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A twist between two systems offers the possibility to drastically change the underlying physical
properties. To that end, we study the bandstructure of twisted moiré potentials in detail. At sets of
commensurate twisting angles, the low energy single-particle spectrum of a twisted moiré potential
will form into distinct bands and gaps. To a first approximation, energy bands can be qualitatively
modelled by harmonic states, localised in different potential minima. The bands are intrinsically
linked to the number of distinct minima and size of the moiré unit cell, with smaller cells producing
larger gaps and vice versa. For shallower potential depths, degeneracies between harmonic states are
lifted by virtue of anharmonic confinement and coupling between states. Depending on the exact
geometry of potential minima, bands can then be classified by 4 unique forms of tight-binding models.
We find excellent agreement between the continuous spectrum and fitting to our tight-binding
models, allowing for accurate tunnelling rates and onsite energies to be extracted. Our results are
directly relevant to the bosonic, many-body problem, and thus provide further understanding on the
relative stability of quantum phases both in theory and experiments. In particular, the prominence
of gaps can be mapped to strongly correlated insulating phases. Furthermore, tunnelling rates of
different bands serve as thresholds on temperature in which a phase can be either a normal fluid or
superfluid.

I. INTRODUCTION

In condensed matter physics, twistronics has emerged
as an exciting field where novel electronic phenomena are
observed [1, 2]. By stacking layers of twisted, 2D ma-
terials, a wealth of exotic features result from the com-
plex interplay of quantum interference, inter-particle in-
teractions, and structural properties, ranging from moiré
superlattices [3–6], excitons [7–9], and quantum Hall ef-
fects [10–12]. A key component to the realisation of these
properties relates to the underlying, single-particle band-
structure. For instance, in twisted bilayer graphene, the
appearance of flat momentum bands at magic twisting
angles significantly enhances quantum correlations [13–
17], and has led to the appearance of unconventional
superconductivity [18–21] and highly correlated insula-
tors [22–24]. In addition, twisted systems allow to inter-
polate between periodic and quasiperiodic structures by
adjusting the twist angle. In some materials, however,
inter-layer couplings favour periodic structures, which
obscures quasiperiodic effects [3, 25, 26].

Over recent years, ultracold atomic gases have been
proposed as highly versatile platforms to quantum simu-
late a variety of problems [27–32], including non-standard
lattice models [33] and twisted systems [34–36]. Bi-
layer models can be emulated, in which different internal
atomic states represent the different layers, which are
Raman coupled and subjected to optical lattices twisted
with respect to each other [34]. Alternatively, a single-
layer model can be realised when both twisted optical
lattices apply to the same internal state [37]. The latter
case also models bilayers in the strong interlayer cou-
pling limit [36]. In all cases, the twist angle can be freely
tuned in experiments by adjusting the angular alignment
of optical lattices.

Generally speaking, arbitrary twist angles result in

quasiperiodic, or quasicrystalline, optical potentials. An
interesting set of quasiperiodic potentials are those which
possess rotational symmetry incompatible with crys-
talline order, i.e. superimposed optical lattices that are
aligned across forbidden rotational symmetries [38–40].
In recent years, the exotic properties of these quasiperi-
odic systems have been extensively studied in both single-
particle [41–43] and many-body [44–48] scenarios. Alter-
natively, for a countable set of twist angles, the same
devices realise superlattice moiré patterns with rich in-
ternal structure. Such potentials likewise exhibit novel
properties that are distinct from ordinary, periodic sys-
tems [37, 49–52].

In both cases, the gapped-band structure plays a cen-
tral role in determining the physical behaviour of single
particles, as well as the many-body properties. Impor-
tantly, bands and subbands can be mapped onto effec-
tive tight-binding models, which describe a network of
sites associated to localized Wannier states coupled by
tunnelling processes. In the incommensurate case, the
strong inhomogeneities of the potential induces a com-
plex set of non-uniform Wannier states, from which such
models may be built [53]. In the commensurate case, one
can take advantage of periodicity. For simple optical po-
tentials such as a square lattice, each site is associated
to a potential minimum, and the structure of the lattice
simply reproduces the Bravais lattice of elementary cells.
In contrast, for moiré potentials, each elementary cell has
several potential minima that are not equivalent, and ef-
fective tight-binding models need to be constructed with
care.

An approach to constructing effective tight-binding
models for optical moiré optical potentials has been out-
lined in a previous work [37]. The primary objective of
the present paper is to discuss this construction in more
detail and extract effective tight-binding parameters by
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Figure 1. Illustration of twisted moiré potentials. Here, we take (a) two optical lattices VA and VB with a twist angle θ between
them. By superimposing the two lattices, we generate a (b) twisted moiré potential. Examples of moiré potentials are plotted
for commensurate angles (c1) θ2,1 ≈ 36.87◦, (c2) θ3,5 ≈ 28.07◦, (c3) θ2,3 ≈ 22.37◦, and (c4) θ2,5 ≈ 43.60◦, with black squares
showing the unit cells.

fitting to the general, continuous-space model. We find
that the presence of several sets of potential minima in
each unit cell induces the splitting of energy bands into
subbands. Each band is associated to a different, effective
tight-binding model, some of which possess a structure
that differs from the initial Bravais lattice. Moreover,
effective tunnelling rates are associated to the width of
narrow subbands, which significantly lowers the energy
scale where long-range quantum coherence is to be ex-
pected.

The layout of our results is as follows. First, we intro-
duce twisted optical moiré potentials in Sec. II, alongside
a discussion of the spectral properties as obtained from
the exact continuous-space model in Sec. III. Compari-
son to a harmonic approximation of the moiré potential
in the vicinity of the various minima allows us to classify
the main bands. We then discuss in Sec. IV the construc-
tion of effective tight-binding models in each band, taking
advantage of energy-scale separation between intra-cell
and inter-cell couplings. The behaviour of the effective
tight-binding parameters obtained from fitting to exact
continuous-space calculations is discussed alongside the
validity of the tight-binding models in Sec. V. We finally
discuss extension to other moiré potentials in Sec. VI,
before ending with our conclusions in Sec. VII.

II. TWISTED MOIRÉ POTENTIALS

We consider single-particles trapped in a twisted opti-
cal lattice V (r), with Hamiltonian

Ĥ = −ℏ2∇2

2M
+ V (r), (1)

where M is the particle mass and r = (x, y) is the posi-
tion. The twisted optical lattice is defined by

V (r) = V
[
v(R+r) + v(R−r)

]
, (2)

where

v(r) = cos2(πx/a) + cos2(πy/a), (3)

V is the potential depth, R± is the rotation matrix with
angle ±θ/2, a = λ/2 is the lattice constant, and λ is
the optical wavelength. All energies will be expressed in
terms of the recoil energy Er = π2ℏ2/2Ma2. A visual-
isation of the potential is given in Figs. 1(a)-(b). For
a specific set of twist angles θ, known as commensurate
angles, it is possible to form periodic, moiré patterns in
real space. Here we only outline their properties, with
further details and proofs presented in Appendix A. The
commensurate, or moiré angles, can be directly written
as

θm,n = cos−1
( 2mn

m2 + n2

)
, (4)

where m and n are coprime integers [34]. Since the un-
derlying structure is periodic and shows four-fold rotation
symmetry, the system possess a well-defined, square unit
cell with dimensionless size

ℓm,n/a =

{√
(m2 + n2)/2, if m+ n even,√
m2 + n2, if m+ n odd.

(5)

This set of moiré angles can be deduced by consid-
ering the intersection of two lattice vectors tilted by
θm,n, where m and n define a point of intersection at
r/a = (m,n). To determine the true period, it is impor-
tant to note that geometrically equivalent moiré angles
can exist for different m and n, hence the distinction be-
tween m+ n being even or odd, see details and proof in
Appendix A. In Figs. 1(c1)-(c4), some examples of the
moiré potentials are plotted, alongside their correspond-
ing moiré unit cells. For larger integers m and n, the
underlying moiré cell is enlarged, with richer inhomoge-
neous structure. As will be shown later in our discus-
sions, a very important quantity that characterises the



3

bandstructure is the total number of distinct, local min-
ima/maxima in the potential, which is given by

Mm,n =

{
(ℓ2m,n/a

2 − 1)/4, if m+ n even,

(ℓ2m,n/a
2 − 1)/4 + 1, if m+ n odd.

(6)

Note, for this equation, Mm,n is always an integer, with
a formal proof provided in Appendix A.

III. SPECTRAL PROPERTIES

A. Dispersion Relations

For a periodic potential such as V (r), the Hamilto-

nian Ĥ my be solved using a standard Bloch transforma-
tion [54]. We write the wavefunction as ψ(r) = eik·ru(r),
where u(r) is a Bloch function, which is periodic with pe-
riod equal to the moiré unit length ℓm,n, and k = (kx, ky)
is the quasi-momentum, which can be restricted to the
1st Brillouin zone, kx,yℓm,n ∈ [−π . . . π]. Inserting the
Bloch transformed wavefunction into the Schrödinger
equation Ĥψ(r) = Eψ(r), we obtain the reduced equa-
tion

ε(k)u(r) =

[
ℏ2

2M

(
k2 − 2ik · ∇ −∇2

)
+ V (r)

]
u(r), (7)

where ε(k) spans the set of energies E that fulfill the
periodic boundary conditions for each quasi-momentum
k. We then solve for the Bloch functions u(r) and
eigenenergies/dispersion relations ε(k) via exact diago-
nalisation, using discretisation with a grid spacing of at
least h/a = 0.05. Since u(r) is periodic in the moiré
unit cell, we can therefore diagonalise in an ℓm,n × ℓm,n

box with periodic boundary conditions without loss of
generality.

In Fig. 2, we plot an example of the dispersion rela-
tions ε(k) hence obtained in the 1st Brillouin zone for
the moiré potential with twist angle θ3,5 ≈ 28.07◦ and
amplitude V = 6Er. As expected for a sufficiently deep
potential, we observe the formation of wide spectral gaps,
separating almost flat dispersive bands, see Fig. 2(a).
The different bands are labelled with an index β, which
ranges from 1 to 5 for the considered energy range. Each
band (except β = 1) splits into a set of narrower sub-
bands (with index α). A magnification of band β = 5
plotted in Fig. 2(b), shows that each subband displays
a cosine-like dispersion, which is to be expected for a
deep optical lattice. Note that the subbands α = 2 and
α = 3 are quasi-degenerate, each one corresponding to
one branch of the observed cross structure. Qualitatively
similar properties are observed for the other bands and
at other moiré angles.

The main bands (β) are explained by a simple har-
monic approximation around the local minima of the
moiré potential as discussed in Sec. III B. In contrast,
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Figure 2. Exact energy spectrum (E − Eg)/Er, with Eg

the single-particle ground state energy, obtained from the
continuous model for amplitude V = 6Er and twist angle
θ3,5 ≈ 28.07◦. Coloured lines denote different bands of states
with index β, with colours representing distinct minima over
which a state is distributed, see Fig. 3(a). In (a), we plot the
dispersion relations across high-symmetry points of the first
Brillouin zone, with a zoom in (b) given to the subbands with
index α in band β = 5. For E − Eg ≳ 5Er, well-separated
bands can no longer be identified (grey lines).
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Figure 3. Zoom of two twisted moiré unit cells for angles
(a) θ3,5 ≈ 28.07◦, where M3,5 = 4, and (b) θ2,1 ≈ 36.87◦,
where M2,1 = 2, using the same colourscale as Fig. 1.
Coloured points denote distinct sets of potential minima with
index u (white numbers), ordered from lowest to highest en-
ergy. Note, minima located on the unit cell edges/corners are
marked by their geometrically identical local maxima within
the unit cell (sets 1 and 4), for clarity (see text).

the subbands (α) and their dispersion relations are ex-
plained by tight-binding models, the structure of which
depends on the band, as discussed in Sec. IV.

B. Harmonic Approximation

If V/Er is sufficiently large, the eigenstates are dis-
tributed around the local minima of the potential. Ne-
glecting tunnelling between degenerate local minima,
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u=1
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Figure 4. Comparison of continuous (grey lines) and harmonic (coloured lines) energy spectra (E − Eg)/Er, where Eg is the
continuous ground state energy. The lowest grey lines thus correspond to Eg = 0. The upper line, (a1)-(a4), corresponds to the
twist angle θ3,5 ≈ 28.07◦, the second line, (b1)-(b4), to θ2,1 ≈ 36.87◦. From the left to right columns, we consider decreasing
potential depths of (a1),(b1) V = 1000Er, (a2),(b2) V = 100Er, (a3),(b3) V = 10Er, and (a4),(b4) V = 6Er. The colours of
harmonic energies denote the u-th distinct set of potential minima, as per Fig. 3, with some arrows at lower V/Er indicating
bands in which continuous-space eigenstates match/look similar to a harmonic eigenstate.

which are sufficiently far apart, each local minimum may
accommodate a set of well-localised Wannier functions,
corresponding to the ground and excited states in a given
well. Figures 3(a) and (b) show such local minima in
a unit cell for the moiré potentials with twist angles
θ3,5 ≈ 28.07◦ and θ2,1 ≈ 36.87◦, respectively. The low-
est minimum (red, u=1) is unique, while the higher ones
(green, u = 2; blue, u = 3; purple, u = 4) are four-fold
degenerate. Note that, according to Eqs. (5) and (6),
there are, respectively, M3,5 = 4 and M2,1 = 2 distinct
local minima in each unit cell. By shifting V(r) such that
the global minimum is enclosed in the unit cell centre,
e.g. a positional shift by (+ℓ/2, +ℓ/2) and setting +V
to −V , we have the same potentials as depicted in Fig. 3.
In other words, twisted square moiré potentials will ex-
hibit the same physics for both blue- or red-detuned sys-
tems (i.e. localisation of atoms to minima or maxima),
hence we write the minima with u = 1 (red) and u = 4
(purple) at the equivalent sets of local maxima in Fig. 3
for compactness. Expanding the potential around a local

minimum centred at R, we write

V (R+ r) = V (R) +
1

2

(
Ωxxx

2 + 2Ωxyxy +Ωyyy
2
)

+O(. . . ), (8)

where Ωuv = ∂2V/∂u∂v and O(. . . ) accounts for anhar-
monic corrections. Diagonalizing the Hessian matrix Ω,
we then find

V (R+ r) ≈ V (R) +
M

2

(
ω2
+x

′2 + ω2
−y

′2) , (9)

with

ω2
± =

Ωxx +Ωyy ±
√
(Ωxx − Ωyy)2 + 4Ω2

xy

2M
,

(10)

and x′-y′ coordinates in a rotated orthogonal frame. The
eigenvalues of the 2D harmonic oscillator in Eq. (9) are
given by

En+,n− = V (R) + ℏω+ (n+ + 1/2) + ℏω− (n− + 1/2) ,
(11)
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where n± ∈ N. If ω+ = ω−, the n-th excited state of
the spectrum will be (n + 1)-fold degenerate. However,
in general we have ω+ ̸= ω−, i.e. all degeneracies are
lifted, except for some accidental matchings. The final
spectrum is then the combination of all energies from
Eq. (11) for each potential minimum labelled by its po-
sition R. Each minimum forms a ladder set, which are
degenerate within a given family of minima u. Depend-
ing on the relative strength of V/Er, different sets for
different minima may be located between one another,
or potentially overlap, leading to an intricate spectrum.

In Figs. 4(a1)-(a4), we compare the exact spectra of
Eq. (7) (grey lines) at mid band kℓm,n = (π/2, π/2) to
that of Eq. (11), using the moiré angle θ3,5 and for de-
creasing values of V/Er. Coloured lines show the har-
monic energies of Eq. (11), with different colours, cor-
responding to each unique type of potential minimum
shown in Fig. 3 and labelled by u = 1, 2, 3, and 4.
Starting with the larger values of V/Er = 1000 and
V/Er = 100 in Figs. 4(a1)-(a2), we find good agreement
between the exact and harmonic spectra. Each minimum
forms a series of distinct bands, with the total number of
states/degeneracies in each harmonic band matching the
number of states in continuous-space bands. Prominent
gaps can also form, depending on the relative separation
between eigenenergies of the local minima. Discrepan-
cies and degeneracy lifting between exact and harmonic
eigenenergies becomes more apparent at higher energy.
This is to be expected, since the higher energy eigen-
states contain larger components further away from a
local minima, and anharmonic corrections become more
important. For smaller lattice amplitudes, for instance
V/Er = 10 and V/Er = 6 in Figs. 4(a3)-(a4), we still
find some qualitative agreement between the exact and
harmonic results for some of the lowest energy states.
Some coloured arrows for the lowest energy states are
also plotted, indicating which continuous-space bands
match with the harmonic bands in terms of similar look-
ing eigenstates. Discrepancies between energy levels are
again seen, due to the fact that for smaller V/Er, low
energy eigenstates also have a larger extent, i.e. anhar-
monic terms are non-negligible. Overall, we find that
the low energy bands and gap structure of the twisted
moiré potential remains reminiscent to that of the har-
monic spectrum, with quantitative accuracy for larger
potential depths.

Equivalent properties are also observed at different
moiré angles, e.g. θ2,1 as shown in Figs. 4(b1)-(b4). For
this angle, we generally find larger gaps compared to θ3,5,
which can be explained as follows. Each θm,n corresponds
to Mm,n distinct local minima. If Mm,n is small (i.e. the
moiré cell is small), the relative energy between different
minima will be large, therefore producing wide spectral
gaps. However, if Mm,n is large (i.e. the moiré cell is
large), the underlying gaps become less significant due to
the smaller relative energy difference between minima.

1.5-1.5

1.5

-1.5
1.5-1.5

(a1) (a2)

Figure 5. Plot of the (a1) ground state density profile for
band 1 and (a2) the corresponding tight-binding model, tak-
ing density spots as lattice sites (purple circles) with nearest-
neighbour coupling J1. This produces a square lattice with
period ℓ, where the white/black squares in (a1)/(a2) denote
the moiré unit cell.

IV. TIGHT-BINDING MODELS

As discussed in the previous sections, the single-
particle spectrum of twisted optical potentials separates
into distinct energy bands with prominent gaps between
them, see Fig. 2. The central energy of the latter can
be approximately understood via harmonic bands associ-
ated to different sets of local minima. In order to describe
the dispersion relation of the various bands, we now need
to introduce finite tunnel couplings between these min-
ima. Tunnel processes are dominated by the resonant
ones, i.e those that couple minima with equal energies.
This leads to tight-binding models with different struc-
tures in different bands, as we discuss now. Throughout
this section, we focus on the case of amplitude V = 6Er

and twist angle θ = θ3,5 from Fig. 2. However, as we
will show, the approaches and classifications here can be
applied to any commensurate angle and sufficiently large
potential amplitude. To ease on notation, we omit the
commensurate twist angle indices and write the moiré
unit length ℓ = ℓm,n.

A. Band β = 1

We start with simplest case of band 1, which describes
the ground state, the density distribution of which is
shown in Fig. 5(a1). The approach we use is standard
and we briefly outline it for reference. Since there is a
single minimum in each unit cell, we can model the band
with a simple square lattice, with sites located at those
minima, as per Fig. 5(a2). The Hamiltonian is

Ĥ = ϵβ
∑
i

â†i âi − Jβ
∑
⟨i,j⟩

â†i âj , (12)

where i, j are site indices, ϵβ is the onsite energy in band
β = 1, Jβ is the corresponding tunnelling between sites,
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and ⟨i, j⟩ denotes summation over nearest-neighbouring
sites. The dispersion relation is readily found by intro-
ducing the Fourier transformed operators

âi =
1√
N

∑
k

âke
ik·ri , (13)

where N is the total number of sites and k spans the first
Brillouin zone, i.e. kx,yℓ ∈ [−π . . . π]. Using∑

k,k′,i

ei(k−k′)·ri = Nδk,k′ (14)

and ri spanning the lattice sites, Hamiltonian (12) may
be written as

Ĥ =
∑
k

ε(k)â†kâk, (15)

where the dispersion relation ε(k) is given by

ε(k) = ϵβ − 2Jβ(cos kxℓ+ cos kyℓ). (16)

This generates a standard band dispersion relation with
cosine dependence in both x and y directions. The un-
known quantities ϵβ and Jβ can then be readily extracted
by fitting Eq. (16) to the exact dispersion relation found
from continuous space calculations as done in Sec. IIIA.
The result is discussed in Sec. V.

B. Bands β = 3, 4, 5

For all other bands, we have a different situation, where
there are now 4 potential minima within each moiré cell,
with different geometries in different bands, see Fig. 6
for bands β = 3, 4, and 5. For now, we forgo the dis-
cussion of band 2, which is more complicated, and focus
on bands 3-5. In order to model one of these bands, we
may separate the tunnelling rates into two distinct en-
ergy scales: intra-cell tunnellings (Iβ and Iβ′

for band
β) and inter-cell tunnelling (Jβ

α for subband α in band
β). Owing to exponential decay of tunnelling rates with
site separation, the intra-cell couplings generally exceed
the inter-cell couplings, i.e. Iβ , Iβ′ ≫ Jβ

α . We may then
treat the inter-cell couplings in perturbation of the intra-
cell ones.

We begin by writing the Hamiltonian of an iso-
lated moiré cell, i.e. in one of the green squares in
Figs. 6(a2),(b2),(c2). Note, in Figs. 6(b2) and (c2), we
have shifted the green unit cell across the diagonal in
order to enclose 4 sites in the vicinity of the cell center
and have a similar description to band 3 in Fig. 6(a2).
Each unit cell contains 4 sites located at the spots of the
considered band. In matrix form, the Hamiltonian can
be written as

Ĥcell =


ϵβ −Iβ −Iβ′ −Iβ

−Iβ ϵβ −Iβ −Iβ′

−Iβ′ −Iβ ϵβ −Iβ

−Iβ −Iβ′ −Iβ ϵβ

 , (17)

1.5-1.5

1.5

-1.5

1.5-1.5

(a1) (a2)

1.5

-1.5

(b1) (b2)

1.5

-1.5

(c1) (c2)

3

3'

4
4'

5
5'

Figure 6. Plots of the (a1),(b1),(c1) density profiles for a state
in bands 3, 4, and 5, respectively, and (a2),(b2),(c2) the cor-
responding tight-binding models, taking density spots (max-
ima) as lattice sites (purple circles). The green squares in
(a2),(b2),(c2) are unit cells of length ℓ, which contain 4 sites
with nearest-neighbour coupling Iβ (blue) and next-nearest-

neighbour coupling Iβ′
(red).

where Iβ denotes nearest-neighbour tunnelling, Iβ′
next-

nearest-neighbour tunnelling, and ϵβ is the onsite energy
of the band. Since all sites lie in equivalent potential
minima and the system has 4-fold rotational symmetry,
ϵβ is the same for each site. Moreover, each set of intra-
cell tunnellings are equal. The matrix in Eq. (17) can
then be diagonalised, with normalised eigenstates given
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'

'

W

Figure 7. Inter-cell couplings between the intra-cell eigen-
states from Eq. (18) from nearest-neighbour green unit cells
in Fig. 6(a2),(b2),(c2). Black lines denote the states of each

subband α, with corresponding energy Eβ
α, where Eβ

B=Eβ
C .

The energy spacing between states is shown outside the right-
hand green cell.

by

|a⟩ = 1

2

1
1
1
1

 , |B⟩ = 1√
2

 1
0
−1
0

 ,

|C⟩ = 1√
2

 0
1
0
−1

 , |d⟩ = 1

2

 1
−1
1
−1

 ,

(18)

and eigenvalues

Eβ
a = ϵβ + 2Iβ − Iβ′

,

Eβ
B,C = ϵβ + Iβ′

,

Eβ
d = ϵβ − 2Iβ − Iβ′

,

(19)

where the degeneracy Eβ
B = Eβ

C also arises due to the
4-fold rotational symmetry. Each isolated moiré cell of
Fig. 6 can thus be described as a 4-level system, with
each level corresponding to each eigenstate of Hamilto-
nian (17). Two of them (a and d) are isolated in energy
while two other ones (B and C) are exactly degener-
ate due to a fundamental symmetry of the system. We
adopt a convention where capital letters denote degener-
ate states and lower-case non-degenerate states.

To capture tunnelling between nearest-neighbour
moiré cells, we then couple the 4-level systems by dif-
ferent inter-cell tunnellings, as depicted in Fig. 7. This
forms an effective square lattice with period ℓ, where each
site has 4 internal states. Restricting ourselves to the
dominant (resonant) inter-cell tunnelings between equal
energy eigenstates, we find the effective tight-binding

Hamiltonian

Ĥ =Eβ
a

∑
i

â†i âi − Jβ
a

∑
⟨i,j⟩

â†i âj + Eβ
B

∑
i

(B̂†
i B̂i + Ĉ†

i Ĉi)

− Jβ
B

∑
⟨i,j⟩

(B̂†
i B̂j + Ĉ†

i Ĉj)−
∑
⟨i,j⟩

W β
B;i,j(B̂

†
i Ĉj + Ĉ†

i B̂j)

+ Eβ
d

∑
i

d̂†i d̂i − Jβ
d

∑
⟨i,j⟩

d̂†i d̂j ,

(20)

where âi, B̂i, Ĉi, and d̂i are the annihilation operators
of a particle in site i for the corresponding eigenstate
in Eq. (18). Note, a directional dependence in the cou-

plingW β
B;i,j between different degenerate states from ad-

jacent sites is necessary to account for the crossed fea-
tures of quasi-degenerate subbands as in the centre of
Fig. 2(b). However, overall 4-fold symmetry of the sys-

tem implies that the values of the coefficients W β
B;i,j are

opposite in orthogonal directions, i.e. W β′

B;x = −W β
B;y,

see details in Appendix B 1. To determine the dispersion
relations, we again introduce Fourier transform operators
as in Eq. (13) for each state |a⟩, |B⟩, |C⟩, and |d⟩. The
momentum space Hamiltonian is then

Ĥ =
∑
k

εβa(k)â
†
kâk +

∑
k

εβd (k)d̂
†
kd̂k

+
∑
k

εβB(k)(B̂
†
kB̂k + Ĉ†

kĈk)

+
∑
k

εβ
′

B (k)(Ĉ†
kB̂k + B̂†

kĈk),

(21)

with

εβa(k) = Eβ
a − 2Jβ

a (cos kxℓ+ cos kyℓ), (22)

εβB(k) = Eβ
B − 2Jβ

B(cos kxℓ+ cos kyℓ), (23)

εβ
′

B (k) = −2W β
B(cos kxℓ− cos kyℓ), (24)

εβd (k) = Eβ
d − 2Jβ

d (cos kxℓ+ cos kyℓ). (25)

Due to energy degeneracy of the states |B⟩ and |C⟩,
there are non-diagonal operators of the form Ĉ†

kB̂k and

B̂†
kĈk within Hamiltonian (21). To remove such terms,

we rewrite B̂k and Ĉk in terms of new operators that
diagonalise the coupling part, i.e.(

B̂†
k Ĉ†

k

)(εβB(k) εβ
′

B (k)

εβ
′

B (k) εβB(k)

)(
B̂k

Ĉk

)

=
(
b̂†k ĉ†k

)(εβB(k) + εβ
′

B (k) 0

0 εβB(k)− εβ
′

B (k)

)(
b̂k
ĉk

)
,

(26)

where b̂k = B̂k+Ĉk√
2

and ĉk = B̂k−Ĉk√
2

, allowing Hamilto-

nian (21) to be diagonalised as

Ĥ =
∑
k

εβa(k)â
†
kâk +

∑
k

εβd (k)d̂
†
kd̂k

+
∑
k

εβb (k)b̂
†
kb̂k +

∑
k

εβc (k)ĉ
†
kĉk,

(27)
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Figure 8. Plot of the (a1) density profile for a state in band 2
and (a2) the corresponding tight-binding model, taking spots
as lattice sites (purple circles). The blue/red squares in (a2)
are unit cells of length ℓ/2, which contain 2 sites with nearest-
neighbour coupling Iβ (black). The light grey line in (a2)
shows the original moiré cell from (a1), with the red/blue
cells forming a superlattice structure in this unit cell.

where εβb,c(k) = εβB(k)± εβ
′

B (k), i.e.

εβb (k) = Eβ
B − 2

(
Jβ
b cos kxℓ+ Jβ

c cos kyℓ
)
, (28)

εβc (k) = Eβ
B − 2

(
Jβ
c cos kxℓ+ Jβ

b cos kyℓ
)
, (29)

and

Jβ
b = Jβ

B +W β
B and Jβ

c = Jβ
B −W β

B . (30)

From this, we then have 4 distinct dispersion relations,
Eqs. (22), (25), (28), and (29), corresponding to four dis-
tinct subbands, α ∈ {a, b, c, d}. Subbands a and d have

the standard dispersion relation, with different shifts Eβ
a,d

and tunnel couplings Jβ
a,d. In contrast the subbands b

and c have the same shift but different dispersion rela-

tions. Each one, εβb (k) and εβc (k), are anisotropic and
break the 4-fold rotational symmetry individually. How-
ever, the combination of both does not because they are
rotated by an angle π/2 with respect to one another. In
other words, if we rotate the system by π/2, we recover
the same set of dispersion relations. Similar to band 1,
the energy shifts Eβ

α and band widths Jβ
α can then be ex-

tracted by fitting to the continuous dispersion relations,
see Sec. V.

C. Band β = 2

In order to derive the tight-binding model for band 2,
we follow a similar process to bands 3-5, where we sep-
arate strong and weak couplings. For band 2, however,
the sites/spots are now located near the moiré unit cell
boundaries, so that the dominant couplings are across
these boundaries, see Fig. 8(a1). To derive the relevant
tight-binding model, we use a superlattice of strongly-
coupled internal states, as depicted in Fig. 8(a2). The
smaller blue/red cells, with length ℓ/2, now contain pairs

of sites with the strongest couplings. This allows us to
treat inter-cell couplings in perturbation of intra-cell cou-
plings, consistent with the prior discussions. Note, how-
ever, that we have two types of cells (blue and red), which
are identical up to a π/2-rotation. Here, the inner Hamil-
tonian for each blue/red cell is

Ĥcell =

(
ϵβ −Iβ

−Iβ ϵβ

)
, (31)

which has eigenvalues

Eβ
A = ϵβ + Iβ ,

Eβ
B = ϵβ − Iβ ,

(32)

and normalised eigenstates

|A⟩ = |A′⟩ = 1√
2

(
1
1

)
,

|B⟩ = |B′⟩ = 1√
2

(
1
−1

)
,

(33)

where the eigenstates (|A⟩, |B⟩) and (|A′⟩, |B′⟩) belong
to the blue and red cells in Fig. 8(a2) respectively. Note,
the implicit basis used to write the Hamiltonian and the
eigenstates, Eqs. (31) and (33), is rotated with an angle
π/2 for red cells with respect to blue cells. This creates
two energy-separated subbands, A−A′ on the one hand
and B −B′ on the other hand, with negligible couplings
between the two. In contrast, couplings between A and
A′ states, which have degenerate on-site energies, must
be taken into account. The same holds for B and B′

states. By coupling the different cells as per Fig. 9 and
retaining only the nearest-neighbour terms of each type,
the Hamiltonian for band β = 2 can then be expressed
as

Ĥ = ĤA + ĤB , (34)

with

ĤA = Eβ
A

∑
i

(Â†
i Âi + Â

′†
i Â

′

i)

−
∑

⟨i,j⟩∈R↔B

W β
AÂ

†
i Â

′

j (35)

−
∑

⟨i,j⟩∈B→B

Jβ
A;i,jÂ

†
i Âj −

∑
⟨i,j⟩∈R→R

Jβ
A′;i,jÂ

′†
i Â

′

j

and

ĤB = Eβ
B

∑
i

(B̂†
i B̂i + B̂

′†
i B̂

′

i)

−
∑

⟨i,j⟩∈B↔R

W β
BB̂

†
i B̂

′

j (36)

−
∑

⟨i,j⟩∈B→B

Jβ
B;i,jB̂

†
i B̂j −

∑
⟨i,j⟩∈R→R

Jβ
B′;i,jB̂

′†
i B̂

′

j ,

where ⟨i, j⟩ ∈ B ↔ R denotes a sum over pairs of nearest
neighbouring cells from both a blue cell to a red cell and
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Figure 9. Coupling of states from Eq. (31) between red-to-
red, blue-to-blue and red-to-blue cells of Fig. 8(a2). Black
lines denote the states of each subband α, with corresponding
energy Eβ

α. Due to 4-fold rotational symmetry, we have Eβ
A =

Eβ
A′ and Eβ

B = Eβ
B′ . The energy spacing between states is

shown outside the righthand cells.

a red cell to a blue cell, ⟨i, j⟩ ∈ B → B between blue
cells, and ⟨i, j⟩ ∈ R→ R between red cells. Since the red
cells (corresponding to the primed symbols) are obtained
from a π/2-rotation of blue cells (corresponding to the

non-primed symbols), we must have Jβ
A;x = Jβ

A′;y, J
β
A;y =

Jβ
A′;x, J

β
B;x = Jβ

B′;y, and J
β
B;y = Jβ

B′;x, see Appendix B 2.
In the following, we restrict the discussion to the subband
A − A′. Since the Hamiltonians ĤA and ĤB have the
same structure, all formulas for the subband B −B′ are
the same as for the subband A−A′ replacing A’s by B’s.

By transforming the operators to momentum space,
the Hamiltonian reads as

ĤA =
∑
k

(
εβAA(k)Â

†
kÂk + εβA′A′(k)Â

′†
k Â

′

k

)
+
∑
k

εβAA′(k)(Â
†
kÂ

′

k + Â
′†
k Âk). (37)

where

εβAA(k) = Eβ
A − 2(Jβ

A;x cos kxℓ+ Jβ
A;y cos kyℓ),

εβA′A′(k) = Eβ
A − 2(Jβ

A;y cos kxℓ+ Jβ
A;x cos kyℓ),

εβAA′(k) = −4W β
A

(
cos

kxℓ

2
cos

kyℓ

2

)
.

(38)

To diagonalise the problem, we then use a similar proce-
dure to before, where we introduce new operators â, â

′
,

â†, and â
′†, which diagonalise terms involving Â and Â

′
,

Â†, and Â
′†,(
Â†

k Â
′†
k

)(
εβAA(k) εβ

′

AA′(k)

εβ
′

AA′(k) εβA′A′(k)

)(
Âk

Â
′

k

)
=
(
â†k â

′†
k

)(εβa(k) 0

0 εβa′(k)

)(
âk
â

′

k

)
,

(39)

where

εβa(k) =

εβAA(k)+ε
β
A′A′(k)+

√(
εβAA(k)−ε

β
A′A′(k)

)2
+4εβAA′(k)2

2
(40)

and

εβa′(k) =

εβAA(k)+ε
β
A′A′(k)−

√(
εβAA(k)−ε

β
A′A′(k)

)2
+4εβAA′(k)2

2
,

(41)
and similar formulas for the B − B′ subband. The final
Hamiltonian is then

Ĥ =
∑
k

εβa(k)â
†
kâk +

∑
k

εβ
a′ (k)â

′†
k â

′

k

+
∑
k

εβb (k)b̂
†
kb̂k +

∑
k

εβ
b′
(k)b̂

′†
k b̂

′

k.
(42)

We thus find four distinct subbands α ∈ {a, a′, b, b′}
within band β = 2. We can then extract the energy shifts

Eβ
A and Eβ

B , as well as the inter-cell tunnel energies J
β
A;x,

Jβ
A;y, J

β′

A;x, J
β
B;x, J

β
B;y, and J

β′

B;x by fitting the continuous-
space dispersion relations, see Appendix C 4. Note, these
bands have non-standard dispersion relations, given by
Eqs. (40) and (41), with Eq. (38). In most cases, cou-
plings between blue-to-red cells dominate over those be-
tween cells with the same colour, due to the smaller dis-
tance, see Fig. 8(a2). We then have

εβa,a′(k) ≈ Eβ
A ± εβAA′(k) = Eβ

A ∓ 4W β
A

(
cos

kxℓ

2
cos

kyℓ

2

)
,

εβb′,b′(k) ≈ Eβ
B ± εβBB′(k) = Eβ

B ∓ 4W β
B

(
cos

kxℓ

2
cos

kyℓ

2

)
,

(43)
which will be illustrated in Sec. V. Note, the unit cell with
only blue-to-red couplings has a smaller square length of
ℓ/
√
2, and larger square Brillouin zone length of 2

√
2π/ℓ.

The momentum dependence can be written as

4W β cos
kxℓ

2
cos

kyℓ

2
= 2W β

(
cos

k̄xℓ√
2
+ cos

k̄yℓ√
2

)
,

(44)

with k̄x = k · x̄ and k̄y = k · ȳ, where x̄ = (x̂+ ŷ)/
√
2 and

ȳ = (x̂− ŷ)/
√
2 are unit vectors of the smaller (rotated)
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Figure 10. Energy scales within twisted moiré potentials. On
the left, we have degenerate harmonic bands with characteris-
tic separation ℏω, corresponding to the 4 sites (purple circles
in the lower grey square) of an isolated moiré cell. By coupling
the sites from a given unit cell, degenerate harmonic bands
are split into subbands, with separation depending on the
intra-cell tunnelling I. Finally, by coupling nearest-neighbour
moiré cells, the energy spectrum will exhibit cosine-like dis-
persions for each subband, with width scaled to the inter-cell
tunnelling J .

square lattice. The subbands a and a′ are thus centred

around energy Eβ
A and have almost opposite variations

with k. The same holds for subbands b and b′, but they

are centred around a different energy, Eβ
B , and the am-

plitude of variations is different from that of subbands a
and a′.

V. EFFECTIVE TIGHT-BINDING
PARAMETERS

So far, we have separated different energy scales in
order to characterise the full, continuous spectra. In
Fig. 10, we illustrate the different energy scales present
in twisted moiré potentials as a reminder. First, we have
the basic structure of well-separated bands, which are
captured with a harmonic approximation around each
minima. Next, by coupling different minima in a moiré
cell together, degenerate harmonic states are split into
distinct subbands, with intra-cell tunnellings governing
the separation between each subband. Finally, by cou-
pling different moiré cells together, we introduce the final
energy scale of inter-cell couplings, which produces the
cosine-like features in the dispersion relations.

We now compare the predictions of the effective tight-
binding models constructed in Sec. IV with the ex-
act results obtained in Sec. III from the continuous-
space model. The parameters of tight-binding models
are obtained by fitting the tight-binding dispersion re-
lation for each subband to the corresponding one for
the continuous-space model. We show the momentum
dependence of some example bands and subbands in

Fig. 11, comparing continuous (upper row) and tight-
binding (lower row) dispersion relations at the moiré an-
gle of θ3,5. These plots show the momentum dependen-
cies only, i.e. onsite energy offsets are set to zero and
modulations of cosine functions are set to unity. From
the comparisons, we immediately see that the momentum
dependence of the continuous-space dispersions is accu-
rately captured with the tight-binding models. For the
ground state subband β = 1 in the first column of Fig. 11,
the dispersion relation follows the standard dispersion of
a 2D square lattice, Eq. (16). In the second and third
columns, corresponding to β = 2, we show two quasi-
degenerate subbands α = (b, b′). The dispersion rela-
tions are consistent with the non-standard forms given
in Eqs. (40) and (41), with Eq. (38). We also find good
agreement with the approximation of Eq. (43). Next,
in band β = 3, corresponding to the last 3 columns in
Fig. 11, we have two non-degenerate subbands α = d
(fourth column) and α = a (not shown), with disper-
sions again following that of a standard 2D square lat-
tice. Finally, in the last two columns, we show the de-
generate subbands α = c and α = b, which have strongly
anisotropic dispersions, arising due to the π/2-rotational
symmetry as discussed in the prior section, consistent
with Eqs. (28) and (29).
More precisely, we quantify the agreement between the

continuous-space and tight-binding models with a resid-
ual parameter γβα, defined as the average difference be-
tween the tight-binding εTBM and continuous-space εC
dispersion relations,

γβα =
ℓ2

4π2

∫ π/ℓ

−π/ℓ

∫ π/ℓ

−π/ℓ

dkx dky |εTBM(k)− εC(k)| .

(45)
Since the dispersions are scaled by the tunnelling rates
Jβ
α , we consider the ratio γβα/J

β
α for each band and sub-

band in order to provide meaningful comparisons. For a
tight-binding model to be accurate, we typically require
that γβα/J

β
α ≪ 1. In Fig. 11, we find that the largest

residuals are γβα/J
β
α ∼ 0.04, i.e. no noticeable differences

between dispersion relations. These errors may be fur-
ther reduced by including beyond nearest-neighbour cou-
plings within the tight-binding models. However, for this
work, we find it sufficient to only consider couplings with
separation up to the moiré length ℓ for high accuracy
across a range of potential depths.
For smaller potential depths V/Er, it is to be expected

that the effective tunnelling rates of tight-binding mod-
els will increase, but at the same time the validity of the
tight-binding approximation should progressively deteri-
orate. To understand the scaling of tight-binding param-
eters and the range of validity, we consider the moiré
potential for a range of potential depths V and two twist
angles, θ3,5 in Figs. 12(a1)-(a4) and θ2,1 in Figs. 12(b1)-
(b4). Here, different bands are coloured according to
the u-th minima in Fig. 3 and labelled according to the
equivalent harmonic energy/state Eu

n+,n−
. The match-

ing between states is performed by comparing the struc-
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β	=	1 β	=	2,	α	=	b β	=	2,	α	=	b' β	=	3,	α	=	d β	=	3,	α	=	c β	=	3,	α	=	b(a4)
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Figure 11. Momentum (k) dependence of the dispersion relations from the (a1)-(a6) continuous results when V = 6Er and
(b1)-(b6) fitted tight-binding models. The colourscales only show the momentum dependence of each dispersion relation, i.e.
without an onsite energy offset and width scaling by tunnelling rates. We consider bands and subbands (a1),(b1) β = 1;
(a2),(b2) β = 2 and α = b; (a3),(b3) β = 2 and α = b′; (a4),(b4) β = 3 and α = d; (a5),(b5) β = 3 and α = c; (a6),(b6) β = 3
and α = b. In all cases, lattice and continuous results are in good agreement. Equivalent properties are also observed for the
other bands and subbands.

ture and localisation of a continuous state with harmonic
eigenstates, e.g. continuous states that are Gaussian-like
around some minima u are labelled as Eu

0,0 and like-
wise for higher excitations in n±. As discussed, different
minima corresponds to different ladders of energy bands,
which may cross at certain values of V/Er. We then plot
some of the lowest ground state and excited bands to il-
lustrate this. In particular, we plot ϵ = ϵβ , the intra-cell,
or onsite energy of band β, which is equivalent to the av-
erage shift of subband energy, see Appendix C. We also
plot (γ/J)max, which is defined as the largest γβα/J

β
α for

band β. Finally, we also plot Jmax (the largest intercell
tunnelling of a band, in magnitude) and Imax (the largest
intracell tunnelling of a band, in magnitude). Note, we
take the absolute values of tunnellings to determine the
maximum, since both positive and negative tunnellings
exist within different bands. In Figs. 12(a1),(b1), we ob-
serve a familiar structure of energy gaps in the spectrum
to that of Fig. 4, with crossings at larger V ≃ 9Er (red
and purple diamonds) and V ≃ 11Er (green and pur-
ple diamonds) for the excited harmonic states. We find
that the energy shifts increase with the potential depth.
This is to be expected, since they are governed by the en-
ergies at the potential minima (proportional to V ) and
the frequencies of the harmonic approximation (propor-

tional to
√
V ). The quasi-linear behaviour observed here

suggests that the energy shifts are dominated by the for-
mer contribution while the latter is negligible. To show
that the tight-binding models are indeed valid across a
range of V , we plot the largest residuals (γ/J)max in
Figs. 12(a2),(b2), which shows that (γ/J)max ≪ 1 for
the majority of bands. For bands generated from excited
harmonic states (diamonds), the accuracy of the tight-
binding model is not as good for the considered potential

amplitudes, owing to larger on-site energies. We, how-
ever, expect to find good agreement for larger potential
amplitude, consistently with the observed tendency of
decreasing γ/J with V . The inter-cell (Jmax) and intra-
cell (Imax) couplings decrease exponentially with V , as
observed in Figs. 12(a3)-(b3) and (a4)-(b4). This is also
to be expected since the potential barriers increase with
V .

When considering large V/Er, all tunnellings and γβα
become smaller. In other words, each potential min-
ima/site of the tight-binding models are becoming decou-
pled, and can be described more accurately via the har-
monic approximation introduced in Sec. III. As V/Er be-
comes smaller, coupling between potential minima/sites
lift the degeneracies that are associated to the harmonic
approximation. However, localised Wannier functions
can still form in the low energy bands, resulting in very
small values of (γ/J)max, i.e. tight-binding theory can
still be applied. Generally speaking, higher energy bands
will have larger values of (γ/J)max, due to the more ex-
tended behaviour of the associated Wannier functions
across space. While visible distortions to the full 2D
dispersion are small, the continuous dispersion relation
is no longer modulated by nearest-neighbour tunnelling
alone, meaning that (γ/J)max is more sensitive to small
fluctuations. Finally, it is also important to note that
at smaller V/Er, the subbands of certain bands will no
longer be isolated in energy from other bands, hence the
considered tight-binding framework can not be applied.
For θ3,5, this occurs for the u = 2, 3, 4 minima around
V/Er ∼ 3 − 4. Similar properties also occur for excited
states within different minima, e.g. E1

0,1 and E2
0,1 bands

being absent for V/Er ≲ 7 (red/green diamonds).

The inter-cell tunnellings in Fig. 12(a3) usually grow
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Figure 12. Tight-binding parameters as a function of V/Er, for angles (a1)-(a4) θ3,5 and (b1)-(b4) θ2,1. For different bands,
we plot the (a1),(b1) onsite energy ϵ, the (a2),(b2) largest residual (γ/J)max, (a3),(b3) largest intercell coupling Jmax and the
(a4),(b4) largest intracell coupling Imax. Different bands are labelled according to the related harmonic energy Eu

n+,n− (see
main text), with colours for the u-th minima as in Fig. 3, where squares are ground states and diamonds are excited states.
Coloured dashed lines are guides to the eye, with the grey line in (a2),(b2) showing (γ/J)max = 1, i.e. the effective threshold
for the tight-binding validity.

in magnitude as the band index increases, giving the ap-
proximate ordering J1

α < J2
α < J3

α . . . and likewise for the
intra-cell couplings in Fig. 12(a4). The reason behind this
can be linked to the fact that higher band indices denote
states that are either localised in higher energy potential
minima, or excited Wannier states in the potential min-
ima, which extend further away from the minima and
thus enhance tunnelling probabilities. Note, there are
some special cases where this may not occur, e.g. between
bands 2 and 3 in Fig. 12(a3) (green and blue squares),
where the nearest-neighbour inter-cell couplings have the

separation ∼ ℓ/
√
2 rather than ∼ ℓ due to the superlat-

tice structure. For more general or more exotic moiré
potentials, a similar breakdown may also occur.

When considering different moiré angles, the distribu-
tion of tight-binding parameters can drastically change.
In Figs. 12(b1)-(b4), we plot the same results for the
commensurate angle θ2,1. For this angle, we have two
distinct minima as per Fig. 3(b), where bands and sub-
bands can be modelled using the same tight-binding mod-
els as before, with red points equivalent to band 1 from
Sec. IVA and green points equivalent to band 4 from
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Sec. IVB. The energy separation between minima for the
commensurate angle θ2,1 is larger, allowing for the for-
mation of more prominent spectral gaps in Fig. 12(b1).
Furthermore, the spatial separation between minima is
smaller, thus enhancing the observable tunnelling rates
in Figs. 12(b3)-(b4). This contrasts the behaviour ob-
served for θ3,5 from Figs. 12(a1)-(a4), in which the moiré
cell is enlarged, i.e. we have more distinct potential min-
ima, with smaller relative separations in energy. This
leads to more, but smaller gaps and tunnellings, since
the minima are distributed further across space.

VI. GENERALISATION: CLASSIFICATION OF
BANDS

So far, the bands we have studied for θ = θ3,5 and
θ = θ2,1 fall into 3 distinct classes. For completeness,
we now discuss the geometrical classification of bands for
arbitrary θ. When V/Er is deep enough, the low energy
eigenstates are well-localised around distinct sets of po-
tential minima. Each set forms a distinct geometry for
an underlying tight-binding model, with examples from
the prior sections.

Based on the 4-fold rotational symmetry and the fact
that there are at most 4 degenerate minima in the moiré
cell, we may generally identify 4 unique classes of bands
or geometrical arrangements that can appear in twisted
square moiré potentials. These are shown in Fig. 13, with
the green areas denoting regions of space where a site is
closer to the moiré cell boundary than the centre (regard-
less of a shift to the cell). In practice, we find that the
shortest distance between sites determines the strongest
couplings. It may, however, not be excluded that some
short-distance couplings are suppressed by high poten-
tial barriers. Hence, more precisely, in our classification,
sites in the white regions correspond to cases where intra-
cell couplings dominate over inter-cell couplings (as for
bands 1, 3, 4, and 5 discussed above), while, on the con-
trary, sites in the green regions correspond to cases where
inter-cell couplings dominate over intra-cell couplings (as
for band 2 discussed above). Note that the cases on the
upper and lower rows of the same column in Fig. 13 are
actually equivalent upon a shift or rotation of the unit
moiré cell.

A. Class I

We start with the simplest case of Class I in Fig. 13.
Here, we have effectively 1 potential minima enclosed by
the moiré cell, with components located at the cell cen-
ter or corners. The dispersion is then that of a square
lattice, which was discussed in Sec. IVA. Sites of Class
I bands are always located at the global minima of the
potential. There is one subtle point to note about these
bands, however. From the harmonic spectrum at larger
V/Er in Fig. 4(a1,b1), the n-th excited states in these

minima are implied to be (n+ 1)-fold degenerate, which
would require a generalised matrix diagonalisation pro-
cedure to describe the bands. However, in the continu-
ous spectrum, anharmonic terms will lift this degeneracy,
well beyond that of the tunnelling rates, as can be seen
more clearly in Fig. 4(b1), with the thicker grey lines
denoting non-degenerate states. In other words, excited
states that fall under the Class I specification can also be
described by the model in Sec. IVA.

B. Class II

In Fig. 13, we also show the configuration of Class II
bands. Here, we have 4 potential minima at the mid-
points of the unit cell edges. In other words, there are 2
effective minima enclosed by the cell, which would pro-
duce 2 subbands. At present, this class has not been
observed to form in the considered cases, but, in general,
we cannot rule out the possibility of this class forming at
arbitrary moiré potentials. The model of this bandstruc-
ture is a simplified version of the one covered in Sec. IVC.
Here a superlattice similar to that of Fig. 8(a2) is formed
but with a single site in each non-empty superlattice cell.
For this reason, there is a single type of state in each cell:
|A⟩ in blue cells and |A⟩′ in red cells. The Hamiltonian
is

Ĥ = ϵβ
∑
i

(Â†
i Âi + Â

′†
i Â

′

i) (46)

−W β
A

∑
⟨i,j⟩∈R↔B

Â†
i Â

′

j

−Jβ
A

∑
⟨i,j⟩∈B→B

Â†
i Âj − Jβ

A

∑
⟨i,j⟩∈R→R

Â
′†
i Â

′

j .

Note, here the on-site energy is directly ϵβ and the hop-
ping is not directional. The latter can be diagonalized as
ĤA in Sec. IVC, and we find two bands

εβa(k) = ϵβ − 2Jβ
A(cos kxℓ+ cos kyℓ)

+4W β
A

(
cos

kxℓ

2
cos

kyℓ

2

)
,

εβa′(k) = ϵβ − 2Jβ
A(cos kxℓ+ cos kyℓ)

−4W β
A

(
cos

kxℓ

2
cos

kyℓ

2

)
.

(47)

These formulas are similar to Eqs. (40) and (41) for

Jβ
A;x = Jβ

A;y and thus εβAA(k) = εβA′A′(k).

C. Class III

The next Class III geometries in Fig. 13 describe a
wider variety of bands in twisted moiré potentials. For
these cases, 4 potential minima are now located within
the unit cell. The minima are located outwith the green,
superlattice cell, i.e. they are localised towards the unit
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Class I Class II Class III Class IV

Figure 13. Unique arrangements of potential minima in a moiré cell with 4-fold rotational symmetry (blue/orange dotted lines
are symmetry lines), ordered into classes of tight-binding models/bands. Green areas denote regions of space that will always
be closer to an adjacent moiré cell than the centre, regardless of a shift to the cell. For Class I bands, we have one minima
in the centre of the cell, or, by shifting the cell, 1/4 minima at the 4 corners. For Class II bands, we have 1/2 minima at the
midpoints of each edge, or, by shifting the cell, 1 minima in the centre with 1/4 minima at 4 corners. Class III bands have 4
minima in the cell along symmetry lines, outside the green regions. Finally, Class IV bands have 4 minima inside the green
regions, or, by shifting the unit cell, 8 1/2 minima along the edges.

cell centre. The resulting Class III bands can then be
modelled using the procedures outlined in Sec. IVB.

D. Class IV

The final set of Class IV bands in Fig. 13 describes
a more complex series of bands that must be described
by a superlattice structure. There are again 4 potential
minima in the cell, but now located within the green, su-
perlattice cells. In other words, inter-cell couplings dom-
inate over intra-cell ones. This situation can be treated
using the superlattice scheme discussed in Sec. IVC for
band β = 2.

VII. CONCLUSIONS

In summary, we have discussed the single-particle spec-
trum of twisted moiré potentials across a range of po-
tential depths, and described how effective tight-binding
models are constructed in different bands. If the moiré
potentials are deep enough, each distinct minima of the
potential contributes to unique sets of bands within the
overall spectrum, with the exact form derived from the
anisotropic harmonic approximation. As the potential

depth is decreased, couplings between potential minima
become significant, thus lifting the harmonic degenera-
cies. Localised Wannier states can still form at potential
minima, allowing for bands and subbands to be char-
acterised by 1 of 4 distinct classes of tight-binding ge-
ometries. The latter are determined by a hierarchy of
energy scales encompassing strong local couplings, and
weak couplings that support long-range coherence. This
allows us to build various effective tight-binding models,
the parameters of which (tunnelling and onsite energies)
can be fitted to the exact continuous-space spectrum.

The effective tight-binding models we derive allow us
to understand the structure of energy bands, some of
which break individually the four-fold rotation symmetry
of the moiré potentials discussed here. Our findings are
also directly relevant to the many-body, bosonic counter-
part of Hamiltonian (1) with 2D contact interactions [37].
In the strongly-interacting regime, spectral gaps can be
mapped to insulating phases, and bands of states to com-
pressible phases. For the compressible domains, we may
have either a superfluid (SF) or normal fluid (NF), and
the tunnellings determined serve as typical temperature
scales where the system transitions from one to the other:
If the temperature T of the many-body system is such
that kBT ≲ Jβ

α for the corresponding band, then the
compressible phase will be that of a SF. Otherwise, for
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kBT ≳ Jβ
α , we will have a thermal, NF phase. Our re-

sults therefore illustrate the thermal stability of SF or-
der in twisted moiré potentials. In realistic experiments
with a typical T ∼ 10nK, we have kBT ∼ 10−2Er for
most atomic species. For most of the low energy bands,
we then have Jβ

α ≪ 10−2, i.e. SF order will generally
not be stable for small chemical potentials µ/Er. There
are, however, some exceptions, notably for moiré poten-
tials with smaller unit cells, in which effective couplings
are enhanced by virtue of the smaller separation between
sites [37].

The framework and procedures that we have intro-
duced to describe the bandstructure of twisted moiré po-
tentials can also be applied to other, more general twisted
potentials as well, e.g. a superposition of N periodic op-
tical lattices with different twist angles between them.
If this general potential has a periodic form, i.e. moiré
twisting angles, then different bands of states can be iden-
tified based off of the distribution of potential minima
in the moiré cell. However, generally speaking, by in-
creasing the number of superimposed lattices, we expect
moiré lengths to increase, i.e. tunnellings and SF order
will be weaker. Finally, the physics of twisted moiré po-
tentials can be linked to twisted bilayer or multilayer sys-
tems for strong interlayer couplings [36]. This includes
twisted bilayer graphene, which can be modelled using
state-dependent, hexagonal rather than square optical
potentials with a twist [34] and the procedures discussed
here could be extended to such cases as well.
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Appendix A: Geometrical Properties of Moiré
Potentials

Here, we provide further details and derivations on the
geometrical properties of twisted moiré potentials. To
begin, we discuss the origin of moiré angles. Given two
square lattice vectors

am,n/a = mx̂+ nŷ,

bm′,n′/a = m′Rθx̂+ n′Rθŷ,
(A1)

where x̂, ŷ are unit vectors along the x-, y-axis and Rθ

is the rotation matrix with angle θ

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, (A2)

a commensurate, or moiré angle is defined when the lat-
tice vectors intersect, i.e.

am,n =bm′,n′ ,(
m
n

)
=

(
m′ cos θ − n′ sin θ
n′ cos θ +m′ sin θ

)
,

(A3)

from which it follows that

cos θ =
mm′ + nn′

m′2 + n′2
, sin θ =

m′n−mn′

m′2 + n′2
. (A4)

The numbers in the numerators and denominators of
Eq. (A4)

Z1 = mm′ + nn′,

Z2 = m′n−mn′

Z3 = m′2 + n′2,

(A5)

are all integers since m, m′ n and n′ are integers. The
numbers Z1, Z2, and Z3 thus form a Pythagorean triple,
which imposes the constraint that m and n are coprime
integers, with m′ = n and n′ = m. Equation (A4) can
then be simplified as

cos θm,n =
2mn

m2 + n2
, sin θm,n =

n2 −m2

m2 + n2
, (A6)

where θm,n is the moiré angle, as per Eq. (4).
Two twisted lattices will therefore intersect at the

points r/a = (0, 0) and r/a = (m,n), separated by a

distance
√
m2 + n2/a. One would then expect, in gen-

eral, that this distance is the period of the moiré lattice
ℓm,n. However, some care has to be taken when consid-
ering the parities of m or n, and the uniqueness of θm,n.
The full set of moiré angles can be defined in the range
[0 . . . 45◦]. Any moiré angle outside this range will have
an equivalent angle to one within the range. For example,
θ2,1 ≈ 36.87◦. We also have θ3,1 ≈ 53.13◦ = −36.87◦, i.e.
cos θ2,1 = sin θ3,1. Both θ2,1 and θ3,1 are geometrically
equivalent, but care has to be taken in how the unit cell
is defined with the differentm and n. Let us consider two
cases: m+n as an odd number andm+n an even number.
Form+n odd, i.e. θ2,1 withm+n = 3,m2+n2 = 5 is also
an odd and prime number. For m+n even, i.e. θ3,1 with
m+n = 4, m2+n2 = 10 is an even number. Clearly, the
true moiré period must be ℓ2,1 =

√
5 ≡ ℓ3,1 =

√
10/2. In

summary, given a moiré angle θmo,no where mo + no is
an odd number, there is a geometrically equivalent moiré
angle θme,ne for me + ne as an even number, which are
related via

m2
o + n2o =

m2
e + n2e
2

. (A7)

Given this condition, the true moiré period ℓm,n is then
written as

ℓm,n/a =

{√
(m2 + n2)/2, if m+ n even,√
m2 + n2, if m+ n odd,

(A8)
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as per Eq. (6).
By superimposing two square optical potentials, we

can then generate a twisted moiré potential by tuning
the twist angle to θm,n. This generates an intricate su-
perlattice structure, with distinct sets of potential min-
ima in the moiré cell. The total number of distinct
minima in a moiré potential is found to follow the re-
lation given in Eq. (6). Note, this relation has been
modelled empirically. The formal derivation of the num-
ber of distinct minima requires solutions to the problem
∂V (r)/∂x = ∂V (r)/∂y = 0. However, to the best of
our knowledge, no analytical solutions to this problem
exist. Note, however, Eq. (6) always produces an in-
teger number, which can be shown as follows. As m
and n are two coprime integers, we may distinguish two
cases: (i) one is an odd number and the other is an even
number; (ii) both odd numbers. For case (i), m and
n have different parities and we may suppose m is odd
and n is even, without loss of generality. Generally, for
three integers a, b, c, it is easy to show that if a ≡ b
mod c, then a2 ≡ b2 mod c. For m as an odd number,
m ≡ 1 mod 4 or m ≡ 3 mod 4. Since 32 ≡ 1 mod 4,
we always have m2 ≡ 1 mod 4. For an even number
n, n2 ≡ 0 mod 4. Since m + n is odd, according to
Eq. (5), ℓm,n/a =

√
m2 + n2. So ℓ2m,n/a

2 = m2 + n2 ≡ 1
mod 4, which means that Mm,n [Eq. (6)] is an integer.
For case (ii), m and n are both odd numbers. For m
as an odd number, m ≡ 1 or 3 or 5 or 7 mod 8, then
m2 ≡ 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 mod 8. Similarly, for n as
an odd number, we also have n2 ≡ 1 mod 8. Then, we

have m2 + n2 ≡ 2 mod 8 and thus m2+n2

2 ≡ 1 mod 4.

As m+n is even, according to Eq. (5), ℓ2m,n/a
2 = m2+n2

2 .
So in this case also, Mm,n [Eq. (6)] must also be an in-
teger.

Appendix B: Eigenstate Basis to Lattice Site Basis

When constructing tight-binding models, it is also of
interest to consider their representation in the basis of
lattice sites, rather than the eigenstate basis. These rep-
resentations are also important for understanding the ori-
gin of anisotropic tunnelling rates in the eigenstate basis.
For band β = 1 (more generally Classes I and II bands
in Fig. 13), each moiré cell or superlattice cell will re-
spectively contain 1 lattice site, hence no conversion is
necessary for these bands. However, for the other bands
(Classes III and IV), the situation is different, since the
intra-cell Hamiltonians contain more than 1 unique eigen-
state.

1. Class III Bands

As discussed in Sec. IVB, tunnelling rates Jβ′

B;i,j must
be equal for a Class III band, but sign flipped to pre-
serve global 4-fold rotational symmetry. To show this,
we rewrite Hamiltonian (20) in the basis of lattice sites,

rather than the eigenstate basis. This can be done by
representing the eigenstates in Eq. (18) with operators
that create/destroy particles at one of the 4 intra-cell
sites. For example, we have âi = (ŝi + t̂i + ûi + v̂i)/2,
where the operators ŝi, t̂i, ûi, and v̂i destroy a particle at
sites 1, 2, 3, and 4 from Fig. 14, respectively. The other

eigenstate operators B̂i, Ĉi, d̂i can be represented in a
similar way. When we convert Hamiltonian (20) to the

lattice site basis, we will then have terms such as ŝ†i t̂j ,
e.g. a tunnelling operator from site 1 to site 2 of an adja-
cent cell, etc. Each site of a cell couples to 4 sites of an
adjacent cell, producing 16 distinct tunnelling rates and
onsite terms in the lattice site basis. For the tunnelling
operators, the coefficients between a site u in one cell and
a site v in an adjacent cell can be computed as

J β
u,v = Jβ

a auav + Jβ
d dudv + Jβ

B(BuBv + CuCv)

+W β
B;u,v(BuCv + CuBv)

(B1)

where the coefficients ai are the elements of eigenstate
|a⟩ at index i. Likewise, the intra-cell/onsite couplings
between sites u and v will be

ηβu,v = Eβ
a auav + Eβ

d dudv + Eβ
B(BuBv + CuCv). (B2)

One can then easily verify that for each u and v, ηβu,v
will simply be equal to one of the intra-cell parameters
of the original, decoupled Hamiltonian in Eq. (17), i.e.

ηβ1,1 = ϵβ , ηβ1,2 = Iβ , etc. Based on the geometry of

the moiré potential, the real-space tunnellings J β
u,v must

preserve 4-fold rotational symmetry, see Fig. 14. As an

example, this implies that J β
1,4 across the +y direction

must be equal to J β
3,4 across the +x direction. Each

tunnelling can be explicitly written as

J β
1,4 =

1

2
Jβ
a − 1

2
Jβ
d − 1

4
W β

B;1,4,

J β
3,4 =

1

2
Jβ
a − 1

2
Jβ
d +

1

4
W β

B;3,4.

(B3)

For rotational symmetry to be preserved, we must have

W β
B;1,4 = −W β

B;3,4. In other words W β
B;x = −W β

B;y =

W β
B , where x, y denotes the x and y directions.

2. Class IV Bands

A similar process can also be performed for Class IV
bands, such as β = 2. Each superlattice cell has two
sites, giving 4 unique couplings between two different
cells. The real-space tunnelling rates between the dif-
ferent types of cells are given by

J B→B
u,v = Jβ

A;u,vAuAv + Jβ
B;u,vBuBv

J R→R
u,v = Jβ

A′;u,vAuAv + Jβ
B′;u,vBuBv

J B↔R
u,v =W β

AAuAv +W β
BBuBv

(B4)
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Figure 14. Origin of inhomogeneous eigenstate couplings.
Here, we show sites in the lattice site basis (black numbers),
in a red central cell and 4 black neighbouring cells. Real-
space tunnellings J β

u,v between a site u in the red cell and v
in a black cell must preserve the 4-fold rotational symmetry
of the moiré potential. As an example, this implies that all of
the marked, blue tunnellings must be equal. These conditions
then impose constraints on the corresponding eigenstate-basis
couplings Jβ

α , according to Eq. (B1).

The intra-cell/onsite couplings can also be expressed as

ηβu,v = 2(Eβ
AAuAv + Eβ

BBuBv), (B5)

which are again equal to the intra-cell parameters of
Hamiltonian (31). The couplings J B→B

u,v and J R→R
u,v

have a similar form and corresponding unit cell, but are
aligned across different directions. In order to preserve 4-

fold rotational symmetry, we must also then have Jβ
A;x =

Jβ
A′;y, J

β
A;y = Jβ

A′;x, J
β
B;x = Jβ

B′;y and Jβ
B;y = Jβ

B′;x.

Appendix C: Extracting Tight-Binding Parameters
From Continuous Dispersions

Here, we outline the extraction of tight-binding param-
eters for the different classes of bands in Fig. 13.

1. Class I

Class I bands, such as band β = 1 in Sec. IVA for θ3,5,
have a standard cosine dispersion as per Eq. (16). The
average and amplitude of the dispersion relations can be
calculated to extract ϵβ and Jβ .

2. Class II

For Class II bands in Eq. (47), we have 2 equations
and 3 parameters to fit. First, we consider the average

dispersion

εβa(k) + εβa′(k)

2
= ϵβ − 2Jβ

A(cos kxℓ+ cos kyℓ), (C1)

from which εβa and Jβ
A can be found as per a Class I

band, independent from W β
A. Instead, W β

A is calculated
by fitting the difference of dispersions,

εβa(k)− εβa′(k)

2
= −4W β

A

(
cos

kxℓ

2
cos

kyℓ

2

)
, (C2)

which is independent of εβa and Jβ
A.

3. Class III

For Class III bands, such as those considered in
Sec. IVB, we must extract 3 intra-cell parameters and
4 inter-cell couplings from 4 dispersions. For the 2 non-

degenerate subbands a and d, eigenvalues Eβ
a,d and tun-

nellings Jβ
a,d can extracted from the standard cosine dis-

persions as per class I. For degenerate bands b and c, we
consider average and difference functions

εβb (k) + εβc (k)

2
= Eβ

B − 2Jβ
B(cos kxℓ+ cos kyℓ) = εβB(k),

(C3)
and

εβb (k)− εβc (k)

2
= −2W β

B(cos kxℓ− cos kyℓ) = εβ
′

B (k),

(C4)

which yield Eβ
B and Jβ

B , on the one hand, and W β
B , on

the other hand, from independent fits. The effective tun-

nelling energies Jβ
b and Jβ

c associated to the final disper-
sion relations are then found from Eq. (30). Finally, the
eigenvalues Eβ

α of the intra-cell Hamiltonian are simply
the energy shifts to each dispersion relation, allowing for
the intra-cell parameters to be calculated as

ϵβ =
1

4
(Eβ

a + Eβ
d + 2Eβ

B),

Iβ =
1

4
(Eβ

a − Eβ
d ),

Iβ′
=

1

4
(−Eβ

a − Eβ
d + 2Eβ

B),

(C5)

which is equivalent to Eq. (19).

4. Class IV

Finally, for Class IV bands, such as the one considered
in Sec. IVC, we first consider the average dispersion for
each degenerate set of subbands,

εβa(k) + εβ
a′ (k)

2
=
εβAA(k) + εβ

A′A′ (k)

2
=

Eβ
A − 2(Jβ

A;x + Jβ
A;y)(cos kxℓ+ cos kyℓ).

(C6)
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Here we focus on subbands A−A′, and similar formulas
are found for subbands B − B′. In this way, we can fit

the values for Eβ
A and Eβ

B , and determine the intra-cell
parameters from the energy shifts/eigenvalues

ϵβ =
1

2
(Eβ

A + Eβ
B),

Iβ =
1

2
(Eβ

A − Eβ
B),

(C7)

as well as the widths Jβ
A;x + Jβ

A;y and Jβ
B;x + Jβ

B;y. Next,
we take the differences,

εβa(k)− εβ
a′ (k) =

√(
εβAA(k)− εβA′A′(k)

)2
+ 4εβAA′(k)2

(C8)

First, we consider a k-direction in which εβAA′(k) = 0,
e.g. ky/ℓ = π. We then have

ε̃βa(k)− ε̃β
a′ (k) =

∣∣∣εβAA(k)− εβA′A′(k)
∣∣∣

= −2
∣∣∣(Jβ

A;x − Jβ
A;y)(cos kxℓ+ cos kyℓ)

∣∣∣ , (C9)

from which we may extract the widths Jβ
A;x − Jβ

A;y. We

may then solve for the individual couplings Jβ
A;x and

Jβ
A;y by using the results from Eq. (C6). Finally, we

can consider a k-direction in which εβAA(k) = εβA′A′(k),
i.e. kx = ky. This yields

εβa(k)− εβ
a′ (k) = 2εβAA′(k)

= −8W β
A

(
cos

kxℓ

2
cos

kyℓ

2

)
,

(C10)

allowing for W β
A to be extracted from the widths. The

parameters for the B −B′ subbands are found similarly.
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