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A controlled twist between separate potentials can drastically influence localization properties of quantum
particles between ordered and (quasi)disordered limits. Transport properties of single-particle and correlated
fermionic materials have been extensively studied in connection with twisted bilayer graphene, but their bosonic
counterpart remains largely unexplored. Here, we study bosonic matter in twisted potentials. We use continuous-
space quantum Monte Carlo simulations to determine the unique phase diagrams of strongly correlated ultracold
bosons in twisted optical lattices. For commensurate twisting angles, spectral gaps govern the formation of
insulators, separated by thin superfluid domains. These domains form weak superfluids; with low superfluid
fraction at zero temperature and high sensitivity to thermal fluctuations, but may be stabilized under appropriate
parameter control. In contrast, slightly changing the twisting angle to an incommensurate value destroys most
spectral gaps, leaving behind a prominent Bose glass phase. Our results are directly applicable to current
generation experiments that quantum simulate moiré physics.
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Introduction. In the field of condensed matter, strongly
correlated materials exhibit exotic phase transitions and en-
tanglement properties. This behavior may be enhanced in
systems that have flat energy bands, such as stacked two-
dimensional (2D) materials, for they exaggerate the role of
interactions over kinetic energy. To that end, much attention
has been devoted to the novel superconducting and insulating
phases of twisted bilayer graphene [1–3], which forms flat
bands at a set of magic twisting angles [4–10]. The resulting
lattice has an enlarged unit cell, forming a so-called moiré
superlattice pattern [11–13]. Away from magic angles, twisted
models exhibit long-range quasiperiodic order, connecting to
the physics of quasicrystals [14–19]. This case is, however,
unlike in solid-state bilayers, where commensurability via in-
teractions is strongly favoured during fabrication [11,20,21].
Twisted models can also be emulated in quantum simulators,
such as photonic materials [22,23], cavity polaritons [24], and
ultracold atoms [25–30]. These systems offer high control
over interactions and the underlying geometry of potentials.
Moreover, they pave the way to a new class of models, namely,
twisted bosonic matter, which has, so far, been little studied
compared to fermionic counterparts. Ultracold bosons in sim-
ple periodic potentials have been extensively investigated and
used to demonstrate Mott-insulator (MI) to superfluid (SF)
phase transitions [31,32]. If disorder is present, the Bose glass
(BG), a special kind of compressible insulator, can also appear
[33–36], and has been observed in both disordered [37–43]
and quasiperiodic models [37,44–52]. In recent years, these
procedures have also been extended to twisted optical lattices
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[53–57]. Here, the twist angle can be freely tuned between
commensurate and incommensurate values. So far, the role
of incommensuration has been discussed in connection with
ergodicity breaking in single-particle dynamics [58] and SF-
MI transitions in one-dimensional interacting Bose gases [59].

For this Letter, we study the exotic phase diagrams of
strongly correlated ultracold bosons within a twisted optical
lattice, for both commensurate and incommensurate angles.
Using a combination of quantum Monte Carlo (QMC) and
exact diagonalization, we show that, in spite of the potentials
having a very similar character, both cases behave completely
differently. For incommensurate angles, our results confirm
the presence of MI, SF, and BG phases, which we find to
be closely linked to the localization of single-particle states.
For commensurate angles, the BG is replaced by a series
of density-waves (DWs), separated by weak SF domains: a
thermally unstable SF with low SF fraction at zero tempera-
ture. These regions leave behind prominent normal fluid (NF)
phases even at low temperature. We show that weak SF phases
can, however, be stabilized with the parameters available in
current generation experiments.

Model. We consider an interacting, 2D gas of ultracold
bosons in an L × L box, with periodic boundary conditions.
The Hamiltonian is

Ĥ =
∫

dr �̂†[h̄2/2M(−∇2 + g̃0�̂
†�̂ ) + V (r)]�̂, (1)

where �̂ is the bosonic field operator at point r = (x, y), M
is the atomic mass, g̃0 is the dimensionless 2D contact inter-
action strength [60–63], and V (r) is the optical potential. The
potential is constructed via two rotated square lattices, with
period a,

V (r) = V1v(R−r) + V2v(R+r), (2)
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FIG. 1. (a1) Commensurate potential with θ3,5 ≈ 28.07◦ (black
square shows the unit cell) and (b1) incommensurate potential with
θ ≈ 27.13◦. (a2), (b2) QMC results for density versus shifted chem-
ical potential at each respective angle for V = 6Er, g̃0 = 4, k BT =
0.04Er, and L = 5�3,5 ≈ 20.62a. Plateaus in density are marked by
grey lines, with ρa2 < 1 (DW) and ρa2 = 1 (MI). Red numbers in
(a2) denote the index of the plateau p, which has 1 + 4(p − 1) atoms
per unit cell.

where v(r) = cos2(2πx/a) + cos2(2πy/a), V1,2 are the po-
tential depths, and R± the rotation with angle ±θ/2. Without
loss of generality, we consider cases where V1 = V2 = V [64].

All energies will be expressed in terms of the recoil en-
ergy Er = π2h̄2/2Ma2. For almost any angle θ,V (r) forms
an incommensurate (quasiperiodic) potential. However, for a
countable set of commensurate angles θm,n, it takes the form of
a commensurate (periodic) moiré potential. These angles are
defined by two coprime integers m and n that sum to an even
number [53], with θm,n = cos−1( 2mn

m2+n2 ), where the length �m,n

of the square unit cell is given by �m,n = a
√

(m2 + n2)/2. We
compare Fig. 1(a1) a commensurate potential for the angle
θ3,5 ≈ 28.07◦ with Fig. 1(a2) an incommensurate potential
for a small shift in angle to θ = 27.13◦. The first is strictly
periodic, with period �3,5 � 4.12a, and exhibits an exotic,
decorated unit cell. In contrast, the second is not periodic, but
shows a very similar potential profile, with hardly visible dis-
tortions. These small differences, however, result in markedly
distinct quantum phase diagrams.

Many-Body Phases. To calculate the exact phases, we
use continuous-space QMC simulations within the grand
canonical ensemble (temperature T and chemical potential
μ) [65,66]. We compute the average density ρ = N/L2,
where N is the total number of particles, the compressibility
κ = ∂ρ/∂μ, and the SF fraction fs = ϒ/ρ, where ϒ is the
superfluid stiffness [67]. Note, working in continuous-space
allows us to overcome frustration effects of lattice models
that would otherwise impede convergence of QMC. Such
frustration effects appear due to a mix of positive and negative
tunnelings, known in incommensurate potentials [68] and
also found here in commensurate cases. We plot the density ρ

versus the shifted chemical potential μ − Eg (Eg is the single-
particle ground-state energy) for Fig. 1(a2) commensurate

and Fig. 1(b2) incommensurate potentials. We fix V = 6Er,
and consider a strongly interacting gas with g̃0 = 4. Roughly
speaking, ultracold atom experiments can reach temperatures
of about 10 nK [69–71]. For 87Rb atoms and a typical
a = 350 nm, it gives k BT ≈ 0.04Er, which we use in the
QMC calculations for Fig. 1. Lower ratios of k BT/Er may
be reached at the same temperature using different atomic
species, e.g., 40K, for which k BT ≈ 0.02Er, or 7Li, for
which k BT ≈ 0.0036Er.

First, for the commensurate case with V = 6Er in
Fig. 1(a2), five plateaus in density (red numbers) are observed.
These correspond to incompressible, insulating phases with
κ = 0, in which we consistently find fs = 0 (not shown). If
the dimensionless density ρa2 is an integer, we have the stan-
dard MI phase. Here, we also find noninteger ρa2 plateaus,
indicating a DW phase. This phase is similar in character to
those identified in both superlattice [72,73] and quasiperiodic
[49,74] tight-binding models. Furthermore, a single DW-like
phase was also observed in experiments and mean-field calcu-
lations at θ1,22 ≈ 5.21◦ in Ref. [56]. The increments in density
are directly related to the geometry of the moiré potential.
First, the lowest DW plateau (p = 1) fills the lowest poten-
tial minima [blue points at the four corners of the unit cell
in Fig. 1(a1)], giving one atom per unit cell. The next DW
plateau (p = 2) fills the second four lowest minima (located
near the midpoints of the unit cell edges), giving now 1 + 4 =
5 atoms per unit cell. This pattern continues for all insulating
phases with ρa2 � 1. The density for the pth plateau is then
ρp = [1 + 4(p − 1)]/�2

m,n, corresponding to the black num-
bers in Figs 1(a2), 1(a3), and the total number of plateaus is
Mm,n = 1 + (�2

m,n/a2 − 1)/4. For the commensurate poten-
tial, we, therefore, have �2

3,5 = 17a2 and M3,5 = 5, consistent
with the results of Fig. 1(a2).

Figure 1(b2) shows the counterpart of Fig. 1(a2) for the
incommensurate potential. In spite of the strong similarity
between the potentials in Figs. 1(a1) and 1(b1), most plateaus
are now absent. Comparatively speaking, commensurate an-
gles form a singular, countable set immersed in a continuous
range of incommensurate angles, making the appearance of
vastly different physical properties for such a small change
in θ surprising. To explain this, we note, however, that any
incommensurate potential can be approximated by a commen-
surate one with very large m and n. This implies that Mm,n

diverges, so that each plateau becomes vanishingly narrow.
The spectral gaps then vanish, and the compressibility is finite.
Moreover, the moiré period increases, which weakens phase
coherence and induces localization in the incommensurate
limit. This forms a BG, with κ > 0 and fs = 0. Note, a DW
with ρa2 ≈ 0.93 survives due to a small single-particle gap in
the quasiperiodic potential.

Weak Superfluids. In our calculations, we find fs = 0 for
both potentials, consistent with the onset of DW, MI, and BG
phases. However, fs = 0 is also found for the commensurate
potential in compressible domains, while a SF is to be
expected due to the underlying periodicity of the system. The
absence of finite fs may be attributed to the moiré-enhanced
lattice period and the finite temperature. In other words,
tunneling is vanishingly small, and the system is thus unable
to stabilise superfluidity, even against very weak thermal
fluctuations.
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FIG. 2. (a1), (b1) IPRi of single-particle states for L = 15�3,5 ≈ 61.85a, at (a1) commensurate angle with θ3,5 ≈ 28.07◦ and (b1) incom-
mensurate angle with θ ≈ 27.13◦. (a2), (b2) QMC phase diagrams for the same potentials when g̃0 = 4, k BT = 0.01Er, and L = 5�3,5 ≈
20.62a. (a3), (a4) Examples of single-particle states below gap (a3) 1 and (a4) 3 are shown for the commensurate potential, which can be
mapped to tight-binding models. J1 and Jβ

α are couplings between states in nearest moiré unit cells (white cells).

To check this, we perform QMC calculations at lower
temperature k BT = 0.01Er, and compare with single-particle
properties. Figures 2(a1) and 2(b1) show the single-particle
spectra versus energy and potential depth for both com-
mensurate and incommensurate potentials, with L = 15�3,5 ≈
61.85a. The spectra are colored according to the inverse par-
ticipation ratio IPRi = ∫

dr|ψi(r)|4 of each state i, with blue
(red) regions mapping to extended (localized and/or critical)
states. Starting with the incommensurate case in Fig. 2(b1),
the low-energy states are primarily localized above a critical
potential depth (here V ≈ 2.5Er), as expected for a quasiperi-
odic system. The onset of single-particle localization is both
qualitatively and quantitatively consistent with the BG phase
for the corresponding many-body phase diagram in Fig. 2(b2),
while extended states map onto the SF phase. Narrow DW
regions, consistent with single-particle gaps, are also visible.

Let us now turn to the commensurate case. The single-
particle spectrum in Fig. 2(a1) displays five prominent gaps
(labeled 1 to 5), which quantitatively overlap the five insulat-
ing plateaus in the many-body phase diagram of Fig. 2(a2)
(1 to 4 are DWs, 5 is the MI). This quantitative mapping
is to be expected, owing to 2D fermionization of strongly
repelling bosons. Here, the single-particle states in different
bands occupy separated regions of the plane, so that energy is
minimized by filling each with up to one boson, hence mim-
icking local Pauli exclusion [51,75]. The spatial separation
of single-particle states is illustrated in Figs. 2(a3) and 2(a4),
which show the density distribution of eigenstates in the first
and third band, respectively. In the first band, the density is
concentrated at the nodes of the white, moiré unit cells, while
in the third band, it is concentrated around four points near
the center of each unit cell. Similar separation occurs with the
other bands.

Due to periodicity and Bloch’s theorem, all states are ex-
tended, with the underlying density profiles in Figs. 2(a3) and
2(a4) implying that different bands with index β correspond
to different tight-binding geometries [76], see also [77]. For
band β = 1, the picture is straightforward since there is one
site per unit cell, see Fig. 2(a3). This yields a standard square
lattice with period �3,5, which has a dispersion relation of

ε(k) = ε1 − 2
[
J1

x cos(kx�3,5) + J1
y cos(ky�3,5)

]
, (3)

where J1
x = J1

y = J1 owing to four-fold rotation symmetry.
Here J1 is the tunneling rate, ε1 is the on-site energy, and k =
(kx, ky) spans the first Brillouin zone [−π/�3,5 · · · + π/�3,5].
For V � 3Er, we find that the tight-binding prediction of
Eq. (3) is in excellent agreement with the continuous space
band structure.

For the other bands, we have a different scenario in which
each moiré cell contains four sites, see, for instance, Fig. 2(a4)
corresponding to band 3. Intracell couplings dominate over
intercell couplings, so that each band splits into four subbands
α (= a, b, c, and d) with width much smaller than the total
band width. The subbands a and d are well separated in
energy, and can thus described by a standard tight-binding
model, yielding dispersion relations similar to Eq. (3) with
Jβ

a,d;x = Jβ

a,d;y = Jβ

a,d . In contrast, the subbands b and c are
quasidegenerate and the four-fold rotation symmetry is broken
due to intercell coupling, i.e. Jβ

b,c;x �= Jβ

b,c;y [78].
By fitting these dispersion relations to the continuous space

band structure, we can then extract all relevant tunneling
energies. For V = 6Er, we find that the largest tunneling in
each band, Jβ

max = maxα (|Jβ
α |) ranges from J1

max ∼ 10−11Er

to J5
max ∼ 10−3Er [76].
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FIG. 3. QMC phase diagrams with g̃0 = 4, k BT = 0.01Er, and
L = 10�3,1 ≈ 22.36a, for the (a) commensurate angle θ3,1 ≈ 36.87◦

and (b) incommensurate angle θ ≈ 37.82◦.

To observe a distinct SF phase within band β, we
typically require that k BT � Jβ

max [79]. For V = 6Er, it
means k BT � 0.001Er, i.e., for 87Rb atoms T � 0.25 nK,
quite unrealistic for present-day experiments. For QMC
simulations and typical experiments with k BT ≈ 0.04Er,
thermal broadening strongly depletes the SF domains, leaving
behind a thermal NF phase, which explains the absence of
observable superfluidity in the calculations of Fig. 1. This
effect can, however, be somewhat mitigated by considering
smaller potential depths, in which the effective couplings Jβ

α

then become larger. For instance, when V = 3Er, the largest
tunnellings culminate to J2

max ≈ 0.0134Er, within band 2.
QMC calculations for varying temperatures confirm that a
sizable SF fraction appears roughly for k BT ∼ J2

max [76].
The phase diagrams in Fig. 2 are plotted for k BT = 0.01Er,
slightly below J2

max and, consistently, a small SF domain
appears for V = 3Er and (μ − Eg) ∼ 1.5Er in Fig. 2(a2).
Due to the small values of Jβ

α , however, SF domains between
insulators are very narrow and only present around V = 3Er,
with thermal fluctuations leading to the prevalence of the NF.

To further enhance the superfluidity between the insulating
plateaus without further reducing T or V , we may exploit
another controllable parameter of ultracold atoms, namely,
the twist angle θ . In Fig. 3(a), we plot another phase di-
agram for the same parameters as in Fig. 2(a2), but with

θ = θ3,1 ≈ 36.87◦. At this commensurate angle, the size of
the unit cell is now �3,1 ≈ 2.24a, giving M3,1 = 2. We con-
sistently find a single DW lobe (with ρa2 = 0.2) below the
MI (with ρa2 = 1). The smaller unit cell enhances tunneling
rates, which now culminate to J2

max = 0.042Er for V = 6Er.
We then find a prominent SF phase, leaving behind narrow NF
domains around the edges of DW and MI lobes. In between
these insulators, we find a low SF fraction, which varies from
fs ≈ 0.2 at V = 3Er to fs ≈ 0.1 at V = 6Er. The SF phase
transition is consistent with a Berezinski-Kosterlitz-Thouless
(BKT) mechanism, with a critical temperature in the range
Tc ≈ 0.025–0.03Er/k B. For the temperature T = 0.01Er/k B

and the size L ≈ 22.36a used here, thermal fluctuations and
finite-size effects are strongly suppressed [76]. Our results are
thus representative of quantum phase diagrams. Note, weak
superfluids are reminiscent of the recently observed SF-II in
bilayer Bose systems [56].

Consistently with the results above, a drastic change in
behavior is observed for a small angular variation to the in-
commensurate θ ≈ 37.82◦ in Fig. 3(b). Large DW and MI
lobes vanish, as well as the intermediate SF, leaving behind a
BG that is qualitatively similar to that observed for θ ≈ 27.13◦
in Fig. 2(b2).

Conclusion. We showed that bosonic matter in twisted
potentials with controlled twist angle can undergo a variety
of exotic phase transitions. Incommensurate angles induce
quasiperiodic potentials, which support BG phases over
large ranges of potential depths and chemical potentials. In
contrast, commensurate angles create moiré potentials, which
generates a family of DW lobes. Such insulating domains map
onto single-particle gaps, which separate bands and narrow
subbands. The narrow subbands support weak superfluids,
characterized by low SF fraction at zero temperature and high
sensitivity to thermal fluctuations. Sizeable SF domains can,
however, be stabilized by controlling the potential depth and,
more importantly, the twist angle. Our results are directly
applicable to current generation ultracold atom experiments,
by using configurations similar to Refs. [45,46,52], where
phases can be identified using standard matter-wave
interferometry and transport measurements. They may
also impact our understanding of fermionic systems in
strong-pairing regimes. Finally, our work may be extended to
other bosonic quantum simulation platforms using photonic
materials or cavity polaritons, where drive-dissipation
processes may induce novel effects.
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This supplemental material gives details about the construction of band-dependent tight-binding models and the
extraction of effective tunnelling energies (Sec. I), the finite temperature behaviour of the SF domains (Sec. II) and
the finite-size scaling of weak superfluid domains (Sec. III).

I. Band-dependent effective tight-binding models

To determine the tunnelling energies in periodic moiré potentials, we compare the energy spectra as found using
continuous-space exact diagonalization of the single-particle Hamiltonian and the prediction of effective tight-binding
models. On the one hand, we calculate the exact dispersion relations ε(k), with k the quasi-momentum, by applying
the Bloch transform ψ(r) = eik·ru(r) and solving the Schrödinger-like equation for u(r) within a single unit cell,
with length L = ℓ3,5. Figure S1(a1) shows the single-particle spectrum ε(k) hence obtained for the commensurate
potential with V = 6Er, across the high symmetry points of the first Brillouin zone, i.e. Γ → k = (−π/ℓ3,5,−π/ℓ3,5),
X → k = (+π/ℓ3,5,−π/ℓ3,5) and M → k = (+π/ℓ3,5,+π/ℓ3,5). For sufficiently large potential depths V , the single-
particle spectrum splits into distinct energy bands, where eigenstates fill degenerate local minima of the potential
consecutively, see for instance Figs. 2(a3) and (a4) of the main paper. The ground-state band corresponds to the filling
of the degenerate global minima arranged in a simple square lattice and displays the standard cosine-like dispersion
of Eq. (6) in the main paper, the width of which yields the tunnelling energy, as discussed in the main paper.

The other bands split into distinct subbands. Each one displays a cosine-like dispersion relation, although some of
them are distorted, see zooms given for band 3 in Figs. S1(a2)-(a4). To understand this, we note that the eigenstates
now correspond to the filling of 4 local minima within each unit cell. To model this structure in band β, we first
separate tunnelling energies between sites/spots into two distinct energy scales: tunnellings within a unit cell, noted
with an I, and tunnellings between adjacent unit cells, noted as Jα, where α labels the subband index (the band
index β is omitted to simplify notations). In general, intra-cell couplings are much larger than inter-cell couplings,
which allows us to treat the latter in perturbation of the former. Within a unique cell, we simply have a 4 sites, with
an example in Fig. 2(a4) of the main paper for band 3. Taking I as the nearest-neighbour tunnelling and I ′ as the
next-nearest-neighbour tunnelling, the Hamiltonian can be written as

Ĥ =


ϵ −I −I ′ −I
−I ϵ −I −I ′
−I ′ −I ϵ −I
−I −I ′ −I ϵ

 , (S1)

with ϵ the on-site energy. This matrix has eigenvalues

Ea = ϵ+ 2I − I ′,

EB,C = ϵ+ I ′,

Ed = ϵ− 2I − I ′,

(S2)

with degeneracy EB = EC . To capture tunnelling between sites in different unit cells, we then treat the problem as a
lattice of coupled 4-level systems, arranged as a square lattice with period ℓ3,5. The 4-level system corresponds to the
4 eigenstates of the matrix in Eq. (S1) and the inter-cell couplings are level-dependent. Energy-separation between
the subbands allows us to restrict to couplings between equal energy eigenstates. It allows us to write an effective
Hamiltonian of the form of

Ĥ = Ea

∑
i

â†i âi − Ja
∑
⟨i,j⟩

â†i âj + Ed

∑
i

d̂†i d̂i − Jd
∑
⟨i,j⟩

d̂†i d̂j

+ EB

∑
i

(B̂†
i B̂i + Ĉ†

i Ĉi)− JB
∑
⟨i,j⟩

(B̂†
i B̂j + Ĉ†

i Ĉj)−
∑
⟨i,j⟩

J ′
B;i,j(B̂

†
i Ĉj + Ĉ†

i B̂j),
(S3)



2

where i and j span the lattice sites, ⟨i, j⟩ denotes nearest-neighbour summations, and the operators âi, B̂i, Ĉi, and

d̂i annihilate a particle in the corresponding eigenstate of Eq. (S1). Note that the coupling J ′
B;i,j between the two

distinct states |B⟩ and |C⟩ depends on the direction, owing to the symmetry breaking induced by the choice of those
states but, due to 4-fold rotational symmetry, we necessary have J ′

B;x = -J ′
B;y ≡ J ′

B , with x and y denoting the
tunnelling across the x and y axis. By transforming the operators to momentum space, we then have

Ĥ =
∑
k

εa(k)â
†
kâk +

∑
k

εd(k)d̂
†
kd̂k +

∑
k

εB(k)(B̂
†
kB̂k + Ĉ†

kĈk) +
∑
k

ε′B(k)(Ĉ
†
kB̂k + B̂†

kĈk), (S4)

where

εa(k) = Ea − 2Ja [cos(kxℓ3,5) + cos(kyℓ3,5)] ,

εB(k) = EB − 2JB [cos(kxℓ3,5) + cos(kyℓ3,5)] ,

ε′B(k) = −2J ′
B [cos(kxℓ3,5)− cos(kyℓ3,5)] ,

εd(k) = Ed − 2Jd [cos(kxℓ3,5) + cos(kyℓ3,5)] .

(S5)

We may then diagonalise the summation involving B̂k and Ĉk operator introducing the new operators

b̂k = (B̂k + Ĉk)/
√
2 and ĉk = (B̂k − Ĉk)/

√
2, (S6)

which allows us to rewrite Eq. (S4) as

Ĥ =
∑
k

εa(k)â
†
kâk +

∑
k

εd(k)d̂
†
kd̂k +

∑
k

εb(k)b̂
†
kb̂k +

∑
k

εc(k)ĉ
†
kĉk, (S7)

(a1)

0

2

4

6 (a2)

(a3)

(a4)

1

2

3

4

5

2.135285

2.135280

2.223424

2.223421

2.317518

2.317516

Figure S1. (a1) Low-energy single-particle spectrum for the commensurate potential with θ = θ3,5 ≈ 28.07◦ and V = 6Er,
along high symmetry points of the first Brillouin zone. (a2)-(a4) Zooms in to the subbands of band β = 3.
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where

εb(k) = EB − 2
[
Jb cos(kxℓ3,5) + Jc cos(kyℓ3,5)

]
,

εc(k) = EB − 2
[
Jc cos(kxℓ3,5) + Jb cos(kyℓ3,5)

]
.

(S8)

and

Jb = JB + J ′
B and Jc = JB − J ′

B . (S9)

Note that, while each band b and c breaks the 4-fold rotation symmetry, the set of both restores it.
Finally, by fitting εa(k), εb(k), εc(k), and εd(k) to the continuous dispersion relations of each subband found

from diagonalization of the continuous-space Schrödinger equation, we are then able to determine all of the inter-cell
couplings J and J ′ of the effective lattice model for different bands β. In Table I, we give the largest (Jβ

max) and

smallest (Jβ
min) inter-cell couplings hence found for each band.

Band Jβ
min/Er Jβ

max/Er

1 4.40× 10−11 4.40× 10−11

2 8.34× 10−10 1.24× 10−6

3 7.89× 10−7 1.12× 10−6

4 2.84× 10−4 2.91× 10−4

5 2.70× 10−3 4.09× 10−3

Table I. Tunnelling coefficients of the effective lattice models for the five lowest-energy bands of the commensurate potential
with twist angle θ3,5 and amplitude V = 6Er.

II. Finite-temperature behaviour of weak superfluid domains

Here, we show results for the behaviour of weak SF domains as a function of temperature. In Fig. S2, we plot
the (a1) superfluid fraction fs and (a2) compressibility κ across the phase diagram for the commensurate potential
(Fig. 2(a2) from the main paper), for the fixed potential amplitude V = 3Er. As expected, we find that a sizeable
fs appears roughly when kBT is of the order of J2

max ≈ 0.0134Er (i.e. kBT/Er ≈ 0.03 ± 0.01). Starting with the
larger temperature of T = 0.04Er/kB (yellow curve) in Figs. S2(a1)-(a2), we find a broad region with fs = 0 and
κ > 0, clearly indicating the presence of a NF. By decreasing the temperature, we find that a SF domain appears with
increasing fs, slowly growing in width across µ. Furthermore, towards the left and right hand sides of Fig. S2(a2),
insulating regions, in which κ = 0, are also stabilised when the temperature decreases, corresponding to the onset of
DW plateaus. The remaining NF domains in which κ > 0 and fs = 0 therefore become smaller for decreasing kBT/Er,
as expected. Near by µ−Eg ≈ 1, we find a peak in compressibility. We expect that it becomes a SF but only at even
lower temperatures.

The counterparts for the incommensurate potential (corresponding to Fig. 2(b2) from the main paper) is shown
in Figs. S2(b1)-(b2). Here we observe different behaviour: The SF fraction fs remains vanishingly small, except in a
small domain where it is finite for the smaller temperatures T ≤ 0.01Er/kB, with values an order of magnitude smaller
than that for the commensurate case. The compressibility is non-zero at each point, and the regions with fs = 0 and
κ > 0 correspond to a BG.

III. Finite-size scaling of weak superfluid domains

To verify that the properties of weak superfluids are well converged in our QMC calculations, we consider both
finite-size and finite-temperature effects. In Fig S3, we plot the superfluid fraction fs (left column) and rescaled
superfluid density nsλ

2
T (right column) as a function of temperature for various system lengths and fixed values of

the chemical potential. Here ns = fsρ and λT =
√
2πℏ2/MkBT is the thermal de-Brogile wavelength. We consider

the potential amplitude V = 4Er for 3 system sizes at 3 chemical potentials between the DW and MI phase from
Fig. 3(a) in the main paper, i.e. a weak SF domain. For each case, we observe that fs converges towards a fixed value
fs < 0.2 as T → 0. In particular, for the results are well converge at the temperature T = 0.01Er/kB used in the
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Figure S2. (a1)-(b1) Superfluid fraction fs and (a2)-(b2) compressibility κ across a small range of µ for the same parameters
as Figs. 2(a2) and (b2) of the main paper when V = 3Er, for the commensurate (a1)-(a2) and incommensurate (b1)-(b2) angle
respectively.

calculations of the main paper. This shows that weak-superfluidity is retained. It contrasts the usual behaviour that
would be expected for a clean (homogeneous) SF phase, in which fs would converge towards unity as T → 0 [1].

Moreover, we find that below some critical temperatures in the range Tc ≈ 0.02 − 0.03 Er/kB, the SF fraction at
different system sizes generally coincide with another. This shows that finite-size effects are not important in this
regime. In some cases, we observe significant fluctuations but they do not alter the phase diagrams of the main paper.
In contrast, above the critical temperatures, we find that the curves at different lengths follow a clear trend, with
the superfluid fraction decreasing with system size, resulting in a NF. This behaviour is reminiscent of a Berezinski-
Kosterlitz-Thouless (BKT) transition, which we verify in Figs. S3(b1)-(b3) by plotting the rescaled superfluid density
nsλ

2
T for a slightly smaller range of temperatures. We find a behaviour consistent with a jump close to the the

universal jump expected in a clean system, nsλ
2
T ≈ 4 [2]. The critical temperatures for the superfluid fraction fs

convergence for each system size in Figs. S3(a1)-(a3) corresponds to nsλ
2
T ≈ 4. Similar to before, when we are above

Tc, the rescaled superfluid density nsλ
2
T is sensitive to finite-size effects. On the other hand, below Tc, different

superfluid density curves will follow similar trends, with no obvious finite-size effects. Our results suggests that the
SF transition belongs to the BKT class. A detailed study of the transition is, however, beyond the scope of our work.

In summary, these results show that the phase diagrams presented in our study are representative of the true
quantum phase diagrams, with weak SF behaviour persisting in the thermodynamic limit.
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Figure S3. Behaviour of weak superfluids versus temperature and system size. (a1)-(a3) Superfluid fraction fs and (b1)-(b3)
rescaled superfluid density nsλ

2
T for a range of temperatures T and three different system-sizes L, using the same parameters

as Fig. 3(a) in the main paper for V = 4Er. We fix (a1),(b1) (µ − Eg)/Er = 1.82, (a2),(b2) (µ − Eg)/Er = 2.12 and
(a3),(b3) (µ− Eg)/Er = 2.42.


