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Abstract. We present a detailed analysis of the 1D expansion of a coherent
interacting matterwave (a Bose–Einstein condensate (BEC)) in the presence
of disorder. A 1D random potential is created via laser speckle patterns. It is
carefully calibrated and the self-averaging properties of our experimental system
are discussed. We observe the suppression of the transport of the BEC in the
random potential. We discuss the scenario of disorder-induced trapping taking
into account the radial extension in our experimental 3D BEC and we compare
our experimental results with the theoretical predictions.
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1. Introduction

Disorder in quantum systems has been the subject of intense theoretical and experimental activity
over the past decades. Since no real system is defectless, disordered systems are actually more
general than ordered (e.g. periodic) ones. In solid state physics, disorder can result from impurities
in crystal structures, in the case of superfluid helium from the influence of a porous substrate
[1], in the case of microwaves from alumina dielectric spheres randomly displaced [2, 3], in the
case of light from the transmission through a powder [4] and in ultracold atomic systems from
the roughness of a magnetic trap [5]. It is now well established that even a small amount of
disorder may have dramatic effects, especially in 1D quantum systems [6, 7]. The most famous
and spectacular phenomenon is certainly the localization and the absence of diffusion of non-
interacting quantum particles [8], predicted in the seminal work of P W Anderson in the context
of electronic transport. The quantum phase diagrams of spin glasses [9] and disorder-induced
frustrated systems are other rich manifestations of disorder.

In interacting systems, the situation is even richer and more complex as a result of non-trivial
interplays between kinetic energy, interactions and disorder. This problem has attracted much
attention [10, 11] but is still not fully understood. In lattice Bose systems for example, it leads
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to the formation of a Mott insulator and a Bose glass phase at zero temperature [10]. A study of
coherent transport of two interacting particles also predicts a localization length larger than the
single-particle Anderson localization (AL) length [11].

Recent progress in ultracold atomic systems has triggered a renewed interest in quantum
disordered systems where several effects such as localization [12]–[15] the Bose-glass phase
transition [12, 16, 17] or the formation of Fermi-glass, quantum percolating and spin glass phases
[18, 19] have been predicted (for a recent review see [19]). Ultracold atoms in optical and magnetic
potentials provide an isolated, defectless and highly controllable system and thus offer an exciting
(new) laboratory in which quantum many-body phenomena at the border between atomic physics
and condensed matter physics can be addressed [20]. Controllable random potentials can be
introduced in these systems using several techniques. These include the use of impurity atoms
located at random positions of a lattice [21], quasi-periodic potentials [12, 15, 22, 23], optical
speckle patterns [24]–[26] or random phase masks [27].

In this work, we experimentally investigate the transport properties of an interacting Bose–
Einstein condensate (BEC) in a 1D random potential. We use laser speckle to create a 1D
repulsive random potential along the longitudinal axis of cigar-shaped BEC. To study the
transport properties of the condensate in the random potential, we observe the 1D expansion
of the interacting matter-wave in a magnetic waveguide, oriented along the axis of the BEC.
We demonstrate the suppression of transport [25] induced by the random potential and carefully
analyse the disorder-induced localization phenomenon [28]. In the regime that we consider
(Thomas–Fermi regime), the interactions play a crucial role for the observed localization which
turns out to be completely different from AL. Compared to the other above-mentioned means
of creating disorder in ultracold atomic systems, this turns out to have significant advantages.
First, speckle patterns form disordered potentials which are truly random with no long-range
correlation; second, they do not require two-species systems; and third, their parameters (intensity
and correlation functions) can be shaped almost at will in 1D, 2D or 3D. Careful attention is paid
to the characterization of speckle patterns in connection to ultracold atoms in the present work.

The paper is organized as follows. We present the characteristics of our random potential:
its statistical properties and their connection to experimental parameters in section 2, as well as
methods to calibrate this potential correctly in section 3. We present the observation of inhibition
of the expansion of an interacting matter-wave in the random potential in section 4. We then
discuss the disorder-induced scenario proposed in [25, 28] and present a detailed experimental
analysis of this theoretical scenario in section 5.

2. Laser speckle: a controllable random potential for cold atoms

Shining a speckle pattern onto the BEC creates a random potential for the atoms as they are
subjected to an optical dipole potential V(�r). This dipole potential is proportional to the intensity
I(�r) of the laser light and inversely proportional to the detuning δ from the atomic transition:

V(�r) = 2

3

h̄�2

8Isat

I(�r)
δ

, (1)

with Isat = 16.56 W m−2 the saturation intensity of the D2 line of Rb87, �/2π = 6.06 MHz the
linewidth, and the factor 2/3 the transition strength for π-polarized light. In this section, we
present the main characteristics of the random potential induced by a laser speckle.
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Figure 1. (a) Experimental realization of the speckle pattern. A laser beam of
diameter D′ and wavelength λ is first focussed by a convex lens. The converging
beam of width D is then scattered by a ground glass diffuser. The transverse
speckle pattern is observed at the focal plane of the lens. The scattered beam
diverges to an rms radius w at the focal plane. (b) Image of an anisotropic speckle
pattern created using cylindrical optics to induce a 1D random potential for the
BEC along Oz. (c) Zoom of the speckle pattern (the boxed region of (a)). (d)
The intensity autocorrelation function CI(δz) (defined in the text). Its width gives
the typical speckle grain size �z.

2.1. What is a speckle field?

Laser speckle is the random intensity pattern produced when coherent laser light is scattered from
a rough surface resulting in spatially modulated phase and amplitude of the electric field (see
figure 1(a)) [29, 30]. The randomly phased partial waves originating from different scattering
sites of the rough surface sum up at any spatial position r leading to constructive or destructive
interferences. This produces a high-contrast pattern of randomly distributed grains of light (see
figure 1(b)). A fully developed speckle pattern is created when the rough surface contains enough
scatterers to diffuse all the incident light so that there is no directly transmitted light. This requires
the phases acquired at each scatterer to be uncorrelated and uniformly distributed between 0 and
2π. This is achieved by using a rough surface whose profile has a variance which is large compared
with the wavelength of the light.

The real and imaginary parts of the electric field of the speckle pattern are independent
Gaussian random variables—a consequence of the central limit theorem [31]. Simple statistics
can be used to derive the properties of the resulting intensity pattern which are related to that of
the electric field: (i) the first-order one-point statistical properties which correspond to the speckle
intensity distribution, (ii) the second-order two-point statistical properties which correspond to
the intensity correlation function and to the typical size of the speckle grains. We show that all
parameters of the speckle random potential can be controlled accurately experimentally.
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2.2. Speckle amplitude

In a fully developed speckle pattern, the sum of the scattered partial waves results in random
real and imaginary components of the electric field whose distributions are independent and
Gaussian. Consequently the speckle intensity I follows an exponential law:

P(I ) = 1

〈I〉e−I/〈I〉. (2)

The amplitude of the speckle intensity modulation is defined by its standard deviation σI =√
〈I2〉 − 〈I〉2. From the intensity distribution (2) it is easy to show that σI = 〈I〉. The probability

of a speckle peak having an intensity equal to or greater than five times the average intensity
is less than 1%. This will provide a reasonable estimate of the highest speckle peaks (see
figure 1(c)).

The average speckle intensity 〈I〉 is directly related to the intensity of the incident laser beam
and to the diffusion angle of light scattered by the diffuser. This angle increases as the minimum
size of the scatterers on the diffuser decreases, causing the divergence of the scattered beam to
increase, thereby reducing the average intensity. Reducing the distance l of the diffuser from
the focal plane (see figure 1(a)) changes the average intensity of the speckle as the laser beam
diverges over a shorter distance, but without changing the second-order statistical properties, as
we will see in the following.

2.3. Speckle grain size and intensity correlation function

Roughly speaking a speckle pattern is a spatial distribution of grains of light intensity with
random magnitudes, sizes and positions (see figure 1(b)). The speckle grain size is characterized
by the width of the intensity autocorrelation function (figure 1(d)):

CI(δr) = 〈I(r)I(r + δr)〉 (3)

where I(r) is the intensity at point r and the brackets imply statistical averaging. This function
can be derived from the electric field statistics at the diffuser by Fresnel/Kirchoff theory of
diffraction [29, 30]. In the focal plane of the lens, assuming paraxial approximation, the speckle
electric field amplitude is the Fourier transform of the electric field transmitted by the diffuser.
Thus the transverse autocorrelation function depends only on the linear phase terms of the electric
field. However, in the longitudinal direction, the quadratic terms of the phase must be taken into
account, leading to a different scaling in the longitudinal direction [29].

For the simple case where the diffuser is illuminated by a uniform rectangular light beam
of width DY and length DZ (as in our experiment), the intensity correlation functions in the
transverse and longitudinal directions are respectively [29]:

C⊥
I (δy, δz) = 〈I〉2

[
1 + f

(
DY

λl
δy

)
f

(
DZ

λl
δz

)]
, (4)

C
‖
I (δx) = 〈I〉2

[
1 + g

(
D2

Y

λl2
δx

)
g

(
D2

Z

λl2
δx

)]
. (5)
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Here f(u) = [ sin(πu)/πu]2 is the Fourier transform of the aperture, g(u) = 2
u
[C2(

√
u/2) +

S2(
√

u/2)] where C(s) and S(s) are the Fresnel cosine and sine integrals respectively. Equation
(4) is valid in the far-field regime, i.e. for (δx2 + δy2)/ l2 � 1. We define the typical size of
the speckle grains as the distance to the first zero of the functions CI(δr)/CI(0) − 1 in each
coordinate direction. We find the following grain sizes for each of the three directions:

�y = λ
l

DY

, �z = λ
l

DZ

, �x 	 7.6λ
l2

DYDZ

= 7.6�y�z

λ
. (6)

An important point here is that aberrations of the optical setup have no effect on the properties
of the speckle observed in the image plane [29]. It is interesting to note the transverse speckle
grain size corresponds to the diffraction limit, i.e. it is controlled by the half-angle α = D′/2f

subtended by the illuminated area of the diffuser at the observation point (see figure 1(a)). As a
consequence, changing the distance of the diffuser relative to the lens does not change the speckle
grain size along Oz since the angle α remains constant. We also point out that the speckle grain
size in the focal plane of the lens is independent of the size of the scatterers on the diffuser. We
note that the longitudinal grain size �x is related to the transverse area �y�z as the Rayleigh
length of a Gaussian beam is related to the beam waist area (within a numerical factor). Finally,
we point out that when the half-angles in the transverse planes xOz and xOy which determine
the value �z, �y respectively are different, as in the experiment (see figure 1(b)), an anisotropic
speckle pattern is created. As we will explain in section 3, using an anisotropic speckle pattern
allows us to work with a 1D random potential for the atoms.

2.4. Self-averaging properties of a speckle pattern

A 1D random potential v(z), such as a speckle pattern, can be defined by its statistical moments,
ensemble averaged over the disorder. Within this statistical definition, one can generate many
different realizations of the random potential. Experimentally, this can be achieved by using
different ground glass diffusers or by shining different (uncorrelated) regions of the speckle
pattern onto the atom cloud. In principle, experimental observations of cold atoms in a random
potential will depend on the microscopic details of each particular realization of the random
potential. Therefore, macroscopic transport properties, which depend only on the statistics of the
random potential, should be extracted by ensemble averaging over many different realizations.

It is well known however that a spatially homogeneous (i.e. infinite) disorder, without
infinite range correlations, ensures that all extensive physical quantities are ‘self-averaged’ [32].
If a random potential is self-averaging, we can obtain the statistical moments mi by integrating
a single realization of the random potential over an infinite range: mi = lim[D→∞]

1
D

∫
D

dz vi(z)

for i = 1, . . . , ∞. There is then no need to average over many different realizations as each gives
exactly the same result. The fact that the spatial average coincides with the statistical average
is equivalent to the well-known ergodic hypothesis in statistical mechanics which assumes that
temporal mean is equal to the statistical average. In experiments, studies are obviously carried
out in finite systems, in which the self-averaging property is no longer strictly valid. However,
if the length d of a 1D system is sufficiently large (typically d � �z), the system will be
approximately self-averaging. More precisely, this approximation will be valid if the statistical
moments, evaluated over a finite length d: mi(d ) = 1

d

∫ d/2
−d/2 dz vi(z), yield values sufficiently

close to the ensemble averaged mi.
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Figure 2. Normalized standard deviation σm2(d)/σm2(0) as a function of
the length d of the system. Lozenges ♦ correspond to the numerical
calculation of m2(d ) with the true auto-correlation function Cv(z) = 1 +
(sin[πz/�z]/(πz/�z)). The solid black line represents the analytical solution
of equations (A.9) and (A.10). Inset: shows plot in detail for small values of d.

In practice, it is useful to quantify the precision of this approximation. This will identify
under which circumstances it is necessary to average experimental results over several realizations
of disorder, and under which circumstances it is possible to assume self-averaging. For infinite
systems (d = ∞), the self-averaging property implies σ2

mi
(∞) = 〈mi(∞)2〉 − 〈mi(∞)〉2 = 0, so

the calculation of the standard deviation σmi
(d) of the moment mi(d) gives a nonzero value which

can be used to test the extent to which a finite system is self-averaging. Rather than calculate all
the standard deviations, we will focus on just the first- and second-order deviations σm1(d) and
σm2(d). We will see later that the second-order moment is a key parameter in our understanding
of the transport properties of the BEC.

We consider a 1D speckle potential I(z) = σIv(z) with a finite spatial correlation length
�z, where v(z) is a normalized speckle field: 〈v(z)〉 = 1 and 〈v2(z)〉 = 2. For simplicity let
us approximate the auto-correlation function of the speckle pattern to unity plus a Gaussian
(this happens to be a good approximation when the true auto-correlation function is Cv(z) =
1 + (sin[πz/�z]/πz/�z); see figure 2). It is then possible to obtain a simple analytical formula
for σm2(d) (see appendix A and equations (A.9) and (A.10)). In the asymptotic limit d � �z,
σm2(d) reduces to (see equations (A.11) and (A.12)):

σm2(d )/σm2(0) 	 0.959

√
�z

d
, (7)

where σ2
m2

(0) = 〈v(z)4〉 − 〈v(z)2〉2 = 20. As expected, when the length d of the medium tends
to infinity, the system becomes self-averaging and σm2(d) tends to zero. The asymptotical
convergence towards a self-averaging disorder is however slow and scales as

√
�z/d where

d/�z is the typical number of peaks present within the length d of the system. This scaling can
be interpreted using discrete variables. If we consider the amplitude v(zk) of the random potential
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Figure 3. Optical setup used to create the speckle potential. The BEC is at the
focus of the lens system with its long axis oriented along the z direction. The
two figures are shown in the same scale. The beam incident on the diffuser has
different widths in the y and z directions, which leads to anisotropic speckle grains
(see text). (a) Side view. (b) Upper view.

at the points zk = k�z, we obtain a set of independent variables (v(zk))k=1,...,N with the statistics
of the speckle intensity. Then the normalized spatial average m2(d) is a normalized mean value
over N = d/�z independent variables, which scales like 1/

√
N.

In figure 2 we plot σm2(d) for the numerical calculation using the true auto-correlation
function Cv(z) = 1 + sin[πz/�z]

πz/�z
(lozenges ♦) and the analytical solution with the Gaussian auto-

correlation function (solid black line). Both give similar values for σm2(d). The asymptotic
approximation equation (7) is very good even for relatively small values of d/�z: the deviation
of equation (7) from the exact solution of σm2(d) with the Gaussian approximation is less than 1%
when the system is larger than six times the size of the speckle grain. We note that the deviation
from a self-averaging system displayed by the first-order moment m1(d) is very similar to that
of the second-order moment (see appendix A). For a typical number of peaks d/�z larger than
100 as in our experiment, the difference between the second order moment of a finite speckle
pattern and that of an infinite, self-averaging one is less than 10%.

3. Experimental implementation and characterization of the speckle pattern

3.1. Shining a speckle pattern onto the atomic cloud

In our experiment the random potential is superimposed on the atoms by shining a laser beam
through a ground glass diffuser as shown in figure 3. The atoms are located in the focal plane
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of the lens (the observation plane in figure 1), at a distance l = 6 cm from the diffuser. The laser
beam is derived from a tapered amplifier, injected by a free-running diode laser at λ ∼ 780 nm
and fibre-coupled to the experiment. The out-coupled beam is focused onto the condensate, the
fibre out-coupler and lenses being mounted on a single small optical bench, aligned perpendicular
to the long axis of the cigar-shaped BEC.

The optical dipole potential V(z) resulting from the speckle pattern is (see equation (1)):

〈V(z)〉 = σV = 2

3

h̄�2

8Isat

σI

δ
. (8)

In these experiments, as in that of [25], we use a blue-detuned light, (δ � 0.15 nm), so the
potential is repulsive and the speckle grains thus act as barriers for the atoms. This is in contrast
to the case of a red-detuned light (δ < 0) where the speckle grains act as potential wells and
where atoms could be trapped by the Gaussian intensity envelope of the laser beam. For the laser
intensities used in these experiments, the mean speckle potential σV is always smaller than the
chemical potential of the initially trapped condensate. We define the normalized amplitude of
the random potential γ = σV/µTF relative to the Thomas–Fermi chemical potential µTF of the
initially trapped condensate. In our experiments, γ is always smaller than unity.

As explained in subsection 2.3, we can create an anisotropic speckle pattern by controlling
the shape of the laser beam incident on the diffuser. We use a set of cylindrical optics such that in
the xOy plane (figure 3(a)) the out-coupled beam from the fibre is directly focused onto the atoms.
Thus along Oy the height of the beam incident on the diffuser is small, DY = 0.95 mm, giving a
speckle grain size �y = 49 µm. In the xOz plane (figure 3(b)), the beam is first expanded before
being focused onto the atoms and the horizontal size of the beam on the diffuser is DZ = 55 mm,
giving a horizontal grain size �z = 0.85 µm. The longitudinal grain size is �x = 406 µm. With
our cigar-shaped BECs elongated along Oz, of transverse radius RTF = 1.5 µm and longitudinal
half-length LTF = 150 µm along Oz, we have:

LTF � �z and RTF � �y, �x, (9)

and the speckle pattern can be considered as a one-dimensional potential for the condensate.
The scattered laser beam has a total power of up to 150 mW and diverges to rms radii wy and

wz which are two orders of magnitude larger than RTF and LTF respectively at the condensate.
Therefore the average intensity (the Gaussian envelope) of the beam can be assumed constant
over the region where the atoms are trapped.

3.2. Calibration of the speckle grain size

In principle, the size of the speckle grains �z can be calculated from the parameters l and D

of the optical system. However, a large aperture cylindrical lens system is not stigmatic and we
have therefore calibrated the speckle grain size using images from a CCD camera. The optical
set-up is removed from the BEC apparatus and the intensity distribution observed on a CCD
camera at the same distance l as the atoms. Taking images with various beam apertures DZ, we
determine the autocorrelation function of the speckle patterns to obtain the grain size �z that
we plot versus 1/DZ. For speckle grain sizes larger than the CCD camera pixels (2 µm), we
can fit the data with a straight line, obtaining �z = 1.11(9) × λl/DZ to be compared with the
calculated grain �z = λl/DZ with the paraxial assumption. The camera cannot resolve speckle
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Figure 4. The speckle light at 780 nm induces a light shift in both F = 1 and
F = 2. Tuning the speckle laser close to the F = 2 level as shown creates a
spatially varying differential light-shift on the 6.8 GHz transition.

grains smaller than the pixel size and so we extrapolate the fit to give the grain size corresponding
to the aperture we use: for DZ = 55 mm, we obtain �z = 0.95(7) µm. The width of the auto-
correlation function in the perpendicular axis gives the experimental value �y = 54(1) µm,
leading to the longitudinal size �x = 499(38) µm.

3.3. Calibration of the speckle average intensity via light shift measurements

Obtaining a reliable value for a dipolar potential from a photometric measurement of light
intensity is notoriously difficult. In our case, an additional problem arises due to the strong
focussing, entailing a strong variation of the intensity along the beam axis Ox. The ideal method
to calibrate the dipolar potential is to use the atoms themselves as a sensor. This potential is
nothing else than the light-shift of the lower level, F = 1 in our case. In order to relate this
light-shift to the directly measured power of the laser that creates the speckle random potential,
we have used a measurement of the differential light-shift of the F = 1 → F = 2 hyperfine
transition.

The condensate is magnetically trapped in the |F =1, mF =−1 〉 sublevel (figure 4). We
use a microwave frequency generator and antenna to drive the 6.8 GHz σ+ transition to the
|F =2, mF =0〉 sublevel.Atoms coupled into this state are then lost from the trap. By monitoring
the number of atoms remaining in |F = 1, mF = −1 〉 as a function of microwave frequency
fmw, we obtain a spectrum of this transition.

When the speckle laser is shone onto the atoms, both ground states F = 1 and F = 2 are
light-shifted and the microwave spectrum is modified. To produce a substantial differential light
shift on the transition, we must tune the speckle laser close to resonance for either the F = 1 or
F = 2 state. We chose to tune the laser close to the F = 2 → F ′ = 3 transition frequency, to
minimize spontaneous scattering by the atoms trapped in the F = 1 level. Then the speckle laser is
sufficiently detuned from F = 1 → F ′ transitions (δ1 ∼ 6.8 GHz) that the hyperfine structure of
the upper F ′ levels is not resolved for this transition and the light-shift of the |F = 1, mF = −1 〉
sublevel is calculated using equation (8) (the transition strength is 2/3 for π-polarized light).
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Figure 5. (a) Fraction of atoms remaining in F = 1 after a 5 ms pulse of
microwaves at frequency fmw = 6.8 GHz + f , for speckle laser powers P
indicated and fixed (blue) detuning δ = 15 MHz. Increasing the speckle laser
power broadens the spectra to lower microwave frequencies. (Frequency f is
indicated relative to the unshifted transition frequency at 6.834683 GHz.) The
solid lines represent fits to equation (15). (b) σI versus speckle laser power P .
The fit gives σI/P = 1.0(1) × 103 m−2.

For the F = 2 → F ′ transitions, one has to take into account the hyperfine structure of the
excited state F ′. The π-polarized speckle laser beam couples the |F = 2, mF = 0 〉 sublevel to
|F ′ = 1, mF = 0 〉 and |F ′ = 3, mF = 0 〉with the transition strengths 1/15 and 3/5 respectively.
For detunings close to resonance with F = 2 → F ′ = 3, the contribution to the light-shift of the
transition to the F ′ = 1 sublevel is negligible at the 1% level. In this approximation we obtain
the differential light-shift of the transition:

�E = h̄�2

8Isat
I

(
3

5

1

δ2
− 2

3

1

δ1

)
	 3

5

h̄�2

8Isat

I

δ2
for δ2 � δ1 (10)

where δ1 is the detuning relative to the F = 1 → F ′ = 3 transition, δ2 is the detuning relative to
the F = 2 → F ′ = 3 transition (δ1 = δ2 − 6.835 GHz). Note that the laser is always red-detuned
from F = 1 by about −6.8 GHz, so creates an attractive speckle potential for the atoms, while it
is red- or blue-detuned for the F = 2 state. Atoms transferred to F = 2 by the microwave pulse
will be rapidly lost due to near-resonant spontaneous scattering.

Spectra obtained for a condensate in the absence of the speckle potential (red crosses +
on figure 5(a)) have a width of 	15 kHz and are shifted by fB = fmw − 6.8 GHz 	 −2800 kHz
from the F = 1 → F = 2 transition frequency. This shift and this width are due to the Zeeman
effect on the magnetic |F = 1, mF = −1 〉 sublevel: the minimum magnetic field B0 of the Ioffe
trap shifts the frequency transition by fB = gFµBB0/h and the curvature of the magnetic trap over
the region of the condensate broadens the spectrum towards lower frequencies. When the speckle
laser is shone on the atoms, different atoms experience different light-shifts due to the spatial
modulations of intensity in the speckle pattern. The spectrum is therefore inhomogeneously
broadened due to the range of light intensities, as shown in figure 5(a). For these measurement we
used speckle intensities of 〈I〉 � 0.3 mW cm−2 and detunings δ2 from −15 MHz to −500 MHz.

In order to calibrate the dipolar potential and to extract the average intensity σI from these
experimental spectra, we have developed a simple model. Since the broadening of the spectra
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Figure 6. Plot of the ‘nearest local maxima’ effective potential (black line) of
one realization of the speckle pattern (red line). We use this simulation to obtain
the probability distribution of the ‘nearest local maxima’ P ′(I).

due to the variation of the speckle intensity is very large compared with the Zeeman broadening
we neglect the latter. Approximating to a constant density profile, we use the statistics of the
speckle intensity distribution to model the evaporation. Since the mean potential σV is typically
100 times greater than the chemical potential of the condensate, we assume that the atoms
are located essentially at the maxima of the speckle intensity peaks (minima of the trapping
potential). The number of atoms remaining after application of the microwave pulse at frequency
fmw = 6.8 GHz + f is then:

N(f ) = N0

[
1 − α

�f

3�2/80πIsatδ2
P ′(I(f))

]
= N0[1 − AP ′(I(f ))] (11)

where α is the coupling efficiency of the microwave knife and �f the frequency width coupled
by the microwave knife, I(f ) is the intensity resonant with the frequency (f − fB), i.e.

h(f − fB) = 3h̄�2I(f )

40Isatδ2
. (12)

In equation (11) P ′(I ) is the distribution of ‘nearest local maxima’ of intensity given by:

P ′(I ′) = 4I ′ exp(−2I ′/Ī ′)

Ī ′2 (13)

where Ī ′ = 1.89σI is the average value of the distribution of intensity maxima. Equation (13) is
obtained by simulations of the speckle distribution in which the intensity I at each point of the
speckle random potential was replaced by the intensity at the nearest maximum I ′ (see figure 6).

New Journal of Physics 8 (2006) 165 (http://www.njp.org/)

http://www.njp.org/


13 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

We finally obtain from equations (11)–(13):

N(f ) = N0

[
1 − B

(f − fB)

(1.89σI)2
exp

(
−2

f − fB

1.89(fσI
− fB)

)]
(14)

where B = 320πAIsatδ2/3�2.
In the experiment, we measure the power P at the input of the optical setup that creates the

speckle random potential. The aim of the calibration is thus to relate P to the average intensity
σI of the random potential on the atoms. In order to extract σI from the experimental data we fit
the spectra in figure 5(a) with a function similar to equation (14):

N(f ) = N0

[
1 − C(f − fB) exp

(
−2

f − fB

1.89(fσI
− fB)

)]
(15)

where C, fB and fσI
are fitting parameters. Plotting the fitted values of fσI

versus P/δ2 for red-
and blue-detuned light we then obtain a more accurate value of fB than that obtained by fitting
equation (15) to each individual spectrum. Using equation (12) we obtain σI from fσI

− fB and
plot σI versus P in figure 5(b). We obtain σI/P = 1.0(1) × 103 m−2 as the calibration constant
relating the power P to the average speckle intensity at the atoms σI .

4. Expansion in a 1D waveguide: a study of transport properties of a BEC in a speckle
random potential

4.1. Production of a condensate of 87Rb atoms

We produce a BEC of 87Rb atoms in the |F = 1, mF = −1〉 hyperfine state. The design of our
iron-core electromagnet allows us to create an elongated Ioffe–Pritchard magnetic trap with axial
and radial frequencies of ωz = 2π × 6.70(7) Hz and ω⊥ = 2π × 660(4) Hz respectively. The
magnetic trap is loaded from a magneto-optical trap (MOT) and the atom cloud is cooled down to
quantum degeneracy (BEC) using a radio-frequency (rf) evaporation ramp. Typically, our BECs
comprise 3.5 × 105 atoms and are characterized by a chemical potential µTF/2πh̄ ∼ 4.6 kHz
and Thomas–Fermi half length LTF = 150 µm and radius RTF = 1.5 µm. Further details of our
experimental apparatus are presented in [33].

The large aspect ratio of the trap is of primary importance for the experiments described
in this paper. As stated in subsection 3.1 the large anisotropy of the speckle grains (�x =
499(38) µm, �y = 54(1) µm and �z = 0.95(7) µm) help us to obtain a 1D random potential
for the atoms. Yet to work with true 1D random potentials, i.e. LTF/�z � 1 and RTF/�x � 1,
an order of magnitude difference between the sizes LTF and RTF of the BEC is needed. With the
aspect ratio of our magnetic trap we have LTF/�z 	 158 and RTF/�x 	 0.03.

4.2. Axial expansion: opening the longitudinal trap

To study the coherent transport of the BEC in the random potential, we observe the longitudinal
expansion of the condensate in a long magnetic guide. The setup of our magnetic trap allows
us to control almost independently the longitudinal and transverse trap frequencies by changing
the currents in the axial and radial excitation coils. By reducing the axial confinement without
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modifying the transverse confinement, we create a 1D magnetic waveguide for the condensate.
Repulsive inter-atomic interactions drive the longitudinal expansion of the BEC along this guide.

Reducing the current in the axial excitation coils reduces both the longitudinal trap frequency
and the minimum value of the magnetic field. If the minimum magnetic field crosses zero,
atoms can undergo Majorana spin-flips from the trapped hyperfine state |F = 1, mF = −1〉
to non-trapped hyperfine states and are then lost from the trap. Therefore we monitor the
atom number as a function of the axial current in order to determine the current at which the
magnetic field crosses zero. This zero-crossing defines a lower limit for the axial current and
so we reduce the axial trap frequency ωz/2π to a final value slightly above this limit. Since we
cannot reduce the axial field curvature strictly to zero, a small longitudinal trapping remains. By
observing dipole and quadrupole oscillations (at frequencies ω′

z and
√

2/5 ω′
z respectively) in the

magnetic waveguide, we measured ω′
z/2π = 1.10(5) Hz for the residual trapping frequency in

the guide.
Opening the trap abruptly induces atom loss and heating of the atom cloud, therefore the

trap is ramped over 30 ms to avoid these processes. Once the current in the axial coils has reached
its final value we have a BEC of N ∼ 2.5 × 105–3 × 105 atoms in the magnetic guide.

To perform the experiment in the presence of the random potential, we use the following
procedure. After creating the condensate of 87Rb atoms we shine the random potential onto the
atoms and wait 200 ms for the BEC to reach equilibrium in the combined initial trap and disorder
potential. We then open the longitudinal confinement, switch off the evaporation RF knife and
the BEC expands in the 1D waveguide in the presence of disorder due to repulsive interactions.
We turn off all remaining fields (including the random potential) after a total axial expansion
time τ (which includes the 30 ms opening time of the axial trap) and wait a further ttof = 15 ms
of free fall before imaging the atoms by absorption.

4.3. Image analysis and longitudinal density profiles

In our experiment we obtain quantitative information about the atom cloud by taking absorption
images after a time-of-flight ttof = 15 ms. Absorption imaging effectively integrates the atomic
density along the direction of the imaging beam Oy, such that we measure the 2D density after
time-of-flight n2D(x, z, ttof).

In the harmonic trap (τ = 0) without disorder, the Thomas–Fermi condition is fulfilled and
this justifies the use of the scaling theory [34]. During the time-of-flight ttof , the atom cloud
expands with the scaling factors λ⊥(ttof) and λz(ttof) in the radial and longitudinal directions
respectively. In our elongated trap λz(ttof) 	 1 and, after a time-of-flight ttof , we have:

n2D(x, z, t = ttof) = 1

λ⊥(ttof)
n2D

[
x

λ⊥(ttof)
, z, t = 0

]
. (16)

In the magnetic waveguide, the radial frequency ω⊥ is unchanged. When the longitudinal
expansion is stopped, i.e. when there is no longitudinal kinetic energy, the energy of atom cloud
is also totally transferred to the transverse degree of freedom during ttof with the scaling factor
λ⊥ of the initial trap. Then equation (16) is still valid to describe the expansion of the condensate
from the magnetic waveguide during the time-of-flight. Therefore the 2D density before time-
of-flight is n2D(x, z, τ) = λ⊥(ttof) n2D(λ⊥(ttof)x, z, τ + ttof) where τ is the time spent by the BEC
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Figure 7. (a) Time evolution of the rms size L of the expanding BEC in the 1D
magnetic guide in presence of a 1D random potential with amplitude γ = σV/µTF.
Error bars represents standard deviation over five realizations of the speckle
pattern (dashed lines are guides to the eye); (b) Time evolution of the centre
of mass position for the different values of γ .

in the waveguide. In the waveguide in presence of a random potential, the 3D density can be
written as:

n3D(x, y, z, τ) = 1

g
[µ(τ) − mω2

⊥x2/2 − mω2
⊥y2/2 − V(z)], (17)

where µ(τ) is the chemical potential in presence of the 1D random potential V(z), g = 4πh̄2a/m

is the interaction parameter and a is the scattering length. Then the 2D density is:

n2D(x, z, τ) =
∫

dyn3D(x, y, z, τ) = 4RTF

3g
√

µTF
[µ(τ) − mω2

⊥x2/2 − V(z)]3/2. (18)

In particular, assuming the amplitude of the random potential 〈V 〉 = σV is small compared to
the chemical potential µ, σV � µ, we have n2D(x = 0, z, τ) 	 4RTFµ(τ)3/2/3g

√
µTF up to first

order in σV/µ.
From these 2D images, we extract the ‘longitudinal density profile’n2D(x = 0, z, τ) and use

it to calculate the rms length L and the centre-of-mass position of the expanding condensate in
the absence or presence of the random potential.

4.4. Expansion of the BEC and time evolution of rms length L

We measure the rms size L and the centre-of-mass position of the condensate as a function of
the longitudinal expansion time τ and plot these quantities as a function of ωzτ in figure 7. The
expansion of the condensate in the 1D waveguide without disorder (γ = 0) is linear as predicted
by the scaling theory [34]. When the 1D random potential is added (γ = 0.15, 0.23, 0.28) the
expansion is reduced and eventually stops as reported in [25]. The dashed lines in 7(a) indicate
Lf , the final rms size of the condensate once it stops expanding. The data in 7(a) indicate that
the larger the normalized amplitude of the random potential compared to the initial chemical
potential (γ), the shorter the final rms length Lf of the condensate.
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Figure 8. Longitudinal density profiles of the expanding BEC for times ωzτ =
1.0, 3.0, 5.1 and 7.2 with (a) γ = 0, (b) γ = 0.15 and (c) γ = 0.3. The dotted
(red) line is the longitudinal profile in the initial trap (τ = 0) in the absence of
disorder.

Figure 7(b) shows the centre-of-mass position of the BEC as a function of axial expansion
time τ. In the absence of the random potential, the condensate acquires a centre-of-mass velocity
of 2.8(1) mm s−1, due to a magnetic ‘kick’during the longitudinal opening of the trap. We observe
that applying a small amplitude random potential also inhibits this centre-of-mass motion. The
displacement of the condensate decreases with increasing amplitude γ as shown in figure 7(b).
Each point in figure 7 is obtained by averaging the experimental results over five different
realizations of the speckle pattern. The error bars represent the corresponding standard deviations.
We find that these standard deviations are not larger than the shot-to-shot deviation observed using
a single realization of the random potential. We therefore claim that this system is self-averaging
within our experimental resolution. Further justification is presented in subsection 5.2. This self-
averaging property of our system allows us to measure transport properties without averaging
over many realizations of the disorder, which is an important practical advantage.

The suppression of transport of the expanding matter-wave also appears clearly on the
longitudinal density profiles obtained in the experiments. We plot in figure 8 the time evolution
of the longitudinal density profiles for different values of the amplitude γ of the random potential.
The dotted red profile on every graph represents the longitudinal profile before expansion (τ = 0)
in the absence of the random potential. This is the usual inverted parabola for a harmonically
trapped BEC in the Thomas–Fermi regime. During the expansion without disorder (see
figure 8(a)), the shape remains an inverted parabola with the rms size increasing as expected
from the scaling theory [34]. When the random potential is added (see figures 8(b) and (c)),
the longitudinal density profile changes with time. Eventually it reaches a stationary shape
(corresponding to the stationary rms size on figure 7(a)) with two main characteristics: (i) a
constant central density (with random spatial modulations) and (ii) steep edges demarcating this
central region.

Our experimental results clearly show the suppression of transport of a coherent matter-
wave induced by a random potential [25]. Although phenomenologically similar to a single
particle AL, we have argued in [25, 28] that, in the mean-field regime of our experiment where
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interactions are weak but interaction energy dominates over the kinetic energy, the physics
strongly changes compared with that of AL with non-interacting bosons. In the following we
investigate experimentally the scenario of disorder-induced trapping of an interacting BEC in
the mean field regime proposed in [25, 28].

5. Experimental characterization of the disorder-induced trapping scenario

5.1. The disorder-induced trapping scenario of an elongated BEC

The disorder-induced trapping scenario proposed in [25, 28] describes the expansion of a 1D
interacting matter-wave in a 1D random potential in a regime where interactions dominate over
the kinetic energy. The dynamics of the BEC is governed by three kinds of energy: the amplitude
of the random potential, the kinetic energy of the atoms and the inter-atomic interaction energy.
The relative importance of each of these three energy contributions depends on the local density
of the BEC. At the centre of the condensate where the density remains large, interactions play
a crucial role and the kinetic energy is negligible. In contrast, the wings are populated by fast
atoms with a low density and therefore the kinetic energy dominates over the interaction energy.
Let us briefly describe what happens in each of these regions.

In the wings, the kinetic energy dominates over the interaction energy. The fast, weakly
interacting atoms which populate the wings undergo multiple reflections and transmissions on
the modulations of the random potential (see numerical simulations in [25, 28]). Trapping finally
results from a classical reflection on a large modulation of the random potential. The density in
the wings of the disorder-trapped BEC is too small to be measured by absorption imaging in our
experiment.

We will now focus on the behaviour in the centre of the BEC. Following the definitions
of [28], we arbitrarily delimit the core of the BEC as half the size of the initial condensate:
−LTF/2 < z < LTF/2. During the expansion of the condensate in the waveguide, the density
at the centre of the cloud slowly decreases. It is thus possible to define a quasi-static effective
chemical potential µeff(τ) for the core of the BEC after an expansion time τ in the magnetic guide.
The kinetic energy is small, the time evolution is quasi-static and the healing length ξ = 0.11µm
remains much smaller than the correlation length of the speckle potential �z = 0.95 µm: thus
the Thomas–Fermi approximation is valid. As a consequence, the random potential modulates
the density and the calculation of µeff(τ) requires averaging over the length of the core. The
effective chemical potential µeff(τ) is simply the sum of the interaction energy and the random
potential energy and is defined as µeff(τ) = 1

LTF

∫ LTF/2
−LTF/2 dz[g n3D(x = 0, y = 0, z, τ) + V(z)]. The

rapid lost of the overall parabolic shape during the initial expansion of the BEC in the random
potential (see figure 8 and [28]) justifies this expression for µeff(τ) with no longitudinal magnetic
trapping term. The effective chemical potential µeff(τ) slowly decreases with the density during
the axial expansion time τ and eventually drops to a value smaller than the amplitude of some
peaks of the speckle potential. Once this situation is reached, the condensate is trapped in
the region between these peaks and it fragments [25, 28]. The criterion for trapping the core
of the BEC is the existence of two large modulations of the random potential equal or greater
than the effective chemical potential µeff . Below, we adapt the calculations of [28] for 1D BECs
to take into account the transverse extension of our 3D atom cloud. We note that the calculations
of [28] assume a random potential with 〈V 〉 = 0 so that the effective chemical potential reduces
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to the interaction term: µ(τ) = µeff(τ) − 〈V 〉.1 However, none of the physics of our experiment
is lost by making this adjustment with the time-independent energy 〈V 〉. In the following we will
use this new effective chemical potential µ(τ).

As the speckle potential is truly a 1D potential we can write the condition of fragmentation in
our 3D experimental BEC in the same way as is done in [28] for a 1D BEC: the picture developed
for 1D BECs holds for the experimental 3D condensates with the effective chemical potential
µ(τ) defined here. On the one hand if the BEC is fragmented at the centre (r2 = x2 + y2 = 0) then
the condition for fragmentation holds along the x-axis and y-axis since the density decreases as
|r| increases. On the other hand when the condition of fragmentation is not fulfilled at the centre
of the BEC (r = 0) the BEC expands and there is no disorder-induced trapping.

The number of peaks in the core of the BEC with energy greater than the effective chemical
potential µ(τ) is given by:

Npeaks(V � µ(τ)) 	 0.94

(
LTF

�z

)
exp

[
−0.75

V

σV

]
. (19)

The condition of fragmentation is Npeaks = 2, and leads to a relation between the final effective
chemical potential µf once the core of the BEC is trapped and the characteristic parameters σV

and �z of the speckle potential. For small values of γ = σV/µTF we obtain:

µf 	 µTF

0.75
γ ln

(
0.47LTF

�z

)
, (20)

the logarithmic term reflecting the exponential probability distribution of intensity of the speckle
pattern (see subsection 2.2) and �z the second-order statistics of our speckle potential.

Since the effective chemical potential µ(τ) of the core of the BEC decreases during
the expansion, it cannot be larger than the initial value µ(τ = 0) = µi = (g/LTF)

∫ LTF/2

−LTF/2
dz

n3D(0, 0, z). Integration over the core gives:

µi = 11µTF

12
	 0.92µTF (21)

which thus provides an upper value for µf .
In order to compare the experiments with this scenario we have to extract the effective

chemical potential µ(τ) in the core of the condensate from the data (as detailed in subsection 4.3).
We extract the mean density from our longitudinal profiles by averaging the density over the core
of the condensate n̄2D(τ) = (1/LTF)

∫ LTF/2
−LTF/2 dz n2D(x = 0, z, τ). Then the experimental effective

chemical potential is (see equation (18)):

µ(τ) = µ
1/3
TF

(
3gn̄2D(τ)

4RTF

)2/3

, (22)

so that µ(τ) can be directly extracted from the measured density n2D.

1 This expression for µ(τ) is strictly valid if 〈V 〉 = (1/LTF)
∫ LTF/2
−LTF/2 dz V(z), i.e. that our system is self-averaging

on the first-order moment m1. Given our experimental setup, this approximation is valid: σm1(LTF) 	 9% inferior
to experimental uncertainties 	15%.
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Figure 9. (a) Ratio n̄2D(τ)/n̄i
2D of the average density to the initial density at

the centre of the condensate after an expansion time ωzτ in the 1D magnetic
guide for different amplitudes of the random potential γ = 0, 0.05, 0.10 and
0.30. The dashed line shows the predicted time evolution according to scaling
theory for γ = 0. After the onset of disorder-induced trapping, atom losses lead
to a purely exponential decay indicated by the solid line fits. The onset of a purely
exponential decay (marked by the start of each solid line) indicates the final
density n̄f

2D at which disorder-induced trapping occurs. (b) Final effective potential
µf = µ

1/3
TF (3gn̄f

2D/4RTF)
2/3 at the centre of the trapped condensate as a function

of the amplitude of the random potential γ . The (red) solid line corresponds to
the expected slope from equation (20). The black dashed line corresponds to the
saturation value 0.92µ (equation (21)).

5.2. Measurement of the average density in the core of the elongated condensate

When disorder-induced trapping occurs at the centre, the average density in the core has dropped
to a final value n̄f

2D ∼ γµTF/g (see equations (20)–(22)) and is then expected to remain stationary.
However, because of atom losses due to processes such as evaporation, collisions, etc, the density
in the core will continue to fall. In figure 9(a) we plot the time evolution of the ratio of the average
density n̄2D(τ) over the initial one n̄i

2D for different amplitudes γ of the random potential. Without
the random potential (black dots), the time evolution of the average density is in very good
agreement with the predicted expansion in the magnetic waveguide according to scaling theory
(dashed black line). In the presence of the random potential, the rate of decrease of the average
density n̄2D(τ) is much reduced (see figure 9(a)). In particular, once the core of the condensate
stops expanding, the evolution of n̄2D(τ) changes to an exponential decay (the solid lines in 9(a)).
This exponential decay is due to atom losses and indicates that the density is no longer decreasing
due to expansion. Hence the onset of disorder-induced trapping is marked by a change of slope
in the time evolution of the density n̄2D(τ), and is indicated by the start of each solid line in 9(a)).
For a speckle amplitude γ = 0.30, trapping occurs at ωzτ = 0.5. The subsequent decrease in
the density n̄2D(τ) (ωzτ > 0.5) is fitted with an exponential exp [−�τ], giving the time constant
1/� 	 280 ms for atom losses. We then use an exponential with the same time constant 1/� to
fit the curves corresponding to γ = 0.05 and γ = 0.10. The onset of this exponential decay gives
us a measurement of the final average density n̄f

2D for which disorder-induced trapping occurs.
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In figure 9, the error bars on n̄f
2D represent the difference in the density between the last point

considered as part of the expansion and the first point marking the onset of disorder-induced
trapping.

From the analysis of our experimental data in figure 9(a) we extract the final effective
chemical potential µf = µ

1/3
TF (3gn̄f

2D/4RTF)
2/3 and plot µf versus the speckle amplitude γ in

figure 9(b). Comparing the final effective chemical potential µf once the core of the BEC is
trapped with the amplitude γ of the random potential allows a test of equations (20) and (21).
Indeed, according to equation (20), the slope of the function µf(γ) for small values of γ reflects
the first- and second-order statistical properties of the disorder, in particular the exponential one-
point distribution of intensity of the speckle and the correlation length �z. For the parameters
of our speckle potential we expect to obtain for the asymptotic value of the effective chemical
potential µf 	 26.4(2)103 × γ (see equation (20)). The evolution of µf at small values of γ is
in good agreement with this predicted value for the slope (red solid line in figure 9(b)). For
larger amplitudes γ of the random potential, µf saturates at a nearly constant value in agreement
with (21) (black dashed line in figure 9(b) is the expected saturation value). We note that this
clearly distinguishes between our case and the case of a lattice. In the mean-field regime with
the healing length smaller than the lattice spacing, the expansion of the condensate in a lattice
is never suppressed as no large peak can provide a sharp stopping [28]. However, the decrease
of the average density of the BEC is stopped when the effective chemical potential µ equals the
depth of the lattice V (fragmentation). The dependence of the final effective chemical potential
µf with γ = V/µTF in the case of a lattice is then µf = µTF × γ 	 4.6 × 103 × γ , independently
of the lattice spacing.

The self-averaging property of our system appears in this measurement once again.
Experimentally we measure n̄f

2D which depends on σV (see equations (20)–(22)). The average
speckle amplitude σV is related to the second order moment m2 of the random potential. In
subsection 2.4 we showed that the standard deviation of momentm2 is expected to vary as equation
(7). For our optical apparatus (�z = 0.95(7) µm), the deviation σm2(LTF) is less than 8% from
one realization of the speckle potential to another.2 This variation is less than the experimental
shot-to-shot variations of 	15% on n̄f

2D obtained with one realization of the speckle potential. The
arguments of subsection 2.4 are therefore in agreement with our observations and we conclude
that our system can be considered as self-averaging given our experimental resolution.

6. Conclusion

In conclusion, we have observed the suppression of transport of a coherent matter-wave of
interacting particles in a 1D optical random potential. Using laser speckle patterns to create
the random potential is particularly interesting as all statistical properties can be controlled
accurately. We have developed a technique to calibrate the average amplitude σV of our random
potential using the atoms as a sensor. The spatial correlation length �z is also carefully calibrated.
In addition, we have observed and justified that our experimental conditions are such that our
system is self-averaging, which is of primary importance when studying properties of disorder.
We have extended the disorder-induced trapping scenario for an expanding 1D BEC proposed in
[25, 28] to the experimental 3D condensate. Our experimental results are in excellent agreement

2 For the quasi-1D setup (�z = 5.2(2)µm) of [25], the condensate half-length LTF covers about 40 peaks of the
random potential. We have πLTF/�z 	 90 and equation (7) predicts σm2(LTF) 	 15%.
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with the prediction of this scenario where interactions play a crucial role and this allows us to
experimentally study in detail the interplay between the interactions and the random potential.

The theoretical scenario predicts a central role of the interactions in the localization of a
coherent matter-wave whose density adapts to the fluctuations of the random potential (ξ < �z,
where ξ = 0.11µm is the healing length). Contrary to the case of non-interacting matter-waves
whereAL is expected, the interplay between the interactions and the disorder induces the trapping
of the BEC when the chemical potential has dropped to a value smaller than the amplitude of
typically two barriers. The particular statistical distribution of the random potential modulations
is reflected in the condition necessary for trapping of the coherent matter-wave.

An interesting extension of this work would be to study the transport properties of the BEC
for smaller interactions, which can be controlled through Feshbach resonances for example. In
the Thomas–Fermi regime but for ξ > �z, a screening of the random potential is expected [28].
For even smaller interaction (arbitrary small), AL may occur.
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Appendix A. Calculation of σm2(d)

The ith-order moment of a single realization of the normalized speckle field v(z) calculated over
a finite length d is defined as

mi(d ) = 1

d

∫ d/2

−d/2
dzvi(z). (A.1)

Since v(z) is random mi(d) is random as well. Its statistical standard deviation σmi
(d ) for a given

length d is thus:

σ2
mi

(d ) = 〈mi(d)2〉 − 〈mi(d )〉2, (A.2)

where 〈·〉 stands for an ensemble average over the disorder. Since the average over the disorder
〈·〉 and the integration over a finite distance d commute, we can write:

〈mi(d )2〉 = 1

d2

∫ d/2

−d/2
dz

∫ d/2

−d/2
dz′〈vi(z)vi(z′)〉 (A.3)

〈mi(d )〉 = 1

d

∫ d/2

−d/2
dz〈vi(z)〉. (A.4)
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The calculation of σ2
m2

(d ) thus requires the knowledge of the second-order correlation function
〈v2(z)v2(z′)〉 of the intensity field. In the following we address this point by studying the statistics
of the speckle pattern.

Let A(z) denote the normalized amplitude of the electric field of the light diffused by
the scattering plate, i.e. v(z) = A∗(z)A(z), and CA(z1 − z2) = 〈A∗(z1)A(z2)〉 the first order
correlation function for this amplitude A(z). Assuming A(z1), A(z2), . . . , A(z2k) are complex
Gaussian random variables, so that one can use the so-called Vick’s theorem for those variables,

〈A∗(z1)A
∗(z2) · · · A∗(zk)A(zk+1)A(zk+2) · · · A(z2k)〉

=
∑
�

〈A∗(z1)A(zp)〉〈A∗(z2)A(zq)〉 · · · 〈A∗(zk)A(zr)〉, (A.5)

where the symbol
∑

� represents a summation over the k! possible permutations (p, . . . , r) of
(1, 2, . . . , k). For the first-order and second-order correlation functions on the intensity field v

we obtain:

〈v(z)v(z′)〉 = 1 + |CA(z − z′)|2 (A.6)

〈v2(z)v2(z′)〉 = 4
(
1 + 4|CA(z − z′)|2 + |CA(z − z′)|4) . (A.7)

In order to obtain a simple analytic expression for m2(d ) we approximate the auto-
correlation function of the normalized speckle electric field amplitude to a Gaussian:

|〈A∗(z)A(z′)〉|2 = |CA(z − z′)|2 = exp

[
−

(
π(z − z′)√

3�z

)2
]

. (A.8)

This Gaussian function has the Taylor expansion at (z1 − z2) → 0 as the true auto-
correlation function of the speckle pattern sin(πz)/πz for a rectangle aperture (see section 2).

The calculation can also be done using the true correlation function, but leads to a more
complex formula. The calculation of the deviation σm1(d) with the Gaussian auto-correlation
function leads to the following equation:

σ2
m1

(d ) =
√

3π

u
Erf

(
u√
3

)
+

3

u2
(e−u2/3 − 1). (A.9)

Here, Erf(x) = 2√
π

∫ x

0 dt exp(−t2) is the error function and the dimensionless variable u =
πd/�z is related to the typical number of speckle grains in a given length d of the system,
d/�z. Let us now turn to the calculation of σ2

m2
(d ) itself. Using equation (A.7), we can relate

σ2
m2

(d ) to σ2
m1

(d ):

σ2
m2

(d ) = 16σ2
m1

(d ) + 4σ2
m1

(
√

2d ). (A.10)

Substituting equation (A.9) into (A.10), we obtain an analytic expression for σm2(d ). We have
verified numerically that this result is a very good approximation to that obtained using the true
auto-correlation function to within a few per cent, as shown in figure 2. In the asymptotic limit
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Figure B.1. Longitudinal density profiles, each averaged over 10 realizations of
the speckle pattern, observed after expansion times τ = 22, 72, 122 and 172 ms in
a speckle potential of amplitude γ = σV/µTF = 0.3 for: (a) a quasi-1D potential
(�y/RTF 	 3.5) and (b) a true 1D potential (�y/RTF 	 36). In (a) parabolic
‘wings’ are visible around the central, trapped core. These continue to expand as
a function of time.

d � �z, we obtain:

σm2(d) 	
(

2
√

3π

u
(8 +

√
2)

)1/2

	 7.60
1√
u
. (A.11)

In the opposite limit d → 0, we find

σm2(d = 0) =
√

20. (A.12)

The asymptotic function equation (A.11) is a very good approximation of the analytical
solution even for small numbers of peaks d/�z. Indeed the difference between the asymptotic
and analytic solution is less than 1% for systems larger than d/�z 	 6.

Appendix B. Condensate expansion in quasi-1D and true 1D random potentials

In this paper, we have presented a comparison of the expansion of a condensate in a 1D random
potential with a theoretical scenario, obtaining good quantitative agreement. However, we have
found that the 1D requirement for the potential is quite stringent. As described in subsection 2.3,
we are able to vary both the size and anisotropy of the speckle grains. By performing the same
experiments with a quasi-1D potential (�y/RTF 	 3.5, as used in [25]), we observe a behaviour
on the longitudinal density profiles which is qualitatively different from that obtained using the
true 1D potential (�y/RTF 	 36) presented in this paper. The main difference is the appearance
of ‘wings’ in the longitudinal density profiles, which can be clearly seen in figure B.1(a). The
shape of these wings is approximately an inverted parabola. Whereas the central core of the
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profile is trapped by the disorder, the wings continue to expand at a rate of 3.6(1) mm s−1. This
is significantly slower than condensate expansion in the absence of disorder, 6.1(1) mm s−1. To
exclude the possibility of these wings being composed of thermal atoms, produced by heating
of the condensate in the speckle potential, we repeated the experiment with an atom cloud at
600 nK with a condensate fraction of only 15%. In this case, the large thermal fraction leads
to wings with a Gaussian profile, which expand with a velocity of 11(2) mm s−1. From this we
conclude that the additional wings appearing in the BEC during expansion in a quasi-1D random
potential must be related to possibility of condensate atoms passing around some of the speckle
peaks and continuing to expand.

The measurement of the rms size L in quasi-1D potentials reveals the phenomenon of
suppression of transport as L saturates [25]. Yet, since the additional wings contribute to the rms
size L of the condensate, L may continue to increase for some time after the onset of disorder-
induced trapping of the central core and thus may not give a direct access to the time-scale of the
trapping scenario. Therefore, in a quasi-1D potential, it is important to study the time evolution
of the density profiles in order to correctly obtain the predicted timescales for this trapping
phenomenon.
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