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We introduce the time-dependent variational Monte Carlo method for continuous-space Bose gases. Our
approach is based on the systematic expansion of the many-body wave function in terms of multibody
correlations and is essentially exact up to adaptive truncation. The method is benchmarked by comparison
to an exact Bethe ansatz or existing numerical results for the integrable Lieb-Liniger model. We first show
that the many-body wave function achieves high precision for ground-state properties, including energy
and first-order as well as second-order correlation functions. Then, we study the out-of-equilibrium, unitary
dynamics induced by a quantum quench in the interaction strength. Our time-dependent variational
Monte Carlo results are benchmarked by comparison to exact Bethe ansatz results available for a small
number of particles, and are also compared to quench action results available for noninteracting initial
states. Moreover, our approach allows us to study large particle numbers and general quench protocols,
previously inaccessible beyond the mean-field level. Our results suggest that it is possible to find correlated
initial states for which the long-term dynamics of local density fluctuations is close to the predictions of a

simple Boltzmann ensemble.
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I. INTRODUCTION

The study of equilibration and thermalization properties
of complex many-body systems is of fundamental interest
for many areas of physics and natural sciences [1]. For
systems governed by classical physics, an exact solution of
Newton’s equations of motion is often numerically feasible,
using, for instance, molecular-dynamics simulations. For
quantum systems, the mathematical structure of the time-
dependent Schrodinger equation is instead fundamentally
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more involved. Quantum Monte Carlo algorithms, the de
facto tool for simulating quantum many-body systems at
thermal equilibrium [2—4], cannot be directly used to study
time-dependent unitary dynamics. Out-of-equilibrium
properties are then often treated on the basis of approx-
imations drastically simplifying the microscopic physics.
Irreversibility is either enforced with an explicit breaking of
unitarity, e.g., within the quantum Boltzmann approach, or
the dynamics is reduced to mean-field description using
time-dependent  Hartree-Fock and  Gross-Pitaevskii
approaches. Although these approaches may qualitatively
describe thermalization [5,6], their range of validity cannot
be assessed because genuine quantum correlations and
entanglement are ignored.

For specific systems, exact dynamical results can be
derived. This is the case for integrable 1D models, for
which Bethe ansatz (BA) solutions exist [7]. However, also
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in this case many open questions still persist. For example,
the exact evaluation of correlation functions for out-of-
equilibrium dynamics is at present an unsolved problem.
As a result, despite important theoretical and experimental
progress [8—15], a complete picture of thermalization (or its
absence), e.g., based on general quench protocols [16], is
still missing.

Numerical methods for strongly interacting systems face
important challenges as well. Numerical renormalization
group and density-matrix renormalization group (DMRG)
approaches provide an essentially exact description of
arbitrary 1D lattice systems in and out of equilibrium
[17-20], but they have less predictive power when applied
to continuous-space systems. On one hand, multiscale
extensions of the DMRG optimization scheme to the limit
of continuous-space lattices [21] are, to date, limited to
relatively small system sizes [22]. On the other hand,
efficient ground-state optimization schemes for continuous
quantum field matrix product states (cMPS) [23] have been
introduced only very recently [24], and applications to
quantum dynamics are still to be realized. A further
formidable challenge is the efficient extension of these
approaches to higher dimensions, which is a fundamentally
hard problem.

Another class of methods for strongly interacting systems
is based on variational Monte Carlo (VMC) methods,
combining highly entangled variational states with robust
stochastic optimization schemes [25]. Such approaches have
been successfully applied to the description of continuous
quantum systems, in any dimension and not only in 1D
[26,27]. More recently, out-of-equilibrium dynamics has
become accessible with the extension of these methods to
real-time unitary dynamics, within the time-dependent varia-
tional Monte Carlo (tVMC) method [28,29]. So far, the
tVMC approach has been developed for lattice systems with
bosonic [28,29], spin [30-32], and fermionic [33] statistics,
yielding a description of dynamical properties with an
accuracy often comparable with MPS-based approaches.

In this paper, we extend the tVMC approach to access
dynamical properties of interacting quantum systems in
continuous space. Our approach is based on a systematic
expansion of the wave function in terms of few-
body Jastrow correlation functions. Using the 1D Lieb-
Liniger model as a test case, we first show that the inclusion
of high-order correlations allows us to systematically
approach the exact BA ground-state energy. Our results
improve by orders of magnitude on previously published
VMC and cMPS results, and are in line with the latest state-
of-the-art developments in the field. We further compute
single-body and pair correlation functions, hardly acces-
sible by current BA methods. We then calculate the time
evolution of the contact pair correlation function following
a quench in the interaction strength. For the noninteracting
initial state, we benchmark our results to exact BA
calculations available for a small number of bosons and

further compare to the quench action approach for large
systems approaching the thermodynamic limit. Finally, we
apply our method to the study of general quenches from
arbitrary initial states, for which no exact results in the
thermodynamic limit are currently available.

II. METHOD

A. Expansion of the many-body wave function

Consider a nonrelativistic quantum system of N identical
bosons in d dimensions, and governed by the first-
quantization Hamiltonian

n=-7.

1 N
i=1

N
o -
V$+Zvl(xi)+izvz(xi»xj)v (1)
i=1

i#]

where v(X) and v,(X,y) are, respectively, a one-body
external potential and a pairwise interparticle interaction
[34]. Without loss of generality, a time-dependent N-body
state can be written as ®(X,7) =exp[U(X;?)], where
X = X|, X, ..., Xy is the ensemble of particle positions
and U is a complex-valued function of the N-particle
coordinates, RV*¢ — C. Since the Hamiltonian Eq. (1)
contains only two-body interactions, it is expected that an
expansion of U in terms of few-body Jastrow functions
containing at most m-body terms rapidly converges
towards the exact solution. Truncating this expansion up
to a certain order, M < N, leads to the Bijl-Dingle-Jastrow-
Feenberg expansion [35-38],

- 1 .-
UM(X;1) = Z”l(xi;t) +EZ”2(X,',X,-;¢)

i=1 i

1 RN -
+W Z uM(xil,xiz,...,x,-M;t), (2)
L FLFE Ly

where u,,(r;t) are functions of m particle coordinates,
r=X X, )?l and of the time ¢. A global constraint on
the function U(X,¢) is given by particle statistics. In
the bosonic case, we demand that U(x,X,...,Xy) =
U(X5(1)s Xg(2)» -+ -2 Xo(n))» for all particle permutations o.
In general, the functions u,,(r;¢) can have an arbitrarily
complex dependence on the m particle coordinates, which
can prove problematic for practical applications.
Nonetheless, a simplified functional dependence can often
be imposed, resulting from the two-body character of the
interactions in the original Hamiltonian. For m > 3,
u,,(r; 1) can be conveniently factorized in terms of general
two-particle vector and tensor functions following
Ref. [26]. Details of this approach and the present imple-
mentation are presented in Appendixes A and F.

An appealing property of the many-body expansion
Eq. (2) is that it is able to describe intrinsically nonlocal
correlations in space. For instance, the two-body
uz()?,)?Jt) as well as any m-body function u,(r;?),
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can be long range in the particle separation |x; — X;|. This
nonlocal spatial structure allows for a correct description of
gapless phases, where a two-body expansion may already
capture all the universal features, in the sense of the
renormalization group approach [39]. This is in contrast
with the MPS decomposition of the wave function, which is
intrinsically local in space.

B. Time-dependent variational Monte Carlo method

The time evolution of the variational state Eq. (2) is
entirely determined by the time dependence of the Jastrow
functions u,,(r; ). In order to establish optimal equations
of motion for the variational parameters, we note that the
functional derivative of U(X;¢) with respect to the varia-
tional, complex-valued, Jastrow functions u,,(r; 1),

D) = pal®) )

Su,, (r; 1)

yields the m-body density operators

= S TIo0e,-r) @)

CiFFE ]

The expectation values of the operators p,, over the
state |®(¢)) give the instantaneous m-body correlations.
For instance, (p(r, 1)), = 32ic;(6(xi = r1)8(x; = r2)),
where (---), = (D(1)|...|D(1)) /(P (7)|D(r)), is propor-
tional to the two-point density-density correlation function.

We can then express the time derivative of the truncated
variational state U™)(X;t) using the functional deriva-
tives, Eq. (3), as a sum of the few-body density operators up
to the truncation M; i.e.,

oU(X.) =Y [ depydun(ri. (5

The exact wave function satisfies the Schrodinger
equation i0,U(X;t) = Eioo(X,1), where E.(X;t) =
((X|H|D(1))/(X|D(2))) is the so-called local energy.
The optimal time evolution of the truncated Bijl-Dingle-
Jastrow-Feenberg expansion Eq. (2) can be derived
imposing the Dirac-Frenkel time-dependent variational
principle [40,41]. In geometrical terms, this amounts
to minimizing the Hilbert-space norm of the residuals

RM)(X: 1) = [1i0, UM (X: 1) — EM(X:1)||, thus yielding
a variational many-body state as close as possible to the
exact one [42]. The minimization can be performed
explicitly and yields a closed set of integro-differential

equation for the Jastrow functions u,,(r;7):

. ;8w (r)), oy . 6(H),
;/drmatup(r,t)——lm. (6)

In practice, these equations are numerically solved for the
time derivatives O,u,(r’; t) at each time step . The expect-
ation values taken over the time-dependent state (-),, which
enter Eq. (6), are found via a stochastic sampling of the
probability distribution TI(X, ¢) = |®(X, ¢)|?. This is effi-
ciently achieved by means of the Metropolis-Hastings
algorithm, as per conventional Monte Carlo schemes
(see Appendix B for details). It then yields the full time
evolution of the truncated Bijl-Dingle-Jastrow-Feenberg
state Eq. (2) after time integration.

The tVMC approach as formulated here provides, in
principle, an exact description of the real-time dynamics of
the N-body system. The essential approximation lies,
however, in the truncation of the Bijl-Dingle-Jastrow-
Feenberg expansion to the M most relevant terms. In
practical applications, the M =2 or M = 3 truncation is
often sufficient. Systematic improvement beyond M = 3 is
possible [26], but may require substantial computational
effort.

III. LIEB-LINIGER MODEL

As a first application of the continuous-space tVMC
approach, we consider the Lieb-Liniger model [43]. On one
hand, some exact results and numerical data are available,
allowing us to benchmark the Jastrow expansion and the
tVMC approach. On the other hand, several aspects of the
out-of-equilibrium dynamics of this model are unknown,
which we compute here for the first time using the tVMC
approach.

The Lieb-Liniger model describes N interacting bosons
in one dimension with contact interactions. It corresponds
to the Hamiltonian Eq. (1) with v;(x) = 0 and v,(x,y) =
g6(x —y), where g is the coupling constant. Here, we
consider periodic boundary conditions over a ring of length
L and the particle density n = N/L. The density depend-
ence is as usual expressed in terms of the dimensionless
parameter y = mg/h’n. The Lieb-Liniger model is the
prototypal model of continuous one-dimensional strongly
correlated gas exactly solvable by the Bethe ansatz [43].
This model is experimentally realized in ultracold atomic
gases strongly confined in one-dimensional optical traps,
and several studies on out-of-equilibrium physics have
already been realized [14,44—48].

As a result of translation invariance, we have
u;(x;t) = const, and the first nontrivial term in the
many-body expansion Eq. (2) is the two-body, translation
invariant, function u, (|x — y|; 7). To compute the functional
derivatives of the many-body wave function, we proceed
with a projection of the continuous Jastrow fields u,,(r; ¢)
onto a finite-basis set. Here, we find it convenient to
represent both the field Hamiltonian Eq. (1) and the Jastrow
functions on a uniform mesh of spacing a, leading to n,,, =
[L/(2a)] variational parameters for the two-body Jastrow
term. In the following, our results are extrapolated to the
continuous limit, corresponding to a — 0. The finite-basis
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projection as well as the numerical time integration of Eq. (6)
are detailed in Appendix C and benchmarked against exact
diagonalization results for N = 3 in Appendix E.

A. Ground-state properties

To assess the quality of truncated Bijl-Dingle-Jastrow-
Feenberg expansions for the Lieb-Liniger model, we start
our analysis considering ground-state properties. An exact
solution can be found from the Bethe ansatz and gives
access to exact ground-state energies and local properties
[43]. Other nonlocal properties are substantially more
difficult to extract from the BA solution, and unbiased
results for ground-state correlation functions have not been
reported so far. In order to determine the best possible
variational description of the ground state within our many-
body expansion, different strategies are possible. A first
possibility is to consider the imaginary-time evolution
|¥(7)) = e ™|W¥,), which systematically converges to
the exact ground state in the limit 7 > A, where A| =
E, — E, is the gap with the first excited state on a finite
system and provided that the trial state ¥, is nonorthogonal
to the exact ground state. Imaginary-time evolution in the
variational subspace can be implemented considering the
formal substitution t — —iz in the tVMC equations
[Eq. (6)]. The resulting equations are equivalent to the
stochastic reconfiguration approach [49]. However, direct
minimization of the variational energy can be significantly
more efficient, in particular, for systems becoming gapless
in the thermodynamic limit, where A; ~ poly(1/N). Given
the gapless nature of the Lieb-Liniger model, we find it
computationally more efficient to adopt a Newton method
to minimize the energy variance [50].

For the ground state, the many-body expansion truncated
at M = 2 is exact not only in the noninteracting limity = 0
but also in the Tonks-Girardeau limit y — oo. In this
fermionized limit, the wave function can be written as

1072 T T T TTTTIT T T T TTTTIT T T T TTTTIT T T T TTTT1T:
103k ‘/:///k" @ |
1074F E
=
E 1075 | —— U®
e U®
10°5E —»— cMPS;
, —— cMPS,
107 @) E
« Uaa
10*8 1 1L L1111l 1 1L L1111l 1 1L L1111l 1 111111l
107! 100 10t 102 103

~

FIG. 1.

the modulus of a Vandermonde determinant of plane
waves, corresponding to the two-body Jastrow function
uy(r) = log (sin rz/L) [51]. To assess the overall quality of
pair wave functions for ground-state properties, we start
comparing the variational ground-state energies E obtained
for M = 2 with the exact BA result. In Fig. 1(a), we show
the relative error AE/E as a function of the interaction
strength y. We find that the relative error is lower than 10~*
for all values of y and the accuracy of our two-body Jastrow
function is superior to previously published variational
results based on either cMPS [23] or VMC [52] methods
[see Fig. 1(a) for a quantitative comparison]. Notice that the
improvement with respect to previous VMC results is due
to the larger variational freedom of our u,(r) function,
which is not restricted to any specific functional form as
done in Ref. [52].

Even though the accuracy reached by the two-body
Jastrow function may already be sufficient for most
practical purposes for all values of y, we also consider
higher-order terms with M = 3; see Fig. (2)(a). The
introduction of the third-order term yields a sizable
improvement such that the maximum error is about 3
orders of magnitude smaller than original cMPS results
[23], and features a similar accuracy of recently reported
cMPS results [24]. Overall, our approach reaches a pre-
cision on a continuous-space system, which is comparable
to state-of-the-art MPS or DMRG results for gapless
systems on a lattice [53].

Finally, to further assess the quality of our ground-state
ansatz beyond the total energy, we also study nonlocal
properties of the ground-state wave function, which are
not accessible by existing exact BA methods. In Figs. 1(b)
and I(c), we show, respectively, our results for the
off-diagonal part of the one-body density matrix,
g1(r) o< (¥ (r)¥(0)), and for the pair correlation function,
g2(r) o< (P (r)¥(r)¥P'(0)¥(0)), where W(r) is the bosonic

1.0 T UL 1.1
091 (b) ] LOF (@)
0.8} S =02] 0.9
0.7 g 0.8
5 =2 S 0.7
=6l v il >
0.6
5k B 5
05 e \ 0.5
——  cMPS, N 0.4 2~ eMPS, ]
04 IR R ] 03 L1y
L0 100 1072 107t 10°
T T

Ground-state properties of the Lieb-Liniger model as obtained from different variational approaches: (a) relative accuracy of

the ground-state energy, (b) one-body density matrix, (c) density-density pair correlation functions. U?) and U®) denote results for the
two- and three-body expansion (present work), Uff(); is the parametrized two-body Jastrow state of Ref. [52], cMPS; results are from
Ref. [23], and cMPS, are those very recently reported in Ref. [24]. Distances r are in units of the inverse density 1/n. Our variational
results are obtained for N = 100 particles. Finite-size corrections on local quantities are negligible, and very mildly affect the reported

large-distance correlations. Overall statistical errors are of the order of symbol sizes for (a) and line widths for (b) and (c).
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field operator. We find an overall excellent agreement with
the results that have been obtained with cMPS in Ref. [24],
except for some small deviations at large values of r, which
we attribute to residual finite-size effects in our approach. We
find that the addition of the three-body terms does not
significantly change correlation functions. Already at the
two-body level, the present results are statistically indistin-
guishable from exact results obtained using our implemen-
tation [54] of the worm algorithm [55] and for the same
system (not shown).

B. Quench dynamics

Having assessed the quality of the ansatz for local and
nonlocal ground-state properties, we now turn to the study
of the out-of-equilibrium properties of the Lieb-Liniger
model. We focus on the description of the unitary dynamics
induced by a global quantum quench of the interaction
strength, from an initial value y; to a final value y;. Exact
BA results are available only in the case of a noninteracting
initial state (y; = 0). Even in this case, the dynamical BA
equations can be exactly solved only for a modest number
of particles with further truncation in the number of energy
eigenmodes [56,57], N < 10, since the complexity of the
BA solution increases exponentially with the number of
particles. Simplifications in the thermodynamic limit are
exploited by the quench action [58], and have recently been
applied to quantum quenches starting from a noninteracting
initial state [57]. In the following, we first compare our
tVMC results to these existing results, and then present new
results for quenches following a nonvanishing initial
interaction strength.

To assess the quality of the time-dependent wave
function, we compare our results for the evolution of local
density-density correlations g, (0, ¢) with the truncated BA
results obtained in Refs. [56,59] for a small number of
particles, N =6. Appendix E also provides further

1.0

0.8\

0.6

92(0)

0.4

0.2

0.0 0.1 0.2 0.3

validation of our method accessing ¢, (r, t) at nonvanishing
distances. The comparison shown in Fig. 2(a) shows an
overall good agreement. The tVMC and BA results are
indistinguishable for weak interactions (y, = 1) at the scale
of the figure; similarly, for this interaction strength, tVMC
calculations based on U and U®) agree with each other
up to possible dephasing effects not visible within our noise
level. For larger interactions, we notice systematic but small
differences between BA and tVMC with M =2 or M =3
results. These differences amount to a small increase in the
amplitude of the oscillations. This effect tends to increase
with the interaction strength, being hardly visible for y = 1
and more pronounced for y = 10. However, these oscil-
lations result at large times from the discrete mode structure
due to the very small number of particles. They vanish in
the physical thermodynamic limit. In turn, the comparison
at small particle numbers indicates an accuracy better
than a few percent for time-averaged quantities in the
asymptotic large time limit up to y = 10, with results at
M =3 systematically improving on the M =2 case.
Concerning small and intermediate time scales, we do
not observe systematic deviations between the tVMC
results and the BA solution. In particular, the relaxation
times are remarkably well captured by the tVMC approach.
On the basis of this comparison and of the comparison for
three particles with exact diagonalization results presented
in Appendix E, we conclude that tVMC approach allows
accurate quantitative studies of both the relaxation and
equilibration dynamics. This careful benchmarking now
allows us to confidently apply the tVMC approach regimes
that are inaccessible to exact BA, namely large but finite N
and long times, as well as the case of nonvanishing initial
interactions.

Let us consider relaxation of density correlations for a
large number of particles, close to the thermodynamic limit
(here, we use N = 100). As we show in Fig. 2(b), we notice

1.0} — U@
(b) - QA

0.0 0.4 0.8 1.2

FIG. 2. Time-dependent expectation value of local two-body correlations after a quantum quench from a noninteracting state, y; = 0,
to 7. (a) tVMC results are compared with BA results obtained for a small number of particles [56,59]. The correlation function is
rescaled to have g,(0,0) = 1. (b) tVMC results for N = 100 particles and y, = 1, 2, 4, 8 (from top to bottom) compared to the quench
action (QA) predictions from Ref. [57] (dashed lines), to the Boltzmann thermal averages at the effective temperature 7* (dot-dashed
lines), and to the GGE thermal averages prediction (rightmost dashed lines). Statistical error bars on tVMC data are of the order of the
line widths.
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FIG. 3. Time-dependent expectation value of local two-body

correlations after a quantum quench from the interacting ground
state at y; = 1 (a) and y; = 4 (b). Long-term dynamical averages
(red continuous lines) are compared to thermal averages at the
effective temperature set by energy conservation (black dashed
lines). Uncertainties on the thermal averages are of the order of
the line width, and are larger for small values of y.

that the amplitudes of the large-time oscillations, attributed
to the discrete mode spectrum, are now drastically sup-
pressed compared to the quenches with N = 6. After an
initial relaxation phase, the quantity ¢,(0, ) approaches a
stationary value. Comparing our curves with those obtained
with the quench action method, we find a qualitatively good
agreement, albeit a general tendency to underestimate the
quench action predictions is observed.

We now turn to quenches from interacting initial states
(y; #0) to different interacting final states for which no
results have been obtained by means of exact BA nor the
simplified quench action method so far. In Fig. 3, we show
the asymptotic equilibrium values obtained with our tVMC
approach for quantum quenches from y; =1 (left-hand
panel) and y; = 4 (right-hand panel) to several values of
v¢- Since, by the variational theorem, the ground state of H;
gives an upper bound for the ground-state energy of H, the
system is pushed into a linear combination of excited states of
the final Hamiltonian. For systems able to thermalize to the
Boltzmann ensemble (BE), relaxation to a stationary state
described by the density matrix pp. = e /7" at an
effective temperature 7*, would occur. Comparing the sta-
tionary value ¢, (0) of our tVMC calculations at long times to
the thermal values of the pair correlation functions g2 (0), a
necessary condition for simple Boltzmann thermalization is
given by g, = gb". The effective temperature 7* is deter-
mined by imposing the energy expectation value of the final
Hamiltonian 7, in the ground state ®(y;) of the initial
Hamiltonian, (H )« = (@g(y;)|H|Po(;)). Here, the ther-
mal expectation value, (H )7+ at the equilibrium temperature
T* is computed from the Yang-Yang BA equations [60]. The
quantity (H)z. then depends on a single parameter 7™,
which is fitted to match the value of (@ (y;)|H ;|Py(y;))-

As we show in Fig. 2(b), Boltzmann thermalization
certainly does not occur in the case for the Lieb-Liniger
model when quenching from a noninteracting state, y; = 0,
where we find g, # ¢ . This can be understood in terms of
the existence of dynamically conserved charges (beyond
energy and density conservation), which can yield an
equilibrium value substantially different from the BE
prediction. In particular, it is widely believed that the
generalized Gibbs ensemble (GGE) is the correct thermal
distribution approached after the quench [61,62]. Several
constructive approaches for the GGE have been put
forward in past years [8,9,57], and the quench action
predictions reported in Fig. 2(b) converge to the GGE
predictions for the thermal values. In Fig. 2(b), we also
show the thermal GGE values ngGE (rightmost dashed
lines), and note that our results are much closer to the GGE
predictions than the simple BE. Deviations from the
asymptotic GGE results are observed at large 7, a regime
in which the accuracy of our approach is still sufficient to
resolve the difference between the BE and the long-term
equilibration value.

For correlated initial ground states y; # 0, GGE predic-
tions are fundamentally harder to obtain than for the
noninteracting initial states, and the BE is the only
reference thermal distribution we can compare with at this
stage. From our results we observe that the difference
between ¢, and the simple BE prediction ¢7" is quantita-
tively reduced; see Fig. 3. In particular, for y; = 4, the
stationary values ¢, are quantitatively close to the ones
predicted by the Boltzmann thermal distribution at the
effective temperature 7*. Even though this quantitative
agreement is likely to be coincidental, the regimes of
parameter quenches we study here provide guidance for
future experimental studies. In particular, it will be of great
interest to understand whether a crossover from a strongly
non-Boltzmann to a close-to-Boltzmann thermal behavior
might occur as a function of the initial interaction strength
also for other local observables.

IV. CONCLUSIONS

In this paper, we introduce a novel approach to the
dynamics of strongly correlated quantum systems in
continuous space. Our method is based on a correlated
many-body wave function systematically expanded in
terms of reduced m-body Jastrow functions. The unitary
dynamics in the subspace of these correlated states is
realized using the time-dependent variational Monte Carlo
method. We demonstrate the possibility of performing
calculations up to the three-body level, m < 3, for the
Lieb-Liniger model, for both static and dynamical proper-
ties. The improvement from m = 2 to m = 3 provides an
internal criterion to judge the validity of our results
whenever exact results are unavailable. Benchmarking
the tVMC approach with exact or numerical approaches
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whenever available, we find a very good agreement with
existing results. For static properties, our approach is at the
level of state-of-the-art MPS techniques in lattice systems
and of the latest cMPS results for interacting gases. For
dynamical properties, we investigate, for the first time,
general interaction quenches, which are at the moment
unaccessible to Bethe ansatz approaches. Since the general
structure of our t-VMC method does not depend on the
dimensionality of the system, it can be directly applied to
bosonic systems in higher dimensions with a polynomial
increase in computational cost. The methods we present
here therefore pave the way to accurate out-of-equilibrium
dynamics of two- and three-dimensional quantum gases
and fluids beyond mean-field approximations.
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APPENDIX A: FUNCTIONAL STRUCTURE
OF MANY-BODY TERMS

The local RM)(X;1) = i0, UM (X;1) —
E(M)(X;t) are vanishing if the Schrodinger equation is

loc
exactly satisfied by the many-body wave function truncated

residuals

at some order M. The local energy E1 )(X t), however,
may contain effective interaction terms involving a number
of bodies larger than M, which leads to a systematic error in
the truncation. However, the structure of these additional
terms stemming from the local energy can be systemati-
cally used to deduce the functional structure of the higher-
order terms. For example, the one-body truncated local
energy reads, for one-dimensional particles,

l(oc *__Z{a ul(xl’

-l-Zvl(x, 2202 Xi\ Xj),
i

i#j

24 a)zc[ul(xi; 1}

(A1)

and contains a two-body term that cannot be accounted for
exactly by u;. Introduction of a symmetric two-body
Jastrow factor u,(x;, x;;¢) then leads to

EG(X:1) = EJ(X:0)+
——Za g (x5 0)0, up (X7, x5 1))+
i#]

——Za U (X, x5 1)+

i#]

_7228 uzx X taiuz(xiaxk;t)'

i#j k#i
(A2)

In the latter expression, one recognizes an effective two-
body term which can be accounted for by u, and an
additional three-body term in the form of a product of two-
body functions. The functional form of the three-body
Jastrow term can therefore be deduced from this additional
term and formed accordingly:

us(x;, Xj, X5 t) = i3 (x;, x5 1) i3 (x;, x5 1), (A3)
with two-body functions it5(x;, x;; #) containing new varia-
tional parameters to be determmed Upon pursuing this
approach, the expansion can be systematically pushed to
higher orders and the functional structure of the higher-
order functions inferred. The same constructive approach
we discuss here is also valid for the Schrodinger equation in
imaginary time, 0,U(X;7) = —E},(X;7), and has been
successfully used to infer the functional structure for
ground-state properties [63].

APPENDIX B: MONTE CARLO SAMPLING

In order to solve the tVMC equations of motion, Eq. (6),
expectation values of some given operator O need to be
computed over the many-body wave function ®(X, ). This
is achieved by means of Monte Carlo sampling of the
probability distribution IT(X) = |®(X)|? (in the following,
we omit explicit reference to the time 7, assuming that all
expectation values are taken over the wave function at a
given fixed time). An efficient way of sampling the given
probability distribution is to devise a Markov chain of
configurations X(1), X(2),...,X(N. - 1), X(N,), which
are distribute according to I1(X). Quantum expectation
values of a given operator O can then be obtained as
statistical expectation values over the Markov chain as

(@[0|®) _

o (B1)

- N . Z Oloc(X
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where Op,.(X) = ((X|0|®)/(X|®)), and the equivalence
is achieved in the limit N. — oo.

The Markov chain is realized by the Metropolis-Hastings
algorithm. Given the current state of the Markov chain
X(i), a configuration X’ is generated according to a given
transition probability 7(X(i) - X’). The proposed con-
figuration is then accepted [i.e., X(i+ 1) = X'] with
probability

(X" 7(X' - X(i)]
I(X() T(X(i) = X) |’
(B2)

A(X(i) » X') = min |1,

otherwise, it is rejected and X (i + 1) = X(i).

In the present tVMC calculations, we use simple
transition probabilities in which a single particle is dis-
placed, while leaving all the other particle positions
unchanged. In particular, a particle index p is chosen with
uniform probability 1/N and the position of particle p is
then displaced according to x), = x,, + 77, where 7, is a
random number uniformly distributed in [—(A/2), (A/2)].
The amplitude A is an adjustable parameter, and it can
typically be chosen to be of the order of the average
interparticle distance. With this choice, the transition
probability is simply

T(x, = x,)=— (B3)
and the acceptance probability is therefore given by the mere
ratio of the probability distributions, IT(X")/TT1(X(7)).

APPENDIX C: FINITE-BASIS PROJECTION

The numerical solution of the equations of motion
[Eq. (6)] requires the projection of the Jastrow fields
u,,(r;7) onto a finite basis. The continuous variable r is
reduced to a finite set of P values for each order m,
(m,x) = (Fim, Fams---» F'p.m). We introduce a super-index
K spanning all possible values of the discrete variables r; ,,.
The complete set of variational parameters resulting from
the projection on the finite basis can then be written as
ug(t) and the associated functional derivatives read pg(z).

The integro-differential equations [Eq. (6)] are then
brought to the algebraic form,

ZSK,K'ﬂK’(f) = —i(Eioc()pk (1)), (C1)

where we introduce the Hermitian correlation matrix:

= (px(Op (1)) = ok (1)) Pk (1))

At a given time, all the expectations values in Eq. (C1) can
be explicitly computed with the stochastic approach
described in Appendix B. We are therefore left with a
linear system in the n,, unknowns g (t), which needs to
be solved at each time r.

In the presence of a large number of variational parameters
Ny, the solution of the linear system can be achieved using
iterative solvers, e.g., conjugate gradient methods, which do
not need to explicitly form the matrix S. Calling n;, the
number of iterations needed to obtain a solution for the linear
system, the computational cost to solve Eq. (C1) is O(M x
Nya X Nier) as opposed to the O(M x n?,) operations
needed by a standard solver in which the matrix S is formed
explicitly. In the present work, we resort to the minimal
residual method, which is a variant of the Lanczos method,
working in the Krylov subspace spanned by the repeated
action of the matrix S onto an initial vector. In typical
applications we obtain that n;., < ny,, and several thou-
sands of variational parameters can be efficiently treated.
This is of fundamental importance when the continuous
(infinite-basis) limit must be taken, for which n,,, — 0.

Once the unknowns g (¢) are determined, we can solve
numerically the first-order differential equations given in
Eq. (6) for given initial conditions u(0). In the present
work, we adopt an adaptive fourth-order Runge-Kutta
scheme for the integration of the differential equations.

(C2)

APPENDIX D: LATTICE REGULARIZATION
FOR THE LIEB-LINIGER MODEL

We consider a general wave function ¥(x, x,, ..., xy)
for N one-dimensional particles, governed by the Lieb-
Liniger Hamiltonian. By means of the variational
Monte Carlo method, we want to sample |®(X)|?. This
is achieved via a lattice regularization, i.e.,

)

/dX|c1>(X)|2= > @l b )P

Ll Ly

wherel; = {0, a, ..., L — a} are discrete particle positions, a
the lattice spacing, L the box size and N, = 1 + L/a the
number of lattice sites. As a discretized Hamiltonian, we take

n? 4
H,®(l,...1y) = —WZ{g[d)(ll...li —a, .. )+ DL +a, .. y)]

1
12

9

5
(@11 by = 2o dy) + @y o+ 20, )] + =S (U L ...,zN)} + (1) =Y 81 1),

i<j
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The first terms constitute just the fourth-order approximation

of the Laplacian via central finite differences, whereas the last

term corresponds to the two-body delta interaction part.
With this discretization, a two-body Jastrow factor reads

ur (x5 1) = up(l;, 13 1),

where u,(a,b;t) is a time-dependent matrix of size
N, x N, which, in 1D and in the presence of translational
symmetry, depends only on dist(a — b); i.e., it has N,/2
variational parameters.

APPENDIX E: BENCHMARK STUDY
FOR N=3 ON A LATTICE

Here, we use exact diagonalization of a Hamiltonian
within a given finite basis for a quantitative test of our
method. Exact diagonalization is limited to very small
systems on a finite basis, and we choose a system containing
N = 3 particles on L/a = 40 lattice sites as a simple, but
highly nontrivial reference. In contrast to our comparison
with BA methods, all observables can be accessed by exact
diagonalization, and we use the off-diagonal one-body
density matrix g¢;(r,7) and the pair correlation function
g>(r, 1) at different distances r = |x; — x,| of two particles
after time ¢, where the system is quenched from the non-
interacting initial state, y; = 0, to a final interaction, y; > 0,
to provide a benchmark on a more general observable.

We first benchmark the influence of the time-step lattice
size discretization At error on g,. From Fig. 4(a), we see
that the tVMC dynamics is stable over a long time and the
time step error can be brought to convergence. Further, we
see that for final interaction y, = 4, the truncation at the

two-body level U introduces only a small systematic
error, mainly a dephasing effect, which is almost negligible
at the scale of the figure. Because of the stochastic noise of
the Monte Carlo integration, tVMC introduces additional
high-frequency oscillations which are, however, well

2.0 T T T T T T
®
—— UW-dt
1.5}F !]2(L4) U®-2at

U®-4dt

0.00 005 010 015 020 025 0.30
t

separable from the deterministic propagation. The ampli-
tude of these high-frequency oscillations also quantifies the
purely statistical error of our data.

Whereas exact diagonalization is limited to rather small
basis sets, we can access a much larger basis within tVMC
method. In Fig. 4(b), we show results within the U®
approximation with L/a = 80 and L/a = 160 with time
discretization Afr~ (L/a)?>. We see that the basis set
truncation in general introduces a dephasing at large
enough time.

The systematic error of U?) increases towards quenches
to stronger interaction strength and becomes more visible
for y; = 8; see Fig. 5(a). However, even in this case, the
most important effect remains to be a simple dephasing; a
small shift of averaged quantities is probable, but difficult
to quantify precisely. Introducing general three-body
Jastrow fields U®), described in detail in Appendix F,
the systematic error for N = 3 can be fully eliminated.

In Fig. 5(b), we also benchmark the possibility of
calculating the off-diagonal one-body density matrix after
a quench. Here, the systematic error of U®) is more
pronounced at smaller y; in the long range and long time
regime.

From our study of the three-particle problem, we con-
clude that truncation of the many-body wave function at the
level of U, may provide an excellent approximation for
9>(r, t) for quenches involving not too strong interaction
strengths, y <5. The systematic error due to the U(?)
truncation is mainly a dephasing at large times involving
small relative errors of time-averaged quantities. Similar
systematic dephasing errors will occur for too large time
discretization or basis set truncation.

Since our method provides a parametrization of the full
wave function for a given time, many different observables
can be evaluated via usual Monte Carlo methods. However,
the quality of different observables may vary and depend

more sensitively on the inclusion of higher-order
2.0 T T T T T T
(b) —— U®-Lja=40
—— U®-L/a=80 |

298 —— UR-L/a =160
W

0.00 005 010 015 020 025 0.30
t

FIG. 4. Time-dependent expectation value of the two-body correlations after a quantum quench from a noninteracting state, y; = 0, to
ys = 4 at three different distances, |x; — x,| = 0, L/10, L /4. Here, the system is on a lattice with L/a = 40 lattice sites. The full line is
obtained by exact diagonalization (ED) of the Hamiltonian; the other curves are from tVMC results truncated at the level of U @ In (a),
we show the convergence with different time-step discretization. In (b), we show the approach to the continuum for tVMC simulations

using U® for discretizations L/a = 40, 80, and 160.
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2.0 T T T T T T

0.5

015 020 025 0.30

0.0 L
0.00 0.05 0.10

t

FIG.5.
vi = 0, to y; = 8 at three different distances,

1.0 T T T T T
L/10
09l g1(L/10) ]

0.8} i

0.7+ gi1(L/4) ]
S

0.6}

05F--- ED E
— U@
0.4F U® 91(L/2) |

03 L L L L L L
0.00 005 010 015 020 025 0.30
t

(a) Time-dependent expectation value of the two-body correlations g, (r, ) after a quantum quench from a noninteracting state,
X; — x| =0, L/10, L/4. Here, the system is on a lattice with L/a = 40 lattice sites. The

full line is obtained by exact diagonalization of the Hamiltonian; the other curves are from tVMC results truncated at the level of U or
U®). In contrast to y¢ = 4 shown in Fig. 4, systematic differences of U (2) compared to the exact results are more visible here; the exact

dynamics is recovered by inclusion of three-body terms U®® into the tVMC wave function. (b) Off-diagonal single-particle density
matrix g;(r,t) at three different distances, r = L/10, L/4, and L/2. The exact results (ED-black dashed line) are for all purposes

indistinguishable from the U®) curves.

correlations U™ with n > 2, as in the case of the single-
body density matrix. Although these higher-order terms are
computationally expensive, the scaling is not exponential,
and we explicitly show that calculations with n = 3 are
feasible. We note that the computational complexity may
be further reduced by functional forms adapted to the
problem [26].

APPENDIX F: GENERAL STRUCTURE OF U®)

For a general time-dependent wave function, we have to
go beyond the usual ground-state structure of the three-
body Jastrow term given in Eq. (A3). Here, we provide
details of our three-body term in a general form beyond the
present application in one dimension.

Introducing M basis functions, b*(r), a =1, ..., M, we
can introduce many-body vectors [26], Bf, = > ;x{;b(r;;),
where a = 1, ..., D indicates the summation over direc-
tions and i =1,...,N. The variational parameters of a
general three-body structure can then be written in terms of
a matrix w,,, such that

Z u3(ry,ry,r3) = ZwabW“bv
ab

b __ b
W = B¢, BY,.
i#j#k ia

(F1)
In order to reduce the variational parameters (~M?), we

may perform a singular value decomposition of the matrix
wy,, to reduce the effective degrees of freedom.
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