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Suppression of Transport of an Interacting Elongated Bose-Einstein Condensate
in a Random Potential
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We observe the suppression of the 1D transport of an interacting elongated Bose-Einstein condensate in
a random potential with an amplitude that is small compared to the typical energy per atom, dominated by
the interaction energy. Numerical calculations reproduce our observations well. We propose a scenario for
disorder-induced trapping of the condensate in agreement with our findings.
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FIG. 1 (color online). Time evolution of the axial rms size L of
the BEC, for various amplitudes �V of the random potential, all
smaller than the chemical potential ��� � �V=� � 0 (�), 0.2
(�), and 0.7 (�)]. The axial trapping frequency is initially
!z=2� � 6:7 Hz and is relaxed during the first 30 ms (!z� <
1:26) of the expansion time (gray band). Each point corresponds
to an average over three measurements; error bars represent 1
standard deviation. The solid lines are linear fits to the data and
the dashed lines are guides to the eye. Inset: Motion of the center
of mass of the BEC during axial expansion for the same values of
�. Both sets of data show a strong suppression of transport of the
BEC in the presence of disorder.
Atomic Bose-Einstein condensates (BECs) in optical
potentials are a remarkable system in which to revisit
standard problems of condensed matter physics, e.g.,
superfluidity and quantum vortices, the superfluid to Mott
insulator transition, or Josephson arrays [1]. Another im-
portant topic in condensed matter physics is that of trans-
port in disordered materials, with relevance to normal
metallic conduction, superconductivity and superfluid
flow in low temperature quantum liquids. This is a difficult
problem and it has led to the introduction of intriguing and
nonintuitive concepts, e.g., Anderson localization [2,3],
percolation [4], and Bose [5] and spin [6] glasses. It also
has a counterpart in wave physics, e.g., in optics and
acoustics, specifically coherent diffusion in random media
[7]. The main difficulty in understanding quantum trans-
port arises from the subtle interplay of interference, scat-
tering onto the potential landscape, and (whenever present)
interparticle interactions.

Transport properties of BECs in periodic optical lattices
have been widely investigated, showing lattice-induced
reduction of mobility [8–10] and self-trapping [11].
Within the context of random potentials, most of the recent
theoretical efforts [12] have considered disordered or qua-
sidisordered optical lattices where a large variety of phe-
nomena have been discussed, such as the Bose-glass phase
transition [13], localization [13,14], and the formation of
Fermi-glass, quantum percolating, and spin-glass phases in
Fermi-Bose mixtures [12,15]. Effects of disorder on BECs
have also been addressed in connection with superfluid
flows in liquid helium in porous media [16]. In particular,
the depletions of the condensate and of the superfluid
fractions have been calculated in Ref. [17], and a signifi-
cant shift and damping of sound waves have been predicted
in Ref. [18]. Apart from the (undesired) fragmentation
effect of a rough potential on trapped cold atoms and
BECs on atom chips [19], there are few experiments on
BECs in random potentials [20].

In this Letter we report on the strong reduction of
mobility of atoms in an elongated BEC in a random
05=95(17)=170409(4)$23.00 17040
potential [21]. Starting from a BEC in a 3D highly elon-
gated harmonic trap, we turn off the axial trapping poten-
tial while maintaining strong transverse confinement, and
we monitor both (i) the axial expansion driven by the
repulsive interactions and (ii) the motion of the center of
mass of the BEC. When the BEC is subjected to a 1D
random potential created by laser speckle, the axial expan-
sion is strongly inhibited and the BEC eventually stops
expanding (see Fig. 1). The final rms size L decreases as
the standard deviation �V of the random potential in-
creases. The same effect has been observed for various
realizations of the random potential. We also observe that
the center of mass motion provoked by a longitudinal
magnetic ‘‘kick’’ at the time of release is strongly damped
and is stopped in about the same time (see Fig. 1). These
9-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.170409


400

PRL 95, 170409 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 OCTOBER 2005
observations are not made in a regime of tight binding; i.e.,
we observe this localization effect [22] for amplitudes of
the random potential which are small compared to the
chemical potential. One may wonder whether our obser-
vations can be interpreted in terms of Anderson localiza-
tion [2]. In fact, in our situation, the interaction energy
plays a crucial role, and the healing length is smaller than
the typical distance between the speckle grains. This im-
plies a different scenario, which we discuss in this Letter.

We create an elongated 87Rb BEC in an iron-core elec-
tromagnet Ioffe-Pritchard trap [23,24] with oscillation fre-
quencies, !?=2��660�4�Hz radially and !z=2��
6:70�7�Hz axially. BECs of typically 3:5� 105 atoms are
obtained, with Thomas-Fermi (TF) half-length LTF �
150 �m and radius RTF � 1:5 �m, and chemical potential
�=2�@� 5 kHz [25]. The random potential is turned on at
the end of the evaporative cooling ramp and we further
evaporate during 200 ms to ensure that the BEC is in
equilibrium in the combined harmonic plus random trap
at the end of the sequence. To create the random potential,
a P � 150 mW blue detuned laser beam with optical
wavelength � ’ 780 nm, perpendicular to axis z, is shone
through a scattering plate and projects a speckle pattern
[28] on the BEC (see Fig. 2). The scattered beam diverges
to an rms radius of 1.83 mm at the BEC.

A speckle field is defined by (i) a random intensity I�r�
with exponential statistical distribution for which the stan-
dard deviation equals the average intensity �I � hIi and
(ii) an intensity correlation length �z, defined as the ‘‘half-
width’’ of the autocorrelation function [28]:

�z � 1:22�l=D; (1)

whereD is the beam diameter at the scattering plate and l is
the distance from the lens to the BEC. We observe the
speckle intensity distribution on a CCD camera placed at
the same distance as the atoms. From this, we determine
the autocorrelation function to obtain the grain size �z for
various beam diameters D. Taking into account the modu-
lation transfer function [29] of the camera, we find that the
measured grain size obeys Eq. (1) to within 2%. For our
setup [l�140�5�mm and D�25:4�1�mm], Eq. (1) gives
�z � 5:2�2� �m. This is much greater than the healing
length � � �8�na��1=2 � 0:11 �m of the trapped BEC.
Since RTF <�z	 LTF, the optical potential is effectively
1D, with the trapped BEC spread over about 45–50 wells
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FIG. 2. Optical setup used to create the random speckle po-
tential. The BEC is at the focus of the lens system with its long
axis oriented along the z direction.
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in the axial direction. We characterize the amplitude of the
random potential �V with respect to the chemical potential
� by [30]
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with �! � �!z!
2
?�

1=3 and aho � �@=m �!�1=2, m the atomic
mass, N the BEC atom number, IS � 16:56 W=m2 the
saturation intensity, �=2� � 6:01 MHz the linewidth, a �
5:31 nm the scattering length, and � the laser detuning
(between 0.15 nm and 0.39 nm in wavelength). The factor
2=3 accounts for the transition strength for �-polarized
light. Taking into account our calibration uncertainty, we
measure � within 
20%. For our parameters, the sponta-
neous scattering time 1=�sc is always larger than 1 s, i.e.,
much longer than the experiment.

To study the coherent transport of the BEC in the ran-
dom potential, we open the axial magnetic trap while
keeping the transverse confinement and the random poten-
tial unchanged. After lowering the current in the axial
excitation coils, the axial trapping frequency !z=2� is
smaller than 1 Hz [31]. Opening the trap abruptly induces
atom loss and heating, therefore the trap is opened in 30 ms
to avoid these processes. Once the current in the axial coils
has reached its final value we have a BEC of N � 2:5�
105–3� 105 atoms in the magnetic guide.

After a total axial expansion time � (which includes the
30 ms opening time), we turn off all remaining fields
(including the random potential) and wait a further 15 ms
of free fall before imaging the atoms by absorption. During
this time-of-flight, the axial rms size of the BEC does not
increase more than 5%. From profiles of the absorption
images we evaluate the axial rms size L [32] which we plot
in Fig. 1 versus the axial expansion time �. In the absence
of the random potential (� � 0), we observe that the rms
size L grows linearly at a velocity vrms � 2:47�3� mm s�1

in agreement with the scaling theory [33]. In the presence
of the random potential, the expansion dynamics changes
dramatically. For a sufficiently high amplitude, the expan-
sion is significantly reduced and the BEC eventually stops
expanding. In addition, we observe the damping of longi-
tudinal motion of the center of mass of the BEC (see inset
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FIG. 3 (color online). rms size L of the BEC versus � after an
axial expansion time !z� � 4:84 (� � 115 ms). The open
circles correspond to the curves of Fig. 1.
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of Fig. 1). This motion is triggered by an axial magnetic
kick during the opening of the trap.

These results show a transition from noninhibited to
inhibited transport as the speckle amplitude is increased.
This is studied in further detail by measuring the BEC rms
size after a fixed axial expansion time of 115 ms (!z� �
4:84) for different amplitudes �V of the random potential.
The results are shown in Fig. 3. We see that above a value
� � 0:15, the rms size decreases with �.

From the absorption images, we also evaluate the den-
sity in the magnetic guide, after correcting for radial ex-
pansion during the time of flight. We observe that the
density at the center of the BEC does not drop by more
than a factor of 2 for � > 0:2. Therefore, we conclude that
the interaction energy dominates at the center of the BEC
trapped by disorder, a point we discuss below.

To understand the disorder-induced suppression of ex-
pansion of the BEC, we have performed numerical calcu-
lations of the BEC dynamics in the Gross-Pitaevskii
approach. We consider a BEC trapped in a cylindrically
symmetric 3D-harmonic trap with frequencies !? and !z
in the radial and axial directions, respectively. Assuming
tight radial confinement (@!? � @!z;�; kBT), the dy-
namics is reduced to 1D. In addition, the BEC is subjected
to a static random potential V�z� � �Vv�z� where v�z� is a
numerically generated speckle pattern [28] with hvi2 �
hv2i=2 � 1. This slightly differs from the experimental
situation where the BEC is very elongated but not strictly
1D. However, in the experiment, the BEC is guided in a 1D
random potential so that the radial size only slightly
changes and, due to the different time scales in the axial
(1=!z) and radial (1=!? 	 1=!z) directions, the radial
size adapts adiabatically to the axial size. Thus we expect
that the 1D simplified model captures the physics of the
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FIG. 4 (color online). (a) Time evolution of the rms size L of
the BEC in the random potential V�z� for various speckle
amplitudes �V � �� as obtained from the numerical calcula-
tions. (b) Density profile (black) and random potential V�z�=g1D

(gray) for � � 0:2 at !z� � 10. (c)–(d) Enlargement of density
profile at !z� � 10 (black solid) and !z� � 20 [dotted (blue
online)]. The dashed (red online) line in (c) is the TF prediction
(see text).
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experiment. We consider parameters close to the experi-
mental situation (see above). In particular, the healing
length (� ’ 8� 10�4LTF) and the speckle correlation
length (�z ’ 0:049LTF) are much smaller than the size of
the BEC.

We first compute the static 1D BEC wave function in the
combined (harmonic plus random) trap. Because �	 �z,
the density profile simply follows the modulations of
the combined trap in the TF regime: j �z�j2 �
���m!2

zz
2=2� V�z��=g1D in the region where �>

m!2
zz

2=2
 V�z� and j �z�j2 � 0 elsewhere. Here, m is
the atomic mass and g1D � 2@a!? the 1D interaction
parameter. At time � � 0, we suddenly switch off the axial
harmonic confinement while keeping unchanged the inter-
action parameter g1D and the random potential, and we
compute the time evolution of the BEC. The results for the
axial rms size L of the BEC are plotted in Fig. 4(a) for
various amplitudes of the random potential. In the absence
of disorder, the evolution of the BEC corresponds to self-
similar expansion with scaling parameter b�t� �

���
2
p
!zt

[34]. In the presence of disorder (� * 0:15), after initial
expansion, the BEC stops expanding. This is qualitatively
the same behavior we observed in the experiment. The
quantitative agreement is also reasonably good. For ex-
ample, for � � 0:2, the BEC expands by a factor of ’ 4 in
the numerics (’3 in the experiment) and is trapped after a
transient expansion time of!z� ’ 8 (!z� ’ 6). This strong
suppression of expansion corresponds to disorder-induced
trapping of the BEC.

We now describe a scenario for disorder-induced trap-
ping of the BEC. For small amplitudes of disorder, the
initial stage of expansion can be described using the scal-
ing theory [33]. According to this, the fast atoms populate
the wings of the expanding BEC whereas the slow atoms
are close to the center. It is thus tempting to distinguish two
regions of the BEC: (i) the center where the interaction
energy dominates the kinetic energy and trapping is due to
the competition between interactions and disorder, and
(ii) the wings where the kinetic energy exceeds the inter-
actions and trapping is rather due to the competition be-
tween the kinetic energy and disorder.

In the center, the average density n0 and thus the effec-
tive chemical potential �� slowly decrease during the ex-
pansion stage. As the interaction energy is much larger
than the kinetic energy, the local density adiabatically
follows the instantaneous value of �� in the TF regime:
j �z�j2 � � ��� V�z��=g1D in the region where ��> V�z�
and j �z�j2 � 0 elsewhere. This agrees with our numerical
results [see Fig. 4(c)]. This evolution stops with fragmen-
tation, i.e., when the BEC meets two peaks of the random
potential with amplitudes larger than ��. Using the statis-
tical properties of the random potential [28], we can esti-
mate the probability of such large peaks and we conclude
that this happens when n0 reaches the value

n0 ’ 1:25
�
�V

g1D

�
ln
�

0:47LTF

�z

�
: (3)
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Because of the small density, the situation is different in
the wings which are populated by almost free particles
interacting with the disordered potential. The BEC thus
undergoes disorder-induced multiple reflections and trans-
missions and is ultimately blocked by a large peak of the
speckle potential. Therefore, the BEC is not in the TF
regime and the local density is not stationary [see
Fig. 4(d)]. Because of conservation of energy, the kinetic
energy per particle 	 is of the order of the typical energy in
the initial BEC (	��) so that the typical wavelength of
the fluctuations in the wings is of the order of the healing
length in the initial BEC �w � � � @=

�����������
2m�
p

.
This scenario is accurately supported by our numerical

results [35]. In particular, the density profiles plotted in
Fig. 4 show the static TF shape in the center with a density
given by Eq. (3) and time-dependent fluctuations in the
wings with typical wavelength �w � �.

In conclusion, we have experimentally investigated
transport properties of an interacting BEC in a random
potential. Controlling the strength of disorder, we have
observed the transition from free expansion to absence of
diffusion as disorder increases. We have presented numeri-
cal simulations that reproduce well the observed suppres-
sion of expansion and we have discussed a theoretical
model that describes the scenario for disorder-induced
trapping. In the future, it would be interesting to further
investigate this highly controllable system, for example, by
changing the correlation length of disorder or employing
Bragg spectroscopy to probe the momentum spectrum of
the BEC [24].
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