 Hz and 108 Hz for VR/h = 135 Hz and 680 Hz
respectively). In the AL regime (E < Ec),

P(r|E) =

exp
(
−

√
r · L−2

loc(E) · r
)

4π det{Lloc(E)}
√

r · L−2
loc(E) · r

(3)

is a static, anisotropic, exponentially localized function, characterized by
the localization tensor Lloc(E). In the diffusive regime (E > Ec),

P(r, t|E) =
exp

(
−r · D−1

∗ (E) · r/4t
)

√
(4πt)3 det{D∗(E)}

(4)

is a time-dependent, anisotropic, Gaussian function, characterized by the
self-consistent diffusion tensor D∗(E). In the case when the range of
atomic energies extends below and above the mobility edge, both ex-
pressions (3) and (4) play a role in the integral of equation (2), leading
respectively to a localized component and a diffusing component.

The distribution Di(r, E) depends on both the initial expansion of
the atomic gas for 0 < t < ti, and the disordered potential at t = t+

i . In
the experiment, the sudden application of the disordered potential (in ∼
100µs) at time ti hardly affects the density profile, ni(r), but significantly
modifies the energy distribution since the disorder is quite strong (e.g.,
V2

R/ER ' µin for VR/h ' 500 Hz). For simplicity, we assume separation
of the position and energy variables, i.e., we writeDi(r, E) = ni(r)× fi(E).
In order to perform the integration of equation (2), we thus need to know
ni(r) and fi(E). The initial density profile ni(r) is determined from fits
to the measured density profile at time ti (see upper panels in Fig. 5).
On the other hand, we do not have any simple experimental method for
determining precisely the energy distribution fi(E) of the atoms in the
disorder, and we calculate it from direct numerical diagonalization of
the non-interacting Hamiltonian for various realizations of the disordered
potential, using the sudden approximation (see Methods). We find that
fi(E) is peaked around VR (the average value of the disordered potential)
with a width ∆E fi ranging from ∆E fi/h ∼ 20 Hz (for VR/h = 135 Hz) to
∆E fi/h ∼ 140 Hz (for VR/h = 680 Hz).

As expected, the calculation of the localized functions of equation (3)
shows that the localization lengths [the components of Lloc(E)] increase
with the energy and diverge at the mobility edge Ec. Except in a narrow
window ∆E below Ec (e.g., ∆E/h ∼ 20 Hz for VR/h = 680 Hz), how-
ever, they remain smaller than the imaging resolution (15 µm), and much
smaller than the size of the atomic cloud when the disorder is switched
on (Fig. 5). Since most of the energy components are outside that win-
dow, we make P(r|E) ' δ(r) in equation (2) for E < Ec. This yields a
localized profile, which is simply a replica of the initial profile ñi(y, z) (in
agreement with the first term in equation (1) used for the phenomenolog-
ical analysis).

The calculated localized fraction is given by floc =
∫ Ec

−∞
dE fi(E).

When we perform this calculation, we find numerical results significantly
larger than the measured values. Actually, simple inspection shows that
the numerical value found for floc is extremely sensitive to numerical ac-
curacy in the determination of fi(E) as well as to any approximation in
the theoretical calculations of Ec. It is also very sensitive to uncertainties
on experimental parameters, in particular the amplitude VR and the de-
tails of the disordered potential. Considering all these uncertainties, we
tried to introduce in the calculation of floc a heuristic energy shift ∆Eheur
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Figure 5 | Evolution of density profiles in a strong disorder (VR/h = 680 Hz):
experiment vs. theory. The figure shows cuts of the column density profiles
along y [ñ(y, 0, t), left column] and z [ñ(0, z, t), right column], at various delays
after application of the disorder. The solid black lines are the experimental data.
In the top panels (corresponding to the initial time t = ti when the disorder is
switched on), the solid red lines are fits to the data. In all other panels (corre-
sponding to t > ti), the solid red lines are these fitted initial profiles multiplied by
the localized fraction floc = 0.22, hence describing the localized part. Adding the
theoretically determined diffusive parts at various delays, we obtain the green
profiles, which reproduce well the experimental profiles.

between the energy functionals fi(E) and P(r|E), and we found that a rel-
ative shift of the form ∆Eheur = 3.35V2

R/ER (e.g., ∆Eheur/h ∼ 225 Hz for
VR/h = 680 Hz) leads to a fair agreement with the experimental results
(see Fig. 3). Note that ∆Eheur is about a factor of 2 larger than Ec − VR

and the width of the energy distribution ∆E fi . It thus strongly affects the
value of floc.

The calculation of the diffusion coefficients involves the energy com-
ponents with E > Ec. For consistency, we use the same energy shift
as introduced in the calculation of the localized fraction, i.e., we write
〈Du
∗〉 =

∫ +∞

Ec
dE fi(E − ∆Eheur) û · D∗(E) · û, where û is the unit vector

pointing along the u ∈ {y, z} axis. As shown in Fig. 4, we then find
a fair agreement between the results of this calculation and the experi-
mental data. In particular, the anisotropy of the diffusion tensor is well
reproduced. Note that the theoretical calculations do not involve any free
parameter, apart from the heuristic energy shift discussed above.

Figure 5 shows the comparison between the theoretical and exper-
imental profiles, at various delays, in the case of VR/h = 680 Hz. In
order to obtain the initial theoretical profile, we first fit the initial exper-
imental profiles along y and z by the sum of the profiles of a BEC in
the Thomas-Fermi regime and a thermal component. This allows us to
calculate theoretical profiles at later times, composed of a localized part,
which is a replica of the initial profile multiplied by the calculated local-
ized fraction, plus an evolving diffusive part obtained using the calculated
diffusion coefficients. The fair agreement with experimental profiles at
various delays shows consistency of our theoretical analysis (including

the heuristic energy shift) with the experimental observations.
This theoretical description of our experimental situation allows us

to interpret the behavior of floc (Fig. 3) and 〈Du〉 (Fig. 4) as resulting
from the competition of two effects, when VR increases. On the one
hand, for each energy component, the incoherent (Boltzmann) mean free
path lB(E), and thus the diffusion coefficient Du

∗(E), decrease. Accord-
ing to the (on-shell) Ioffe-Regel criterion for localization32, kE lB(E) . 1
(where kE =

√
2mE/~ is the typical particle wavevector at energy E),

the mobility edge Ec then increases, so that floc increases if the atom en-
ergy distribution is unchanged. This effect dominates for weak disorder
(VR . 400 Hz). On the other hand, the atom energy distribution width
and the heuristic shift increase with VR, so as to populate more and more
the diffusive component. The two effects counterbalance each other, and
the localized fraction reaches a maximum, while the average diffusion
coefficients reach almost constant values.

Conclusion
The experimental results presented here show clear evidence that when
a disordered potential is applied to an expanding 3D BEC, a fraction of
the atoms may get localized, while the remaining atoms have a diffusive
behavior. A simple phenomenological analysis allows us to determine
the localized fraction and the diffusion coefficients for various disorder
amplitudes VR, and we find that localization is observed only when the
disorder is large enough. It is then natural to ask whether our observa-
tion can be interpreted as 3D AL, and whether the threshold between the
two different behaviors corresponds to the mobility edge. To address the
first question, we emphasize that our observations are incompatible with
classical localization of particles with an energy below the classical per-
colation threshold, which is so small for our 3D speckle that the fraction
of atoms with a lower energy is negligible. Moreover, in our situation
of quantum disorder, trapping near potential minima is forbidden. We
do not know then of any explanation other than AL for our observations.
To go further, we have developed a theoretical model based on the self-
consistent theory of AL, applied to the exact experimental situation. It
allows us to calculate, for each value of the disorder amplitude, a mobil-
ity edge as well as the probability of quantum transport above and below
the mobility edge. Integrating over the atom energy distribution, we ob-
tain a good quantitative agreement with the measured localized fraction
and diffusion coefficients, provided we take into account the strong mod-
ification of the atoms energy distribution when the disordered potential
is applied, as calculated numerically and displaced by a heuristic shift.
The calculation is however too sensitive to uncertainties in the experi-
mental parameters, and to approximations in the theory, to permit a fully
quantitative comparison. Such a comparison would be of utmost interest,
the experiment being then a test-bed for theories of AL. Several future
advances towards that goal can be envisaged.

On the theoretical side, it will be important to clarify the status of
the heuristic energy shift. On one hand, its simple form (∝ V2

R) suggests
that it may be partially due to some disregarded term at Born first order,
for instance the shift of energy states that is not taken into account in the
on-shell approximation of the self-consistent theory of AL, but which
might be significant 30, 33. On the other hand, the above form of the shift
may be too simple, as suggested by the discrepancy with experimental
data obtained at the highest values of VR in Fig. 3. The search of a more
elaborated form may lead to a better understanding of the localization
phenomenon we have observed.

On the experimental side, it would be interesting to be able to re-
lease, in the disordered potential, a sample of atoms with a narrow en-
ergy distribution, controlled at will. It would then be possible to explore
the localization transition, in particular to measure the exact value of the
mobility edge Ec, and to study the critical behavior, permitting a compar-
ison with existing theoretical treatments and hopefully suggesting routes
for theoretical improvements. Beyond such developments on AL of non-
interacting atoms, future experiments will include the addition of con-
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trolled interactions between atoms, since the effect of interactions on AL
is an open problem of major interest, in particular in 3D 4, 22.

Methods
Energy distribution. When the initial chemical potential of the BEC
(µin) and the thermal energy (kBT ) are smaller than the disorder parame-
ters, the energy distribution can be approximated by fi(E) ' A(k = 0, E),
where A(k, E) = 〈k|δ(E − H)|k〉 is the spectral function of the disordered
medium, with H = −~2∇2/2m + V(r) the non-interacting Hamiltonian
associated to a realization of the disordered potential V(r). In order to
calculate A(k = 0, E), we decompose the operator δ(E − H) onto the en-
ergy eigenbasis, as obtained by direct numerical diagonalization of the
hamiltonian H. The numerical results are obtained in a box of linear
length ∼ 15λ and of grid step ∼ 0.2λ (λ = 532nm is the laser wave-
length). The disorder average is performed over 100 realizations of V(r),
with the parameters of the 3D speckle potential used in the experiments.

Classical percolation and trapping in a speckle disordered potential.
The percolation threshold, Ep, is the energy such that all classical par-
ticles of energy E < Ep are trapped in finite-size allowed regions. We
have numerically evaluated the percolation threshold of the 3D speckle
potential used in the experiment (both beams with the same polariza-
tion). Using various values of the grid step, the numerical calculations
provide an upper bound for the percolation threshold, Ep ≤ 4(1)×10−3VR.
Note that, above Ep, the fraction of classical trapping regions quickly de-
creases and, according to our numerical calculations, it essentially van-
ishes for E ≥ 8(1)× 10−3 VR. Taking into account the energy distribution
fi(E) calculated numerically, with or without the heuristic energy shift
(see text), we find that the fraction of classically trapped particles is neg-
ligible (� 1%). A similar calculation with perpendicularly polarized
beams yields a much higher percolation threshold Ep ' 0.18(1) VR (note
that the disordered potential probability distribution is not a decreasing
exponential maximum at VR = 0, in that case).
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