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Direct measurement of Tan’s contact in a
one-dimensional Lieb-Liniger gas

Qi Huang1'2, Hepeng Yao'3*, Xuzong Chen'*, Laurent Sanchez-Palencia**

The Tan contact is a pivotal quantity for characterizing many-body quantum systems, bridging microscopic cor-
relations to macroscopic thermodynamic behavior. It is defined as the weight of universal 1/k* momentum tails,

but, so far, its direct measurement has been hindered in Bose gases due to interactions strongly altering time-of-
flightimaging. Here, we report the first direct measurement of the Tan contact in a strongly correlated Lieb-Liniger
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gas. Leveraging the one-dimensional geometry of our system, we implement a two-stage expansion scheme,
yielding interaction-immune imaging. Our results show good agreement with theoretical predictions and are con-
sistent with a predicted universal scaling law. Our work paves the way for further characterization of the Lieb-
Liniger gas across broad interaction regimes and holds promise for extension to other correlated quantum gases

in confined geometries.

INTRODUCTION

Interactions play a pivotal role in determining the physical behavior
of many-body systems and drive quantum phase transitions (1-3).
The simplest model, which considers pairwise contact interactions,
is sufficient to account for the main features of most many-body
systems in condensed matter and strictly applies to most ultracold
atomic gases, where the interaction strength can also be tuned via
magnetic Feshbach resonances (4-6). Such contact interaction im-
plies a zero-distance singularity of the many-body wave function,
which manifests in momentum space as a characteristic momentum
distribution with large-momentum tails scaling as n(k) ~ C / k* (7-
9). This universal behavior applies irrespective of the nature of par-
ticles, system dimensionality, temperature, and interaction strength.
The constant C, known as the Tan contact, may be interpreted as a
thermodynamic conjugate of the interaction strength (9, 10) and is
related to a number of quantities, including thermodynamic poten-
tials, pressure, entropy, as well as interaction energy, and two-body
correlations, within the so-called Tan relations (11, 12). In one di-
mension (1D), recent theoretical work has shown that the Tan con-
tact provides fruitful information about the specific effects of strong
correlations, including the celebrated Tonks-Girardeau (TG) fermi-
onization of strongly interacting Bose gases (13-23).

For most ultracold atomic gases, pairwise contact interaction is
guaranteed by dilution and s-wave scattering at low energy (4, 5),
with noticeable exceptions for dipolar and Rydberg-atom gases. In
recent years, several measurements of the Tan contact have been re-
ported for interacting Fermi and Bose gases (10, 24-29). Strongly
interacting Fermi gases have allowed measuring the contact by vari-
ous techniques (24, 25, 28, 29) and verifying universal Tan’s relations
(24). The Tan contact has also been measured for weakly interacting
Bose gases in 2D and 3D, using radio frequency spectroscopy (26)
and Ramsey interferometry (10). In contrast, exploration of the Tan

"Institute of Quantum Electronics, School of Electronics, Peking University, No. 5
Yiheyuan Road, Haidian District, Beijing 100871, China. %International Center for
Quantum Materials, School of Physics, Peking University, No. 5 Yiheyuan Road, Haidian
District, Beijing 100871, China. 3DQMP, University of Geneva, 24 Quai Ernest-Ansermet,
Geneva CH-1211, Switzerland. 4CPHT, CNRS, Ecole Polytechnique, IP Paris, 91120
Palaiseau, France.

*Corresponding author. Email: hepeng.yao@pku.edu.cn (H.Y.); xuzongchen@pku.
edu.cn (X.C.); laurent.sanchez-palencia@polytechnique.edu (L.S-P)

Huang etal., Sci. Adv. 11, eadv3727 (2025) 3 October 2025

contact for strongly interacting Bose gases, in particular in 1D, is
still missing. So far, a major impediment to direct observation of
universal 1/k* momentum tails and direct measurement of the con-
tact is that interactions during standard time of flight (TOF) strong-
ly affect the momentum distribution (30). Moreover, impurities, as
created by spin-flip processes in magnetic traps, have been shown to
alter the expansion dynamics and produce dynamical 1/k* tails with
a strongly modified contact (31, 32). Last, high temperatures may
induce hole anomalies with 1/k? contributions, which screen the 1/k*
tails (33).

In this work, we report the first observation of universal 1/k*
tails in the momentum distribution of a strongly interacting 1D Bose
(Lieb-Liniger) gas and direct measurement of the Tan contact from
their weight, overcoming these issues. Using a purely optical confine-
ment and leveraging the 1D geometry, we realize a contact-preserving
TOF measurement of the momentum distribution via a two-stage
expansion scheme. The experimental data for the momentum distri-
butions and the measured contacts show good agreement with quan-
tum Monte Carlo (QMC) calculations for various values of temperature
and particle number. Our results show clear beyond mean-field
many-body effects and provide the first verification of the predicted
universal two-parameter scaling of the contact for trapped, finite-
temperature, Lieb-Liniger gases (21).

RESULTS

Emulating the trapped Lieb-Liniger model

The extended Lieb-Liniger model we consider is governed by the
Hamiltonian

V(xi) +8ip Zﬁ(xi—xj) (1)
i<j
where 7 is the reduced Planck constant, m is the atomic mass, x; is
the position of particle i, and V(x) = mw2x* /2 is an external har-
monic potential with frequency w,. The second sum accounts for
point-like pairwise interactions, and the coupling constant may be re-
lated to the 1D scattering length a,, via the formula g, , = —2A* / ma,,
(34, 35). In ultracold atom systems, it is realized by strongly confin-
inga 3D Bose gas to zero-point transverse oscillations using a strong
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transverse harmonic trap of frequency . The 1D scattering length
a,p is then related to the 3D scattering length g, and the transverse

oscillation length ¢ | = v/ /mw,viaay, = =4, (4 /azp — C,) with
Cyo= 181/2)|/ \/_ ~ 1.0326 and { being the Riemann zeta func-
tion (5, 34). For an homogeneous gas with 1D density n,p, the
interaction regime is characterized by the Lieb-Liniger parameter
Y = mg,, / h*n,p, (36, 37). For y < 1 (high density), the system is
weakly interacting and may be approximately described using mean-
field theory. For stronger interactions, y > 1 (low density), the Bose
gas crosses over toward the TG regime, where the bosonic many-
body wave function can be mapped onto that of free fermions. This
effect is known as TG fermionization (38).

In our experiment, we start with a 3D Bose-Einstein condensate
(BEC) of ¥Rb atoms confined in an optical dipole trap, with mini-
mum temperature less than 20 nK. The atom number of the nearly
pure BEC varies from 3 x 10* to 1.5 x 10, depending on the chosen
experimental parameters. We then load the BEC into a strong 2D
optical lattice formed by an orthogonal pair of retroreflected laser
beams with wavelength 1064 nm in the y and z directions (Fig. 1A).
The loading process is realized by ramping up exponentially the in-
tensity of the optical lattice from 0 to Vj = 70 E, in a time #; = 260 ms
(Fig. 1B). Here, E, = A*k? / 2m is the recoil energy with ki, the la-
ser wave vector. The 2D optical lattice generates an array of inde-
pendent, parallel 1D tubes orthogonal to the laser beams (see insets
of Fig. 1A). For such a large laser intensity, tunnel coupling between
the tubes is negligible, as evidenced by the absence of observable in-
terference in 3D TOF imaging. We then hold the system for a further
t, =20 ms and let it equilibrate. For a 2D lattice amplitude of V=70
E,, the transverse confinement in each tube is nearly harmonic, with
trapping frequency o, /2n = 33.9 kHz. Afterloading in the 1D tubes,
the maximal temperatureis T ~ 38 nK (kT /2nh ~ 0.79 kHz) and
the maximum chemical potential is p/2nA ~ 1.7 kHz, both esti-
mated by comparison to QMC calculations, see Supplementary
Materials, section 3. It very well satisfies the quasi-1D condition,
kgT,p < ho |, with kg the Boltzmann constant, for all results pre-
sented here below. Moreover, on top of the strong transverse confine-
ment, the Gaussian-shaped lattice laser beams create an axial harmonic
confinement along the tubes with frequency o, /2rn =~ 84 Hz. For
¥Rb atoms (a5, ~ 5.3 nm), it yields to a;p, & — 5.8 X 1077 mand y in
the range from 1 to 1.4. Except whenever mentioned, we use these
parameters in the following.

Two-stage expansion scheme

To realize a TOF insensitive to interactions in the axial direction x,
we take advantage of the quasi-1D structure of the tubes. Switching
off the confinement laser beams instantaneously would induce
very fast expansion in the transverse (y and z) directions, driven by
the transverse-confinement kinetic energy in a characteristic time
t, ~1/®, ~5 ps,and a much slower expansion in the axial direc-
tion (x), with a characteristic timef, ~ 1 /@, ~ 2 ms. The transverse
expansion by a factor b(t) > 1is associated with a sharp reduction of
the effective 1D coupling constant gleg = gip / b(t)?, so that the effect
of interactions along x becomes negligible during the axial expan-
sion stage. In practice, we use a controlled exponential ramp to switch
off the confinement progressively in a time At and then let the gas
expand for a longer time t;qp (see Fig. 1B). Setting the ramping time
such thatf;, < At < t, ensures that the transverse expansion is slowed
down, while the switch-off remains nearly in-stantaneous as regards
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Fig. 1. Sketch of the experimental setup and sequence. (A) An array of one-
dimensional tubes are generated by a strong 2D lattice potential realized by the
standing wave from two retroreflected laser beams along the y and z axes (red). The
tubes are then formed along the x direction (insets), and imaging is performed
along the z direction. (B) The 2D lattice is progressively ramped up to from 0 to Vg
over a time t; = 260 ms, and it is then held for a further t, = 20 ms. TOF expansion
is induced by ramping down the lattice beams to zero in At = 50 ps and let to ex-
pand freely for another tror = 30 ms.

the axial expansion. In the experiment, we use At = 50 ps, close
to the geometric average of the transverse and axial characteristic
times t, and f,.

It remains to make sure that the transverse dilution is sufficient
when the axial expansion starts, so that the latter is not substantially
affected by interactions. Owing to the strong initial transverse con-
finement, the transverse expansion is that of a weakly interacting,
2D Bose gas, and may be treated in the mean-field approximation
[see details and a complete derivation in Supplementary Materials,
section 1]. For harmonic confinement, this expansion is strictly self-
similar in 2D with a time-dependent expansion factor b(t), solution
of the second-order differential equation b+ o (Hb =} (0)/ b’
(39, 40), where @, (¢) is the time-dependent transverse harmonic
trap frequency during [0 <t < At and o, (t) > 0] and after
[At <t < At +trop and @, (t) = 0] the ramp. The transverse ex-
pansion does not affect the 1D density for it results from integra-
tion over the transverse directions, n,(x) = [ dydz njy (x,y, z). In
contrast, after an expansion duration f, with 0 < t < At + tgp, the
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effective 1D coupling constant has decreased by a factor of 1/ b(t)%,
Zin(t) = &ip / b(t). For b(t) sufficiently large, the axial expansion
stage isnow that of a 1D gas in the weakly interacting regime. The mean-
field interaction term is g, (#)n, and affects the expansion up to
a cutoff momentum k. such that g,,n,5, /b*(1/100, ) < #°k? / 2m,
where we set a conservative starting time of the axial expansion
att =1/100, < 1/w,. The universal 1 /k* tails are expected for
k2 1/]a;p| (11, 19). Using the expression g, = —2A* / ma,, and
replacing k. by 1/ | a,p |, we obtain the criterion

4lay |y S b(1/100,)° 2)
such that the 1 / k* tails are not substantially affected by the residual
interactions. Solving the equation for b(f) for the exponential ramp
of the transverse confinement @, (¢) used in the experiment, we checked
that the condition (Eq. 2) is satisfied for all results presented hereaf-
ter. Specifically, we find 5.2 S 4| a;p | n,p < 8and h(l/lOmx) ~17.8
in our experiments, which sufliciently fulfills the condition, see Sup-
plementary Materials, section 1.

Moreover, our system benefits from using all-optical evaporative
cooling. It helps us avoid the influence of impurities created by a
magnetic trap during evaporative cooling, which can substantially
affect the amplitude of the 1 / k* tails (32). The estimated maximum
temperature, T ~ 38 nK, is also below the threshold temperature
T, = h*n? [ mky ~ 65 nK, below which hole anomalies may be ex-
pected (33). Last, our experimental setup allows us to perform a
TOF of top = 30 ms. For the *Rb atoms used in the experiment and

the initial length of the tubes, L <20 pm, it satisfies the far-field
condition tyop 3> mL? / 27 so that the measured momentum distri-
butions are unaffected by the initial spatial distribution of the atoms.

Measurement of the contact

Figure 2 shows three typical 1D momentum distributions, mea-
sured as discussed above, for various weighted average particle
numbers N and temperatures T (indicated on top of the figure). The
upper row shows the momentum distribution n(k) in log-log scale,
while the lower row shows n(k) X k* in semilog scale for the same
data. In the experiment, the total atom number is found by integrat-
ing the full measured momentum distribution, and N’ determined
as the weighted average over the tubes represents the relevant typical
atom number (41-45), see Supplementary Materials, section 2.1. We
have checked that the momentum distributions computed in QMC
calculations either by averaging the contributions of all tubes with a
distribution of atom numbers or using a single tube with N atoms
yield very similar results in the parameter range considered in this
work, see Supplementary Materials, section 2.2. To estimate the tem-
perature in the experiment, we run several QMC calculations for a
tube with the same weighted average atom number N and trapping
frequency m, as in the experiment, and various temperatures. We
then compare the momentum distribution found in the experiment
to the ones found by the QMC calculations and identify the QMC
result that best fits the experimental data in the low-k sector (typi-
callyk £1/|a,p|) and ignoring the tails. The temperature of this
QMC calculation is the estimated temperature in the experiment,

N=57, T=26nK
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Fig. 2. Momentum distributions for the trapped Lieb-Liniger gas. The top panels in (A), (B), and (C) show momentum distributions n(k) in log-log scale for various
weighted average atom numbers N and temperatures T, indicated on top of each column. The bottom panels show the corresponding quantities n(k) x k* in semilog
scale for the same data. The figures display the experimental data (blue disks, with error bars corresponding to the SD), QMC results for the full momentum distribution
(black solid line), Lorentzian fits to the low-k sector (orange dotted line), as well as the QMC estimates using the thermodynamic Tan relation (Eq. 3; red dashed line, C;,,)
and the YY-LDA estimates using the Tan sweep relation (Eq. 4; cyan dotted-dashed line, Cyy) estimates. Note that the G, and Cyy are on top of each other and hardly dis-

tinguishable. The inset shows a magnified view of G, and Cyy.
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see Supplementary Materials, section 2.3. We then obtain good agree-
ment between the experimental data (blue dots) and the QMC cal-
culations (black solid line), not only in the fitted low-k sector but
also in the tails with k 2 1/ | a;p |, see Fig. 2. In the low-k sector,
both experimental and QMC results are consistent with a Lorent-
zian momentum distribution (orange dotted line) with half width at
half maximum Ak = akg T / iin, with T the temperature estimated
as above and n, the atom density at the center of the trap. The Lo-
rentzian form of the low-k sector is due to the long-distance expo-
nential decay of the one-body correlation function expected for a
finite-temperature gas. The heuristic parameter o encapsulates the
effect of axial trapping and finite interactions (46-48). We estimate
it by fits of a Lorentzian function to the QMC data in the low-k sec-
tor, and we find a ~ 0.8 for intermediate Lieb-Liniger parameter,
y ~ 1, relevant for our system, see Supplementary Materials, sec-
tion 2.3. Note that, in this low-k sector, beyond Lorentzian behavior
has been predicted in (49, 50) and observed in (51). However, for
the parameters of our experiment, these corrections are negligible,
see Supplementary Materials, section 2.3.

We now focus on the large-k tails of the momentum distributions
(typically k 2 4/ |a,p |). There, the Lorentzian distribution breaks
down and the data show algebraic tails, consistent with the expected
universal behavior in 1 /k*. This is visible in the lower row of Fig. 2,
which shows that the quantity n(k) X k* approaches an asymptotic
constant value. The latter is nothing but the Tan contact C. The ex-
perimental data for n(k) (blue dots) are then compared to three in-
dependent theoretical estimates. First, the comparison to the QMC
momentum distribution (black solid line) confirms the good agree-
ment with the experimental data in semilog scale. Second, we di-
rectly compute the Tan contact from QMC calculations using the
thermodynamic Tan relation (12)

2g,pm?
Cint = gl;; <Hint)
where (H,,,) is the average interaction energy found numerically
(red dashed line). Note that the calculation of the latter is indepen-
dent of the momentum distribution also calculated using QMC, see
Supplementary Materials, section 3. We, nevertheless, find good
agreement between C,,, and the weight of the momentum tails found
experimentally or in the QMC calculations. This confirms that the
tails of the momentum distribution yield the Tan contact, which is
thus accurately measured in the experiment. This provides a direct
measurement of the Tan contact for an interacting Bose gas from the
momentum distribution. Third, we also compare the experimental
result to the contact computed using the Tan sweep relation (9)

4m 0Q

YY = 5
n* Oapplr,

3)

4)

(blue dashed line), where Q is the grand potential, here calculated
using Yang-Yang (YY) thermodynamics within local density approxi-
mation (LDA) (2I). The YY-LDA estimate is in fair agreement with
both experimental data and QMC results. Such consistency bet-
ween all estimates is found for all the experiments presented in this
work, corresponding to the temperature range 14 nK < T' < 38 nK
and weighted average atom number 41 < N < 75.

Thermodynamic properties of the Tan contact
In the experiment, the Tan contact C is extracted from fits to the
asymptotic, large k, limit of the data for n(k) x k*as in the lower row

Huang etal., Sci. Adv. 11, eadv3727 (2025) 3 October 2025

of Fig. 2. The results for various values of the weighted average par-
ticle number N are shown in Fig. 3A, where the particle number is
tuned by controlling the parameters of the evaporative cooling pro-
cess. At the same time, the final temperature T (encoded in the
color scale) varies, typically between 22 and 38 nK. However, it
is expected that, in the considered regime |a,p, | /Agg ~ 0.5, with

\/27h* [ mky T ~ 1.08 x 10~° m the de Broglie wavelength at

T =30 nKand|a,p| ~ 5.8 X 107" m, the value of the contact C does
not substantially depend on the temperature (21, 52). To check this,
we fixed the weighted average number of particles while varying
the temperature. A representative result for N = 57 and 61is shown
in Fig. 3B. It confirms that, in the temperature range that we achieved
here, the value of C extracted from the experiments (data points) is
almost constant within about 10% and compatible with the theo-
retical prediction (solid lines). In the following, we can thus disre-
gard the effect of temperature fluctuations on the contact C.

Consistently with theoretical predictions, we find that the con-
tact increases monotonically with the particle number, see Fig. 3A.
To understand the experimental data, we may first compare them
with the mean-field prediction (8, 21, 52)

Mg =

T]N5/3

gi/%ms/ }
where =4 x 3%/3 /5~ 1.66 and {, = \/h/mw, is the axial har-
monic oscillator natural length, shown as a gray solid line in Fig. 3A.
We then find that our data strongly deviate from this simple esti-
mate by more than 46% for all data points. We may now compare
the experimental data to many-body calculations based on both
QMC, Eq. 3 (blue solid line), and YY-LDA (blue dashed line). Clear-
ly, the experimental data are in good agreement with the exact QMC
calculations, within 12%. The YY-LDA is also in fair agreement with
the experimental data, although with a larger deviation of about
21%, which we attribute to the moderate accuracy of LDA for a sys-
tem the size of ours. The fact that the experimental data are consis-
tent with exact many-body predictions but strongly differ from a
mean-field calculation indicates strong beyond mean-field effects.
This is consistent with the fact that the Lieb-Liniger parameter y
ranges from 1.0 to 1.4 in the experiment.

C= (5)

Universal scaling of the Tan contact
Last, our experimental setup allows us to test the predicted universal
two-parameter scaling of the Tan contact predicted in (21)

5/2
c= A;-sf(};y,fﬂ)

X

(6)

with &, = —ﬁx/alD\/ﬁ and & = —a,p /Agp. The interaction pa-
rameter §, is the counterpart of the Lieb-Liniger parameter y for a
trapped system and &; accounts for thermal effects. Equation 6
originates from the combination of the two thermodynamic rela-
tions C = (4m/h2) 0Q/0a,p |y, and N = —0Q/0p|r, ,assuming
LDA. As noted above the latter is a fair, although not very accurate,
approximation for our experimental setup. By varying the 2D lattice
amplitude creating the tubes, we can tune the longitudinal trap-
ping frequency o, and the coupling constant g,, or, equivalently, the
parameters { , and a,;p. We choose two values of the lattice po-
tential depth: (i) V=40 E,, which corresponds to o, /2n ~ 64 Hz
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Fig. 3. Tan’s contact versus atom number and temperature, and universal scaling. (A) Contact versus particle number N. The figure shows the experimental data
(disks with error bars, where the shades of blue represent the temperature), the QMC results for G, (solid areas represent error bars, Eq. 3), the YY-LDA prediction (blue
dashed line, Eqg. 4), and the mean-field prediction (gray solid line, Eq. 5). (B) Contact versus temperature for N =57 and 61. The disks with error bars represent experimen-
tal data, while the solid lines denote QMC results, with shaded areas indicating the corresponding QMC error bars. Within a specific temperature range, both datasets in-
dicate that C remains nearly constant with temperature. (C) Contact versus particle number for two sets of data corresponding to o, / 2n = 64 Hz (lattice amplitude V=40
E,, red markers) and o, /2n = 84 Hz (V=70 E, blue markers). The squares are QMC results, while the disks are experimental data, and the shaded areas correspond to the
experimental error bars. (D) Same data as in (C) but plotted according to the scaling of Eq. 6. The solid line is a fit to the QMC data.

and a;p ~ —0.78 pm, and (ii) V = 70 E,, which corresponds to
o, /2n~ 84 Hzand a;, @ — 0.58 pm. Plotting C|a,p |* versus the
particle number N, as in Fig. 3C, we observe two groups of data,
corresponding to each set of parameters (V = 40 E,, red markers;
V =70 E,, blue markers), that are separated beyond their correspond-
ing uncertainties (shaded areas). Again, the experimental (disks)
and QMC (hollow squares) results are in good agreement. Then,

plotting the same data using the rescaled quantities C = C {’/i / N

and§, =—{,/ap \/ﬁ , we observe data collapse within error bars,
see Fig. 3D. This is consistent with the universal two-parameter scal-
ing of Eq. 6. The black solid line in Fig. 3D is a fit to the QMC data
and represents the universal scaling function fversus &,. Because the
temperature variation is negligible in the considered experimental
conditions, the value of & is fixed. Deviations of the rescaled experi-
mental data to the QMC prediction are within 10%.

DISCUSSION

Our work reports the first experimental measurement of the Tan
contact C in a correlated Lieb-Liniger gas, from the direct ob-
servation of the large-momentum tails. Leveraging the quasi-1D
structure of our system, we devised a two-stage expansion scheme
sequence, which prevents detrimental effects of interactions during
the gas expansion. Comparison of the observed short-k sector of
the momentum distribution with QMC calculations allows us to

Huang etal., Sci. Adv. 11, eadv3727 (2025) 3 October 2025

determine the experimental temperature, while the weight of the
large-momentum tails yields a direct measure of C. Good agreement
is found with theoretical predictions, and we show clear beyond
mean-field effects. Varying the particle number, the temperature, as
well as the interaction strength via transverse confinement, allowed
us to realize a first test of the universal two-parameter scaling law
predicted in (21).

Direct measurement of the Tan contact as realized here provides
a wealth of information about the thermodynamics of the Lieb-
Liniger gas. The accessible ranges of atom number and temperature
are presently limited in our system, but this can be improved by
adapting the laser cooling and evaporative stages of the atomic gas
preparation. Using stronger transverse confinement can also be
used to access stronger interaction regimes. It would allow for sys-
tematic demonstration of the two-parameter scaling law, Eq. 6. In
this respect, using a lower longitudinal trapping would be beneficial
for better realizing the LDA condition used to derive Eq. 6. It would,
for instance, pave the way to observation of fermionization of the
strongly interacting Lieb-Liniger gas at finite temperatures, which is
marked by a characteristic maximum of the rescaled Tan contact
(21). Our approach may also be extended to further quantum mod-
els in confined geometries, for instance, ultracold Fermi gases and
Bose-Bose, Bose-Fermi, or Fermi-Fermi mixtures, the thermody-
namics of which may also be characterized by the properties of the
contact (5, 10, 23, 53, 54). While Feshbach resonances may be alter-
natively used to switch off interactions during TOF imaging in
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single-component gases, our approach has the advantage of being
applicable also to mixtures.
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