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We study the out-of-equilibrium dynamics of quantum systems with long-range interactions. Two different
models describing, respectively, interacting lattice bosons and spins are considered. Our study relies on a combined
approach based on accurate many-body numerical calculations as well as on a quasiparticle microscopic theory.
For sufficiently fast decaying long-range potentials, we find that the quantum speed limit set by the long-range
Lieb-Robinson bounds is never attained and a purely ballistic behavior is found. For slowly decaying potentials,
a radically different scenario is observed. In the bosonic case, a remarkable local spreading of correlations is still
observed, despite the existence of infinitely fast traveling excitations in the system. This is in marked contrast
to the spin case, where locality is broken. We finally provide a microscopic justification of the different regimes
observed and of the origin of the protected locality in the bosonic model.
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It is common wisdom that the propagation of a signal
through a classical medium presents a distinct notion of
causality, characterized by the progressive time growth of
the spatial region explored by the signal. In spite of the
intrinsically nonlocal nature of quantum theory, this familiar
notion of locality is preserved in a wide class of quantum
systems with short-range interactions. A milestone example
is provided by the Lieb-Robinson (LR) bounds, which set
a ballistic limit to the propagation of information, with
exponentially small leaks outside the locality cone [1,2]. The
existence of LR bounds has many fundamental implications
for thermalization, entanglement scaling laws, and information
transfer in quantum systems [3]. A renewed interest in these
topics is currently sparked by the impressive progress in
the time-dependent control of ultracold-atom systems. Direct
observation of cone spreading of correlations was reported in
Refs. [4,5].

The extension of the notion of locality to quantum sys-
tems with long-range interactions constitutes a fundamental
challenge. The paradigmatic model of long-range interactions
considers an algebraic decay of some coupling term of the
form V (R) ∼ 1/Rα [6–10]. It applies either to the exchange
coupling term in spin systems, as realized in cold ion
crystals [11,12], or to the two-body interactions in particle
systems, as realized in ultracold gases of polar molecules [13],
magnetic atoms [14], and Rydberg atoms [15]. A remarkable
feature of long-range systems is that instantaneous propagation
of information, in violation of locality, can take place when
the exponent α is smaller than some threshold. This possibility
is supported by the known extensions of the LR bounds to
long-range interactions [16–18]. The latter yield “quasilocal”
superballistic bounds for α > d, where d is the dimension of
the system, whereas for α < d no known generalized bounds
exist, hence suggesting the breaking of quasilocality. Evidence
of the breaking of quasilocality in one-dimensional (1D)
Ising spin systems has been reported theoretically [6,7] and
experimentally in cold ion crystals [12,19]. However, many
questions remain open. For instance, although the observations
are compatible with the known long-range bounds, the propa-
gation was found to be much slower than expected [7]. Hence,
the bounds are usually not saturated and it is not clear that they

provide a universal criterion for the breaking of quasilocality.
Moreover the threshold value for the breaking of locality in
these systems is debated, and contrasting results have been put
forward [6,7]. To make progress on answering these questions,
it is of crucial importance to provide a unified understanding
of a wider class of systems and, at the same time, to understand
the microscopic origin of the breaking of quasilocality.

In this Rapid Communication, we study the out-of-
equilibrium dynamics, induced by an interaction quench, of
homogeneous 1D quantum systems with long-range algebraic
interactions. We consider two different models, namely, the
long-range transverse Ising (LRTI) and long-range Bose-
Hubbard (LRBH) models. A quantitative analysis of quasilo-
cality in these systems is realized upon studying the earliest
times at which information arrives at some fixed distance.
On the one hand, we perform ab initio quantum many-
body calculations based on the time-dependent variational
Monte Carlo (t-VMC) approach [20]. On the other hand,
we provide a unified analytical framework based on quasi-
particle (QP) analysis. Both approaches consistently show
that the two systems behave dramatically different. For α > 2
the LRTI model shows ballistic spreading of correlations with
exponentially small leaks in time, hence leading to a strong
form of quasilocality. For 1 < α < 2 quasilocality is still
found. However, algebraic leaks in time appear, which can
be traced back to a divergent group velocity at low momenta.
For α < 1 quasilocality is instead completely broken. This
effect is traced back to the divergences of both the QP energy
and velocity, which induce infinitely fast oscillations and a
response time scale that goes to zero with the system size.
Conversely, for the LRBH model, we find ballistic spreading
of correlations for any value of α, analogous to what was
found in the short-range Bose-Hubbard model and in marked
contrast with expectations based on the lack of LR bounds for
these systems. This effect is traced back to the fact that the QP
energy remains finite, which cancels nonlocal contributions
for any value of α. All the observed regimes are explained by
the unified QP analysis and shed new light on the microscopic
origin of locality in long-range quantum systems.

Long-range transverse Ising model. We start with the
long-range transverse Ising (LRTI) model, whose Hamiltonian
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FIG. 1. (Color online) Correlation spreading in long-range spin and boson models for various values of α. (a) Connected spin-spin
correlation function in the LRTI model for the quench Vi = h/2 → Vf = h/10. (b) Connected density-density correlation function in the
LRBH model for the quench Ui = Vi = J → Uf = Vf = J/4. Results were obtained using the t-VMC approach for systems of L = 400 sites
(for visibility, only a part is shown). The length unit is the lattice spacing and the time units are �/h for (a) and �/J for (b).

reads

H = −h
∑

i

σ x
i + V

2

∑
i �=j

σ z
i σ z

j

|i − j |α , (1)

where σx
i ,σ z

i are the Pauli matrices, h is the transverse
field, V is the strength of the long-range spin exchange
term, and in the following we set � = 1 for convenience.
Hamiltonian (1) is the prototype for long-range interacting
quantum systems [6,7,21]. Moreover, it is experimentally
implemented in cold ion crystals [22]. Evidence of the breaking
of quasilocality in information spreading has been reported
for the 1D LRTI model for sufficiently small exponents
α [6,7,12,19], consistently with the absence of a long-range
LR bound for α < 1. It was pointed out, however, that a
model-dependent form of quasilocality may occur for specific
initial states [7] with a complete understanding of the possible
scenarios being debated.

Asymptotically reliable results to reveal quasilocality re-
quire sufficiently long propagation times and sufficiently large
systems. This is particularly crucial to determine precisely
the nature of the dynamical regimes. To achieve this goal,
we compute the unitary evolution of the correlation functions
by means of the t-VMC approach [20,23] (see Supplemental
Material [28]). The latter permits us to simulate the dynamics
of correlated quantum systems with an accuracy comparable
to tensor-network methods and proved numerically stable for
unprecedented long times and large sizes.

In the t-VMC calculations, we use a Jastrow wave
function with long-range spin-spin correlations at arbitrary
distance [24]. To avoid misleading finite size effects, which
are usually strong in these issues [25], periodic boundary
conditions (PBCs) are used. For a lattice of size L with PBCs,
the interaction potential is taken as the sum of the contributions
resulting from all the periodic images of the finite system. The
Fourier components of the effective interaction potential are
then P (k) = 2

∑∞
n=1

cos (kn)
nα = 2Clα(k), where we have used

the Poisson summation formula over the periodic images, k

is an integer multiple of 2π/L, and Clα(k) is the Clausen
cosine function. To have a well-behaved potential in the
thermodynamic limit, we set P (k = 0) = 0. It is the equivalent
of the standard regularization procedure ensuring charge
neutrality in the presence of electrostatic interactions [26].

We consider global quenches of the strength of the
long-range interaction, Vi → Vf . The results for the time-
connected average Gσσ

c (R,t) = Gσσ (R,t) − Gσσ (R,0) of the
spin-spin correlation function Gσσ (R) = 〈σ z

i σ z
i+R〉 are shown

in Fig. 1(a). We find three qualitatively different regimes.
For α < 1, Fig. 1(a1), the propagation of correlations takes
place on extremely short time scales and no conelike structure
emerges. This is the signature of an efficient microscopic
mechanism leading to the breaking of locality in the system.
For α > 2, Fig. 1(a3), a correlation cone with a well-
determined velocity v clearly emerges. It is marked by a
strong suppression of leaks in the region defined by R/t > v

and space-time oscillations in the region R/t < v. In the
intermediate regime where 1 < α < 2, Fig. 1(a2), a correlation
conelike structure is still visible but prominent nonlocal leaks
are also appearing.

To quantify more precisely the time dependence of the
leaks in the quasilocal regimes we study the time-integrated
absolute value of the correlation function Ḡσσ

c (R,t) =
1
t

∫ t

0 dt ′|Gσσ
c (R,t ′)|. While it retains all the features of the

signal propagation, it is less sensitive to time oscillations. In
Fig. 2(a1) we show the behavior of Ḡσσ

c (R,t) for α = 3. It
clearly shows the sharp boundary of a ballistic cone. This is
further assessed introducing a small cutoff ε and computing
the first propagation time t�(R) such that Ḡσσ

c (R,t�) > ε. The
result is almost independent of ε and we find the scaling
vt� = Rβ with finite v and β 	 1 to very good precision and up
to large system sizes and long propagation times. The presence
of a ballistic spreading, with exponentially suppressed leaks
in time, is a stronger realization of locality than what expected
from the looser long-range LR bound, which instead allows
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FIG. 2. (Color online) Panels (a1,b1): Time-integrated spin-spin
correlation functions Ḡσσ

c (R,t) for the same data as in Fig. 1(a).
Superimposed lines show the activation time t �(ε) (see text), for
ε ranging from 2 × 10−2 (lighter lines) down to 5 × 10−3 (darker
lines). Panels (a2,b2): Behavior of the fitted exponent β, computed
within linear spin-wave theory, as a function of the cutoff parameter ε

and for the system size L = 214. The length unit is the lattice spacing
and the time unit is �/h.

for polynomially suppressed leaks in time.1 For 1 < α < 2 the
same analysis of the leaks, shown in Fig. 2(b1), reveals instead
that polynomial leaks in time appear with an exponent β 	 α,
and a velocity v that vanishes with ε. This is compatible with
the long-range LR bound [16]. Remarkably, the regimes we
find here for a global quench are the same qualitative regimes
that have been identified for a local quench in the LRTI model
in Ref. [6].

Long-range Bose-Hubbard model. We now turn to the
long-range Bose-Hubbard (LRBH) model, which describes
interacting spinless bosons in a periodic potential with nearest-
neighbor tunneling and long-range two-body interactions. The
Hamiltonian reads

H = −J
∑
〈i,j〉

(b†i bj + H.c.) + U

2

∑
i

ni(ni − 1)

+ V

2

∑
i �=j

ninj

|i − j |α , (2)

where bi(b
†
i ) destroys (creates) a boson on site i, ni = b

†
i bi

is the particle number operator, J is the tunneling amplitude,
U is the on-site interaction energy, V is the strength of the
interaction potential, and we set � = 1 for convenience. The
short-range (V = 0) case is now routinely realized in ultracold-
atom experiments and the long-range (V �= 0) case applies
to polar molecules [13], magnetic atoms [14], and Rydberg
atoms [15].

We perform t-VMC calculations using a Jastrow wave
function incorporating density-density correlations at arbitrary

1We focus here exclusively on the time dependence of the leaks,
and we find regimes with exponentially suppressed leaks in time.
Notice that the spatial dependence of the correlation function, even
for short-range Hamiltonians, can instead exhibit algebraic behavior,
associated with quasi-long-range order in 1D.

large distances [27] (see Supplemental Material [28]). For
simplicity we choose U = V , fix the density at half filling (n =
1
2 ), and consider the connected density-density correlation
function Gnn

c (R) = 〈nini+R〉 − n2. We study global quenches
in the interaction strength Vi → Vf . The results for various
values of the exponent α are shown in Fig. 1(b). Surprisingly,
we find here that the LRBH model exhibits the same qualitative
behavior for all values of α, in marked contrast with the LRTI
model. Within numerical precision, we always find a purely
ballistic cone spreading of correlations at some velocity v.
The long-range LR bound is therefore never saturated and, for
every value of the exponent α, the spreading is qualitatively
identical to the short-range case. Hence, in the LRBH model,
quasilocality appears to be strongly protected even for very
long-range interactions. This is further confirmed by a precise
analysis of the leaks, along the same lines as for the LRTI
model. It always yields a scaling of the form vt� = Rβ with
β = 1 and the signal is exponentially suppressed for times out
of the locality cone, i.e., when t < R/v.

Quasiparticle analysis. The radically different behaviors of
the LRTI and LRBH models are particularly striking because
they share the same class of long-range interactions and
are therefore subjected to the same universal long-range LR
bounds [16]. To understand the different behaviors of the two
models, at a microscopic level, we use a general QP approach.
The latter has a broad range of applications, e.g., universal
conformal theories [29], spin systems [6], superfluids [30],
and Mott insulators [4]. A generic time-dependent, two-body,
connected correlation function in a translation invariant model
with well-defined QP excitations can be written as

Gc(R,t) =
∫ π

−π

dk

2π
F (k)

{
cos(kR) − 1

2

[
cos

(
kR − 2E

f

k t
)

+ cos
(
kR + 2E

f

k t
)]}

, (3)

where E
f

k is the k-momentum QP energy of the post-quench
Hamiltonian and F (k) is the weight associated with each QP.
This general form states that the collective excitations of the
system are coherent superpositions of pairs carrying excita-
tions of momentum k and traveling in opposite directions.
Whereas E

f

k depends only on the post-quench Hamiltonian, in
general F (k) instead depends both on the pre- and post-quench
Hamiltonians.2

In the LRTI model and in the regime of large transverse
field (h 
 V ), considered in the t-VMC calculations, we can
apply linear spin-wave theory [11]. The QP energy and weight
read, respectively, E

f

k = 2
√

h[h + V P (k)] and F σσ (k) =
2P (k)(Vi−Vf )

Ei
k[1+P (k)Vf /h]

, where P (k) are the Fourier components of the

interaction potential [28]. Let us then analyze the outcome of
Eq. (3).

The ballistic behavior observed for α > 2 can be understood
from stationary phase analysis. Along the line R = vt , it yields

2The validity of the QP picture in this context is corroborated by
the good quantitative agreement between the QP dynamics given by
Eq. (3) and the t-VMC results [28].
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the dominant contribution

Gσσ
c (R,t) 	 F (k∗)

4
√

π
∣∣∂2

k E
f

k∗
∣∣t

cos
(
k∗R − 2E

f

k∗ t + φ
)
, (4)

where k� is the solution of v = 2vg(k�), vg is the group velocity,
and φ is a time-independent phase. For α > 2, the group
velocity is bounded and we find a ballistic cone spreading
of correlations with a velocity that is given by twice the
maximum group velocity. We have checked that it agrees well
with the numerics where a cone propagation is also found.
A quantitative analysis of the leaks within the spin-wave
approach confirms that they are exponentially suppressed in
time. Moreover, the exponent β is found to smoothly approach
unity upon reducing the cutoff parameter ε [see Fig. 2(a2)], in
agreement with the t-VMC results.

For 1 < α < 2 the group velocity is instead unbounded,
since it exhibits the infrared divergence vg(k) ∝ k−|2−α|. Hence
the correlation front is no longer given by a well-determined
velocity but by the coherent superposition of infinitely fast
modes at low momenta. More precisely, the behavior of the
leaks can be found from the asymptotic R → ∞ expansion
of Eq. (3), retaining only the contributions of the divergent
velocities. For α = 3/2, it can be computed exactly, and yields
Gσσ

c (R → ∞,t) 	 F (t) × t/Rα , where F (t) is a bounded
function of time. This scaling agrees with and explains
the t-VMC results. It is further confirmed by the analysis
of the leaks within the spin-wave approach. The exponent
β is found to smoothly approach the interaction exponent
α upon reducing the cutoff parameter ε [see Fig. 2(b2)].
The same was found for other values of α between 1
and 2.

For α < 1, both the QP energy and the group velocity
diverge for k → 0, respectively, as E

f

k = e0k
−| 1−α

2 |, vg(k) ∝
k−| 3−α

2 |, and e0 = 2
√

hf Vf . In particular, it is the energy
divergence which sets the breaking of quasilocality in this
case. The latter gives rise to a rapidly oscillating factor of the
form cos (e0t/k

1−α
2 ) in Eq. (3), which leads to a nonanalytic

t = 0 delta-kick in the thermodynamic limit. More precisely,
an exact asymptotic expansion of the correlation function (3)
can be derived in the limit of small propagation times t and
large distances R. Keeping the relevant small quasimomenta,
it yields

Gσσ
c (R,t → 0)	 lim

L→∞
A

sin
(
L

1−α
2 e0t

)
e0t

cos(R/L)

R2−α
+B

(e0t)2

R
1+α

2

,

(5)

where A and B are finite numerical constants, which depend
on the microscopic parameters of the model. A remarkable
consequence of this expression is that the first term yields
an instantaneous contribution to the signal, on a time scale
e0τ = 1/L

(1−α)
2 , independent of the distance R and with an

exponent set by the divergence of the QP energy. This implies
that the system reacts on a time scale inversely proportional
to the system size, yielding an efficient mechanism for the
breaking of locality.

An analogous microscopic analysis can be carried out for
the LRBH model in the weakly interacting superfluid regime,
considered in the t-VMC calculations. In this regime the
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FIG. 3. (Color online) QP analysis of the group velocity for the
LRBH model with exponent α = 1/2, density n = 1/2, and U =
V = J/4. In the inset, the stationary phase weights corresponding
to the three solution branches of the equation 2vg(k) = v are shown.
Wave vectors are in units of the inverse lattice spacing and velocities
are in units of the hopping amplitude J .

quantities E
f

k and F (k) are found by Bogoliubov analysis [30],
which yields E

f

k = √
εk{εk + 2n[Uf + Vf P (k)]} and

F nn(k) = n2 [(Uf −Ui )+(Vf −Vi )P (k)]εk

{εk+2n[Uf +Vf P (k)]}Ei
k

, where εk = 4J sin2 (k/2)

is the free-particle lattice dispersion and n is the particle
density [28].

For α > 1, the origin of the observed ballistic behavior is
traced back to the fact that QP velocities are bounded. The
propagation of correlations is dominated by the stationary-
phase points of Eq. (4) and the correlation cone velocity is
given by twice the maximum group velocity.

For α < 1, the group velocity diverges as vg(k → 0) ∝
k−| 1−α

2 |, whereas the QP energy is always finite. Hence, at
variance with the LRTI model, the correlation function does
not exhibit any instantaneous kick at t = 0 such as that of
Eq. (5) and quasilocality is preserved. Moreover, although
this case is formally analogous to the intermediate regime,
with polynomial leaks in time, found for the LRTI model, a
purely ballistic spreading is instead found within numerical
precision in the LRBH model. To understand this, let us come
back to the stationary-phase approach of Eq. (4). Due to the
specific form of the group-velocity dispersion in the LRBH
model, shown in Fig. 3, the equation v = 2vg(k�) has up to
three separate solutions for a given velocity v. The correlation
function is thus dominated by three contributions (I, II, and
III) of the form of Eq. (4). The behavior of the corresponding
weights, W (v) = F nn(k�)/

√
|∂2

k Ef (k�)/J |, along the three
branches is shown in the inset of Fig. 3. The largest weights,
corresponding to the velocities dominating the propagation,
belong to the regular branches (II and III). The latter extend
up to a certain maximum velocity vmax, which effectively sets
the correlation cone velocity vc. The infinitely fast modes,
corresponding instead to branch I, have a weight which is
polynomially suppressed at large velocities. The exponent for
the algebraic decay can be derived from the known small k

behavior of P (k), which leads to W (v → ∞) ∝ v
−| 9−3α

2(1−α) |. For
v 	 vmax, the weights of these modes are already few orders
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of magnitude smaller than the quasilocal, ballistic modes. This
separation of scales is responsible for the effective suppression
of the infinitely fast nonlocal modes in the LRBH model.
Notice that in the LRTI model the irregular branch of the
infinitely fast modes is never protected by a finite-velocity
branch. This is a consequence of the monotonic behavior of
the QP group velocity in the spin model, yielding a single
branch of solutions for the stationary phase equation.

Discussion. In summary, the radically different behaviors
of the LRTI and LRBH models, found both in t-VMC and
QP analysis, show that specific microscopic properties of the
system, not accounted for in universal LR-like bounds, play a
major role in quasilocality. This result sheds new light on the
dynamics of long-range quantum systems. Yet many questions
remain open and are worth being investigated in the future.
For instance, it is expected, on the basis of universal bounds,
that the critical exponents for the breaking of locality depend
on the system dimension [16]. It would thus be of utmost
interest to study the counterparts of the effects discussed

here in dimensions higher than one, which could be done
by a straightforward application of the present approach [23].
Moreover, it would be interesting to study the same LRTI and
LRBH models in a regime of stronger interactions, where an
extension of the t-VMC and QP analysis taking into account
relevant excitations can be developed. In this regime, the
LRBH model maps onto an effective spin model and might
therefore exhibit radically different properties than those found
in this work.
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In this Supplemental Material we give additional details on the methods and the analysis we
have performed in the main Paper. In particular we provide a description of the time-dependent
variational Monte Carlo method (Sec. I) and a microscopic derivation of the quasi-particle picture
for both the long-range Ising and the long-range Bose-Hubbard models (Sec. II).

PACS numbers:

I. TIME-DEPENDENT VARIATIONAL MONTE
CARLO

We consider the unitary dynamics of lattice systems
with long-range interactions after a quantum quench in
the interaction strength is realized. In order to obtain
an accurate description of the dynamics, we treat the
time evolution by means of the time-dependent varia-
tional Monte Carlo (t-VMC) method [1]. This method
is a general framework to obtain the optimal time evo-
lution of a given variational state, which is conveniently
parametrized as

Ψ(X, t) = exp [∑

k

αk(t)Ok(X)] ×Φ(X), (1)

where X is a given many-body basis on which the wave-
function is projected, αi is a set of complex-valued varia-

tional parameters, Ok(X) =
1

Ψ(X,t)
∂Ψ(X,t)
∂αk(X)

, and Φ(X) is

some time-independent state.
By means of the Dirac-Frenkel time-dependent varia-

tional principle, it can be shown that the optimal varia-
tional parameters have to satisfy, at each time, the fol-
lowing equations of motion

i∑
k′

⟨O
⋆

kOk′⟩
c
t α̇k′(t) = ⟨O

⋆

kH⟩
c
t , (2)

where H is the system hamiltonian, ⟨AB⟩
c
t ≡ ⟨AB⟩t −

⟨A⟩t ⟨B⟩t are two-point connected averages, and ⟨. . . ⟩t ≡
⟨Ψ(t)∣...∣Ψ(t)⟩
⟨Ψ(t) ∣Ψ(t)⟩

denote expectation values over the varia-

tional state at time t.
Since the variational state is typically taken to be non-

locally entangled, the former expectation values cannot
be computed exactly with the approaches used, for ex-
ample, within Matrix Product States techniques. The
expectation values are therefore obtained from Monte
Carlo sampling of the (sign-problem-free) square mod-
ulus of the variational wave-function, and the equations
of motion (2) are then solved.

The t-VMC approach has been so-far used to simulate
the dynamics of both one and two-dimensional lattice
systems [1, 2]. In general, with a sensible choice of the

variational states, it allows to simulate both the short
and the long-time dynamics of correlated quantum sys-
tems with an accuracy comparable to methods based on
tensor-network variational states.

A. Jastrow states for spins and bosons

For the lattice systems studied here, we consider time-
evolved wave-functions of the general form given by the
Jastrow-Feenberg (JF) correlations expansion,

ΨJF(X, t) = exp
⎡
⎢
⎢
⎢
⎣

∑

i

J
(1)
i (t)Di +

1

2
∑

i,j

J
(2)
ij (t)DiDj+

+

1

3!
∑

ijk

J
(3)
ijk (t)DiDjDk + . . .

⎤
⎥
⎥
⎥
⎥
⎦

×Φ(X), (3)

where the time-dependent variational parameters are
the complex amplitudes of the m-body Jastrow tensors

J
(m)
i1i2...im

(t), D = {D1(X),D2(X) . . .DL(X)} is the set of
L operators in which the expansion is performed, and
Φ(X) is a time-independent state solution of the non-
interacting problem. This expansion accurately describes
equilibrium properties of a variety of prototypical cor-
related quantum systems. It provides an accurate de-
scription of the Mott transition both in the bosonic and
fermionic Hubbard models [3], and of the equilibrium
properties of superfluid Helium 4 [4], to name a few classi-
cal references. Moreover, it can be shown that an ansatz
containing only up to the second order correlation tensor
is an exact description of important prototypical models,
both with short-range (Luttinger liquids) [5] and long-
range (Calogero-Sutherland) interactions [6].

For spin Hamiltonians, we consider an expansion in
the local spin operators, i.e. DLRTI = (σz1 , . . . σ

z
L). In

this case the non-interacting state is taken to be a mere
constant. For bosonic systems, the JF expansion is
performed in the density operators, namely DLRBH =

(n1, . . . nL), therefore systematically including high-order
density-density correlations in the wave-function. In this
latter case the non-interacting state is taken to be the



2

superfluid state in the absence of interactions. In both
cases, due to the homogeneity and the translation invari-

ance of the system, we have J
(1)
i = 0 and J

(2)
i,j = J

(2)

∣i−j∣
.

For the quantum quenches we consider here, where the
system is prepared in relatively weakly interacting initial
states, we have checked that the inclusion of 3-body and
higher terms in the JF expansion doesn’t change quanti-
tatively our conclusions on the locality behavior. In the
main Paper we therefore present results where the JF
expansion includes up to 2-body tensors.

II. QUASI-PARTICLE APPROACH

In our Paper we consider two types of system: a
bosonic and a spin one. Even if their Hamiltonians are
of different nature, we will show in the following that
both of them can be reduced, in specific regimes, in the
following general form

H =

1

2
∑

k

[Ak (b
�

kbk + b−kb
�

−k) + Bk (b
�

kb
�

−k + b−kbk)] , (4)

where the quantitiesAk and Bk are real-valued even func-
tions of k, and the bk(b�k) are bosonic annihilation (cre-
ation) operators. Using a matrix representation where

V �

k = ( b�k b−k ) and Mk = (
Ak Bk

Bk Ak
), the Hamiltonian

reads

H =

1

2
∑

k

V �

kMkVk.

This Hamiltonian can be diagonalized with the stan-
dard transformation Vk = AkWk where W �

k = ( β�

k β−k )

is the vector composed by Bogoliubov quasi-particles,

the matrix Ak = (
uk vk
vk uk

) diagonalizes Mk and it has

detAk = 1. These last two conditions are sufficient to
determine the coefficients:

uk =

√

1

2
(Ak/

√

A
2
k − B

2
k + 1),

vk = −sign(Bk)

√

1

2
(Ak/

√

A
2
k − B

2
k − 1).

To study the out-of-equilibrium dynamics we assume that
the system is prepared in the ground state of an initial
Hamiltonian defined by Mi

k and that a sudden change,
a quantum quench, is performed in this matrix to a fi-
nal matrix Mf

k . This change induces a non-trivial time
evolution of the particle operators bk(t). The natural

basis to study this evolution is that of Vk = AfkW
f
k ,

since in this basis the final Hamiltonian is diagonal,
Hf = ∑kE

f
kβ

f�
k β

f
k . The dispersion relation of the quasi-

particles in the final basis is

Efk =

√

A
2
k − B

2
k (5)

and the time evolution of the quasi-particle operator

is βfk (t) = e−iE
f
k
tβfk (0). At time t = 0 the operators

bk can be expanded on both the initial and final bases
Vk = AikW i

k = AfkW
f
k . It yields a linear relation between

pre- and post-quench operators, W f
k = (Afk)

−1
AikW i

k.

This relation is useful because we know that W i
k acts

trivially on the initial state, the ground state of the ini-
tial Hamiltonian, namely βik ∣0⟩ = 0.

We can use the previous relations to compute the time
evolution of some observables. We will focus on observ-
ables that are quadratic in the particles operators, for ex-
ample the ⟨ni(t)nj(t)⟩ correlation function in the LRBH
model and the ⟨σzi (t)σ

z
j (t)⟩ in the LRTI model. One of

the most general, real quadratic operators that conserve
the translational invariance of the system and the parti-
cles number takes the form

g(R; t) =
1

N
∑

k

e−ikR (⟨b�kbk⟩ + ⟨b−kb
�

−k⟩+

+⟨b−kbk⟩ + ⟨b�kb
�

−k⟩) (6)

where the expectation value is taken over the initial
ground state ∣0⟩. The time evolution is due to the oper-

ators αfk and it involves only the final dispersion relation

Efk , namely 2Efk because b�kbk is the product of two βk(t)

and β�

k(t). The amplitude of oscillations is given by the
transformation between pre- and post- quench operators
βik(0) and βfk (0) that depends on all the coefficients Aik,

B
i
k, Afk and Bfk . We then find:

g(R, t) − g(R,0) = ∫
+π

−π

dk

2π
cos (kR)×

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A
i
kB

f
k −A

f
kB

i
k

Eik (A
f
k + B

f
k)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

× [1 − cos (2Efk t)] ,

which is Eq. (3) of the main Paper with:

F(k) =
A
i
kB

f
k −A

f
kB

i
k

Eik (A
f
k + B

f
k)

.

Note that we can see a time dependent part, that goes
to zero as 1/

√

t for large t, as predicted by the stationary
phase argument, and the time independent part which is
the thermalization value.
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A. Long-Range Transverse Ising model

We first study the long-range transverse Ising chain
(LRTI), the Hamiltonian of which reads

HLRTI = −h∑
i

σxi +
V

2
∑

i≠j

σzi σ
z
j

∣i − j∣
α .

Close to a polarized phase, this Hamiltonian can be writ-
ten in the form of Eq. 4 using linear spin wave theory
(LSWT). We first replace the spin operators by classi-
cal spins Sαi =

1
2
σαi . Then, we find the minimum of the

classical energy rotating the reference frame around the
y axis with an angle γ, S′i = Ri(γ)Si. As a function of
the rotated spin operators the Hamiltonian reads

HLRTI = 2V ∑
i≠j

1

∣i − j∣
α [cos2

(γ)Sz′i S
z′
j + sin2

(γ)Sx′i S
x′
j +

− sin (γ) cos (γ) (Sz′i S
x′
j + S

x′
i S

z′
j )]+

+ 2h∑
i

(sin (γ)Sz′i + cos (γ)Sx′i ) .

In order to introduce bosonic operators, we use the
Holstein-Primakoff transformations for spin one-half,
Sz′i ≈

1
2
(b�i + bi), Sx′i = b�ibi −

1
2

and treat the Hamil-
tonian perturbatively in the bi operators. The zero
order term is the classical energy per particle, Ecl =

[
V
2

sin2
(γ) P̄ + h cos (γ)], where P̄ = ∑R>0 1/Rα is the

average interaction energy. We fix the rotation angle γ
imposing the minimum of the classical energy. In the
case of a quasi-classical state, V ≪ h, the minimum cor-
responds to γ = 0 and we will use this value to simplify
our expressions. The linear term in the bi operators van-
ishes on the minimum of the classical energy. Then the
quantum corrections appear at quadratic order, that in
momentum space reads

HLRTI −NEcl =
1

2
∑

k

[(b�kbk + b−kb
�

−k) (V P (k) + 2h) +

+V P (k) (b�kb
�

−k + b−kbk)] ,

where P (k) is the Fourier transform of the long-range
potential and the quasi-particle energy is

Ek = 2
√

h(h + V P (k)).

Note that the latter is well behaved for V ≪ h, where our
expressions hold.

In the main Paper we consider the correlations along
the z-axis, which reads G(R, t) = ⟨σzi σ

z
j ⟩, in real space.

Using the Holstein-Primakoff transformation it becomes
G(R, t) = ⟨(b�i + bi) (b

�
j + bj)⟩, in terms of bosonic oper-

ators, which is exactly Eq. 6 in real space. Taking the
Fourier transform we get G(R, t)−G(R,0) = g(R, t). The

main parameters in the LRTI model are

Ak = V P (k) + 2h

Bk = V P (k)

F
σσ

(k) = 2
(hfVi − hiVf)P (k)

(hf + VfP (k))Eik
.

Setting hi = hf = 1 we find the same expression found in
the Paper.

B. Long-Range Bose-Hubbard model

For the long-range Bose-Hubbard Hamiltonian we can
write the Hamiltonian directly in Fourier space as

HLRBH =∑

k

εkb
�

kbk +
1

2L
∑

k,p,q

V (q)b�k−qb
�
p+qbpbk,

in the standard second quantization form, where εk =

4J sin2
(
k
2
) is the usual dispersion for the free lattice sys-

tem. The Fourier transform of the potential is V (q) =

U +V P (q) where U is the on-site short-range interaction
strength, V is the long-range interaction strength and
P (q) its the Fourier transform with the regularization
condition P (q = 0) = 0. Since the k = 0 component are
macroscopically populated we can separate them from
the other momenta and take this expansion up to the
second order in b0 and b�0. It yields

HLRBH ≈

V (0)

2L
b�0b

�
0b0b0 +∑

k≠0

εkb
�

kbk +

+

n0

2L
∑

k≠0

{2 [V (k) + V (0)] b�kbk + b
�

kb
�

−k + b−kbk} ,

using the relation (b�0b0)
2
≈ N2

− 2N ∑k≠0 b
�

kbk and we
get, up to a constant, the Hamiltonian

HLRBH =

1

2
∑

k≠0

[(b�kbk + b−kb
�

−k) (εk + n0V (k))+

+ n0V (k) (b�kb
�

−k + b−kbk)] ,

where n0 is the condensate fraction. In this case we
can therefore identify Ak = εk + n0V (k) and Bk =

n0V (k). Inserting these expressions into Eq. 5, we
then find the dispersion relation of the quasi-particles
Ek =

√

εk (εk + 2n0V (k)).

In the LRBH case, we consider the density-
density correlations, G(R; t) = ⟨ni(t)nj(t)⟩ =

1
N ∑k

e−ıkR⟨nk(t)n−k(t)⟩, where we have introduced

the Fourier transform of the density nk(t) = ∑q b
�

k+qbq.
Using the Bogoliubov expansion in powers of the k = 0
mode, we write the correlation in the form of Eq. 6,
namely G(R, t) − G(R,0) = n0g(R, t). Hence the main
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FIG. 1: Comparison between the density-density correlations ob-

tained with the t-VMC approach (with the inclusion of the 2-body

tensor, blue curve) and the Bogoliubov analysis (green curve) for

α = 3,Vi = Ui = 1, and Vf = Uf =
1
4
. Here the distance is R = 40.

parameters of the LRBH model are

Ak = εk + n0V (k)

Bk = n0V (k)

Ek =

√

εk (εk + 2n0V (k))

F
nn

(k) = n2
0

εk (Vi(k) − Vf(k))

Eik (εk + 2n0Vf(k))
.

In the case Ui = Uf we get the expression given in the
Paper.

C. Validity of the quasi-particle picture

In the main Paper we use the quasi-particle picture,
in order to interpret the various dynamical regimes we
have observed in the many-body correlations. This pic-
ture is based on the assumption that, after a quantum
quench, freely-propagating quasi-particles are released,
whose interactions can be neglected. The quasi-particle
picture can legitimately be questioned on the basis that
it neglects weak residual interactions between the quasi-
particles. In order to test the validity of the quasi-particle
picture, we have systematically compared the space-time
behavior of the correlation functions given by the quasi-
particle and many-body t-VMC approaches.

In Fig. 1 we show a direct comparison of the time-
dependent density-density correlations for the LRBH
model. The two approaches (t-VMC on one hand and
Bogoliubov analysis on the other hand) yield quantita-
tively similar results. The slight discrepancy is here due
to a renormalized quasi-particle velocity in the correlated
t-VMC approach, which results in slightly faster propa-

LRTI α = 3

vt-VMC
c 0.37 h
vqp

c 0.393 h

LRBH α = 1/2 α = 3/2 α = 3

vt-VMC
c 3.6 J 3.5 J 3.1J
vqp

c 3.740J 3.389J 3.177 J

TABLE I: Comparison of the cone velocities obtained from
both the t-VMC method and the quasi-particle picture. The
t-VMC velocities are obtained as a fit of the activation time
vt⋆ = R (see main Paper), with a statistical uncertainty of
∼ ±0.01 h (for the LRTI model) and ∼ ±0.1 J (for the LRBH
model). The reported vqpc equals twice the maximum group
velocity of the quasi-particles, i.e. vqpc = 2 ×maxk∂kEk.

gating signals. More precisely we have determined the
cone velocities given by the two approaches in Table I.
We find that the quasi-particle and many-body t-VMC
approaches give very close values with a discrepancy of
the order of 4%. This legitimates the quasi-particle pic-
ture for all values of α.

In general, in the regime that precedes the arrival of
the correlation front the scattering processes between
the fastest traveling quasi-particles are to all purposes
negligible, and the ballistic spreading is a direct conse-
quence of this. Therefore, because of the almost non-
interacting nature of the quasi-particles in the ballistic
regime, the Bogoliubov dynamics captures qualitatively
well the correlation front. Nevertheless, the picture of
independent quasi-particles inevitably breaks down on
time scales t≫ t∗ when scattering processes coupling all
the excited modes play a key role in the decay of the
correlation function. We have indeed found regimes, for
interactions significantly stronger than those studied in
the Paper, where at large times the damping of the sig-
nal is substantially different between the t-VMC and the
Bogoliubov approach.

For what concerns the LRTI model, the agreement be-
tween t-VMC and the simple LSW theory is less accurate
than Bogoliubov theory for the LRBH model. This has
been already observed in Ref [7]. We believe that the
origin of the quantitative discrepancy is due to the order
retained in the Holstein-Primakoff transformation, which
effectively amounts to treat hard-core bosons as if they
were soft-core bosons. This approximation is certainly
crude in this case and breaks the full quantitative agree-
ment. However, we conclude stressing that the qualita-
tive features are still reproduced in a fair way.

Most important, we find that the correlation front
studied in the Paper fairly reproduced by the LSW the-
ory. As shown in Table I, the cone velocity given by the
LSW theory is in good agreement with that of the many-
body t-VMC approach in the ballistic regime (α = 3).
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