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Effect of a bias field on disordered waveguides: Universal scaling of conductance
and application to ultracold atoms
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We study the transmission of a disordered waveguide subjected to a finite bias field. The statistical distribution
of transmission is analytically shown to take a universal form. It depends on a single parameter, the system length
expressed in a rescaled metrics, which encapsulates all the microscopic features of the medium and the bias
field. Excellent agreement with numerics is found for various models of disorder and bias field. For white-noise
disorder and a linear bias field, we demonstrate the algebraic nature of the decay of the transmission with distance,
irrespective of the value of the bias field. It contrasts with the expansion of a wave packet, which features a
delocalization transition for large bias field. The difference is attributed to the different boundary conditions
for the transmission and expansion schemes. The observability of these effects in conductance measurements
for electrons or ultracold atoms is discussed, taking into account key features, such as finite-range disorder

correlations, nonlinear bias fields, and finite temperatures.
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Introduction. Anderson localization in unbiased disordered
materials is signaled by the exponential suppression of
diffusion and conductance [1-3]. The connection between
the two is firmly established by linear-response theory and
the Einstein-Sutherland relation [4,5]. Hence, localized wave
packets and transmission coefficients are characterized by
the same exponential decay with distance. Bias fields in-
duce a strong nonlinear response, which significantly affects
localization and questions this relation. For a weak bias
field, algebraic (rather than exponential) localization has been
established in previous numerical [6,7] and analytical [8,9]
work. More precisely, Ref. [9] presented a rigorous proof that
the eigenstates become extended beyond a critical value of a
dimensionless parameter v, which characterizes the ratio of the
bias force (opposite gradient of the bias field) to the disorder
(see the precise definition of o below). It is qualitatively
consistent with a diagrammatic calculation of the asymptotic
density of an expanding wave packet [8], yielding the average
density Wx) ~1/ xPaens in the direction of the bias force, with
Baens = 1 + (1 — a)? /8a for ¢ < 1 and where the overline
denotes disorder averaging. For « > 1, the asymptotic density
is not normalizable, hence signaling a delocalization transition
at « = 1. In contrast, numerical evidence was provided in
Ref. [6] that the transmission coefficient for the Kronig-Penney
lattice model decays algebraically for arbitrary large bias force,
yielding exp(InT) ~ 1/xP, and is thus unaffected by the
delocalization transition. Moreover, the exponent B, ~ 1/2«
is not trivially related to the exponent B4.,s. These apparently
contradicting behaviors raise several questions. First, it is
unclear whether the result of Ref. [6] is universal or model
dependent. In particular, the behavior of the characteristic
quantity exp (In T) in continuous-space models as considered
in Ref. [8] is unknown. Second, available numerics do not
provide the behavior of the average transmission 7, which
would be more directly comparable to the average density 7.
Third, the behavior of physical quantities, in particular those
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directly related to the average transmission, such as Landauer
conductances, remains unclear. These questions have appli-
cations in mesoscopic physics, including the propagation of
microwaves in inhomogeneous disorder [10] and the electric
response to a bias field in disordered carbon nanotubes [11]
or silicon nanowires [12], for instance. It also applies to
ultracold atoms where Anderson localization can be studied
quantitatively [13-23] (for reviews, see also Refs. [24,25]).
In those systems, a bias field can easily be turned on, and
both conductance [26-28] and expansion dynamics [17-20]
are accessible.

Here, we study the transmission of a continuous
one-dimensional disordered waveguide subjected to arbitrary
disorder and bias field. The statistical distribution of
transmission is written in a universal form. It is characterized
by a unique parameter, the length of the waveguide expressed
in a rescaled metrics, which encapsulates all microscopic
features of the medium and bias field. For white-noise disorder
and a uniform bias force, we derive analytically the relations
exp(InT) ~ 1/x'?* and T ~ 1/x'/3* for arbitrary strength
of the bias force. We also perform numerical calculations
for various models, and obtain excellent agreement with the
analytical results. The different power law obtained for 7 in
comparison to that of # found in Ref. [8] is attributed to the
different boundary conditions, whose role is enhanced by the
long-range algebraic tails of the eigenstates in the presence
of a bias field. Application to conductance measurements is
discussed. In particular, we include important realistic features,
which significantly affect the conductance as measured in
electronic or ultracold atomic systems, such as finite disorder
correlations, nonuniform bias forces, and finite temperatures.

Statistical distribution of transmission. To start with,
consider the transmission of a coherent wave in a disordered
material of length L in the presence of a bias force F(x) (see
the dashed black rectangle in Fig. 1). In the following, we
adopt the language of quantum matter waves for concreteness.
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FIG. 1. Transmission and conductance of a matter waveguide
of length L (black rectangle) in the presence of a bias force F(x)
and disorder (random green line). The bias field is shown for a
constant force (red line). The incident and reflected wave vectors
are k(0) and the transmitted one is k(L). The Landauer conductance
is measured from the discharge between two reservoirs (left and
right blue boxes) with average chemical potential ; and infinitesimal
potential difference AV.

The results are, however, directly applicable to other types of
waves, such as linearly polarized microwaves or sound waves
since the stationary states of all are governed by similar second-
order space differential equations. The disordered potential
V(x) is homogeneous and Gaussian. Its average is zero and its
two-point correlation function reads C(x) = V(x' + x)V (x’).
The latter may model a theoretical white-noise disorder, with
C(x) = Urd(x) and Ugr the disorder strength, or a more
realistic correlated disorder, where C(x) is some function
decaying on the typical length scale og.

To compute the statistical distribution P(T,x) of the trans-
mission coefficient T at the distance x, we use the transfer-
matrix approach, here generalized to include a, possibly
inhomogeneous, bias field. In brief (see details of the derivation
in the Supplemental Material [29]), P(T,x) is governed by the
Fokker-Planck equation

oP  9T?*P 9?2

— 22—
L)oo = —7— + oA =1P], ey

with £_(x) ~ 25°K (x)/mC[2k(x)], m the particle mass,
E >0 the energy, K(x)=E + [ dx’ F(x'), and the ini-
tial condition P(T,x = 0) = §(T — 1). Equation (1) has a
straightforward physical interpretation. We find the same
equation as for unbiased disordered systems, except that the
backscattering mean free path £_(x) must be computed at
the effective semiclassical kinetic energy K(x) and is thus
position dependent. The validity of Eq. (1) relies on the sole
assumptions that the disorder is weak, i.e., £_(x) > 1/k(x),or
with k(x) = /2m K (x)/h the local wave vector, and that the
work of the bias force is negligible on the disorder correlation
length, i.e., F(x)og < K (x), i%k(x)/2md; In C[2k(x)]. Note
that for a positive bias force F and a bounded disorder power
spectrum C, both the backscattering mean free path £_(x) and
the wave vector k(x) increase with the distance x. Hence the
validity conditions of Eq. (1) are always fulfilled, at least in
the asymptotic limit x — oo.

The quantity £_(x) provides the natural metrics in the
disordered material in the presence of the bias field, and, using
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the inhomogeneous dimensionless coordinate
X dx/
$(0) = / A @
o £-(x")

it disappears from Eq. (1). The same rescaling holds for inho-
mogeneous disorder (see, for instance, Ref. [10]). Equation (1)
thus admits the analytic solution

oSk poo y ey /5D
P(T.L) = —/ dy—2°
VES(LY2T? Joon it~ feosh®y — 1/ T
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i.e., the same as for unbiased, homogeneous disorder with
L/¢_ rescaled to s(L) (see, for instance, Ref. [30]). Note
that in this universal form all the microscopic features of the
medium, such as disorder correlations and bias field, are fully
encapsulated into the definition of the metrics (2). Formula (3)
is rigorous and allows us to compute exactly the various
disorder-averaged quantities relevant to different questions.

Algebraic localization. Let us start with the logarithm of the
transmission. Due to its self-averaging character, it represents
the typical transmission and it is the quantity that is usually
computed numerically, as in Ref. [6], for instance. Using
Eq. (3), we find InT(L) = —s(L). This formula, together
with Eq. (2), exactly matches the heuristic formula proposed
in Ref. [6] to interpret numerical results for the specific
Kronig-Penney model. Our analysis justifies this formula on
rigorous grounds and generalizes it to any model of disorder
and bias field. For white-noise disorder and uniform bias force,
where C(2k) = Ug and K (x) = E + Fx, we find

L mUg 1 FL
s(L) = dx————=—Mh(l+—), @
0 2R*(E 4+ Fx) 2« E

where « = /i>F /mUg is the relative strength of the bias force
and the disorder [8]. It yields the characteristic algebraic
decay exp(InT) ~ 1/L'/?*. Excellent agreement with exact
numerical calculations is found for continuous white-noise
disorder [see the open blue squares and dotted-dashed line
on Fig. 2(a)].

In order to compare the behavior of the transmission to
the result of Ref. [8] for the expanding wave packet, we now
compute the average transmission. This quantity is also the one
that determines various physically relevant quantities, such as
the Landauer conductance (see below). Using Eq. (3), we find
the exact formula

4e—sL)/4 o0 y2€—y2/s(L)
T(L) = —=——=5 dy——-——. 5
) ﬁs(L)3/2/0 ¥ cosh(y) ©)

Again, it is in excellent agreement with exact numerical
calculations [see the solid blue squares and the solid line
on Fig. 2(a)]. For white-noise disorder and uniform bias
force, we find the asymptotic behavior T(L) ~ 1/L'/8% up
to logarithmic corrections. The difference of the scalings
exp[InT(L)] ~ 1/L1/2°‘ and T(L) ~ 1/L1/8"‘ originates from
the well-known large fluctuations associated with the statistical
distribution (3) [31].

In turn, it is remarkable that the scaling 7'(L) ~ 1/L'/3
differs from that found for the density profile of an expanding
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FIG. 2. Analytical prediction vs numerical results for 7 (solid lines and solid symbols) and exp (In 7)) (dashed-dotted lines and open
symbols), for @ = 0.08 and 2m F/1*k>(0) = 0.01 in the following cases: uniform bias force and white-noise disorder (blue squares), uniform
bias force and Gaussian correlated disorder with ogk(0) = 0.3 (magenta circles), harmonic bias force with 2m /lik(0)> = 0.01 and uncorrelated
disorder (brown diamonds). (a) Results plotted as a function of the metrics s(L) [for white noise and constant force, s(L) o< In(1 + FL/E);
see Eq. (4)]. (b) Results plotted as a function of 1 4+ FL/E. Inset: Probability distribution of In 7 for FL/E = 28, as found from numerical
simulations (histogram) compared to analytical prediction (line), for a constant force, with correlated (dark, magenta) and uncorrelated (light,

blue) disorder.

wave packet, n(x) = 1/x!T(1-"/8= 8] To make a direct
comparison, we have computed the quantity 7'(L) using a
different formalism than the transfer-matrix approach, namely,
the diagrammatic approach used in Ref. [8] to compute the
quantity n(x) in the expansion scheme. The latter needs to
be adapted to the transmission scheme we consider here.
Indeed, all diagrams involving scattering outside the region
[0, L] must be excluded. Taking this difference into account,
the diagrammatic method allows us to recover the behavior
predicted by the transfer-matrix approach. Physically, the
strong difference between expansion and transmission can be
understood as follows. Consider a particle initially at position
x = 0 and look at the probability that it has been transmitted
beyond x = L after infinite time. If the disorder is restricted
to the space interval [0,L], this probability is given by the
transmission coefficient T'(L) and therefore decays as L~'/3¢.
In contrast, if the disorder extends over the full x line, it
turns into [, dx n(x), which decays as L—(1—/8«  Thig
slower decay is due to the presence of long-range algebraically
localized eigenstates, centered beyond x = L, whose overlap
with the initial wave function is significant, thus enhancing the
probability of finding the particle at x > L. Note that this effect
is expected to be less important when the eigenstates are more
strongly localized, i.e., when « vanishes. This is consistent
with the equality of the two exponents, (1 — )?/8a ~ 1/8«
in the limit @ — 0.

Experimental observation. The transmission can be mea-
sured directly via the Landauer conductance [5,32,33] in meso-
scopic materials [34] or ultracold atoms [26-28], for instance.
While the discussion below is generic, we focus on ultracold
atoms for the sake of concreteness. From a practical point of
view, these systems offer key features, such as the possibility
to control the disorder and to accommodate arbitrary large
forces without damage. The Landauer conductance is defined
as the ratio of the current / induced by the potential imbalance
between two charge reservoirs to their potential difference AV
(see Fig. 1) [33]. In the simplest case where AV is measured
inside the reservoirs (two-terminal scheme), it reads G,(L) =

SR :_“LAA‘Y/ZZdET(E,L), where &+ AV/2 are the chem-
ical potentials of the two reservoirs and S is the spin degen-
eracy. The various longitudinal energy levels give statistically
independent contributions since they probe different Fourier
components of the disorder, which are independent. Assuming
that the potential difference AV is large compared to the
longitudinal energy level spacing inside the guide but smaller
than the energy variation scale of 7 (E, L), the finite potential
difference AV may realize disorder averaging [35,36] and
Go(L) ~ T(M,L). Moreover, in real experiments, the guide is
not purely one dimensional and may contain tens of transverse
modes, which realize further effective disorder averaging. For
short guides, however, one might rather measure the typical
conductance Ty, ~ exp [In(T)].

Realistic models of disorder should include finite-range
correlations. The metrics s(L) then reads

L ~
s(L) = / dx —mzC[Zk(x)] ,
0 21°(E + Fx)

k(L)

which increases as s(L) ~ £(0) dk C(2k) / k. Since any model
of disorder with finite-range correlations has an integrable
two-point correlation function C(k) in reciprocal space, the
metrics s(L) saturates to a finite value when L — oo in the
presence of finite-range correlations. Hence, the distribution
P(T,L), and all disorder-average functions of 7', saturate
to a nonzero value when L — oo. This effect suppresses
algebraic localization and entails that any finite-range cor-
relations induce delocalization. Similarly, an increase of the
bias force also entails delocalization. For instance, for white-
noise disorder and F(x) ~ x® with ¢ > 0, we find s(L) ~
const — 1/L?, which also saturates when L — oco. Delocal-
ization, as signaled by the saturation of 7 (L) and In T (L), is
confirmed by numerical calculations for either Gaussian cor-
relations, C(x) = aR[\/}E exp (—x?/203), and a uniform bias
force [see Fig. 2(b), magenta circles] or white-noise disorder
and a slightly linearly increasing force F(x) = F + mw’x
[see Fig. 2(b), brown diamonds].

(6)
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Delocalization appears for any realistic model of disorder
with finite-range correlations. Assuming that C(x) decays
on the length scale og, the transmission crosses over from
algebraic decay to saturation for a length L* given by
Ak(L*)og ~ 1 with Ak(L) = k(L) — k(0). In the two-Fermi
terminal configuration of Fig. 1, k(0) = kg = +/2mkg6g/h is
the Fermi wave vector of the left-hand-side reservoir, with 6
the Fermi temperature and kg the Boltzmann constant. Using

Ak(L) ~ 3.k(0) x L ~ mFL/i*kg, we find L* ~ [2e% i

mo? F*
For mesoscopic channels designed in ultracold atomic systkems
[26,28], where typically 8 ~ 500 nK and og ~ 0.5 um,
and assuming that the force results from gravity on °Li
atoms, F ~ 107% N, we find L* ~ 80 um, which is of the
order of magnitude of the experimentally realizable channel
lengths. Note that the effective force can be reduced by
compensating gravity with a magnetic levitation field [20] or
using a nonvertical geometry. Whatever their strength, these
delocalization effects can, however, be incorporated into the
metrics to test the universal relation (3). Indeed, as shown on
Fig. 2(a), we recover a universal behavior of the transmission
by rescaling the Euclidean distance L to the metrics s(L) for
correlated disorder, as well as nonuniform bias field [37].
Another matter of concern is finite temperature, which is
typically a fraction of the Fermi temperature in ultracold atoms.
Using the Sommerfeld expansion of the current-potential
characteristic function, we find

— — 72 (kgh)?
Go(L) = Go{T[S(L)] + TA(L)}, (N
where, for a constant force F,
19 [ 1 1 }37
ALl ) =——|— — —[—
Fou|€_(L) £_(0)]as
[ ;]zﬂ .
F2le_(L) €_(0)] as*’

For the parameters above and the typical disorder strength
Vr/ks ~ 0.5 uK, we find that finite-temperature effects con-
tribute the conductance G, from less than 2% for 6 ~ 0.16 up
to 15% for 6 ~ 0.36g. Since the quantity A(L)is not a universal
function of the rescaled length s(L), such finite-temperature
effects break universal scaling. However, if the system is
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sufficiently large that £_(L) > £_(0), then G,(L) becomes
a pure function of s(L) and universal scaling is recovered.

Conclusion and outlook. In summary, we have computed
the statistical distribution of transmission in a disordered mat-
ter waveguide in the presence of a bias field. For white-noise
disorder and a uniform bias force, we have shown analytically
that the transmission decays algebraically, irrespective of the
value of the force, in agreement with numerical calculations
[6]. This behavior differs from what is predicted in the
expansion of a wave packet, which features a delocalization
transition [8] (see also Refs. [7,9]). This striking difference
has been traced back to the long-range character of the
algebraic decay of the localized eigenstates in the presence
of the bias field. We have proposed a concrete observation of
the transmission decay using ultracold atoms. While finite-
range disorder correlations or nonuniform bias force entails
systematic delocalization, we have shown that a universal
behavior can be recovered using appropriate rescaling. We
have also found that finite-temperature effects can be ignored
for a long-enough waveguide.

Ultracold atoms also offer an interesting alternative to
measure the transmission. The idea is to create a trapped
Bose-Einstein condensate, which is less sensitive to finite
temperatures than fermions, above a finite-size disordered
region. Releasing the condensate from the trap as done in
Refs. [17-20], for instance, the atoms fall down in the
gravity field, possibly partially compensated by a levitation
magnetic field to control the force. The number of transmitted
atoms is then proportional to the average transmission. The
same experiment with the condensate created directly in an
infinite-size disorder will in turn yield the asymptotic average
density. This offers a single platform to compare directly the
two quantities T(x) and n(x). More precisely, this scheme
would provide the quantities 7' and 7z integrated over the energy
distribution of the falling condensate [13,16]. This issue can,
however, be circumvented by using an energy-selective radio-
frequency transfer of atoms from an atomic state insensitive to
the disorder to another state sensitive to the disorder [38].
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—Supplemental Material—

Effect of a Bias Field on Disordered Wave Guides: Universal Scaling of Conductance
and Application to Ultracold Atoms

In this supplemental material, we provide details about the transfer matrix formalism for an inhomogeneous medium
and the derivation of the Fokker-Planck equation [Eq. (1) of the main paper].

Transmission and reflection coefficients.— To compute the transmission coefficient of a particle submitted to a bias
force F(z) through a disordered sample in the space interval [0, L], it is convenient to define the semi-classical kinetic
energy K(z) = E + [ da’ F(2') and the associated wave vector k(z) = \/2mK(x)/h. At any position x, we may
write the particle wave function (z) and its derivative 9,4 (z) in the form

(o250) = Gt o) (572) W

A unique solution (¢4 (z),v_(z)) exists provided the determinant of the above matrix does not vanish, i.e., k(z) # 0.
The particle flux, j(z) = 52 (¥*0,¢ — ¥0,9*) then reads j(z) = j, (z) + j_ (), where

2im

(o) = =D ) @
m

are the right-moving (+) and left-moving (—) fluxes. The transmission coefficient is then defined as the ratio of right-
moving fluxes at the boundaries of the sample in the case where the incident flux is right-moving, i.e., j_(L) = 0,
and reads

_ (D) k(L) [Y (D))
(L) = 3+(0) — k(0) |y, (0)*

Under the same assumption of right-moving incident flux, the reflection coeflicient is defined as the ratio of left-moving
emergent flux and the right-moving incident flux, and reads

i-(0)] _ [v-(0)
3+0) (0

3)

R(L) = (4)

Scattering matriz.— Consider now a finite sample in the interval [x1, x2], where 0 < z7 < x5 < L. We define the

scattering matrix
r ot
s—(; 1) 5)

(Vi) = (seon) 0

Particle-flux conservation between z; and x5 imposes that the scattering matrix is unitary, S'S = 1. Moreover,
time-reversal symmetry entails S* = ST. Those two relations lead to the usual relations

such that

t=t
P+ [t = |2+ t? =1 (7)
t*r' +r*t =0.

Straightforward calculations then lead to the usual relations for the transmission and reflection coefficients of samples
between the points ;7 and xo,

T = |t|? and R=|r|? = |"'|% (8)



Transfer matriz.— We now define the transfer matrix T'(z2, 1) such that

VE@2)Y(z2)) _ - VE@D) Yy (1)
<\/k<x2>w<x2>> =T ) <\/k<m1>w<x1>) | ©)

Straightforward calculations yield
(1t e
T= (r/t 1/t> (10)
Transfer matrices can then be chained, i.e.,

T(xn, $1) = ’:[‘(.’I?n7 xn,l)T(xn,l, l‘n,2>...T(aﬁ2, xl). (11)

Fokker-Planck equation.— Considering two samples in the intervals [0, z] and [z, x + Ax] respectively, where the
sample [0,x] has transmission coefficient T'(z) and reflection coefficient R(z) = 1—T(z), and the sample [z, 2+ Az] has
transmission coefficient Tha,(z) and reflection coefficient R, (), the transmission coefficient of the sample [0, z + Ax]
can be calculated from the product of the two transfer matrices. It yields

T(2)Taz(x)

T(zx+ Az) = - ;
( ) |1 — /R(x)Ra(x)eifa=(x) |2

(12)

where Oa,(z) is the phase accumulated during one total internal reflection at point x, with 7/ (2)ra,(z) =
7! (2)7 ap ()] €022 (),
Let us define the back-scattering mean free path at kinetic energy K (z),

(_(x) ~ 212K (z)/mC[2k(z)), (13)

where C|[2k(z)] is the disorder power spectrum. For weak disorder, i.e., _(x) > A(z), ox, we may choose intermediate
elementary lengths Az, such that A(z),0n < Az < {_(x), where \(z) = 27/k(z). Since Az < ¢_(z), the non-
vanishing value of the reflection coefficient Ra,(x) results from typically less that one scattering and it may thus
be computed in the single-scattering approximation, provided the local mean free path ¢_(z) is well defined on the
elementary cell Az. This implies that 0,¢_ (z)Az < ¢_(z), or equivalently it corresponds to assuming that the work
of the force on the length of the elementary cell is small, F(z)Az < K(x), i*k(z)/2md, In C[2k(z)]. We then find
Raz(z) = Ax/l_(z) < 1, where the overline denotes averaging over the disorder. Consequently, Ra,(z) < 1 and we
may use the following expansion of AT (x) = T(x + Ax) — T(x):

AT(z) =T(x) {2\/(1 —T(z))Ras(x) cosOas () + Rag(z) [T(z) — 2+ 4(1 — T(x)) cos® Oay (z)] } + O(Raz(z)*'?)
(14)
The transmission coefficient is thus governed by a stochastic process when the system length x increases. The Kramers-
Moyal expansion of the corresponding master equation for the probability distribution of the transmission coefficient
at a given length, P(T,z), reads

o =2 g M (T)PTa) (15)
with
(AT(z))"
My (T) = =0 : (16)
Az—0

Assuming that the quantity 6a, () is uniformly distributed on 27 and knowing Ra . (x), the average on both quantities
can be performed independently. We then find
T*()
L_(x)

_ 277 (z)(1 - T'(x))
M= (_(z)

M, = M,, =0 for n > 3. (17)

The Kramers-Moyal expansion (15) thus reduces to its first two moments, which yields the Fokker-Planck equation (1)
of the main paper.



