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Twofold correlation spreading in a 
strongly correlated lattice Bose gas
Julien Despres, Louis Villa & Laurent Sanchez-Palencia

We study the spreading of correlations in the Bose-Hubbard chain, using the time-dependent matrix-
product state approach. In both the superfluid and the Mott-insulator phases, we find that the time-
dependent correlation functions generally display a universal twofold cone structure characterized 
by two distinct velocities. The latter are related to different microscopic properties of the system and 
provide useful information on the excitation spectrum. The twofold spreading of correlations has 
profound implications on experimental observations that are discussed.

In the last decades, simultaneous progress of the many-body quantum theory and the experimental control of 
quantum matter in condensed matter and atomic, molecular, and optical physics has given dramatic momen-
tum to the understanding of the out-of-equilibrium dynamics of correlated quantum systems1–10. The spread-
ing of quantum correlations governs many fundamental phenomena, including the propagation of information 
and entanglement, thermalization, and the area laws for entanglement entropy. For lattice systems with local 
interactions, the existence of Lieb-Robinson (LR) bounds implies the emergence of a causal light cone beyond 
which the correlations are exponentially suppressed11–13. So far, light-cone-like spreading of correlations has 
been reported in short-range interacting models14–17 as well as long-range models18–27 where weaker LR bounds 
exist13,28. However, many questions remain open. For instance, it is still debated whether a non-linear cone 
emerges in generic long-range systems, for which different results point towards either super-ballistic, ballistic 
or sub-ballistic spreading. It was recently proposed that these apparently conflicting results can be reconciled 
by the coexistence of several signals governed by different scaling laws27. This behavior may be related to the 
non-linearity of the quasiparticle excitation spectrum, and may also appear in systems with short-range interac-
tions. In the later case, it is expected that both signals spread ballistically but with different velocities. However, 
this picture relies on mean-field theory, which ignores potentially important dynamical effects, such as quasipar-
ticle collisions and finite lifetime.

In this work, using an exact many-body approach beyond mean-field theory, we demonstrate the emergence 
of a universal twofold dynamics for the spreading of correlations in a generic short-range, strongly correlated 
quantum model. Specifically, we consider the one-dimensional Bose-Hubbard model and use time-dependent 
tensor network techniques based on matrix product states. Spanning the phase diagram, we generally find a 
twofold structure of the space-time correlation pattern, characterized by two distinct velocities, essentially irre-
spective of the correlation function. Exceptions of this twofold structure are discussed below. In the superfluid 
mean-field regime and in the Mott insulator phase, the two velocities associated to the correlation spreading 
are readily interpreted from the properties of the corresponding excitation spectrum. In the strongly correlated 
superfluid regime, the sound velocity is known but not the full excitation spectrum. There, our results show 
beyond Luttinger liquid behavior and provide useful information about the excitation spectrum beyond the pho-
non branch. The emergence of a universal twofold spreading of correlations has profound implications on exper-
imental observations, which we discuss, including with a view towards extensions to long-range systems.

Model and Approach
The Hamiltonian of the one-dimensional (1D) Bose-Hubbard (BH) model, considered throughout this work, 
reads as
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where âR and ˆ†aR are the bosonic annihilation and creation operators on site R, =ˆ ˆ ˆ†n a aR R R is the occupation num-
ber (filling), J is the hopping amplitude, U > 0 is the repulsive on-site interaction energy, and the lattice spacing is 
fixed to unity ( ∈R ). At equilibrium and zero-temperature, the phase diagram of the 1D BH model is well 
known29,30, and sketched on Fig. 1(a). It comprises a superfluid (SF) and a Mott insulator (MI) phase, determined 
by the competition of the hopping, the interactions, and the average filling n (or, equivalently, the chemical poten-
tial μ). For commensurate filling, ∈ ⁎n  the SF-MI (Mott-U) transition is of the Berezinskii-Kosterlitz-Thouless 
type, at the critical value .u 3 3c  for unit filling ( =n 1) in 1D31–34. For incommensurate filling, the Bose gas is a 
SF for any value of U/J. The commensurate-incommensurate (Mott-δ) transition, of the mean-field type, is then 
driven by doping when n approaches a positive integer value for sufficiently strong interactions.

We study the out-of-equilibrium dynamics of the BH model by applying a sudden global quench14,16,17,35–40, as 
can be realized in ultracold-atom experiments15,41–43. We start from the ground state for some initial value of the 
interaction parameter (U/J)0 and let the system evolve with a different value of U/J. In the following, we consider 
a variety of quenches spanning the phase diagram, see arrows on Fig. 1(a). We study the spreading of the phase 
and density fluctuations, via the connected correlation functions = 〈 〉 − 〈 〉ˆ ˆ ˆ ˆ† †G R t a t a t a a( , ) ( ) ( ) (0) (0)R R1 0 0  and 

= −G R t g R t g R( , ) ( , ) ( , 0)2  with = 〈 〉 − 〈 〉〈 〉ˆ ˆ ˆ ˆg R t n t n t n t n t( , ) ( ) ( ) ( ) ( )R R0 0 . Both observables can be measured in 
experiments using time-of-flight and fluorescence microscopy imaging, respectively15,42–44.

All the results presented below are obtained using density-matrix renormalization group simulations within 
the time-dependent matrix-product state (t-MPS) representation45–47. A careful analysis of the numerical cut-offs 
(high-filling cut-off and MPS bond dimension) has been systematically performed to certify the convergence of 
the results in all the considered cases. This is particularly critical for quenches in the SF phase where the numeri-
cal requirements are most binding (For further details, see Supplemental Material. It contains information about 
the t-MPS calculations, the spreading of the one-body correlations (G1) in the meanfield regime and two-body 
correlations (G2) in the deep MI phase, as well as the mapping onto the Lieb-Liniger model).

Mean-Field Regime
We first consider the mean-field regime in the SF phase, where the numerical results can be compared to analytic 
predictions. This regime is characterized by a small Lieb-Liniger parameter, γ ≡ U Jn/2 1. Figure 2(a) displays 
the t-MPS result for the G2 correlation function versus distance (R) and time (t) for a quench from = .U J( / ) 0 20  
to = .U J/ 0 1 and =n 5, i.e. from γ = .0 020  to γ = .0 01 [see red arrow on Fig. 1(a)]. It clearly shows a spike-like 
structure, characterized by two different velocities. On the one hand, a series of parallel maxima and minima 
move along straight lines corresponding to a constant propagation velocity Vm (the dashed blue lines show fits to 
two of these minima). On the other hand, the various local extrema start at different activation times ⁎t R( ). The 
latter are aligned along a straight line with a different slope (solid green line), corresponding to a constant velocity 
VCE. The latter defines the correlation edge (CE) beyond which the correlations are suppressed. Similar results are 
obtained for all the other quenches in the mean-field regime, as well as for the G1 function (Note that the signal 
for G1 is, however, less sharp than for G2. This may be attributed to the long-range correlations present in the 
initial state, which partially blur the CE (For further details, see Supplemental Material. It contains information 

Figure 1.  Quantum quench in the Bose-Hubbard model. (a) Schematic phase diagram as a function of the 
inverse interaction strength and chemical potential, comprising a MI phase (pink lobes at integer fillings n) and 
a SF phase. The Mott-U transition at unit filling is indicated by the dashed pink line and the Mott-δ transition by 
the vertical line. The arrows indicate the various quenches considered in this work. (b) Generation of 
correlations between two points at a distance R by pairs of counter-propagating quasiparticles emitted at the 
mid-point R/2. The first correlation is generated by the fastest quasiparticles at the activation time =⁎ ⁎t R V/2 g . 
(c) Correlation spreading in the vicinity of the correlation edge (CE). The correlation function forms a periodic 
series of maxima moving at the velocity = ϕ

⁎V V2m , with an envelope moving at the velocity = ⁎V V2CE g .
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about the t-MPS calculations, the spreading of the one-body correlations (G1) in the meanfield regime and 
two-body correlations (G2) in the deep MI phase, as well as the mapping onto the Lieb-Liniger model)).

This twofold structure near the CE is readily interpreted using the quasiparticle picture, which we briefly out-
line here (for details, see ref.27): the G1 and G2 correlation functions are expanded onto the elementary excitations 
of the system. In the mean-field regime of the BH model, the latter are Bogoliubov quasiparticles with quasimo-
menta π π∈ − +k [ , ] and dispersion relation

ε ε +E nU( 2 ) , (2)k k k

where ε = J k4 sin ( /2)k
2  is that of the free-particle tight-binding model. A correlation between two points at a 

distance R is seeded when two correlated, counter-propagating quasiparticles emanating from the center reach 
the two points, see Fig. 1(b). The fastest ones are those with the maximum group velocity, = ∂ ∂−⁎V E kmax( / )

k
kg

1 . 
It yields the activation time =⁎ ⁎t R R V( ) /2 g  and the CE velocity = ⁎V V2CE g , consistently with the expected 
Lieb-Robinson bound11,35. More precisely, the correlation at a distance R and a time t is built from a coherent 
superposition of the contributions of the various quasiparticles. In the vicinity of the CE, only the fastest quasi-
particles, i.e. those with a quasimomentum k close to ⁎k , contribute. It creates a sine-like signal at the driving 
spatial frequency ⁎k , whose extrema move at twice the phase velocity =ϕ

−V k E k( ) /k
1  with = ⁎k k , i.e. = ϕ

⁎V V2m
27. The dispersion around ⁎k  then modulates the sine-like signal by an envelope moving at the CE velocity VCE, see 
Fig. 1(c). This behavior is reminiscent of the propagation of a coherent wave packet in a dispersive medium48–50. 
Indeed, a narrow-band wave packet centered around the driving spatial frequency k0 propagates at the group 
velocity Vg(k0) while the maxima move at the phase velocity ϕV k( )0 . In a dispersive medium, the spectrum is non 
linear hence these two velocities differ in general. In the case we consider here, the value k0 = k* is selected by the 
onset in the vicinity of the correlation cone. To test this picture quantitatively, we have extracted the velocities Vm 
and VCE from the t-MPS results for G2(R, t) by tracking the local extrema and the activation time respectively. The 
results, displayed on Fig. 2(b), show excellent agreement with the theory, i.e. 



⁎V V2CE g  and ϕ

⁎V V2m  within the 
fitting errorbars. This cross-validates the t-MPS results in the most-demanding SF, mean-field regime on the one 
hand and the quasiparticle picture above on the other hand. Note that the t-MPS results are numerically exact and 
include effects beyond the Bogoliubov approximation, such as quasiparticle collisions.

Strongly Correlated Regime at Unit Filling
We now turn to the strongly correlated regime γ ~ 1, where the correlation functions cannot be systematically 
computed. We first scan the after-quench interaction parameter U/J from the SF to the MI, along the Mott-U 
transition at unit filling [ =n 1, see magenta arrows on Fig. 1(a)]. Note that each quench is performed in a unique 
phase: for < .U J u/ 3 3c  (SF regime), we use the initial interaction strength =U J( / ) 10  while for >U J u/ c (MI 
regime), we start from = ∞U J( / )0 . Figure 3 shows typical results for the spreading of the G1 (upper row) and G2 
(lower row) correlations for quenches to the SF regime [ = .U J/ 0 5, Fig. 3(a)], and to the MI regime, both slightly 
beyond the transition [ =U J/ 8, Fig. 3(b)], and deep in the MI regime [ =U J/ 24, Fig. 3(c)]. In all cases, at the 
notable exception of G2 deep in the MI phase [Fig. 3(c2), see discussion below], we find a twofold spike-like struc-
ture. The velocities Vm and VCE, extracted as before, are plotted on Fig. 3(d), showing similar results for G1 and G2. 
This is consistent with the prediction that these velocities are characterized by the spectrum, irrespective of the 
observable27.

Figure 2.  Spreading of correlations in the mean-field regime, see red arrow on Fig. 1(a). (a) t-MPS result of 
G2(R, t) for a quench to U/J = 0.1, together with ballistic fits to the CE (solid, green line) and minima (dashed, 
blue lines). (b) Velocities of the CE (VCE, green diamonds) and minima (Vm, blue disks), found from the fits, 
versus the interaction strength, and comparison to twice the group velocity ⁎V2 g  (solid green line) and twice the 
phase velocity ϕ

⁎V2  (dashed blue line). All the quenches are performed with =n 5 from = .U J( / ) 0 20 , except for 
the points at =Un J/ 1 where U/J = 0.2 and we use a different initial value, (U/J)0 = 0.4 (open points).
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In the SF regime, <U J u/ c, the results compare very well with the predictions ϕ
⁎V2  and ⁎V2 g  as found from the 

Bogoliubov dispersion relation (2) [see, respectively, the dashed blue and solid green lines on Fig. 3(d1 and d2)]. 
Quite surprizing, the agreement is fair up to the critical point where γ . 1 6c , far beyond the validity condition of 
the Bogoliubov theory (γ  1). In fact, when U/J increases from the mean-field regime, the momentum ⁎k  
decreases down to the phonon regime, πk , and the precise k-dependence of the dispersion relation beyond 
this regime becomes irrelevant. Moreover, the physics being dominated by long wavelength excitations, the lattice 
discretization in Eq. (1) may be disregarded and the BH model maps onto the continuous Lieb-Liniger model 
(For further details, see Supplemental Material. It contains information about the t-MPS calculations, the spread-
ing of the one-body correlations (G1) in the meanfield regime and two-body correlations (G2) in the deep MI 
phase, as well as the mapping onto the Lieb-Liniger model). The latter is integrable by Bethe ansatz (BA)51,52. It 
yields the sound velocity γ γ π−V n2 (1 /4 )s , to lowest order in the weak-γ expansion. Up to the critical 
point, the beyond-mean-field correction, γ π/4 , is less than 10%, which explains the good agreement between 
the numerics and the analytic formula. At the critical point, the numerical results for Vm and VCE are consistent 
with the exact BA value .V2 4 6s  (Close to the Mott-U critical point at = .U J/ 3 5, we find . V V 4 7m CE  (5.3) 
for the G2 (G1) correlation function, which agrees with the value of 2Vs within 2% (13%)).

The spreading velocities Vm and VCE are continuous at the Mott-U transition, and do not show any critical 
behavior. Right beyond the critical point, they are still nearly equal and we can hardly distinguish two features 
from the numerics up to U J/ 6. Deeper in the MI phase, however, we recover two distinct features and two 
different velocities. Contrary to the SF regime, here we find >V Vm CE. These results are readily interpreted from 

Figure 3.  Spreading of the G1 (upper row) and G2 (lower row) correlations in both the SF and MI phases for 
=n 1, scanning the after-quench interaction U/J along the Mott-U transition, see pink dashed line and magenta 

arrows on Fig. 1(a): (a) SF regime with U/J = 0.5; (b) MI regime near the critical point with U/J = 8; (c) deep MI 
regime with U/J = 24. The solid green and dashed blue lines correspond to fits to the CE and extrema, 
respectively. Note that on panel (b2), the fits to the maxima are shown as dashed white lines for clarity. (d) 
Spreading velocities VCE (green diamonds) and Vm (blue disks), as extracted from fits to the t-MPS data, and 
comparison to the characteristic velocities ⁎V2 g  (solid green lines) and ϕ

⁎V2  (dashed blue lines), as found from 
the dispersion relation in the SF [Eq. (2)] and MI [Eq. (3)] regimes. All the quenches are performed from the 
initial values (U/J)0 = 1 for the SF regime and (U/J)0 = ∞ for the MI regime.
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the quasiparticle picture. Deep enough in the MI phase, U J/ 6, the low-energy excitations are doublon-holon 
pairs, characterized by the dispersion relation14,53

− + + + .E U J n k J n n k2 [ 2 (2 1)cos( )] 16 ( 1)sin ( ) (3)k
2 2 2

The comparison between the spreading velocities Vm and VCE fitted from the t-MPS results and the character-
istic values ϕ

⁎V2  and ⁎V2 g , found from Eq. (3), yields a very good agreement within less than 5% for G1 and 9% for 
G2 [see Fig. 3(d1 and d2) respectively]. The quantitative agreement between the t-MPS results and the theoretical 
predictions for the G1 correlations persists up to arbitrary values of U/J. This validates the quasiparticle analysis 
also in the strong-coupling regime.

Yet, the G2 correlations behave differently. For intermediate interactions,  U J6 / 9, we find a twofold 
structure consistent with that found for G1. The signal for G2 blurs when entering deeper in the MI regime, and we 
are not able to identify two distinct features for U J/ 9. To understand this behavior, one may resort on a 
strong-coupling ( U J) expansion of the correlation functions. In contrast to G1, the G2 function cannot be cast 
into the generic form analyzed in ref.27. Instead, combining Jordan-Wigner fermionization and Fermi-Bogoliubov 
theory14 (For further details, see Supplemental Material. It contains information about the t-MPS calculations, the 
spreading of the one-body correlations (G1) in the meanfield regime and two-body correlations (G2) in the deep 
MI phase, as well as the mapping onto the Lieb-Liniger model), one finds − | |G R t g R t( , ) 2 ( , )2 2

2 with

∫ π
∝ + .
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For +U n J2(2 1) , the doublon-holon pair dispersion relation (3) reduces to − +E U n J k2 2(2 1) cos( )k . 
Owing to the square modulus in the formula −| |G R t g R t( , ) ( , )2 2

2, we immediately find that the Mott gap U 
becomes irrelevant and we are left with the effective dispersion relation − +��E n J k2 2(2 1) cos( )k . On the one 
hand, the group velocity is not affected and we find the maximum value +

⁎V n J2 2(2 1) /g  at π

⁎k /2. The 
value =⁎V J2 6 /g  found for =n 1 is in excellent agreement with the value of VCE fitted from the G2 function deep 
in the MI phase, see Fig. 3(d2). On the other hand, the corresponding effective phase velocity vanishes, ∼

ϕ 
⁎

V2 0. 
This is consistent with the disappearance of the spike-like structure observed in the t-MPS calculations for G2 
deep in the MI phase (More precisely, we find that in the vicinity of the CE both the real and imaginary parts of g2 
display a series of static local maxima, consistently with ∼

ϕ 
⁎

V2 0. These local maxima are shifted by half a period 
and cancel each other when combined for constructing G2 (For further details, see Supplemental Material. It 
contains information about the t-MPS calculations, the spreading of the one-body correlations (G1) in the mean-
field regime and two-body correlations (G2) in the deep MI phase, as well as the mapping onto the Lieb-Liniger 
model)). In addition, the first-order correction to the leading strong-coupling term, relevant for moderate values 
of U/J, sustains a double structure with ≠ ϕ

⁎ ⁎V Vg . The latter is consistent with the observation of two distinct 
spreading velocities, ≠V VCE m, closer to the Mott-U transition (For further details, see Supplemental Material. It 
contains information about the t-MPS calculations, the spreading of the one-body correlations (G1) in the mean-
field regime and two-body correlations (G2) in the deep MI phase, as well as the mapping onto the Lieb-Liniger 
model).

Strongly Interacting Superfluid Regime
We finally consider the strongly interacting regime of the SF phase, corresponding to γ  1 and ∉n . In this 
regime, the Tomonaga-Luttinger liquid (TLL) theory accurately describes the low-energy physics of the BH 
model at equilibrium, including the Mott-δ transition, see for instance refs30,54,55. The TLL theory considers an 
effective harmonic fluid, characterized by a single characteristic velocity, namely the sound velocity Vs.

In contrast, our t-MPS simulations in the strongly interacting SF regime clearly show beyond TLL physics. We 
have computed the spreading of correlations for a large value of the after-quench interaction parameter, U/J = 50, 
and varying the filling n up to the Mott-δ transition at =n 1 [see pink arrow on Fig. 1(a)]. The spreading veloci-
ties VCE (green diamonds) and Vm (blue disks), found from fits to the two-body correlation function G2(R, t), are 
shown on Fig. 4. They show clear deviations from twice the sound velocity of the BH model in the strongly inter-
acting limit, π π−V J n J U n2 (4 / )sin( )[1 (8 / )cos( )]s   (orange dotted line and squares) (The sound velocity Vs 
has been computed by mapping the BH model to an equivalent spinless Fermi model56,57 (dotted orange line) and, 
independently, from the energy of the first excited state in exact MPS calculations (see orange squares), showing 
excellent agreement). Moreover, the emergence of two different characteristic velocities, ≠V VCE m, indicates that 
the TLL approach is insufficient to describe the spreading of correlations, even upon renormalization of the effec-
tive TLL parameters. Note that the two velocities become nearly equal in the vicinity of the Mott-δ transition and 
reach the value  V V J6 /CE m . This is consistent with the disappearance of the twofold structure and the value 
found for VCE deep in the MI phase at =n 1, see Fig. 3(d).

Conclusions
In summary, working within the case study of the Bose-Hubbard chain and using a numerically-exact many-body 
approach, we have presented evidence of a universal twofold dynamics for the spreading of correlations. The latter 
is characterized by two distinct velocities, corresponding to the spreading of local maxima on the one hand and 
to the CE on the other hand. This has been found in all the phases of the model. Exceptions appear only in a few 
cases, for instance (i) for specific observables in specific regimes, or (ii) when the two velocities happen to be 
equal, as found at the Mott critical points for instance.
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Our predictions are directly relevant to quench experiments on ultracold Bose gases in optical lattices, where 
the dynamics of one-body and two-body correlation functions can be observed on space and time scales compa-
rable to our simulations5–10,15,44. Importantly, while in most experiments and numerics the CE is infered from the 
behavior of the correlation maxima, our results show that the two must be distinguished. This is expected to be a 
general feature of short-range systems and should be relevant to models other than the sole BH model.

Moreover, our study may be extended to long-range systems, such as spin models as realized in trapped-ion 
experiments18,19. While the notions of a maximum group velocity and phase velocity may break down in such sys-
tems, the mean-field theory also predicts a twofold dynamics27. In this case, it is characterized by the coexistence 
of super-ballistic and sub-ballistic signals. The results of the present paper suggest that the twofold structure of the 
correlation function may also survive in strongly correlated regimes for long-range systems. The demonstration 
of this effect would shed light on the still debated scaling of the light cone in long-range lattice models.
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In this supplemental material, we give more details about several points discussed in the main paper. In Sec. S1, we discuss the
time-dependent matrix-product state (t-MPS) simulations and the choice of the numerical parameters to ensure the convergence
of the results in all the regimes of the Bose-Hubbard model considered in the main paper. In Sec. S2, we present t-MPS results
for the spreading of the one-body correlation function G1 in the mean-field superfluid (SF) regime. Section S3 briefly outlines
the mapping from the 1D Bose-Hubbard model to the Lieb-Liniger model and gives the correspondance of the parameters.
Finally, in Sec. S4 we discuss the strong-coupling expansion of the correlation function G2 for unit filling, n = 1, and discuss
the suppression of its twofold structure deep in the Mott insulator (MI) phase.

S1. TIME-DEPENDENT MATRIX-PRODUCT STATE SIMULATIONS

The numerical results reported in the main paper are all obtained using the time-dependent density-matrix renormalization
group approach (DMRG) with the matrix-product state representation (t-MPS approach) [1–3]. It yields numerically-exact
results on both equilibrium and out-of-equilibrium properties of low dimensional lattice models. The approach resorts on the
Schmidt expansion of the many-body wave function and permits to reduce the Hilbert space to a finite, relevant subset, provided
the entanglement entropy remains sufficiently small. Owing to the area law [4, 5], it is optimal for 1D lattice models with a finite
local Hilbert space in gapped phases, the entanglement of which remains finite in the thermodynamic limit. It also applies to
gapless phases, although with more stringent numerical parameters (high-filling cut-off and the bond dimension). To validate the
accuracy of our results in all phases of the BH model, a systematic study of the effect of these parameters has been performed.

Truncation of the local Hilbert space.— For the BH model considered in this work, the local Hilbert space is spanned by
the Fock basis of number states, |nR〉, where nR ∈ N, which is infinite. However, the probability distribution of the lattice-
site occupation nR decays faster than exponentially in both the SF and MI phases. Accurate results can thus be obtained by
cutting off the local Hilbert space to some value nmax. It is important to note that, in some cases, the value of nmax needs to be
significantly much larger than the average filling n and its fluctuations. This observation is consistent with analyses of truncated
Bose-Hubbard models using quantum Monte Carlo simulations [6].

The SF mean-field regime, which corresponds to a high filling factor n̄ and the gapless dispersion relation, has the most
binding criteria. We found that a good estimator for nmax is given by the condition 1 −

∑nmax
n=0 P (n) . 10−2, where P (n) is

the probability that n bosons occupy a given lattice site. In the SF mean-field regime, the probability distribution is nearly
Poissonian, P (n) ' n̄ne−n̄/n!. For instance, for the filling factor n = 5 used for the data of Fig. 2, it yields nmax & 12. For the
strongly correlated SF regime at n = 1 considered for Fig. 3(a), the density fluctuations are significantly suppressed and using
the same condition as previously leads to nmax = 5. For the MI phase at n̄ = 1 and moderate values of U/J (15 ≥ U/J ≥ uc)
considered for Fig. 3(b), we kept nmax = 5. Deep in the MI phase (U/J ≥ 15), truncating the local Hilbert space to nmax = 2, as
used for Fig. 3(c) turns out to be sufficient. Finally, the strongly interacting SF regime is the easiest case from a numerical point
of view. Owing to the low filling factor n̄ < 1 and the large value of the interaction parameter U/J , the above condition also
yields nmax = 2, as used for Fig. 4. In all cases, we have checked that the numerics are converged for these values of nmax.

Bond dimension.— Within the MPS approach, the many-body state for a M -site lattice is represented in the tensor network
form

|Ψ〉 =
∑

n1,n2,...nM

An1 [1]An2 [2] . . . AnM [M ] |n1, n2, . . . , nM 〉 , (S1)

where nj spans a local Hilbert space basis. For the BH model, it corresponds to a Fock basis truncated at nmax. For each value
of nj , the quantity Anj [j] is a χj−1 × χj matrix, where χj is the rank associated to the Schmidt matrix when applying the j-th
singular value decomposition [2]. The bond dimension χ is defined as the maximum rank, χ = maxj (χj) , j ∈ [0 . . .M ].
Note that for open-boundary conditions, the quantities An1 [1] and AnM [M ] are actually a row vector and a column vector,
respectively, i.e. χ0 = χM = 1.

In the numerics, the maximum value of χ is chosen sufficiently large so that the truncation does not affect the results. In
practice, the calculations are run for several values of χ up to convergence of the correlation function G1(R, t) or G2(R, t). The
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required value of χ significantly depends on the regime and on the observable. In the following, we give the values used for the
final results presented in the paper.

For the SF mean-field regime [Figs. 2(a) and S1], we used the values χ = 300 and χ = 450 for the G2 and G1 functions,
respectively. The bond dimension used for G1 is higher than the one for G2 due to the long-range phase correlations already
present at equilibrium. For the SF strongly correlated regime at n = 1 [Fig. 3(a)], we used χ = 300 for both correlation
functions. A similar value of χ was considered for moderate values of U/J in the MI phase at n̄ = 1 [Fig. 3(b)]. Deep in the
MI phase [Fig. 3(b)], the bond dimension can be significantly decreased and we consider χ = 100. Finally, in the SF strongly
interacting regime at U/J = 50, we found that the value χ = 100 is enough.

S2. ONE-BODY CORRELATION FUNCTION G1(R, t) IN THE MEAN-FIELD REGIME

In the analysis of the SF mean-field regime reported in the main paper, we focused on the two-body correlation function
G2(R, t). We have also studied the one-body correlation G1(R, t) using the same t-MPS simulations. We found that the
dynamics of the G1 function shows a spike-like structure, similar to that found for the G2 function. The values of the correlation
edge (VCE) and maxima (Vm) velocities agree with those found for the G2 function within less than 10%. Figure S1 shows an
example, for the quench from (Un/J)0 = 1 to Un/J = 0.5, and n̄ = 5. The fits to the correlation edge and to the maxima yield
the velocities VCE = (4.4 ± 0.3) J/~ and Vm = (3.3 ± 0.2) J/~, in excellent agreement with the corresponding values found
from the dynamics of the G2 function, see Fig. 2(b).

The agreement between the spreading velocities for different correlation functions was found in all regimes, see for instance
Figs. 3(d1) and (d2). It is consistent with the prediction that these velocities are characteristic of the excitation spectrum and
not on the details of the correlation function [7]. Note, however, that the full space-time dependence of the signal depends on
the correlation function. In general, we found that the signal for G1 is less sharp than for G2. This may be attributed to the
long-range phase correlations present in the initial state, which blur the correlation function [8].

Figure S1: Spreading of the one-body correlation function G1(R, t) for a global quench in the SF mean-field regime from (U/J)0 = 0.2 to
U/J = 0.1 and n̄ = 5. The solid-green and dashed-blue lines are fits to the CE and maxima, respectively.

S3. MAPPING ON THE 1D LIEB-LINIGER MODEL

In the long-wave length regime, the lattice discretization of the Bose-Hubbard (BH) may be disregarded. The BH model then
maps onto the continuous-space Lieb-Liniger (LL) model,

Ĥ =
~2

2m

− N∑
i=1

∂2

∂x2
i

+ c
∑
i6=j

δ(xi − xj)

 . (S2)

It describes a one-dimensional gas of N bosons of mass m with contact interactions, characterized by the interaction strength
c > 0. The correspondance between the parameters of the BH and LL models is found by discretizing the LL model, Eq. (S2),
on the length scale defined by the lattice spacing a. It yields J = ~2/2ma2 and U = ~2c/ma. The density of the LL model is
ρ ≡ N/L = n/a, where n is the number of bosons per lattice site (filling) and L is the system size.
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The LL Hamiltonian is exactly solvable by Bethe ansatz [9, 10]. All the thermodynamic quantities at zero temperature can be
written as universal functions of the Lieb-Liniger parameter γ = c/ρ and the dimensionless quantity e(γ) = E0/Nn

2, where
E0 is the ground state energy. For instance, the macroscopic sound velocity [10] reads as

vs ≡

√
L

mρ

∂2E0

∂L2

∣∣∣∣
N,S

=
~ρ
m

√
3e(γ)− 2γe′(γ) +

1

2
γ2e′′(γ). (S3)

Using the small γ expansion, e(γ) = γ
[
1− (4/3π)

√
γ
]
, one then finds

vs =
~ρ
m

√
γ
(
1−√γ/4π

)
, (S4)

valid in the weakly-interacting regime, γ � 1. Finally, using the correspondance between the parameters of the BH and LL
models, one finds

Vs ≡ vs/a =
2Jn

~
√
γ
(
1−√γ/4π

)
(S5)

and γ = U/2Jn.

S4. TWO-BODY CORRELATION FUNCTION G2(R, t) IN THE MOTT-INSULATING PHASE

In order to explain the suppression of the twofold structure for the two-body correlations deep in the Mott insulator phase
(MI; U � J and n = 1), we compute the function G2(R, t), working along the lines of Ref. [11]. Considering the manifold
of doublon-holon pairs and mapping the resulting Hamiltonian into a fermionic one, the two-body correlation function may be
written as

G2(R, t) ' −2
(
|g2(R, t)|2 + |ḡ2(R, t)|2

)
, (S6)

with

g2(R, t) ∼ J

U

R

t

ˆ +π

−π

dk
2π

{
ei(2Ekt+kR) + ei(2Ekt−kR)

}
, (S7)

ḡ2(R, t) ∼
(
J

U

)2 ˆ +π

−π

dk
2π

sin2(k)
{

ei(2Ekt−kR) + e−i(2Ekt+kR)
}

(S8)

and the excitation spectrum is 2Ek '
√

[U − 2J(2n̄+1) cos(k)]
2

+ 16J2n̄(n̄+1) sin2(k), see Eq. (3).

Quench deep into the Mott insulator phase.— For a quench, very deep in the MI phase, U � J , the second right-hand-side
term in Eq. (S6) is much smaller than the first one and the former can be neglected. Using Eq. (S7), it yields explicitly for
G2(R, t) ' −2|g2(R, t)|2,

G2(R, t) ∼ −2

(
J

U

)2(
R

t

)2 ∣∣∣∣ˆ π

−π

dk
2π

{
ei(2Ekt+kR) + ei(2Ekt−kR)

}∣∣∣∣2 (S9)

Moreover, the excitation spectrum may be expanded in powers of J/U . Up to first-order, it yields 2Ek ' U−2J(2n̄+1) cos(k).
The gap term eiUt can then be factorized in the two terms under the integral in Eq. (S9) and disappears due to the square modulus.
Introducing the effective excitation spectrum 2Ẽk = −2J(2n̄+ 1) cos(k), we then find G2 ' −2|g2(R, t)|2 with

g2(R, t) ∼ J

U

R

t

ˆ π

−π

dk
2π

{
ei(2Ẽkt+kR) + ei(2Ẽkt−kR)

}
. (S10)

The integral may be evaluated using the stationary phase approximation. In the infinite time and distance limit along the line
R/t = cst, the integral in Eq. (S10) is dominated by the momentum contributions with a stationary phase (sp), i.e. ∂k(2Ẽkt ±
kR) = 0 or, equivalently, 2Ṽg(ksp) = ±R/t where Ṽg = ∂kẼk is the group velocity of the effective excitation spectrum. Since
the latter is upper bounded by the value Ṽ ∗g = max(Ṽg) = J(2n̄+ 1), it has a solution only for R/t < 2Ṽ ∗g . We then find

g2(R, t) ∼ J

U

Ṽg(ksp)(
|∂2
kẼksp |t

)1/2

[
cos
(

2Ẽkspt− kspR+ σ
π

4

)
+ i sin

(
2Ẽkspt− kspR+ σ

π

4

)]
. (S11)



4

with σ = sgn
(
∂2
kẼksp

)
. For both the real and imaginary parts of g2(R, t), the correlations are activated ballistically at the time

t = R/2Ṽ ∗g . It defines a linear correlation edge (CE) with velocity VCE = 2Ṽ ∗g . In addition, Eq. (S11) also yields a series of
local maxima, defined by the equation 2Ẽkspt− kspR = cst. In the vicinity of the CE cone, these maxima (m) propagate at the
velocity Vm = 2Ṽ ∗ϕ = 2Ẽk∗/k

∗, i.e. twice the phase velocity at the maximum of the group velocity, k∗.
Hence, the real and imaginary parts of g2(R, t) both display a twofold structure with a CE velocity 2Ṽ ∗g = 2J(2n̄+ 1) and a

velocity of the maxima 2Ṽ ∗ϕ = 0, as shown on Figs. S2(a) and (b). In contrast, G2(R, t), does not display the twofold structure.
This is because it is the sum of the squares of the two latter contributions [see Eq. (S11)], which are shifted by half a period and
cancel each other. It thus gives a single cone structure, characterized by the sole CE velocity 2Ṽ ∗g , as shown on Fig. S2(c).

Figure S2: Analysis of the space-time correlation pattern of G2(R, t) via g2(R, t) [see Eq. (S10)] at n̄ = 1 for a global quench confined deep
into the Mott-insulating phase starting from a pure Mott state (U/J)0 →∞. Analytical expression, owing to prefactors, of (a) −<2 [g2(R, t)]
(b) −=2 [g2(R, t)] (c) sum of the two contributions shown at Fig. (a) and (b). The solid green line corresponds to the theoretical CE velocity
characterized by 2Ṽ ∗

g = 2J(2n̄ + 1). On Fig. (c), the first extremum propagates with the same velocity as the one associated to the CE.

Quench into the Mott insulator phase for moderate U/J .— For moderate values of U/J , still in the MI phase, the second
term in the right-hand-side of Eq. (S6), |ḡ2(R, t)|2, becomes relevant. Using again the stationary-phase approximation for
ḡ2(R, t), we find

ḡ2(R, t) ∼
(
J

U

)2
sin2(ksp)(
|∂2
kEksp |t

)1/2 cos
(

2Ekspt− kspR+ σ′
π

4

)
(S12)

with σ′ = sgn
(
∂2
kEksp

)
and Ek the excitation spectrum given at Eq. (3). Using the same argument as above, we find that

ḡ2(R, t) shows a twofold structure characterized by, now, the CE velocity 2V ∗g = 2max (∂kEk) but the velocity of the maxima
2V ∗ϕ = 2Ek∗/k

∗ 6= 0. Since there is a single contribution here, the quantity |ḡ2(R, t)|2 displays a twofold structure with the
same characteristic velocities. More precisely, both the length and time scales of the oscillations are divided by two but the
velocities are not affected.

For a quench into the MI phase at a moderate value of U/J , both |g2(R, t)|2 and |ḡ2(R, t)|2 contribute to the two-body
correlation function G2(R, t). While the |g2(R, t)|2 contribution is characterized by the sole CE velocity 2V ∗g , the |ḡ2(R, t)|2
contribution provides the double structure observed on G2 for 6 < U/J < 10 in the t-MPS calculations.
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