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Expansion of a quantum wave packet in a one-dimensional disordered potential in the presence
of a uniform bias force
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We study numerically the expansion dynamics of an initially confined quantum wave packet in the presence of
a disordered potential and a uniform bias force. For white-noise disorder, we find that the wave packet develops
asymmetric algebraic tails for any ratio of the force to the disorder strength. The exponent of the algebraic tails
decays smoothly with that ratio and no evidence of a critical behavior on the wave density profile is found.
Algebraic localization features a series of critical values of the force-to-disorder strength where the mth position
moment of the wave packet diverges. Below the critical value for the mth moment, we find fair agreement
between the asymptotic long-time value of the mth moment and the predictions of diagrammatic calculations.
Above it, we find that the mth moment grows algebraically in time. For correlated disorder, we find evidence
of systematic delocalization, irrespective to the model of disorder. More precisely, we find a two-step dynamics,
where both the center-of-mass position and the width of the wave packet show transient localization, similar to the
white-noise case, at short time and delocalization at sufficiently long time. This correlation-induced delocalization
is interpreted as due to the decrease of the effective de Broglie wavelength, which lowers the effective strength
of the disorder in the presence of finite-range correlations.
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I. INTRODUCTION

Anderson localization of coherent classical or quantum
waves in disordered media is by now a well-established
phenomenon. It has recently received strong theoretical and
experimental assessment for a variety of systems [1–5]. In
a homogeneous system, it is characterized by exponential
suppression of transmission and absence of diffusion or ex-
pansion. Both take place on a unique length scale, known as
the localization length. The latter is essentially determined by
the strength of the disorder and the energy of the wave. An
immediate consequence of Anderson localization is that the
static conductivity, which characterizes the current response
to an electric force, vanishes at zero temperature. However,
this result follows from linear-response theory and holds in the
limit where the force vanishes. Less is known about the impact
of a finite bias force on localization, but consensus is by now
established on two main effects. On the one hand, localization
can survive but is strongly suppressed. While exponential
spatial decay of wave functions in the absence of a force
entails strong localization, the presence of a finite force entails
a much weaker form of localization where wave functions
decay only algebraically, at least in one dimension [6]. On
the other hand, localization in the presence of a force lacks
complete universality. For instance, the power of the algebraic
decay has been shown to significantly differ in transmission
and expansion schemes [7–10].

Algebraic localization is expected to be the strongest in
one-dimensional geometry since the bias force field only
couples states that are all localized in the absence of the force
[11]. Moreover, analytic calculations are possible in this case
[12–15] and precise conclusions can be drawn. For a typical
transmission scheme, where a plane wave enters a white-noise
disordered medium of finite extension, the transmission coeffi-
cient decays algebraically with an exponent proportional to the
disorder strength and inversely proportional to the bias force,
irrespective to their ratio α [8–10]. For an expansion scheme,
where an initially strongly confined wave packet is released
into a disordered medium of infinite extension, the density
profile acquires asymptotically in time an algebraic spatial
decay below some critical value of the ratio of the force to the
disorder, α = 1 [7]. Above it, the theory cannot be normalized
and it is expected that the wave packet is delocalized. These
predictions follow from the properties of the stationary density
profile at infinite time. In contrast, little is known about the
time-dependent dynamics of the wave packet, either towards
algebraic localization or towards infinite expansion for weak
or strong bias force, respectively, as well as about the critical
behavior at the transition point. Similarly, little is known about
the effect of finite-range disorder correlations.

In this paper, we study numerically the expansion dynamics
of a wave packet initially confined in an arbitrary small region
and released into white-noise and correlated disordered poten-
tials. For white-noise disorder, we find that the expanding wave
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packet develops rapidly algebraic tails. For α < 1, it reaches
a stationary profile and we find an exponent of the algebraic
decay in good agreement with the analytical results of Ref. [7].
For α > 1, we still find density profiles with algebraic tails on
a finite spatial range. The latter increases in time while the
average density decreases continuously. The exponent of the
algebraic tails varies smoothly around the expected transition
α = 1 and shows no sign of a singular behavior. Nevertheless,
algebraic localization entails a series of critical values αm,
characterized by the divergence of the mth position moment of
the expanding wave packet [7]. We find that the mth moment
shows clear critical behavior at αm for m = 1 and 2. They
signal transition towards absence of global motion and absence
of expansion, respectively. For correlated disorder, we show
that the wave packet is always delocalized. More precisely,
we identify a two-step dynamics, where the mth moment first
shows transient localization similar to the white-noise case and
then delocalization. This correlation-induced delocalization
effect is attributed to the decrease of the effective de Broglie
wavelength, which lowers the effective strength of the disorder
in the presence of finite-range correlations.

The paper is organized as follows. In Sec. II, we review the
results of Ref. [7], which will be useful in the following. Then,
we discuss the numerical results on the expansion dynamics
for white-noise and correlated disorder in Secs. III and IV,
respectively. We finally summarize our results and discuss
possible observation in ultracold-atom experiments such as
those of Refs. [16–19] in Sec. V.

II. PROBABILITY OF TRANSFER
IN WHITE-NOISE DISORDER

In this section, we set the problem and briefly review the
results of Ref. [7] on the asymptotic, infinite-time, algebraic
localization of a one-dimensional (1D) quantum wave in
a disordered potential. Writing the equation of motion in
dimensionless units, we show that the dynamics beyond the
characteristic time associated with the wave energy depends
on a single parameter, which we identify.

A. Spreading of a dragged wave packet in a disordered potential

Consider a 1D, noninteracting, quantum wave packet sub-
jected to a disordered potential V (x) and a uniform, constant
force F (see Fig. 1). It is described by the wave function ψ(x,t),
governed by the Schrödinger equation ih̄∂tψ(x,t) = Ĥψ(x,t)
with the Hamiltonian

Ĥ = −h̄2∇2

2m
+ V (x̂) − F x̂, (1)

where m is the mass of the particle, x is the position, and t

is the time. We assume that the bias force is positive, F � 0,
so that the particle is dragged towards the right. While we
restrict ourselves to 1D geometry, the discussion also applies to
elongated confining guides, provided the disordered potential
V (x) is transversally invariant [16,17,20]. Without loss of
generality, we set the energy reference such that the disorder
average is null, V (x) = 0, where the overbar denotes disorder
averaging. We assume that the disordered potential is Gaussian
and homogeneous (for details on the practical implementation,
see Sec. III A). It is characterized by the two-point correlation

FIG. 1. Scheme of the system. The quantum wave packet has an
energy E (dashed blue line). It propagates in a disordered potential
V (x) (solid green line) in the presence of a linear bias potential
−Fx (solid red line). The classically forbidden region x < −�0 is
represented by the purple hatched zone.

function C(x) = V (x ′)V (x ′ + x), independent of the reference
point x ′, and higher-order correlation functions are found
using the Wick theorem [21]. For white-noise disorder, we
write C(x) = URδ(x), where UR is the disorder strength.
For correlated disorder, we write C(x) = (UR/σR)c(x/σR),
where σR is the correlation length while the function c(u) is
normalized by

∫
du c(u) = 1 and has a width of order unity.

We consider the expansion of a wave packet initially
confined close to the origin x = 0 at time t = 0. The disorder-
averaged density profile is n(x,t) = Tr{ρ̂(t)n̂(x)}, with ρ̂

the one-body density matrix and n̂(x) = δ(x − x̂) the spatial
density operator. Within semiclassical approximation, it reads
as

n(x,t) =
∫

dE

∫
dx0 W0(x0,E)P (x,t |x0,E), (2)

where W0(x0,E) represents the semiclassical, position-energy
joint probability distribution of the initial wave packet and

P (x,t |x0,E) = 〈E|δ[x − x̂(t)]δ[x0 − x̂]|E〉
〈E|δ(x̂)|E〉 , (3)

with |E〉 the eigenstate of Ĥ of energy E, represents the
probability of transfer of a particle of energy E from the initial
pointx0 to the final pointx in a time t [22,23]. The semiclassical
approach has been shown to describe the dynamics of the
wave packet with very good accuracy [16,19,24–26]. Hence,
knowing the initial wave packet, the dynamics is entirely
determined by the energy-resolved probability of transfer
P (x,t |x0,E). In the following, we focus on the latter.

B. Probability of transfer

We now write the probability of transfer in dimensionless
units and identify the minimal parameters relevant to the
problem.

1. Dimensionless form

For white-noise disorder, the probability of transfer P (x,t)
depends on two variables, namely, the position x and the time
t , and four parameters, namely, the force F , the mass m, the
disorder strength UR, and the particle energy E [27]. To get rid
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of two of these parameters, it is fruitful to introduce the natural
classical length and time scales

�0 ≡ E/F, t0 ≡
√

2mE/F, (4)

respectively. The length �0 is the opposite of the disorder-free
classical turning point, which is the point where the classical
velocity v of a particle of energy E = mv2/2 − Fx, without
disorder, vanishes (see Fig. 1). The time t0 is the time to reach
this point from the x = 0 with the energy E and a left-pointing
initial velocity. Then, using the dimensionless distance and
time,

ξ ≡ x/�0, τ ≡ t/t0, (5)

the rescaled wave function φ(ξ,τ ) = √
�0ψ(x,t), and the

dimensionless parameters

ε ≡ h̄F/
√

2mE3/2, α ≡ h̄2F/mUR, (6)

the Schrödinger equation reduces to

i
∂φ

∂τ
= ε

∂2φ

∂ξ 2
+ v(ξ )φ − ξ

ε
φ, (7)

where v(ξ ) ≡ (t0/h̄)V (ξ�0) is the disordered potential in di-
mensionless units. The parameter ε stands for both the inverse
effective mass and the inverse effective force. The parameter
α stands for the inverse effective disorder strength v(ξ )v(ξ ′) =
(2/α)δ(ξ − ξ ′). Hence, the dimensionless probability of trans-
fer reads as

p(ξ,τ |α,ε) ≡ �0 × P (x,t |UR,m,F,E) (8)

and only depends on the two dimensionless parameters α and ε.

2. Asymptotic long-time behavior

Further examination indicates that one can get rid of
one more parameter in the long-time limit. The probability
of transfer of the particle in white-noise disorder may be
calculated using diagrammatic expansion [7]. In the presence
of a bias force, one finds that the solution p(ξ,τ |α,ε) depends
on ε only via the quantity

ν(s,ω|α,ε) = 4α

ε
(1 + ξ )3/2

[(
1 + ωε

1 + ξ

)3/2

− 1

− ωε

1 + ξ

(
1 + ωε

1 + ξ

)1/2
]
.

Then, in the long-time limit ω � 1/ε, one finds

ν(s,ω|α,ε) 	 2αω
√

1 + ξ .

Hence, the dependence on the parameter ε disappears. This
result, confirmed by the numerical simulations presented below
(see Sec. III B), extends the analytical result at infinite time [7].

C. Localization solution

We finally review previous results for the infinite-time limit,
which will be useful in the remainder of the paper.

1. General solution

The probability of transfer has been solved analytically in
the infinite-time limit in Ref. [7]. For a moderate force α < 1,
and in the classically allowed region ξ � −1, one finds

p±
∞(ξ |α) = π sin(πα)

32α2(1 + ξ )η±

∫ ∞

0
dλ f (α,λ)(1 + ξ )∓

λ2

8α (9)

with

f (α,λ) ≡ λ sinh(πλ)
(1 + α2 + λ2)2 − 4α2

[cosh(πλ) + cos(πα)]2
(10)

and

η± ≡ 1 ± (1 ∓ α)2

8α
, (11)

where the upper sign holds for ξ � 0 and the lower sign for
−1 < ξ < 0. Note that, for any value of α, the probability dis-
tribution (9) is normalized,

∫
dξ p(ξ |α) = 1. In the direction

opposite to the force, the probability of transfer is disregarded
beyond the classical turning point ξ < −1 since it vanishes
exponentially. Note that Eq. (9) gives p−

∞(ξ = −1) = 0 for
α < 3 − 2

√
2 	 0.17 but p(ξ ) diverges when ξ → −1 for

α > 3 − 2
√

2.
Note that Eq. (9) generalizes the exact result of Ref. [12]

for the probability of transfer in 1D nonbiased disorder to the
case where a bias force is present. One can also check that the
vanishing force limit of Eq. (9) matches the result of Ref. [12]
and shows exponential localization (see Appendix B).

For α � 1, the probability of transfer cannot be normalized
(see below) and, to our knowledge, no analytical form is
known.

2. Algebraic localization and critical exponents

In the infinite distance limit ξ → ∞, the probability of
transfer decays algebraically, p+

∞(ξ |α) ∼ 1/ξη+ , up to loga-
rithmic corrections [7]. While in the absence of a bias force,
Anderson localization is characterized by the exponential
decay of the probability of transfer and, consequently, all the
position moments are finite, in the presence of a bias force, one
finds a weaker form of localization where only the lowest-order
position moments

〈ξm〉∞ =
∫ ∞

−1
dξ p∞(ξ |α)ξm (12)

can be finite, owing to the algebraic decay of the probability
of transfer. More precisely, the mth moment is finite only for
η+ � m + 1 [28]. It defines a series of critical values of the
parameter α,

αm = 1 + 4m − 2
√

4m2 + 2m, (13)

such that 〈ξm〉∞ diverges for α > αm, i.e., when the ratio of
the force to the disorder strength exceeds an m-dependent
critical value. When α � 1, all the position moments diverge. It
includes the m = 0 moment 〈ξ 0〉∞ = ∫ ∞

−1 dξ p∞(ξ |α), which
is the normalization of the probability of transfer. This points
towards a full delocalization of the particle when α becomes
larger than 1. Table I shows the values of the first critical
parameters αm for several values of m.
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TABLE I. Values of the critical parameters αm of divergence of
the moments of the position 〈ξm〉∞.

m 0 1 2 3 4 ∞
αm 1 0.101 0.056 0.039 0.029 0

III. SPREADING OF A WAVE PACKET
IN WHITE-NOISE DISORDER

In this section, we study the expansion dynamics of the
quantum wave packet, initially confined in a very small region
of space, in the presence of white-noise disorder and of a
uniform bias force. We first describe the numerical approach.
We then study the time evolutions of the center-of-mass
position and of the width of the wave packet.

A. Numerical approach

1. Initial wave packet

We consider the expansion dynamics of the initial Gaussian
wave packet

φ0(ξ ) = eiκ0ξ
e−ξ 2/2�ξ 2

π1/4
√

�ξ
. (14)

It is centered at the dimensionless position ξ = 0 with the
positive momentum κ0 = 1/ε. The real-space and momentum
widths are, respectively, �ξ and �κ = 1/�ξ . In the following,
we assume that the initial wave packet is well localized in space
and energy so that we can assimilate the dimensionless density
profile ρ(ξ,τ ) ≡ �0n(x,t) to the probability of transfer

ρ(ξ,τ ) 	 p(ξ,τ |α,ε). (15)

It requires that the real-space and energy widths are small
enough. On the one hand, since the localization is algebraic,
there is no typical length scale for the probability of transfer.
Hence, the influence of the initial spatial width on the density
profile will be negligible at distances exceeding it,

ξ � �ξ. (16)

On the other hand, the energy width �E is controlled by the
initial momentum width �E = h̄2k0�k/m with k0 = κ0/�0,
and the disorder-induced spectral broadening �Edis = h̄/t−,
where t− =

√
2h̄4E/mU 2

R is the mean-free scattering time.
Our assumptions require that the typical energy E 	 h̄2k2

0/2m

exceeds both. In dimensionless units, the conditions read as

�κ � κ0 (17)

and

ε � α. (18)

Note that the condition (18) ensures that the probability of
transfer is independent of the parameter ε beyond the propaga-
tion time τ 	 α at most (see Sec. II B). In practice, we use the
values k/κ0 = 0.1 and ε/α = 0.1, except whenever explicitly
mentioned. Then, the initial width of the wave packets has
negligible influence for, at most, ξ � α.

2. Time evolution

To study the dynamical evolution of the wave packet, we
use exact numerical diagonalization of the Hamiltonian (1)
for a given realization of the disordered potential (see below).
We determine the eigenenergies Ej (in units of h̄t0) and the
associated dimensionless eigenfunctions �j (ξ ), where j spans
the spectrum. We then project the initial wave packet φ0(ξ ) onto
the eigenstates �j (ξ ) and write

φ(ξ,τ ) =
∑

j

�j (ξ )e−iEj τ 〈�j |φ0〉 . (19)

The overlap of the initial state and the energy eigenstates is
significant in a limited part of the spectrum. In practice, we
use a cutoff on the energy of the eigenvectors and restrict the
sum in Eq. (19) to the eigenstates with energy −E � Ej � 2E

or 0 � Ej � 5E depending on the value of α [29]. We have
checked that in all the cases considered below, the overlap of
the initial wave packet with the chosen eigenstates exceeds
99%.

The system length L is chosen so as to match the classical
position reached at tmax, i.e.,

xmax = F t2
max/2m + h̄k0tmax/m. (20)

The 1D space is discretized with a length unit δx, which
satisfies δx � 0.1λ(xmax), where λ(x) = 2πh̄/

√
2m(E + Fx)

is the wavelength associated to the classical kinetic energy of
the particle at position x. The number of points on the space
grid thus scales as N ∼ xmax/δx ∼ ξ

3/2
max/ε for large distances

ξmax � 1. In order to reach the highest value of ξmax with a
given maximal number of spatial grid points N , one should
use the highest value of ε. To satisfy also the weak disorder
condition (18), we use ε/α = 0.1 in all the numerics presented
below, except whenever explicitly mentioned. In some cases,
we use ε/α = 0.01 and confirm that the time evolution of the
density profile is independent of ε/α for large enough times.
In order to satisfy the narrow momentum width condition (17),
we use �κ/κ0 	 0.14.

3. Disorder

To produce a homogeneous Gaussian disorder with null
statistical average V (x) = 0, and the two-point correlation
function C(x) = V (x ′)V (x ′ + x) numerically, we use standard
techniques (see, for instance, Refs. [30–32]). We first generate
a complex random field g(k). The real Re[g(k)] and imagi-
nary Im[g(k)] parts of it are independent Gaussian random
variables. They satisfy Re[g(−k)] = Re[g(k)], Re[g(k)] =
0, and Re[g(k)] Re[g(k′)] = 1

2 C̃(k)δ(k − k′) + 1
2 C̃(k)δ(k +

k′) for the real part, and Im[g(−k)] = − Im[g(k)], Im[g(k)] =
0, and Im[g(k)] Im[g(k′)] = 1

2 C̃(k)δ(k − k′) − 1
2 C̃(k)δ(k +

k′) for the imaginary part, where C̃(k) is the Fourier transform
of C(x). Numerically, these conditions are easily satisfied on
the discrete reciprocal space [−j × δk,j × δk] by generating
for all j > 0 two random Gaussian variables Re[g(j × δk)]
and Im[g(j × δk)] of null average and of variance equal to
1
2 C̃(k), and then taking Re[g(−j × δk)] = Re[g(j × δk)] and
Im[g(−j × δk)] = − Im[g(j × δk)]. The disorder is finally
obtained by Fourier transform of the field g(k). Note that for a
white-noise disorder, C̃(k) = UR is a constant.
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The final results are then averaged over hundreds of real-
izations of the disorder.

B. Evolution of the density profile

In Fig. 2, we plot the density ρ(ξ,τ ) in lin-log scale as a
function of the position ξ at different times τ . The various
panels correspond to different values of the ratio of the force
to the disorder strength α (increasing from top to bottom). The
asymptotic probability of transfer (9) (dotted black lines) and
the spreading of the same wave packet dragged by the force in
the absence of disorder (dashed color lines) are also shown for
reference. Note that the former exists only for α < 1 (upper
two panels in Fig. 2). The latter is found analytically:

ρ(ξ,τ ) = |φ(ξ,τ )|2 = 1√
2πσξ,0(τ )

e−[x−ξ0(τ )]2/2σ 2
ξ,0(τ ) (21)

with

ξ0(τ ) = τ 2 + 2τ (22)

and

σξ,0(τ ) = ε√
2

κ0

�κ

√
1 + 4

τ 2

ε2

(
�κ

κ0

)4

(23)

(see Appendix D).
The initial wave packet is extremely narrow and centered

around the origin ξ = 0. It slightly expands in the direction
opposite to the drag force ξ < 0, and rapidly reaches a station-
ary density profile in that direction. The latter approximately
matches the theoretical asymptotic probability of transfer
p∞(ξ |α) [see Eq. (9)] in the classically allowed region ξ > −1.

The wave packet expands mostly in the direction of the bias
force ξ > 0, where the behavior is richer. For small values
of α [Fig. 2(a)], the density profile of the expanding wave
packet smoothly approaches the asymptotic profile. For short
time and short distance, it is close to the latter. At longer
distance, it shows a sharp edge located around the position
of the disorder-free expanded profile (dashed color lines). At
longer times, the edge gets smoother and eventually disappears.
Then, the profile at long distance progressively reaches the
asymptotic profile from below at the expense of the density at
short distance (hardly visible on the vertical logarithmic scale).

For larger values of α [Figs. 2(b)–2(d)], the edge of the
propagating wave packet remains sharp on very long times.
Moreover, it is marked by a clear density peak that reproduces
the shape of the wave packet expanding under the bias force
in the absence of disorder, although with a reduced amplitude.
It is easily interpreted as the fraction of the wave packet that
has not yet been scattered with the disordered potential. The
amplitude of the edge density peak decreases with time since
a larger fraction of the wave packet interacts with the disorder
and is back-scattered as found in the numerics. The leakage
of the front density peak progressively constructs a profile at
shorter distance that reaches the asymptotic profile when it
exists, i.e., for α < 1 [Fig. 2(b)]. In contrast to the behavior
observed for smaller values of α, the latter is here reached
from above.

Similar dynamics is observed for values of α exceeding
the critical value α0 = 1, where the asymptotic probability of
transfer (9) is no longer normalized [Figs. 2(c) and 2(d)]. In
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FIG. 2. Time evolution of the density profile of an initially Gaus-
sian quantum wave packet expanding in the presence of white-noise
disorder and a uniform bias force. The various panels correspond to
different ratios of the force to the disorder: (a) α = 0.2, (b) α = 0.8,
(c) α = 1, and (d) α = 2. The solid color lines correspond to different
times indicated on each panel, with the peak propagating towards
the right when time increases. The asymptotic probability of transfer
(dotted black lines for α < 1) and the time evolution of the wave
packet subjected to the force and in the absence of disorder (dashed
color lines) are also shown.
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this case, however, the density develops an almost flat profile
in the long-distance limit, truncated around the position of
disorder-free expanded wave packet. Its amplitude decreases
when the edge propagates so as required by the conservation
of the particle number.

In order to study the evolution of the wave packet more
precisely, it is fruitful to define the dynamically rescaled
density profile

ρ̃(u,τ ) = ξ0(τ )ρ(uξ0(τ ),τ ), (24)

where ξ0(τ ) = τ 2 + 2τ is the central position of the disorder-
free expanding wave packet [see Eq. (22)]. Except for very
small values of α, this dynamically rescaled density profile
shows a sharp edge at u 	 1, almost independent of time.

Figure 3 shows, in a log-log scale, the dynamically rescaled
density profile ρ̃(u,τ ) as a function of the rescaled position
u at different times τ and for two values of α. Note that
in order to reduce the amplitude of the edge peak around
u = 1, we used here a negative initial velocity, κ0 < 0, in the
numerics. This way, only the small part of the wave packet
that has reached the classical turning point can move towards
the right without scattering on the disordered potential. The
dynamically rescaled profiles are compared to the algebraic
decay 1/uη, with η = η+ for α < 1 [Fig. 3(a), α = 0.8] and
η = limα→1− η+ = 1 for α > 1 [Fig. 3(b), α = 2]. For α < 1,
we find that the dynamically rescaled density profile agrees
with the predicted power-law decay already at short times. The
profiles collapse on the same line at short distance. Deviations
are observed at distances approaching the profile edge u 	 1,
which, however, vanish in the long-time limit. For α > 1, we
also observe data collapse at short distance. In this case, the
dynamically rescaled density profile shows a decay that is
weaker than 1/u.

In Fig. 3(c), we plot the exponent η found by fitting the
power law ρ̃(u,τ ) = A(τ )/uη to the density profile found in
the numerics. We find that the exponent η decreases smoothly
as a function of α. The fitted values (red points) are in good
agreement with the analytical prediction (11) (see solid blue
line) in the whole validity range of the theory, 0 < α < 1. In
this regime where the asymptotic probability of transfer is
normalizable, we find that the fitted amplitude A(τ ) reaches
a constant value. For α < 1, we still find an algebraic decay
with, however, η < 1 so that the amplitude A(τ ) decays in time.
We find no sign of any critical behavior of the exponent η at
the critical point α0 = 1.

C. Evolution of the position moments

The expansion dynamics of the wave packet may be further
characterized by the time evolution of its position moments

ξm(τ ) =
∫

dξ ρ(ξ,τ )ξm, (25)

with m ∈ N, and the corresponding cumulants. Figure 4 shows
the numerical solution for the evolution of the first two

cumulants ξ [Fig. 4(a)] and σξ =
√

ξ 2 − ξ
2

[Fig. 4(b)] as a
function of the dimensionless time τ for various values of the
parameter α. Comparison of the time evolutions for ε/α = 0.1
(solid lines) and ε/α = 0.01 (dashed lines) confirm that the
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FIG. 3. Panels (a) and (b) show the dynamically rescaled density
ρ̃ as a function of the dynamically rescaled position u at different times
τ indicated on each panel. They are compared to the algebraic decays
of slope 1/uη+ for α < 1 and 1/u for α > 1 (solid black lines). Panel
(a) corresponds to α = 0.8 and panel (b) to α = 2. In the numerics,
we used negative initial velocities κ0 < 0. (c) Values of η obtained by
a linear fit of the dynamically renormalized density in log-log scale
on u ∈ [0.01,0.1], with 10% error bars. The solid blue line shows the
analytical prediction η+ for 0 < α < α0 = 1 [Eq. (11)].

dynamics is nearly independent of the parameter ε (for τ � ε,
see Sec. II B 2). Both ξ and σξ essentially increase with time,
which indicates that the wave packet advances in the direction
of the force and spreads. As expected, the increase is faster
for larger values of α, that is, when the force F increases with
respect to the disorder strength UR. We now need to distinguish
the two cases α < αm and α > αm for both center of mass (ξ ;
m = 1) and width (σξ ; m = 2).
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FIG. 4. Time evolution of (a) the center-of-mass position and (b) width of the wave packet for various values of the parameter α and, for
some curves, two values of ε (solid lines correspond to ε/α = 0.1 and dashed lines to ε/α = 0.01). The lower (upper) curves correspond to
the smallest (largest) values of α indicated on the panels. Also shown are the analytical prediction in the absence of disorder (black lines), the
asymptotic values ξ∞ and σξ,∞ (horizontal solid colorful segments), and their maximum values (horizontal dotted black lines).

1. Localized regime (α < αm)

In the localized regime for the position moment m, i.e.,
α < αm, ξm is finite. It can be calculated analytically using
Eq. (12), together with Eqs. (9)–(11). It yields

ξ∞ = 24πα sin(πα)g(α,8) (26)

and

ξ 2∞ = 16πα sin(πα)[5g(α,16) − 3g(α,8)] (27)

with

g(α,c) ≡
∫ ∞

0
dλ

sinh(πλ)

[cosh(πλ) + cos(πα)]2

×
[

λ

λ2 + (1 − α)2 − cα
+ λ

λ2 + (1 + α)2 + cα

]
.

(28)

The two quantities ξ∞ and ξ 2∞ are continuous, increasing
functions of α ∈ [0,αm], and reach a finite value at α = αm (see
Fig. 5). For instance, we find max (ξ∞) 	 1.140, max (ξ 2∞) 	

 0
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 0.8

 1

 1.2

 0  0.02  0.04  0.06  0.08  0.1

²
,

FIG. 5. Values at large time of the first two position moments ξ

and ξ 2 and the width σξ of the position of the wave packet, as a function
of α. The lines represent the analytical values at infinite time and the
maximum values of ξ∞ at α = α1 and ξ 2∞ and σξ,∞ at α = α2 are
shown as circles. The diamonds, squares, and triangles correspond,
respectively, to the values of ξ (τmax), ξ 2(τmax), and σξ (τmax) at the
highest time τmax calculated in the numerical simulations.

0.929, and max (σξ,∞) 	 0.958. Then, they both diverge for
α > αm. Note that all the position moments ξm vanish in the
limit α = 0. It is expected in the case where α vanishes as a
result of a diverging disorder strengthUR for a fixed forceF and
a fixed energy E. Then, the particle is infinitely localized at its
initial position. In contrast, the case where α vanishes due to a
vanishing force for a fixed energy and a fixed disorder strength
requires more care. Then, we expect the average position to
remain null but all other position moments should be finite
due to a finite exponential localization length. This is actually
consistent with our results since the moments of the position are
given by 〈xm〉∞ = Em〈ξm〉∞/Fm, and they thus correspond
to a finite value when F = 0. For instance, for α → 0, we
find ξ∞ 	 24π2g0α

2, i.e., x∞ → 0, and ξ 2∞ 	 32π2g0α
2,

i.e., x2∞ 	 32π2g0(h̄2E/mUR)2, with g0 ≡ limα→0 g(α,c) 	
0.122.

In the numerical calculations shown in Fig. 4(a) we find that,
after some oscillations, the average position ξ (τ ) converges to
a constant value for α � α1 	 0.101. The values of ξ (τmax)
at the larger time that we have calculated, τmax, are plotted
as red triangles on Fig. 5. They agree well with the infinite-
time theoretical value for smallest α and reproduce its trend
of increase for larger α [33]. As shown in Fig. 4(b), a similar
behavior is found for the width of the wave packet σξ (τ ) for
α � α2 	 0.056, without, however, significant oscillations at
intermediate times. Note that for α = 0.08 ∈]α2,α1], the width
σξ diverges while the center-of-mass position ξ converges to a
finite value.

2. Delocalized regime (α > αm)

Consider now the delocalized regime for each cumulant,
α > αm, and let us focus first on the center-of-mass position
(ξ ; m = 1). As shown in Fig. 4(a), in this regime, ξ (τ ) no
longer saturates to a finite value in the long-time limit. For α

slightly above the critical value α1, the curve for ξ (τ ) in log-log
scale is nearly linear, which suggests the power-law behavior
ξ (τ ) ∼ τβ1 , with some exponent β1 that depends on α. For
values of α significantly above α1, ξ (τ ) seems to increase faster
than linearly on the considered expansion times plotted on
Fig. 4(a). However, when α increases, that is, when the relative
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FIG. 6. Power-law exponents of (a) the average position and the (b) the width of the wave packet as a function of the parameter α, at different
expansion times τ (color points) and extrapolated to τ → ∞ (black points). The expected values for α → ∞ are signaled by right-pointing
arrows in (a). The error bars for the data at finite time τ (color points) correspond to the standard deviation due to disorder averaging. The data at
infinite time (black points) are extrapolations of the latter as discussed in Appendix C, which produces an additional contribution to the error bars.

strength of the force to the disorder increases, the curves for
ξ (τ ) approach the analytic solution in the absence of disorder,
namely, ξ 0(τ ) = τ 2 + 2τ [solid black line in Fig. 4(a)]. The lat-
ter is a power law with the exponent β∞

1 = 2 in the infinite-time
limit. It suggests that in the presence of disorder, ξ (τ ) should
increase as a power law at most with β1 � 2, i.e., the curves
in Fig. 4(a) are asymptotically straight lines in log-log scale.

To check it, we define the instantaneous power-law expo-
nent

β1(τ ) ≡ d ln ξ (τ )

d ln τ
. (29)

The exponent β1 is plotted as a function of α on Fig. 6(a)
at different times τ (color points) together with their values
extrapolated at infinite time (black points, see below). For α �
α1, the exponent β1 is close to zero and shows weak fluctuations
versus the time τ . For α � α1 conversely, β1 increases with α.
These results are compatible with the expected delocalization
transition at α = α1.

In the delocalized regime α > α1, the instantaneous power-
law exponent β1(τ ) shows a clear systematic increase with
time, which, however, slows down. It suggests that the dy-
namics of ξ (τ ) converges slowly towards a power law in
the long-time limit. This is consistent with the corresponding
behavior in the absence of disorder,

β∞
1 (τ ) = 2

τ + 1

τ + 2
, (30)

which converges only algebraically, β∞
1 (τ ) 	 2(1 − 1/τ ), to-

wards the asymptotic value β∞
1 = 2. The values of β∞

1 (τ ) are
shown as arrows pointing towards α = ∞ in Fig. 6(a). Note
that for all times τ , the values of β1(τ ) in the presence of
disorder are all smaller than β∞

1 (τ ) and tend to them when
α increases. In order to determine the asymptotic value of the
power-law exponent β1(∞) in the presence of disorder, we plot
β1(τ ) as a function of β∞

1 (τ ), and use a linear extrapolation
at β∞

1 = 2, which corresponds to infinite time τ = ∞ (see
Appendix C). The values of the power-law exponent β1

extrapolated at infinite time are shown as black squares on
Fig. 6(a). They confirm localization, i.e., β1 	 0, for α � α1.
For α � α1, the exponent β∞

1 shows a sharp increase right

above the transition and converges towards the finite value
β∞

1 = 2 corresponding to the disorder-free case when the
relative strength of the force to the disorder increases.

We now focus on the width of the wave packet (σ 2
ξ ; m = 2).

As shown in Fig. 4(b), a similar behavior as for the average
position ξ (τ ) is found for the width σξ (τ ) for α > α2 	 0.056.
We therefore similarly look for a power-law behavior σξ (τ ) ∼
τβ2 , with some exponent β2 that depends on α. Note that in the
absence of disorder, the analytic solution is given by Eq. (23).
This result indicates that the width in the absence of disorder
depends on the value of ε at short times. It, however, disappears
in the long-time limit, where we find

σξ 	
√

2
�κ

κ0
τ, (31)

which corresponds to a power law β∞
2 = 1 in the infinite-time

limit. This asymptotic behavior is plotted with a dotted black
line on Fig. 4(b). We find that contrary to the curves of the
average position, the plotted curves for the width do not
converge towards the asymptotic solution in the absence of
disorder whenα increases. It indicates that the disorder remains
relevant even for a very strong force. Moreover, at a given time
τ , the width decreases when α increases for large values of α

and a given value of ε. On Fig. 6(b), we plot the values of β2 as
a function of α at different times τ (colored dots) found from
the curves of Fig. 4(b). The extrapolated values at infinite time,
found using the same method as for the average position, are
shown as black squares. As for the exponent β1, the power-law
exponent β2 shows a sharp transition between the localized
region α � α2, where its numerical values are approximately
equal to zero, and the delocalized region α > α2, where it starts
to increase with α. For α � 0.3, the value of β2 exceeds 1 and
approaches 2 for α → ∞. It is thus larger the infinite-time
value in the absence of disorder. This is confirmed by a further
study for very large values of α, α ∼ 102–104, which shows
that for a given ε, at short times, the width increases as in the
absence of disorder, and at large times it starts to increase faster
and becomes independent of the value of ε. The larger the value
of α, the later this change of behavior (see Appendix C).

Let us finally discuss our results in light of the Einstein’s
relation. For classical Brownian motion, Einstein’s theory
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FIG. 7. Ratio of the center-of-mass position to the width of the
wave packet as a function of time for various values of the parameter
α and, for some curves, two values of ε (solid lines correspond to
ε/α = 0.1 and dashed lines to ε/α = 0.01). The lower (upper) curves
on the right-hand side correspond to the largest (smallest) values of
α indicated on the panels.

relates the linear drift in the presence of a force to the spread
of the diffusing packet in the absence of a bias, namely,
〈ξ 〉cl/(σ cl,0

ξ )2 = const, implying in particular β1 = 2β2 = 1.
Even when diffusion is anomalous (non-Brownian, β2 �= 0.5),
it is expected from linear response theory applied to a classical
diffusion process that this relation holds in the short-time
regime [34]. It is thus tempting to explore the validity of this
relation for the diffusion of the quantum wave packet studied
here. To this end, we plot on Fig. 7 the ratio 〈ξ 〉/σ 2

ξ as a function
of time τ . It is seen that the quantity 〈ξ 〉/σ 2

ξ continuously
decreases when τ increases, signaling a breakdown of the
Einstein relation at long times for all values of α. However,
a plateau regime where 〈ξ 〉/σ 2

ξ 	 const at intermediate times
is indeed observed close to the localized regime α ∼ α1. This
breakdown of the Einstein relation is not surprising since there
is no quantum diffusion regime in one dimension and transient
diffusion is always non-Brownian. It is indeed known even
for classical non-Brownian diffusion processes that Einstein
relation can be violated at long times in some cases, e.g., in
the presence of a wide distribution of trapping times [34]. In
contrast, in higher dimension, we would expect for the problem
considered here that a regime of validity of the Einstein relation
holds in the diffusive regime.

IV. WAVE-PACKET EVOLUTION
IN CORRELATED DISORDER

We now turn to a correlated model of disorder. In the
absence of a force, finite-range correlations of the disorder do
not alter significantly exponential Anderson localization. In
fact, the effect of finite correlations can be fully encapsulated
in the renormalization of the effective disorder strength and,
consequently, of the localization length at a given energy or
wavelength [13–15]. In the presence of a bias force, however,
such a renormalization cannot be applied because the wave-
length decreases owing to the dragging by the force. As shown
rigorously in transmission schemes, correlations may induce
delocalization for any model disorder [10]. Here, we study

numerically the effect of a correlated disorder on the expansion
of a quantum wave packet.

A. Numerical results

We still consider a Gaussian, homogeneous disorder and
with a null average, but we now assume that the two-point
correlation function is a Gaussian function

C(x) = UR√
2πσR

exp

(
− x2

2σ 2
R

)
, (32)

where σR is the correlation length of the disorder. Using the
units introduced in Sec. II B, we define the dimensionless
correlation length σ̃R = σR/�0. In addition to the two dimen-
sionless parameters α and ε, the probability of transfer now
depends on a third dimensionless parameter, namely, κ0σ̃R. In
the absence of a force, the localization length takes the form
Lloc = 4h̄2E/mC̃(2kE), where kE = √

2mE/h̄ is the wave
vector associated to the energy E. For white-noise disorder,
the localization length reduces to Lloc = 4h̄2E/mUR. Hence,
in the absence of a force, the effect of finite-range correlations
amounts to renormalizing the disorder strength UR to the
effective energy-dependent value C̃(2kE). By analogy, in the
presence of a bias force, it is then convenient to quantify the
ratio of the force to the disorder strength by the local parameter

αloc(x) = h̄2F

mC̃[2k(x)]
. (33)

Note that one finds αloc(0) = h̄2F/mC̃(2kE) = αUR/C̃(2kE),
hence, αloc(0) = α exp(2κ2

0 σ̃ 2
R).

We study the evolution of the center-of-mass position ξ (τ )
and width σξ (τ ) of the wave packet for three values of αloc(0),
corresponding to (a) αloc(0) < α2 < α1, (b) α2 < αloc(0) <

α1, and (c) α2 < α1 < αloc(0), respectively. For white-noise
disorder with α = αloc(0), they correspond, respectively, to the
cases where (a) both ξ (τ ) and σξ (τ ) are finite, (b) ξ (τ ) is finite
but σξ (τ ) diverges, and (c) both ξ (τ ) and σξ (τ ) diverge. In the
numerics, we use ε/α = 0.1 and κ0σ̃R = 0.5α.

The results of the numerical simulations are shown on Fig. 8
as filled red circles. Also shown are results of simulations for a
white-noise disorder (σR = 0) with the parameter α set equal
to αloc(0) for comparison.

Numerical results for two values of ε are presented. In the
first case, we keep the same value of ε/α for the expansion in
white-noise disorder as for the expansion in correlated disorder.
In practice, this is equivalent for a given wave packet (fixed
mass and fixed energy) to keep the same disorder strength
UR, but increase the force so that the value of α becomes
equal to αloc(0). The results are presented as open light blue
squares. In the second case, the value of ε is the same as for the
white-noise disorder. It means that the force is not changed, but
the disorder strength UR is reduced so as to increase α up to
αloc(0). The results are presented as open dark blue circles. The
results found on the average position (left panel) and the width
(right panel) of the wave packet are identical in the white-noise
disorder for the two values of ε tested, as expected at large
enough times, but also for short times.

For all the values of αloc(0) we consider, we find that both ξ

and σξ are almost identical for the white-noise disorder and
the correlated disorder at short times. Then, a tendency to
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FIG. 8. Evolution of the average position ξ (τ ) of the wave packet (left panel), and its width σξ (τ ) (right panel) as a function of time τ

in the presence of a bias force. The filled red circles correspond to a correlated disorder with the Gaussian two-point correlation function
C̃(x) = UR√

2πσR
exp( −x2

2σ 2
R

), with ε/α = 0.1, σ̃Rκ0 = 0.05α, and for three different values of αloc(0) = α exp(2σ̃Rκ0). Empty light blue squares

correspond to white-noise disorder with α = αloc(0) and ε/α = 0.1. Filled dark blue circles correspond to white-noise disorder with α = αloc(0)
and ε exp(2σ̃ 2

Rκ2
0 )/α = 0.1. The blue horizontal dashed lines correspond to the asymptotic values of the moments for white-noise disorder when

they exist.

localization is found in the cases where it is expected for white-
noise disorder [(a) and (b) for ξ (τ ) and only (a) for σξ (τ )].
At longer times, however, we find that both ξ (τ ) and σξ (τ )
start to increase faster in the correlated disorder compared to
the white-noise disorder. This indicates that the wave packet
crosses over towards delocalization in the correlated disorder,
irrespective to its strength with respect to the force.

B. Physical interpretation

The correlation-induced delocalization effect can be in-
terpreted using a simple physical picture, inspired by the

transmission scheme, where similar delocalization occurs [10].
In the transmission scheme, it has been rigorously shown
that this delocalization can be understood using a simple
semiclassical interpretation. It results from the increase of
the semiclassical kinetic energy of the particle K(x) = E +
Fx, and, consequently, of the local mean-free path �−(x) =
2h̄2K(x)/mC̃[2k(x)], where k(x) = √

2mK(x)/h̄.
For white-noise disorder, we found that the wave packet ap-

proximately expands up to the classical disorder-free position
ξ0(τ ) = τ 2 + 2τ (see Sec. III B). Hence, the maximal local
value of α felt by the wave packet at time τ approximately
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reads as

α(τ ) = αloc[ξ0(τ )�0]. (34)

Note that at the initial time τ = 0, we recover the value
αloc(0) = h̄2F/mC̃(2kE) introduced previously. To interpret
the behavior of the quantum wave in the correlated disorder,
we can then compare the value of α(τ ) to the critical values
αm for the center-of-mass position ξ (τ ) (m = 1) and the width
σξ (τ ) (m = 2). More precisely, we distinguish two situations.

Consider first the cases where the moment ξm is finite
for white-noise disorder, i.e., αloc(0) < αm. In this case, the
delocalization of the mth position moment in the correlated
disordered potential may be estimated as the time τm where the
maximum local value of α(τ ) reaches the delocalization thresh-
old αm, i.e., α(τm) = αm. We indicate on Fig. 8 the values of τ1

[panels (a1) and (b1)] and τ2 [panel (a2)] by a dashed-dotted
brown line. For sufficiently large values of αloc(0), we find that
the estimated time τm indicates fairly well the delocalization
time found from the numerical simulations, i.e., the time
where the results corresponding to the correlated disorder start
separating significantly from those corresponding to the white-
noise disorder. For the smallest value of αloc(0) [Fig. 8(a1)],
however, the estimate is rather poor. This is due to the fact that
the edge of the wave packet at ξ0(τ ) is very smooth for low
values of α [see Fig. 2(a) for white-noise disorder], although we
found that it becomes slightly sharper for correlated disorder
compared to white-noise disorder. This effect enhances the
increase of the center-of-mass position for correlated disorder
as compared to white-noise disorder. Hence, the two curves
separate significantly before the expected time τ1.

Consider now the cases where the moment ξm already
diverges in the white-noise disordered potential, i.e., αloc(0) >

αm. In this case, we may intuitively guess that the behaviors
of ξm in the white-noise and correlated disordered potentials
start to differ significantly when the relative change of α(τ )
with respect to its initial value is of order 1. It corresponds to
the time τ ∗ such that

�α(τ ∗)

αloc(0)
= α(τ ∗) − αloc(0)

αloc(0)
= 1. (35)

The corresponding times are shown as vertical orange lines on
Figs. 8(b1), 8(c1), and 8(c2). We indeed find that they indicate
fairly well the time when the behaviors in the white-noise and
correlated disordered potentials start to separate significantly.
This confirms that the dynamics of the position moments is
mostly governed by the expansion of the edge of the wave
packet and the disorder locally experienced by the particles
located at this edge.

In both cases, the argument for delocalization is based on
the property that the quantity α(τ ) increases in time. Since k(x)
always increases with x for a finite force and ξ0(τ ) increases in
time, both without upper bound, it is sufficient that the disorder
power spectrum C̃(2k) is a decreasing function. Except for
white-noise disorder where C̃(2k) is a constant, this condition
is almost always fulfilled [35].

V. CONCLUSION

In summary, we have studied the expansion dynamics
of a quantum wave packet in a one-dimensional disordered

potential in the presence of a constant bias force. When
the initial confinement is released, we found that the wave
packet expands asymmetrically owing to the force dragging
in one direction. For white-noise disorder, the density profile
progressively acquires power-law decaying tails, n(x) ∼ 1/xη.
In the direction of the force, where the wave packet expands
preferentially, we find that the exponent η decreases smoothly
as a function of the ratio of the force to the disorder strength
α. We found no evidence of any critical behavior on this
quantity for any value of α. Nevertheless, algebraic localization
is characterized by a series of critical values αm, where the
mth position moment diverges. For α < αm, we found that
the mth moment converges to a finite value compatible with
the predictions of infinite-time diagrammatic calculations. For
α > αm we found that the mth moment increases as a power
law xm ∼ tβm . Both β1 and β2 increase from βm = 0 for
α = αm to βm 	 2 for α → +∞. For correlated disorder,
we found systematic delocalization of the expanding wave
packet, irrespective to the model of disorder or correlation
length as long as it is finite. More precisely, we identify a
two-step dynamics, where both the center-of-mass position
and the width of the wave packet show transient localization,
similar to the white-noise case, and then delocalization at
sufficiently long time. This correlation-induced delocalization
is interpreted as due to the decrease of the effective de Broglie
wavelength, which lowers the effective strength of the disorder
in the presence of finite-range correlations.

The expansion scheme we have considered in this work
is the standard one proposed in Refs. [24,36,37] and used
experimentally to demonstrate Anderson localization of ultra-
cold matter waves [16–19]. The additional, uniform bias field,
whose effect on localization is studied here, may be imple-
mented in such experiments using the gravity or a magnetic
field gradient. The bias force may be controlled by combining
the two in opposite directions and imposing a controlled
imbalance between the two or controlling the inclination of
the guide confining the atoms in 1D geometry. The disordered
potential may be realized in various ways, including speckle
light fields [38,39], impurity atoms [40–42], and shaped light
fields controlled by digital mirror devices [43], for instance.
Algebraic localization in the presence of a bias force field
may then be observed similarly as in previous ultracold-atom
experiments by directly imaging the atomic density after a
sufficiently long expansion time. Saturation of the mth position
moment for α < αm and power-law expansion for α > αm

may be observed by imaging the cloud at a variable time and
computing the moments from the density profile. This physics
that is specific to white-noise disorder occurs at finite distances
below the crossover value where the delocalization effects due
to the finite correlations appear. In the case of speckle-light
disorder, a stronger delocalization effect is expected due to the
well-known high-momentum cutoff of the disorder spectrum
[24,44,45].
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APPENDIX A: DIAGRAMMATIC SOLUTION FOR THE
PROBABILITY OF TRANSFER IN WHITE-NOISE

DISORDER

For noncorrelated 1D Gaussian disorder, the probability
of transfer can be calculated exactly using the diagrammatic
approach of Ref. [12]. The latter has been extended to white-
noise disorder in the presence of a bias force in Ref. [7].
For high particle energy ε � 1, i.e., E � (h̄2F 2/2m)1/3, the
probability of transfer reads as

p(ξ,τ |α,ε) = 1

8π2

∫
dω

e−iωτ

√
1 + ξ

∫ 2π

0
dϕ Q(e−iϕ,s)

×[1 + (1 + eiϕ)R(eiϕ,s)], (A1)

where

s(ξ ) = 1

2α
ln(1 + ξ ) (A2)

is the emerging dimensionless metrics in a bias disorder
material [10] and where the functions Q(r,s) and R(ρ,s) are
the regular solutions of the two independent equations

∂Q

∂s
= [iν(s,ω)−2]r

∂Q

∂r
+

[
iν(s,ω)

2
−1

]
Q − 2r

∂

∂r

(
r
∂Q

∂r

)

+ r
∂

∂r

(
r
∂rQ

∂r

)
+ ∂

∂r

(
r
∂Q

∂r

)
(A3)

and

∂R

∂s
= −1 + [−iν(s,ω) + 2 − 4ρ]R

+ [−iν(s,ω)ρ + 6ρ − 3ρ2 − 1]
∂R

∂ρ

− ρ(1 − ρ)2 ∂2R

∂ρ2
, (A4)

with

ν(s,ω|α,ε) = 4α

ε
(1 + ξ )3/2

[(
1 + ωε

1 + ξ

)3/2

− 1

− ωε

1 + ξ

(
1 + ωε

1 + ξ

)1/2
]
.

The initial conditions of the differential equations above are
R(ρ,−∞) = 1

1−ρ
and Q(r,0) = 1+r

2 L(r,0) + 1
2 , where L(r,s)

is the solution of a differential equation similar to Eq. (A4) but
with opposite sign with the same initial condition L(r,−∞) =

1
1−r

.

In the long-time limit ω � 1/ε, one thus finds

ν(s,ω|α,ε) 	 2αωeαs = 2αω
√

1 + ξ . (A5)

Hence, the dependence on the parameter ε disappears. Since
ε does not appear explicitly in Eqs. (A1)–(A5) either, for long
propagation times τ � ε, i.e., t � h̄/E, the probability of
transfer only depends on the parameter α, that is, on the ratio
of the force to the disorder strength p(ξ,τ |α).

APPENDIX B: EXPONENTIAL LOCALIZATION
FOR A VANISHINGLY SMALL FORCE

For a vanishingly weak force F → 0, the length scale �0

diverges and it is worth turning back to dimensionful quantities.
More precisely, the limit F → 0 for a fixed energy E, a fixed
disorder strength UR, and a fixed distance x yields α → 0+
[see Eq. (6)], �0 → +∞ [see Eq. (5)], and η± 	 ±1/8α [see
Eq. (11)] with Lloc ≡ 4�0α = 4h̄2E/mUR. The latter is the
localization length in the absence of a force [15]. Hence, one

finds ξ = x/�0 → 0+, f (α → 0,λ) 	 λ sin (πλ)[ 1+λ2

1+cosh (πλ) ]
2

[see Eq. (10)], (1 + ξ )∓λ2/8α 	 exp (−λ2|x|/2Lloc), and

P (x|E) = π2

8Lloc

∫ ∞

0
dλ λ sinh(λ)

[
1 + λ2

1 + cosh(πλ)

]2

× exp

[
− (1 + λ2)

2Lloc
|x|

]
, (B1)

which is equal to the probability of transfer calculated in the
absence of a force [12–14] (see Refs. [23,24] where the same
notations as here are used). Up to algebraic corrections, this
probability of transfer decreases exponentially in the large
distance limit |x| � Lloc in both directions x > 0 or x < 0.

APPENDIX C: POWER-LAW EXPONENTS OF THE FIRST
TWO POSITION MOMENTS AND INFINITE-TIME

EXTRAPOLATION

In this Appendix, we describe the extrapolation method
used for finding the values of the exponents β1 and β2 at infinite
times. The smooth evolutions of ξ (τ ) andσξ (τ ) in log-log scale,
visible on Fig. 4, allow us to identify the local values of the
power-law exponents β1(τ ) and β2(τ ) as the slopes of local
linear fits of the curves. In the absence of disorder, the exponent
β∞

1 (τ ) = 2(τ + 1)/(τ + 2) is a strictly increasing function of
time, which evolves from 1 at τ = 0 to 2 at τ = 2. Hence,
β∞

1 (τ ) can serve as a measure of time, which advantageously
converges to the finite value β∞

1 (∞) = 2 in the infinite real-
time limit τ → ∞. On Fig. 9, we plot the exponents β1(τ )
and β2(τ ) as functions of β∞(τ ) for different values of α. The
quantity β∞

1 (τ ) found in the absence of disorder is also plotted
on Fig. 9(a). We then extrapolate linearly the curves for β1

and β2 from the large time points β∞
1 > 1.75. It yields the

estimates of β1(τ = ∞) and β2(τ = ∞) at β∞
1 = 2 plotted as

black points on Figs. 6(a) and 6(b).
For the sake of completeness, we have also studied the

behavior of the width of the wave packet as a function of time
for very large values of the parameter α. Figure 10 shows that
for each value of ε, the width of the wave packet increases
similarly as it does in the absence of disorder at short times.
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FIG. 9. Power-law exponent of (a) the average position and (b) width of the wave packet as a function of β∞
1 , for various values of the

parameter α. The analytical result in the absence of disorder is shown as a black line in (a). Long-time linear extrapolations found from linear
fits for β∞

1 > 1.75 are shown as dashed lines.

At longer times, it then starts to increase faster and becomes
independent of the value of ε. The crossover time between the
two regimes becomes larger when the values of α increase.

APPENDIX D: PROPAGATION OF A GAUSSIAN WAVE
PACKET SUBJECTED TO A BIAS FORCE

Here, we study the evolution of the initial Gaussian wave
packet

ψ(x,t = 0) = 1

π1/4
√

�x
e−x2/2�x2+ip0x/h̄ (D1)

in the presence of the uniform bias force F . In momentum
space, it reads as

ψ̃(p,t = 0) = (2π )1/4

√
h̄

σp

e−(p−p0)2/4σ 2
p , (D2)

with p0 = h̄k0 and σp = h̄/(
√

2�x). The eigenstate ψ̃E(p) of
the Hamiltonian associated to the energy E is the solution of

 0.1
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FIG. 10. Time evolution of the width σξ of the wave packet as a
function of time τ for two values of ε and four values of the parameter
α. The solid lines correspond to ε = 0.05 and the dashed lines to
ε = 1. The lower (upper) curves on the right-hand side correspond to
the largest (smallest) values of α indicated on the panels. The cases
without disorder are plotted in dark black.

the stationary Schrödinger equation

p2

2m
ψ̃E(p) − iF h̄

∂ψ̃E(p)

∂p
= Eψ̃E(p), (D3)

the solution of which reads as

ψ̃E(p) = 1√
F

e
i

F h̄
(Ep−p3/6m). (D4)

Then, decomposing the initial state on this eigenbasis, we find

ψ̃(p,t) = (2π )1/4

√
h̄

σp

e
− (p−p0−F t)2

4σ2
p e− it[F2 t2+3p(p−F t)]

6mh̄ . (D5)

Applying inverse Fourier transformation to this solution, we
then find

ψ(x,t) =
∫

dp

2πh̄
eipx/h̄ψ̃(p,t)

= 1√
2
√

2πAσph̄

e−(F t+p0)2/4σ 2
p+B2/4A−iF 2t3/6mh̄,

(D6)

with

A = 1

4σ 2
p

+ it

2mh̄
and B = F t + p0

2σ 2
p

+ i

h̄

(
x + F t2

2m

)
.

(D7)

It yields the density profile

|ψ(x,t)|2 = 1

2
√

2πh̄σp|A|e
−(F t+p0)2/2σ 2

p e2 Re(B2/4A)

= 1√
2πσx(t)

e−[x−x0(t)]2/2σ 2
x,0(t) (D8)

with

x0(t) = p0t

m
+ F t2

2m
(D9)

and

σx,0(t) = h̄

2σp

√
1 + 4t2σ 4

p

m2h̄2 . (D10)
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Hence, the wave packet remains Gaussian and spreads as in
the absence of a force. The dynamics of the center of mass is
that of the classical particle with the same initial position and
velocity.

In dimensionless units, the wave packets read as

φ(ξ,τ ) = 1√
2πσξ (τ )

e−[x−ξcl (τ )]2/2σ 2
ξ (τ ) (D11)

with

ξ0(τ ) = τ 2 + 2τ (D12)

and

σξ,0(τ ) = ε√
2

κ0

�κ

√
1 + 4

τ 2

ε2

(
�κ

κ0

)4

. (D13)
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