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Light-cone effect and supersonic correlations in one- and two-dimensional bosonic superfluids
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We study the spreading of density-density correlations in Bose-Hubbard models after a quench of the interaction
strength, using time-dependent variational Monte Carlo simulations. It gives access to unprecedented long
propagation times and to dimensions higher than one. In both one and two dimensions, we find ballistic light-cone
spreading of correlations and extract accurate values of the light-cone velocity in the superfluid regime. We show
that the spreading of correlations is generally supersonic, with a light-cone propagating faster than sound modes
but slower than the maximum group velocity of density excitations, except at the Mott transition, where all the
characteristic velocities are equal. Further, we show that in two dimensions the correlation spreading is highly

anisotropic and presents nontrivial interference effects.
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Introduction. In 1972 Lieb and Robinson demonstrated that
an effective light cone emerges in nonrelativistic quantum
many-body systems described by translation-invariant Hamil-
tonians, sums of finite-range interaction terms [1]. Specifically,
they showed that any causal response function

XAB(r9t) = —i (lIJ| [‘Q{(r’t)vl%(oro)] |\IJ)’ (1)

with ¢ > 0 and arbitrary |¥), decays exponentially for |r| >
vt provided <7(r,t) and AB(r,t) are local operators in the
Heisenberg form, i.e., such that [.«7(r,r),%(0,t)] is nonzero
only for r = 0. The velocity v is finite and can be upper
estimated by a properly defined operator norm of each local
interaction term [1,2]. The velocity v does not depend on
the wave function W), but only on the spectrum of the
Hamiltonian. It is remarkable that, even though |W) may
be highly entangled and possess long-range correlations, any
local perturbation needs a finite time to propagate up to a
given distance. Such a locality principle constitutes a rather
fundamental aspect in the dynamics of interacting many-body
quantum systems, which is attracting considerable attention
in recent years, mainly sparked by the impressive progress
in ultracold-atom experiments. These experiments allow for
a direct access to the nonequilibrium dynamics of relatively
simple and quasi-isolated systems, making it possible to
address issues that until recently were considered merely
academic [3-5].

A related question arises when one considers instead equal-
time correlations of the form

Nap(r,t) = (V| A (r,1)#0,t) — o (r,004(0,0) |¥). (2)

Although in Nyp(r,t) the measurement is instantaneous,
unlike in x4p(r,t), several arguments suggest that an horizon
effect emerges even for N4p(r,t), with a light-cone velocity
twice as large as the Lieb-Robinson bound [6,7]. Early
evidence of a light-cone effect in the dynamics induced
by interaction quenches in one-dimensional Bose-Hubbard
models was found in Ref. [8] using the time-dependent density-
matrix renormalization group (tDMRG) [9,10] approach and
confirmed experimentally in Ref. [11]. However, these first
results raise intriguing questions that are worth investigating.
On the one hand, outside the Mott insulator phase, the bosons
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form a superfluid with power-law correlations. The infinite
correlation length, alike a system right at criticality, would
suggest that the light-cone velocity is just once or twice
the sound velocity (i.e., the velocity of the critical modes)
for the correlation functions (1) and (2), respectively, as
predicted by conformal-field theory (CFT) [7]. The tDMRG
analysis appears to call into question the CFT prediction [8].
However, accurate determination of the propagation velocity
and comparison to the characteristic velocities of the system
remain open questions. On the other hand, the spreading of
correlations in dimensions higher than one constitutes an
almost unexplored land, where tDMRG approaches do not
apply. This question is particularly relevant in view of the
possibility of extending the experimental results [11,12] in
higher dimensions.

In this Rapid Communication we study these questions
using the recently introduced time-dependent variational
Monte Carlo (tVMC) approach [13], which allows us to
address asymptotically long propagation times and dimensions
higher than one. Specifically, we study the spreading of
density-density correlations after a quench in the interaction
strength of the Bose-Hubbard model in one (1D) and two (2D)
dimensions. For both cases in the superfluid regime, we find a
supersonic light-cone effect. More precisely, we find that the
light-cone velocity differs from both twice the sound velocity
and twice the maximum excitation velocity, except when
approaching the Mott transition, where these velocities are
equal. Moreover, we show that in 2D the correlation spreading
is highly anisotropic and present nontrivial interference effects.
The anisotropy of the correlation front is, however, simply
explained in terms of the lattice coordination within the
Manhattan metrics.

System and method. We consider nonrelativistic lattice
bosons described by the Bose-Hubbard Hamiltonian

__ i v _
HU) = <l%{:l)(bRbR,JrH.c.)jL 5 XR: nr(ng — 1), (3)

where R denotes a lattice site, (R,R’) a pair of nearest-neighbor
sites, b;; (bg) the creation (annihilation) operator of a boson
on site R, ng = bIsz the boson density on site R, and U the
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two-body interaction strength. In the following, the lattice
will be either a 1D chain or a 2D square lattice, with
periodic boundary conditions and average density (ng) = 1.
The system is first prepared in the ground state of JZ(Uj;). At
time ¢t = 0, it is then driven out of equilibrium upon realizing a
sudden quantum quench in the interaction strength, from Uj to
Us. We study the dynamics of the density-density correlation
function

NR,1) = (nr(®)no(t)) — (nr(0)n9(0)), “4)

where the average is over the ground state of .7°(U;) and the
density operators are evolved in time with 57 (Uy), i.e., Eq. (2)
where both ./ and £ are the density operators.

Our analysis makes use of the tVMC approach [13] that we
briefly outline here. The starting point is to define a class of
time-dependent variational many-body wave functions, which
we take of the Jastrow type

V(x,1) = (x|¥(1)) = exp |:Z Otr(t)ﬁr(X)] Po(x),  (5)

where X spans a configuration basis, ®y(x) is a bosonic
time-independent state, and «,(t) are complex variational
parameters coupled to a set of operators ¢, that are diagonal
in the x basis, i.e., (X|0,|x') = 8xx 0,(x). The explicit form
of these operators and their total number define the variational
subspace. Here we use the Fock basis, x = {n;}, and the com-
plete set of density-density correlations, &, = ) g IRNR+r,
where r spans all independent distances on the lattice. The
initial state is chosen to be the variational Jastrow ground state
of J#(U;) with |®,) the noninteracting-boson ground state
of (0). This choice provides an excellent approximation of
the exact ground state of 7 (U;) [14,15]. For instance, the
superfluid-insulator transition is obtained for U}* >~ 5 and
U;* ~ 21 in 1D and 2D, respectively, in fair agreement with
exact results [16,17].

The variational dynamics of the system is fully contained in
the trajectories of the variational parameters «,(¢). The latter
are obtained by minimizing the Hilbert-space distance between
the infinitesimal exact dynamics and the time derivative of
the variational state (5) at each time step. This process is
equivalent to project the exact time-evolved wave function
onto the variational subspace. It yields a closed set of coupled
equations of motion:

i ZSr,r’(t)dr/(t) = <ﬁr%>t - (ﬁr)t(%>tv (6)

r

where S, (t) = (0, 0,); — (0},);{0,), and the quantum av-
erages are taken over the time-dependent variational state (5).
At each time, the quantum averages appearing in Eq. (6)
are computed by variational Monte Carlo simulations and
the linear system of equations (6) is solved for a,(z). The
trajectories «,(t) are then found by time integrating the
functions «,(2).

We emphasize that our variational scheme is symplectic and
exactly conserves both the total energy and the square modulus
of the wave function. In the numerical calculations, we use
a sufficiently small time step, §¢ = 0.01, and a fourth-order
Runge-Kutta integration scheme, which conserves the energy
with a very small systematic error of the order of one part in
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FIG. 1. (Color online) Spreading of correlations in a 1D chain.
(a) Density-density correlations N(R,t) versus separation and time
for a quench in the interaction strength from U; =2 to Uy = 4.
The inset shows the instantaneous velocity as obtained from tVMC
(red points) and exact diagonalization (for a 12-site lattice; blue
point). (b) Time dependence of N(R,¢) for various values of R. For
clarity, the curves are vertically shifted by a value proportional to
R, and the linear light-cone wave front clearly appears. (c) Relative
energy fluctuations versus time for various values of U;. The tVMC
calculations are performed for 200 [(a) and (b)] or 500 (c) sites.

a thousand, for times up to t+ = 100. The tVMC is therefore
intrinsically stable, amenable to simulating time scales that
exceed by about two orders of magnitude those achievable by
tDMRG in 1D, and applies as well in higher dimensions.

Results. Let us first discuss our results for the 1D chain.
Figure 1(a) shows the density-density correlation N(R,?) as
a function of separation and time for a quantum quench from
U; = 2 to Ur = 4. Figure 1(b) shows vertical cuts of the latter,
plotted with a vertical shift proportional to R for clarity. A
light-cone effect is clearly visible: N(R,t) is unaffected at
short times, then develops a maximum at a finite time #*(R),
and finally undergoes damped oscillations. Similar results are
found for all quenches discussed below. For large enough
separation, the activation time #*(R) depends linearly on the
separation, t*(R) = vic R, which defines the light-cone velocity
V. More precisely, the instantaneous correlation-spreading
velocity, vipg(R) = m, is shown as a function of
R in the inset of Fig. 1(a). The ballistic regime, where vj,g(R)
approaches v, is achieved only for sufficiently long time
(tban ~ 4). The tVMC method allows us to simulate very long
times in the asymptotic ballistic regime (¢ ~ 100), and extract
accurate values of vy.

At variance with the total energy, higher moments of the
Hamiltonian are not strictly conserved by the tVMC scheme,
as illustrated in Fig. 1(c). Nevertheless, despite a slight time
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FIG. 2. (Color online) Light-cone velocity v, versus the final
interaction strength Uy, for various values of the initial interaction
strength U;. (a) 1D chain. (b) 2D square lattice. Also shown are twice
the sound velocity, 2v;, and twice the maximum excitation velocity,
2vn, for 72(Uy).

dependence of the energy fluctuations at very short times,
the long-time value always coincides with the initial value,
showing the accuracy of our variational method. In order
to further check it, we compared our results (red points) to
exact diagonalization (blue point) at time ¢ ~ 0.5 close to
the maximal deviation of the energy fluctuations [inset of
Fig. 1(a)]. We found very good agreement, hence confirming
the accuracy of tVMC [18].

The very existence of a finite propagation velocity and
its microscopic origin can be justified as follows. Assume
|n) and |m) are two eigenstates of 77’ (Uy) with eigenvalues
E; and E,,, and total momentum P + q and P, respectively,
such that (/| o |m), with o7 =Y, &/ (r)e'?", is finite. If
&/ (r) is a bounded local operator, then w;,,(P,q) = E; — E,,
is not an extensive quantity, though E; and E, are both
extensive. For large r, i.e., small ¢, such excitation can
propagate coherently only if |r| 2 ¢ |dqw;,, (P,0)]. This defines
a maximum propagation velocity vy = max|dqw;,(P,0)| to
be identified with the Lieb-Robinson bound. In the case of
Eq. (2), if |¥) is an eigenstate of defined total momentum,
then two counterpropagating excitations are involved due to
momentum conservation, and the bound velocity is 2vy,. For
small quenches towards a gapless phase, one may expect that
only low-energy phonon excitations are involved, and that the
light-cone velocity is twice the sound velocity, 2v;.

The value of v is plotted in Fig. 2(a) as a function of
the final interaction strength Uy for various values of initial
interaction strength U;. We find that v, increases with Uy,
which is readily understood by the fact that the rigidity of
the final lattice increases with U;. It is remarkable, however,
that v, does not depend on U;. In Fig. 2, the tVMC value for
v 1s compared to the characteristic velocities of the density
excitations, i.e., 2vy, and 2vg. The latter ones are computed
as vy, = max{0E(q)/dq} and vy = lim,_.o 0E(q)/dq, where
E(q) is the energy of the density modes |y(q)) = p(q)|V¥o),
with p(g) the Fourier transform of the density operator
[14,19]. We generically find that the light-cone velocity
significantly differs from twice both these velocities. On the
one hand, the maximum velocity allowed by the propagation
of excitations is not achieved, in contrast to quenches from the
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Mott phase [11,21]. On the other hand, a supersonic regime is
achieved in all the superfluid region of the out-of-equilibrium
phase diagram, even for very small quenches. For instance,
in the case of a quench from U; =1 to Uy = 1.1, we find
Ve = 3.39(3) and 2vs = 2.78 [see Fig. 2(a)]. Therefore,
high-energy excitations beyond the sound-wave regime are
always generated by the quench dynamics. It corresponds
to short-distance effects that are always significant but not
accounted for in CFT [7]. A form of universality is recovered
only in the neighborhood of the Mott transition. When the final
interaction strength approaches the critical value, U* >~ 5 at
the variational level, the excitation modes exhibit a maximal
velocity at zero momentum and all the characteristic velocities,
Vle, 2Um, and 2vg, coincide. It suggests that the results of CFT
are correct only when the quantum quench is performed right at
a critical point and not in the whole quasi-long-range-ordered
phase with infinite correlation length, i.e., for Uy < UJ™.

We now turn to the 2D square lattice. The spreading of
correlations in dimensions higher than one constitutes an
almost unexplored land where only mean-field methods have
been applied so far [22-27]. The latter are reliable only in
the unphysical limits of large lattice connectivity or large
internal “flavor” degeneracy. In contrast, tVMC takes into
account relevant dynamical correlations and can be applied
to the physical Bose-Hubbard Hamiltonian in any dimension.
Figure 3(a) shows the correlation function N(R,¢) at equally
separated times, for a quench from U; = 2 to Uy = 4 in the
2D square lattice. It shows a clear spreading of correlations.
The correlation front is a square with principal axes along
the diagonals of the lattice. In order to understand this,
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FIG. 3. (Color online) Spreading of correlations in a 20 x 20-
site square lattice for a quench from U; = 2 to Uy = 4. (a) Density-
density correlations N(R,?) at fixed times 7, = n/v,.. The 45°-tilted
squares denote the points on the correlation front. (b) Activation
time #*(R) versus Manhattan distance dy,,(R) for various points R.
The insets show the ensemble of points R with equal dy,,(R) at the
corresponding Manhattan distance. The dashed line is a linear fit to
the data. (c) Intensity of the correlation signal (dots) and number
of paths (shaded areas) versus the azimuthal angle of the points on
correlation fronts. Each quadrant corresponds to a polar plot at the
four different times indicated in the figure.
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notice that nearest-neighbor hopping in the square lattice
induces a natural metrics that is of the Manhattan type [28],
rather than Euclidean. Points at equal Manhattan distance
dman(R) = |R¢| 4 |R,| are thus located on 45°-tilted squares.
Figure 3(b) shows the activation time #*(R), defined as the
time when the first maximum of N(R,?) appears, versus the
Manhattan distance for various lattice sites. The data for
various R but same dp,,(R) collapse, which confirms that
the Manhattan distance is the relevant metrics. Moreover,
within the Manhattan metrics, a clear ballistic behavior is
observed, which allows us to define the light-cone velocity
Ve = dvan(R)/t*(R). In Fig. 2(b), we show the extracted
values of v, as a function of Uy for various values of Uj,
together with twice the sound velocity for the 2D square
lattice. As for the 1D chain, a strong discrepancy between
these two velocities is found also in 2D. This outcome
indicates that high-energy excitations dominate the dynamical
evolution even for small quenches, although the initial state is
genuinely off-diagonal long-range ordered. It contrasts with
low-energy descriptions that take into account only sound
modes.

As can be seen in Fig. 3(a), the correlation signal shows
complicated, anisotropic patterns, as a result of nontrivial
interference effects. For instance, at variance with the 1D case,
the time dependence of N(R,?) can show several secondary
maxima with a stronger amplitude than the wave front. The
anisotropy can, however, be understood on the wavefront
where the interference effects are weak. Indeed, two points
(0,0) and R = (R,,R,) are generically connected by a number
Nuan(R,d) of paths of total length d, which do not depend only
on dyan(R). On the wave front, d = dyan(R) and Ny [R,d] =
(IRx] + [RyD!/IR.|'|Ry|!, which grows from 1 on the angles
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to d!/[(d/2)!]* on the center of the sides. This explains that
the maxima are located on the main axis of the correlation
square. More precisely, Fig. 3(c) shows both the intensity of
the correlation signal (points) and the number of connecting
paths Nyvan[R,d] (shaded areas), for various times and various
points on the wave front. The quantitative agreement between
the two confirms that the main source of anisotropy on the
correlation front is geometrical.

Conclusions. We have studied the spreading of density-
density correlations after a quantum quench in 1D and 2D
Bose-Hubbard models, using the recently developed tVMC
approach. Our results show a light-cone ballistic expansion
of correlations in both cases, and provide accurate values
of the light-cone velocity. Our main result is that the light-
cone velocity significantly differs from both twice the sound
velocity and twice the maximum excitation velocity, except
when approaching the Mott transition. Moreover, in 2D, the
correlation signal is highly anisotropic and the correlation front
is a square, which is due to the Manhattan metrics imposed by
the nearest-neighbor lattice coordination. Our results provide
insight on the spreading of correlations in interacting quantum
systems. They also offer an important benchmark for future
experiments with ultracold atomic gases in optical lattices,
especially in dimensions higher than one.
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