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The spreading of correlations after a quantum quench is studied in a wide class of lattice systems, with short- and
long-range interactions. Using a unifying quasiparticle framework, we unveil a rich structure of the correlation
cone, which encodes the footprints of several microscopic properties of the system. When the quasiparticle
excitations propagate with a bounded group velocity, we show that the correlation edge and correlation maxima
move with different velocities that we derive. For systems with a divergent group velocity, especially relevant for
long-range interacting systems, the correlation edge propagates slower than ballistic. In contrast, the correlation
maxima propagate faster than ballistic in gapless systems but ballistic in gapped systems. Our results shed light
on existing experimental and numerical observations and pave the way to the next generation of experiments. For
instance, we argue that the dynamics of correlation maxima can be used as a witness of the elementary excitations
of the system.
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I. INTRODUCTION

The ability of a quantum system to establish long-distance
correlations and entanglement, and possibly equilibrate, is
determined by the speed at which information can propagate
within the system. For lattice models with short-range inter-
actions, Lieb and Robinson (LR) have unveiled a bound that
forms a linear causality cone beyond which information decays
exponentially [1]. This bound implies ballistic propagation of
equal time-correlation functions [2] that has been observed
experimentally [3,4] and characterized numerically [5–9].
Generalized LR bounds have been derived for long-range
systems where the interactions decay algebraically, 1/Rα , with
the distance R (see Refs. [10,11]). The related experiments
and numerical investigations have, however, led to conflicting
pictures [12–18]. For instance, experiments on ion chains
[15] and numerical simulations within the truncated Wigner
approximation [19] for the one-dimensional (1D) long-range
XY (LRXY) model point towards bounded, superballistic
propagation for all values of α. In contrast, experiments on
the long-range transverse Ising (LRTI) model reported ballistic
propagation of correlation maxima with, however, observable
leaks that increase when α decreases [14]. Moreover, time-
dependent density-matrix renormalization group (t-DMRG)
and variational Monte Carlo (t-VMC) numerical simulations
indicate the existence of three distinct regimes, namely, instan-
taneous, subballistic, and ballistic, for increasing values of the
exponent α (see Refs. [12,13,16–18,20]).

In this paper we shed light on these apparent contradictions.
We focus on equal-time correlation functions that are relevant
experimentally. Implications of bounded correlation spreading
on universal LR bounds are not yet completely understood (see,

however, Ref. [21]), so we do not draw explicit conclusions on
the latter.

Using a universal picture based on quasiparticles that can
be applied to both short- and long-range models, we unveil a
double causality structure for correlation spreading. The outer
structure determines the correlation edge (CE), while the inner
structure determines the propagation of local extrema. For
short-range interactions, the two structures are determined by
the dispersion relation and can be associated with, respectively,
the group and phase velocities of the quasiparticles. For long-
range interactions, the inner structure is still determined by the
dispersion relation. It is superballistic for gapless models and
ballistic for gapped models. It implies that quantum quenches
can be used experimentally as a witness to detect the presence
of the gap and the value of the dynamical exponent of the
underlying model, something that as far as we know was not
realized previously. The outer structure depends both on the
dispersion relation and on the considered observable and is
thus less universal. Except in pathologic cases, it is always
subballistic.

The identification of this double structure (i.e., edge versus
local maxima of correlations) and the lack of universality of the
outer edge in long-range systems permit us to accommodate
and explain previous observations in a unified picture. This
result is particularly important result to predict the spread-
ing of specific observables and design the next generation
of experiments within a large class of long-range systems,
e.g., Rydberg gases [22–25], nonlinear optical media [26],
polar molecules [27–29], magnetic atoms [30–34], super-
conductors [35], ion chains [36–40], and solid-state defects
[41–43].
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II. TIME EVOLUTION OF LOCAL CORRELATIONS

Consider a quantum system defined on a hypercubic lat-
tice of dimension D and governed by a translation-invariant
Hamiltonian of the form

Ĥ =
∑

R

h(R) K̂1(R) +
∑
R,R′

J (R,R′) K̂2(R,R′), (1)

where R and R′ span the lattice sites. The first term accounts
for local interactions, and the second term accounts for two-site
couplings. It applies to a variety of models, including the
Bose-Hubbard (BH; see Appendix A), the LRXY, and the
LRTI (see Appendix B), which we consider in the following.
We start from the ground state of Ĥ and quench the system
out of equilibrium by changing the couplings at time t =
0. We characterize the evolution by computing equal-time
connected correlation functions with respect to the pre-quench
equilibrium value. They read G(R,t) ≡ G0(R,t) − G0(R,0),
with G0(R,t) ≡ 〈ÂX(t)B̂Y (t)〉 − 〈ÂX(t)〉〈B̂Y (t)〉, where ÂX

and B̂Y are local operators with support in regions X and
Y separated by R. Such correlations can be measured in
state-of-the-art experiments [3,4,14,15]. We describe quenches
where the dynamics is driven by the low-energy sector of Ĥ that
may be assumed to consist of quasiparticle excitations. Due to
translation invariance, they are characterized by well-defined
quasimomentum k and energy Ek. The correlation functions
may be written

G(R,t) = g(R) −
∫
B

dk

(2π )D
F(k)

× ei(k·R+2Ek t) + ei(k·R−2Ek t)

2
, (2)

where the integral spans the first Brillouin zone B. The
quantity g(R) can be dropped since it does not depend on
time. Equation (2) represents the motion of counterpropagating
quasiparticle pairs, with velocities determined by Ek, where
the amplitude F(k) encodes the overlap of the initial state with
the quasiparticle wave functions and the matrix elements of Â

and B̂. It can be derived explicitly in exactly solvable models
and quadratic systems, which can be diagonalized by means of
canonical transformations. Many models, in various regimes,
can be mapped into this form (see, for instance, Refs. [6,12,16–
18,44,45] in the context of out-of-equilibrium dynamics). The
concept of quasiparticles also applies to models that are not
exactly solvable, where they can be determined using tensor-
network techniques [46,47], for instance, and we expect that
our results also hold for such systems.

III. SHORT-RANGE COUPLINGS

Consider first the case of nearest-neighbor interactions for
which the quasiparticle group velocity is bounded. In the
infinite-time and -distance limit along the line R/t = const, the
integral in Eq. (2) is dominated by the momentum contributions
with a stationary phase (sp), i.e., ∇k(kR ∓ 2Ekt) = 0 or,
equivalently,

2Vg(ksp) = ±R/t, (3)

whereVg = ∇kEk is the group velocity. Since the latter is upper
bounded by some value V �

g , Eq. (3) has a solution only for

(a) (b)

(c) (d)

FIG. 1. Top: Spreading of the connected one-body correlation
function G(R,t) = 〈â†

R(t)â0(t)〉 − 〈â†
R(0)â0(0)〉 for the 1D Bose-

Hubbard model. (a) Superfluid phase for a quench from the initial
value Uin = J to the final value Ufn = 0.5J . (b) Mott-insulator
phase with n = 1 for a quench from Ui = ∞ to Uf = 18J . The
solid green and dashed blue lines indicate ballistic spreading at
twice the maximum group velocity 2V �

g and twice the corresponding
phase velocity 2V �

ϕ , respectively. Bottom: Comparison between the
maximum group velocity V �

g (solid green line), the corresponding
phase velocity V �

ϕ (dashed blue line), the sound velocity c (solid purple
line), and fits to the LR cone velocity VCE (green diamonds) and to
the velocity of the maxima Vm (blue disks) for the (c) superfluid and
(d) Mott insulator phases with the same initial values as for (a) and
(b).

R/t < 2V �
g . The correlation function then reads [48]

G(R,t) ∝ F(ksp)(∣∣∇2
k Eksp

∣∣t)D
2

cos
(
kspR − 2Eksp t + π

4

)
. (4)

For R/t > 2V �
g , Eq. (3) has no solution, and G(R,t) is

vanishingly small. The correlations are thus activated ballis-
tically at the time t = R/2V �

g . This formula defines a linear
correlation edge (CE) with velocity VCE = 2V �

g , consistent
with the Calabrese-Cardy picture [49].

Yet Eq. (4) yields not only the CE but also a series of local
maxima. In the vicinity of the CE cone, only the quasiparticles
with momenta k 
 k�, which move at V �

g , contribute to the
correlations. There the maxima (m), defined by the equation
k�R − 2Ek� t = const, propagate at the velocity Vm = 2V �

ϕ ≡
2Ek�/k�, i.e., twice the phase velocity at the maximum of the
group velocity k�. Since the phase and group velocities are
generally different, the CE is expected to feature a double
structure characterized by these two velocities. This observa-
tion and its counterpart for long-range systems (see below)
have fundamental consequences for correlation spreading and
are the pivotal result of this work.

To illustrate, let us consider the BH model. In the superfluid
regime, the dispersion relation is bounded, and the group
velocity has a local maximum at some momentum 0 < k� < π

[see the inset in Fig. 1(a)]. The main panel of Fig. 1(a)
shows the connected one-body correlation function versus
distance and time in this regime. Its value is determined
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from numerical integration of Eq. (2) with the coefficients
calculated using Bogoliubov theory. The latter holds for weak
interactions, Jn � U , with J being the hopping and U being
the interaction strength (see Appendix A for details). As
expected, the correlation cone is determined by the velocity
VCE 
 2V �

g (solid green line). Moreover, the correlations show
a series of local maxima, all propagating at the same speed,
approximately twice the phase velocity at the momentum
k�, Vm 
 2V �

ϕ (dashed blue lines). These observations are
confirmed quantitatively in Fig. 1(c), where we compare the
values of the velocities found from fits to the correlation edge
(VCE) and local maxima (Vm), on the one hand, to twice the
group (V �

g ) and phase (V �
ϕ ) velocities at k�, on the other hand.

The distinction between the edge propagating at V �
g and

the maxima emanating from it and propagating at V �
ϕ permits

us to understand previously unexplained observations. The
propagation velocity extracted from t-VMC calculations in
Ref. [7] quantitatively agrees with the value 2V �

ϕ calculated
here. Our analysis shows that it should thus be assimilated to
the propagation of the local maxima, i.e., the inner structure
of the causal region [50]. In contrast, the CE is determined
by the increase of the envelop of these maxima and moves at
the velocity 2V �

g . The same analysis applies to the results of
t-DMRG calculations for a quench in the superfluid regime of
the Fermi-Hubbard model [5].

So far experimental characterization of correlation spread-
ing for a quench in the Mott-insulator regime has been
performed close to the critical point where there is a single char-
acteristic velocity, and as a consequence, no inner structure has
been observed [3]. A richer behavior occurs deeper in the Mott
regime, where the presence of a gap permits us to find a regime,
U > π (2n + 1)J , where V �

ϕ > V �
g [see the inset in Fig. 1(b)].

Here the excitation spectrum is found using strong-coupling
perturbation theory, which holds for n ∈ N∗ and U � Jn (see
Appendix A). The connected one-body correlation function
plotted in Fig. 1(b) is found from numerical integration of
Eq. (2) with the corresponding coefficients. In this case, the
local maxima propagate (still at V �

ϕ ) faster than the correlation
cone (still at V �

g ) and vanish when reaching it [see Figs. 1(b)
and 1(d)].

IV. LONG-RANGE COUPLINGS

We now turn to long-range systems with power-law cou-
plings, JR,R′ ∼ J/|R − R′|α . We assume that the spectrum is
regular in the whole Brillouin zone, except for a cusp at k = 0.
There, the dispersion relation may be written Ek 
 � + ckz,
with z being the dynamical exponent and � being the (possibly
vanishing) gap. For 0 < z < 1 the quasiparticle energy Ek

is bounded, but the group velocity Vg(k) diverges. In the
following, we consider connected spin correlation functions
for two spin models, as found from Eq. (2) and linear spin-wave
theory (see Appendix B and references therein). All quenches
are performed in a single polarized phase, without crossing any
critical line.

Figure 2(a) corresponds to the LRXY model. Owing
to continuous spin-rotation symmetry, it is gapless, � =
0, and z = (α − D)/2 for D < α < D + 2 (see Ref. [51]).
Figure 2(b) corresponds to the LRTI model, where the trans-
verse magnetic field opens a gap, � > 0, and z = α − D for

FIG. 2. Spreading of the connected spin correlation func-
tion G(R,t) = G0(R,t) − G0(R,0) for the following 1D mod-
els: (a) LRXY model with α = 2.3, G0(R,t) = 〈Sz

R(t)Sz
0(t)〉 −

〈Sz
R(t)〉〈Sz

0(t)〉 for a quench from the ground state of the XXZ
model (ε = 0.2; see Appendix B) and (b) LRTI model with α =
1.7, G0(R,t) = 〈Sx

R(t)Sx
0 (t)〉 − 〈Sx

R(t)〉〈Sx
0 (t)〉 for the quench in the

polarized phase from Ji/h = 0.02 to Jf/h = 1 (see Ref. [52]). They
feature a double algebraic structure (straight lines in log-log scale):
a subballistic correlation edge (solid green line) and superballistic or
ballistic spreading of local maxima (dashed blue lines). The white
dotted line indicates ballistic spreading for reference. The light blue
dashed lines are guides to the eye.

D < α < D + 1 (see Refs. [12,16,17]). For both models, we
find a double structure reminiscent of the one of short-range
models, although with crucial differences. First, the CE is not
linear but algebraic (note the log-log scales in Fig. 2). While
the known extended LR bounds [10,11] are all superballistic,
we find a subballistic CE, t ∼ RβCE , with βCE > 1 (the edges
are marked by solid green lines and, for reference, ballistic
spreading is shown by white dotted lines). Second, the inner
structure shows a strongly model dependent behavior: For the
LRXY model [Fig. 2(a)], the correlation maxima (dashed blue
lines) are superballistic, t ∼ Rβm , with βm < 1, while for the
LRTI model [Fig. 2(b)] they are ballistic, t ∼ R.

To understand these behaviors, let us use again the
stationary-phase approximation. Equations (3) and (4) still
hold. However, the group velocity, Vg(k) = |c|z/k1−z, now
diverges at k → 0. Hence, for any combination of t and R,
there is a quasiparticle with the corresponding group velocity
at the momentum ksp = (2|c|zt/R)1/(1−z). The CE is thus
dominated by the infrared divergence, where we now need
to analyze the amplitude function F . Inserting the assumed
scaling F(k) ∼ kν , with ν � 0, into Eqs. (3) and (4), we find

Gc(R,t) ∝ tγ

Rχ
cos

[
Az

(
t

Rz

) 1
1−z

− 2�t + π

4

]
, (5)

with γ = ν+D/2
1−z

, χ = ν+D(2−z)/2
1−z

, and Az = 2|c|(1 −
z)(2|c|z)

z
1−z . The CE is found by imposing that the amplitude

of the correlation function becomes of order 1. It yields the
algebraic form

t� ∝ RβCE , βCE = χ/γ. (6)

Hence, the scaling of the CE depends not only on the dynamical
exponent z but also on the specific correlation function via the
exponent ν and on the dimension D. This contrasts with the
short-range case, where a ballistic propagation independent
of the dimension and of the observable is found [53]. Since
χ = γ + D/2, the CE is always subballistic, βCE > 1. For
the LRXY model and spin-spin correlations, we have ν =
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z = (α − D)/2, which yields βCE = 1 + D
2α

(2 + D − α). In
the numerical calculations of Fig. 2(a), the CE is found by
tracing the points in the R-t plane, where the correlations
reach ε = 2% of the maximal value. The activation time t∗
as a function of the distance R is then fitted by a power law,
t∗ ∼ Rβfit

CE (see details in Appendix D). For α = 2.3 and D = 1
[Fig. 2(a)], we find βfit

CE 
 1.083 ± 0.013, in good agreement
with the theoretical value βCE 
 1.15.

For the LRTI model, we have z = α − D and ν = 0. It
yields the exponent βCE = 2 − z = 2 + D − α completely
determined by the dynamical exponent z. For α = 1.7 and
D = 1 [Fig. 2(b)], analyzing the numerical results as before,
we find the CE exponent βfit

CE = 1.28 ± 0.02, in excellent
agreement with the theoretical value βCE = 1.3. Note that the
general formula for βCE matches the exact result of Ref. [16] for
D = 1 and α = 3/2 (i.e., z = 1/2), also confirmed by t-VMC
calculations, and it is in fair agreement with the analysis of
Ref. [17] for the 1D and 2D LRTI models.

On the other hand, the inner structure of the causal region
is determined by the local maxima of the cosine function in
Eq. (5). It does not depend on the observable but on the presence
or absence of a gap. For a gapless system (� = 0), we find

tm ∝ Rβm , βm = z. (7)

The correlation maxima are thus always superballistic,βm < 1.
For the LRXY model and α = 2.3 [Fig. 2(a)], we find the
theoretical value βm = 0.65. In the numerics, we study the
internal structure of the correlation function by tracking the
position of the first local maximum as a function of time.
We then fit the corresponding function by tm = aRβfit

m + b.
For the parameters of Fig. 2(a), it yields βfit

m 
 0.634 ± 0.014,
in excellent agreement with the theoretical value. It is also
consistent with the experimental observation of superballistic
dynamics in the 1D LRXY model realized with trapped ion
chains for α > 1 (see Ref. [15]) and in rough agreement with
the analysis of numerical calculations performed within the
truncated Wigner approximation for 1D and 2D LRXY models
[19]. The same result as Eq. (7) was found in Ref. [45], which
appeared recently. Our analysis shows that this superballistic
behavior characterizes the inner structure but not the CE.

For a gapped system (� > 0), the momentum dependence
of the dispersion relation becomes irrelevant in the infrared
limit, and the argument of the cosine function in Eq. (5) is
constant in the large-t and -R limit for t ∝ R. It follows that
the local maxima are here always ballistic, βm = 1. This case
applies to the LRTI model. It is confirmed in Fig. 2(b), where
we observe that the local maxima converge to a ballistic prop-
agation for sufficiently long times. Performing the analysis as
above, we find βfit

m 
 1.0045 ± 0.0003, in excellent agreement
with the theoretical prediction. This result is consistent with
the observation of ballistic motion of local maxima for the 1D
LRTI model realized with trapped-ion chains [14].

V. CONCLUSIONS

In this work we have shown that the spreading of equal-
time correlations has a double structure whose scaling laws
can be related to different characteristic spectral properties. For
short-range systems, they are readily associated with the group

and phase velocities, which generally differ. For long-range
systems with a diverging group velocity, the CE is observable
dependent and subballistic. Close to the CE, the local maxima
propagate ballistically in gapped systems and superballistically
in gapless systems. Their observation can thus be used as an
experimental footprint for the presence of a spectral gap.

This double structure can be observed experimentally. Our
analysis provides just the first step of an important research
problem that aims at unveiling the physical information en-
coded in correlation spreading and it this can be extracted in the
next generation of experiments (see also [9] for recent results in
this direction). In practice, the dynamics of the local maxima
is easier to observe, and as discussed above, our predictions
are consistent with existing observations. Our analysis shows,
however, that in generic experiments characterizing the spread-
ing of correlations the data need to be interpreted very carefully.
The propagation of local extrema does not characterize the
correlation edge. Identifying the latter requires an accurate
scaling analysis of the leaks. Existing experimental data have
been collected either in a regime of parameters where the two
structures coincide [3] or in small systems where quantitative
analysis is obfuscated by strong finite-size effects. However,
the next generation of experiments based on Rydberg atoms,
tampered waveguides, and larger trapped-ion systems provides
the natural setup to discern between the CE and the local
features, as our calculations suggest.
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APPENDIX A: BOSE-HUBBARD MODEL

The Bose-Hubbard (BH) model,

Ĥ = −J
∑

〈R,R′〉
(â†

RâR′ + H.c.) + U

2

∑
R

n̂R(n̂R − 1), (A1)

is constructed using the particle operators K̂1(R) ≡
n̂R(n̂R − 1) and K̂2(R,R′) ≡ −â

†
RâR′ − â

†
R′ âR, where âR and

n̂R = â
†
RâR are, respectively, the annihilation and number

operators on the lattice site R. The amplitudes are, respectively,
the two-body interaction strength, h(R) = U/2, and the tunnel
amplitude J (R,R′) = J . The Bose-Hubbard model has two
phases, namely, the superfluid phase for J � U and the Mott-
insulator phase for J � U . The precise critical point depends
on the dimension and on the average number of particles per
site. For a review, see, for instance, Ref. [54].

1. Superfluid phase

In the superfluid phase and for high-enough average particle
density in one dimension, n � U/2J , we may rely on the
Bogoliubov mean-field approximation. Assuming small den-
sity fluctuations, �n � n, one develops the interaction term in
Eq. (A1) up to quadratic order. The resulting quadratic form is
then diagonalized using standard Bogoliubov transformation
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(see, for instance, Refs. [16,44]). It yields the gapless disper-
sion relation

Ek 
 2
√

2J sin2(k/2)[2J sin2(k/2) + nU ]. (A2)

It is phononic in the low-energy limit, Ek 
 ck, with the sound
velocity c = √

2nJU . At higher energy, it shows an inflection
point at some finite momentum 0 < k� < π , corresponding to
the maximum group velocity V �

g = Vg(k�).
After the quench, the connected one-body correlation func-

tion, G(R,t) = 〈â†
R(t)â0(t)〉 − 〈â†

R(0)â0(0)〉, considered in the
main text, is then cast into the form of Eq. (2) by mapping the
particle operators onto Bogoliubov quasiparticle operators. It
yields the amplitude function

F(k) = 2n2JUf(Uf − Ui)

Ek,iE
2
k,f

sin2(k/2), (A3)

where the indices i and f refer to the prequench and postquench
values, respectively.

2. Mott insulator phase

In the Mott insulator phase, the model develops a finite gap.
The energy excitations may be found using strong-coupling
expansions (see, for instance, Refs. [6,55,56]). For n ∈ N∗ and
U � Jn, it yields low-energy excitations made of doublon-
holon pairs of energy,

2Ek 
 U − 2(2n + 1)J cos(k). (A4)

The maximum of the group velocity is at the center of the
band, k� = π/2, where the group and phase velocities are
V �

g = (2n + 1)J and V �
ϕ = U/π , respectively. Hence, for U >

π (2n + 1)J , the phase velocity exceeds the group velocity,
V �

ϕ > V �
g . Note that this regime is well inside the Mott regime

where Eq. (A4) is accurate.
Like for the superfluid phase, the connected one-body

correlation function can be cast into the form of Eq. (2) with
the amplitude function

F(k) = 4Jn(n + 1)

iU
sin(k) (A5)

for the quench from Ui = ∞ to Uf = U , as considered in the
main text.

APPENDIX B: LONG-RANGE XY AND XXZ MODELS

For spin models, the operators K̂j represent spin operators,
the parameter J (R,R′) is the exchange term, and h(R) is a
magnetic field. For the long-range XY (LRXY) model, we use
K̂2(R,R′) ≡ Ŝx

R · Ŝx
R′ + Ŝ

y

R · Ŝ
y

R′ , J (R,R′) = −J/2|R − R′|α ,
and h(R) = 0. For the initial state, it is generalized to the XXZ
model by including an antiferromagnetic exchange coupling
in the z direction, which yields the Hamiltonian

Ĥ =
∑

R �=R′

J/2

|R − R′|α
[−(

Ŝx
RŜx

R′ + Ŝ
y

RŜ
y

R′
) + εŜz

RŜz
R′

]
. (B1)

For the LRXY case considered in the main text, the quench is
performed from the ground state of the XXZ model (ε �= 0) to
the XY model (ε = 0).

We study the phase where the rotational symmetry around
the z axis is spontaneously broken and the spins are polarized

along the x axis. There, the Hamiltonian can be diagonalized
using standard Holstein-Primakoff transformation [57,58],

Sx
R = 1

2
− â

†
RaR,

S
y

R 
 − â
†
R − âR

2i
,

Sz
R 
 − âR + â

†
R

2
,

where terms beyond second order in the boson operators âR

and â
†
R are neglected. Inserting these transformations into

Eq. (B1) yields a quadratic Bose Hamiltonian, which can
be diagonalized using canonical Bogoliubov transformations
(see, for instance, Ref. [51]). For ε = 0 (LRXY model), it
yields the dispersion relation for D = 1,

Ek = JPα(0)

2

√
1 − Pα(k)

Pα(0)
, (B2)

where Pα(k) = ∫
dR e−ik·R/|R|α is the Fourier transform of

the long-range term. In the infrared limit, it can be written

Pα(k) ≈ Pα(0) + P ′
αkα−D, (B3)

where Pα(0) and P ′
α are finite constants. Hence, we find Ek ∝

|k|z with z = (α − D)/2. For D < α < D + 2, the quasipar-
ticle energy is finite, but the group velocity Vg diverges in the
infrared limit k → 0.

The connected spin-spin correlation function along the
z direction for a quench from εi �= 0 to εf = 0, G0(R,t) =
〈Sz

R(t)Sz
0(t)〉 − 〈Sz

R(t)〉〈Sz
0(t)〉, used in the main text, is cast into

the form of Eq. (2) using the quasiparticle amplitudes, which
yields

F(k) = εi

8

Pα(k)

Pα(0)

√
Pα(0) − Pα(k)

Pα(0) + εiPα(k)
. (B4)

In the infrared limit, it scales as F(k) ∼ kν , with ν = (α −
D)/2 = z.

The linearization of the Holstein-Primakoff transformation
holds for |1/2 − Sx

R| � 1 (see Ref. [58]). For the calculations
corresponding to Fig. 2 (a), we find max{|1/2 − Sx

R|} 
 0.12.
It validates the spin-wave approximation used in the main text.
This result agrees with the predictions for the same model made
in Ref. [51], where the validity of the spin-wave approach for
that model was extensively studied.

APPENDIX C: LONG-RANGE TRANSVERSE
ISING MODEL

The long-range transverse Ising (LRTI) model corresponds
to the spin operators K̂1(R) ≡ Ŝz

R and K̂2(R,R′) ≡ Ŝx
R · Ŝx

R′
with a uniform magnetic field h(R) = −2h and the alge-
braically decaying exchange amplitude J (R,R′) = 2J/|R −
R′|α , which yields

Ĥ =
∑

R �=R′

2J

|R − R′|α Ŝx
RŜx

R′ − 2h
∑

R

Ŝz
R. (C1)

The LRTI has two phases [59]. In the z-polarized phase,
the dispersion relation can be found using again the
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Holstein-Primakoff transformation,

Sx
R 
 âR + â

†
R

2
,

S
y

R 
 − â
†
R − âR

2i
,

Sz
R = 1

2
− â

†
RaR.

One then finds the dispersion relation for D = 1,

Ek = 2
√

h[h + JPα(k)]. (C2)

In the infrared limit, where Eq. (B3) holds, it can be expressed
as

Ek = � + c|k|z, (C3)

where the gap � = 2
√

h[h + JPα(0)] is finite, c =√
h

h+JPα (0)JP ′
α , and z = α − D; see Ref. [17]. Hence, the

quasiparticle energy is finite, and the group velocity diverges
for D < α < D + 1.

In the main text, we consider the connected spin-
spin correlation function along the x direction, G0(R,t) =
〈Sx

R(t)Sx
0 (t)〉 − 〈Sx

R(t)〉〈Sx
0 (t)〉, which can be written in the

form of Eq. (2) with

F(k) = h(Ji − Jf)Pα(k)

8[h + JfPα(k)]
√

h[h + JiPα(k)]
. (C4)

In the infrared limit, it converges to a finite value. Hence,
F(k) ∼ kν , with ν = 0.

For the calculations corresponding to the Ising model in
Fig. 2(b), we find max{|1/2 − Sz

R|} = 0.11, which validates
the spin-wave approximation in this case.

APPENDIX D: NUMERICAL ANALYSIS OF THE LOCAL
EXTREMA AND THE CORRELATION EDGE FOR

THE LRXY AND LRTI MODELS

In the main text, it was shown that the causality cone features
a double structure: an outer structure, which determines the
correlation edge (CE), and an inner structure, where local
extrema propagate. Here we provide details on the numerical
analysis of the CE and of the trajectory for the first local
extremum for both the LRXY and LRTI models considered
in the main text.

1. LRXY model

For the LRXY model, we consider the time evolution of
the connected spin-spin correlation function G(R,t) along the
z axis. Figure 3 shows the same data as Fig. 2(a) in the main
text. To find the CE, we proceed as follows. For each distance
R, we trace the activation time t�(R) corresponding to the first
time when a fraction (2%) of the absolute maximum of the
correlation function is reached. It yields the solid blue points
in Fig. 3. They feature a linear trajectory in the log-log scale,
that is, a power-law behavior in linear-linear (lin-lin) scale.
The latter is in excellent agreement with the theoretical pre-
diction βCE 
 1.15, shown as a solid green line. We have also
fitted a power-law function, t� ∝ Rβfit

CE , to the blue points for

FIG. 3. Spreading of the connected spin-spin correlation function
for the LRXY model with α = 2.3 [same data as in Fig. 2(a) of the
main text; log-log scale]. The solid blue points correspond for each
distance R to the first time where the correlation reaches 2% of its
maximum value. The solid green line shows the power law predicted
theoretically with a fitted multiplicative factor.

20 < R < 175 (not shown). It yields βfit
CE = 1.083 ± 0.013, in

good agreement with the prediction.
A similar result is obtained on a length scale closer to the

one accessible in state-of-the-art experiments [60]. Fitting the
same algebraic function to the correlation edge in the range
10 < R < 30 and t < 10/J yields βfit

CE = 1.121 ± 0.012. It is
already in good agreement with the fit in the larger range and
with the theoretical prediction.

To analyze the behavior of the local extrema, we trace them
from the data of Fig. 3, where they are clearly visible. The result
for the first one is plotted in Fig. 4 (solid red line) together with
a fitted power law, tm = aRβfit

m + b (dashed blue line). The fit
yields βfit

m = 0.634 ± 0.014, in excellent agreement with the
theoretical exponent βm = 0.65.

FIG. 4. Trajectory of the first extremum of the connected spin-
spin correlation function for the LRXY model (lin-lin scale). The
numerical results found from Fig. 3 (solid red line) are shown together
with a fitted power law (dashed blue line).

024302-6



UNIVERSAL SCALING LAWS FOR CORRELATION … PHYSICAL REVIEW B 98, 024302 (2018)

FIG. 5. Spreading of the connected spin-spin correlation function
for the LRTI model with α = 1.7 [same data as in Fig. 2(b) of the
main text; log-log scale]. The solid blue points correspond for each
distance R to the first time where the correlation reaches 2.8% of its
maximum value. The solid green line shows the power law predicted
theoretically with a fitted multiplicative factor.

2. LRTI model

We now turn to the LRTI model and perform the same
analysis as above, up to details that we discuss below. Figure 5
shows the same data as Fig. 2(b) in the main text but on a
smaller timescale. The CE, corresponding to the trajectory
of the first points where the correlation function reaches a
fraction (2.8%) of its maximum (solid blue points), matches
very well the theoretical prediction t∗ ∝ RβCE , with βCE = 1.3
(solid green line with a fitted multiplicative factor). Moreover,
fitting a power-law function to the blue points for 4 < R < 30
yields βfit

CE = 1.28 ± 0.02 (not shown), in perfect agreement
with our prediction.

We analyze the trajectory of the maxima in the same way
as before. For the LRTI model, ballistic spreading is expected
for sufficiently large values of t and R. This is confirmed by
the behavior of the local maxima in Fig. 2(b) of the main text.

FIG. 6. Trajectory of an extremum of the connected spin-spin
correlation function for the LRTI model (lin-lin scale). It corresponds
to the dashed dark blue line in Fig. 2(b) of the main text. The numerical
results found from Fig. 5 (solid red line) are shown together with a
fitted power law (dashed blue line).

The first local maxima are marked by dashed light blue curves.
In Fig. 2(b), they are curved owing to the competition between
the different terms of the phase of the cosine in Eq. (5). They,
however, clearly converge to a ballistic behavior when t and
R increase. For the range of t and R presented in Fig. 2(b) the
dark blue line is purely ballistic even for small values of t and
R. Its trajectory is shown in lin-lin scale in Fig. 6. To confirm
the ballistic behavior, we fitted the power-law function tm =
aRβfit

m + b to the data (dashed blue line). The fit gives βfit
m =

1.0045 ± 0.0003, in excellent agreement with the theoretical
exponent βm = 1.

We have also performed similar fits for the other local
maxima, which confirms the asymptotic ballistic behavior. For
instance, for the first local maximum [lowest dashed light
blue lines in Fig. 2(b)] and 10 < R < 20, we find βfit

m =
1.0039 ± 0.0002, which is also in excellent agreement with
the theoretical prediction.
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