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Effective tight-binding models in optical moiré potentials
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A twist between two periodic systems offers the possibility to drastically control quantum transport properties.
At discrete sets of commensurate twisting angles, a moiré periodic pattern is formed, and the low-energy single-
particle spectrum forms distinct bands and gaps. Here, we consider twisted systems at a commensurate angle
made of two continuous-space periodic potentials. We devise a general approach, based on a hierarchy of energy
scales, to derive effective tight-binding models that capture the energy spectrum, focusing on the case of square
lattices. Localized states in the moiré unit cell are coupled by strong intracell and weak intercell tunnelings,
generating a series of energy bands and subbands that correspond to distinct, periodic lattices. For sufficiently
deep potentials, we find excellent agreement between the spectrum of the continuous-space system and the
tight-binding approximation thus constructed. Our approach allows for the interpretation of moiré band structures
and the extraction of parameters for the effective tight-binding models. Applications to the physics of many-body
systems and extensions to other twisted models are also discussed.
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I. INTRODUCTION

In condensed matter physics, twistronics has emerged as an
exciting field where novel electronic phenomena are observed
[1,2]. By stacking layers of twisted two-dimensional (2D)
materials, exotic properties can emerge from the complex
interplay of quantum interference, interparticle interactions,
and structural properties, ranging from moiré superlattices
[3–6] or excitons [7–9] to quantum Hall effects [10–13]. A
key component to the realization of these properties relates to
the underlying single-particle band structure. For instance, in
twisted bilayer graphene, the appearance of flat momentum
bands at magic twisting angles significantly enhances quan-
tum correlations [14–18], which leads to the appearance of
unconventional superconductivity [19–22] and highly corre-
lated insulators [23–25]. In addition, twisted systems allow
one to interpolate between periodic and quasiperiodic struc-
tures by adjusting the twist angle. In some materials, however,
interlayer couplings favor periodic structures, which obscures
quasiperiodic effects [3,26,27].

Over recent years, ultracold atomic gases have been pro-
posed as highly versatile platforms to quantum simulate a
variety of problems [28–33], including nonstandard lattice
models [34] and twisted systems [35–37]. Bilayer models
can be emulated, in which different internal atomic states
represent the different layers, which are Raman coupled and
subjected to optical lattices twisted one to the other [35].
Alternatively, a single-layer model can be realized when both
twisted optical lattices apply to the same internal state [38].
The latter case also models bilayers in the strong interlayer
coupling limit [37]. In all cases, the twist angle can be freely
tuned in experiments by adjusting the angular alignment of
optical lattices.

Generally speaking, arbitrary twist angles result in
quasiperiodic, or quasicrystalline, optical potentials. An inter-
esting set of quasiperiodic potentials are those which possess a

rotational symmetry incompatible with crystalline order, i.e.,
superimposed optical lattices that are aligned along forbidden
rotational symmetries [39–41]. In recent years, the exotic
properties of these quasiperiodic systems have been exten-
sively studied in both single-particle [42–44] and many-body
[45–49] scenarios. Alternatively, for a countable set of twist
angles, the same devices realize superlattice moiré patterns
with rich internal structure. Such potentials likewise exhibit
novel properties which are distinct from that of ordinary peri-
odic systems [38,50–53].

For both quasiperiodic and moiré lattices, the gapped-band
structure plays a central role in determining the physical be-
havior of single particles, as well as the many-body properties.
Importantly, bands and subbands can be mapped onto effec-
tive tight-binding models, which describe a lattice of sites
associated to localized Wannier states coupled by tunneling
processes. In the incommensurate case, the strong inhomo-
geneities of the potential induces a complex set of nonuniform
Wannier states, from which such models can be built [54]. In
the commensurate case, one can take advantage of periodicity.
For simple optical potentials, such as a square lattice, each
site is associated to a potential minimum and the structure of
the lattice simply reproduces the Bravais lattice of elementary
cells. In contrast, for moiré potentials, each elementary cell
has several potential minima that are not equivalent and effec-
tive tight-binding models need to be constructed with care.

An approach to constructing effective tight-binding models
for optical moiré potentials has been outlined in Ref. [38].
The primary objective of the present paper is to discuss this
construction in more detail and extract effective tight-binding
parameters by fitting them to the native continuous-space
model.

Within a moiré potential, each unit cell is composed of
unique sets of potential minima, forming distinct structures.
In general, resonant intracell couplings dominate and induce
separated subbands, while subdominant intercell couplings
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FIG. 1. Illustration of twisted moiré potentials. Here, we take (a) two optical lattices VA and VB with a twist angle θ between them. By
superimposing the two lattices, we generate a (b) twisted moiré potential. Examples of moiré potentials are plotted for commensurate angles
(c1) θ2,1 ≈ 36.87◦, (c2) θ3,5 ≈ 28.07◦, (c3) θ2,3 ≈ 22.37◦, and (c4) θ2,5 ≈ 43.60◦, with black squares showing the unit cells.

generate dispersion relations associated to different effective
tight-binding models, some of which possess a structure that
differs from the initial Bravais lattice. For some cases, how-
ever, intercell couplings dominate over intracell couplings,
and the construction of effective tight-binding models re-
quires the definition of bipartite lattices. By comparing the
energy spectra of the tight-binding and continuous-space
models, we are able to determine the validity of the former
and extract relevant physical parameters, including tunneling
rates. In this work, we focus our discussion to the sim-
plest case of square moiré lattices. However, our approach
is general and may be extended to other forms of twisted
potentials that have moiré unit cells with unique sets of
potential minima.

The layout of our results is as follows. First, we introduce,
in Sec. II, twisted optical moiré potentials as constructed
from the sum of two identical squares lattices making a com-
mensurate angle between each other, alongside a discussion
of the spectral properties as obtained from exact numerical
diagonalization for the continuous-space model in Sec. III.
Comparison with a harmonic approximation of the moiré
potential in the vicinity of the various minima allows us to
classify the main band structures. We then discuss, in Sec. IV,
the construction of effective tight-binding models in each
band, taking advantage of energy-scale separation between
intracell and intercell couplings. Accurate fitting between the
spectra obtained for tight-binding and continuous-space mod-
els can then be performed, which we outline in Sec. V. This
allows us to characterize the behavior and validity of the tight-
binding models. We finally discuss extensions to other moiré
potentials in Sec. VI, before ending with our conclusions
in Sec. VII.

II. TWISTED MOIRÉ POTENTIALS

We consider single particles trapped in a twisted optical
potential V (r), with Hamiltonian

Ĥ = − h̄2∇2

2M
+ V (r), (1)

where M is the particle mass and r = (x, y) is the position.
The twisted optical lattice is defined by

V (r) = V × [v(R+r) + v(R−r)], (2)

where V is the potential depth, R± is the rotation matrix
with angle ±θ/2, and, for concreteness, we consider squares
lattices such that

v(r) = cos2(πx/a) + cos2(πy/a), (3)

where a = λ/2 is the lattice constant and λ is the optical
wavelength. All energies will be expressed in terms of the
recoil energy Er = π2h̄2/(2Ma2). A visualization of the po-
tential is given in Figs. 1(a) and 1(b). For a specific set
of commensurate twist angles θ , it is possible to form pe-
riodic, moiré patterns in real space. Here we only outline
their properties, with further details and proofs presented
in Appendix A. The commensurate angles can be directly
written as

θm,n = cos−1

(
2mn

m2 + n2

)
, (4)

where m and n are coprime integers [35]. Since the underlying
structure is periodic and shows fourfold rotation symmetry,
the system possesses a well-defined square unit cell with
dimensionless size

�m,n/a =
{√

(m2 + n2)/2 if m + n even,√
m2 + n2 if m + n odd.

(5)

This set of moiré angles can be deduced by considering the
coincidence of two lattice vectors tilted by θm,n, where m and n
define an intersection point at r/a = (m, n). To determine the
true period, it is important to note that geometrically equiva-
lent moiré angles can exist for different m and n, and hence
for distinct m + n either even or odd; see details and proof
in Appendix A. In Figs. 1(c1)–1(c4), some examples of the
moiré potentials are plotted, with their corresponding moiré
unit cells. For larger integers m and n, the underlying moiré
cell is enlarged, with richer inhomogeneous structure. As will
be shown later in our discussions, a very important quantity
that characterizes the band structure is the total number of
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distinct, local minima or maxima of the potential, which is
given by

Mm,n =
{(

�2
m,n

/
a2 − 1

)
/4 if m + n even,(

�2
m,n/a2 − 1

)/
4 + 1 if m + n odd.

(6)

Note that in this align, Mm,n is always an integer, a formal
proof of which is provided in Appendix A.

III. SPECTRAL PROPERTIES

A. Dispersion relations

For a periodic potential V (r), the Hamiltonian Ĥ can be
solved using a standard Bloch transformation [55]. We write
the wave function as ψ (r) = eik·ru(r), where u(r) is a Bloch
function, which is periodic with period equal to the moiré
unit length �m,n, and k = (kx, ky) is the quasimomentum,
which can be restricted to the first Brillouin zone, kx/y�m,n ∈
[−π . . . π ]. Inserting the Bloch transformed wave function
into the Schrödinger align, Ĥψ (r) = Eψ (r) with Ĥ given in
Eq. (1), we obtain the reduced align

ε(k)u(r) =
[

h̄2

2M
(k2 − 2ik · ∇ − ∇2) + V (r)

]
u(r), (7)

where ε(k) spans the set of energies E that fulfill the pe-
riodic boundary conditions for each quasimomentum k. We
then solve for the Bloch functions u(r) and eigenenergies
(dispersion relations) ε(k) via exact diagonalization, using
discretization with a grid spacing of at least h/a = 0.05.
Since u(r) is a periodic function in the moiré unit cell,
we can diagonalize in an �m,n × �m,n box with periodic
boundary conditions without loss of generality. Through-
out this work, we refer to continuous-space calculations
as those in which Eq. (7) is diagonalized with some very
small discretization h/a, in contrast to discrete tight-binding
models.

In Fig. 2, we plot an example of the dispersion relations
ε(k) obtained in the first Brillouin zone for the moiré potential
with twist angle θ3,5 ≈ 28.07◦ and amplitude V = 6Er. As
expected for a sufficiently deep potential, we observe the
formation of wide spectral gaps, separating almost flat dis-
persive bands; see Fig. 2(a). The different bands are labeled
with an index β, which ranges from 1 to 5 for the considered
energy range. Each band (except β = 1) splits into a set of
narrower subbands (with index α). A magnification of band
β = 5, plotted in Fig. 2(b), shows that each subband displays
a cosinelike dispersion, which is to be expected for a deep
optical lattice. Note that the subbands α = 2 and α = 3 are
quasidegenerate, with each one corresponding to one branch
of the observed cross structure.

For the remainder of this work, we will discuss how
these results may be understood using tight-binding mod-
els. Generally speaking, tight-binding theories can be built
using the framework outlined in Appendix B. In brief, the
main bands (β) are explained by a simple harmonic approx-
imation around the local minima of the moiré potential, as
discussed in Sec. III B. In contrast, the subbands (α) and their
dispersion relations are explained by tight-binding models,

FIG. 2. Exact energy spectrum (E − Eg)/Er, with Eg the single-
particle ground-state energy, obtained from the continuous model for
amplitude V = 6Er and twist angle θ3,5 ≈ 28.07◦. Colored lines de-
note different bands of states with index β, with colors representing
distinct minima over which a state is distributed; see Fig. 3(a). In
(a), we plot the dispersion relations across high-symmetry points of
the first Brillouin zone, with a zoom in (b) given of subbands with
index α in band β = 5. For E − Eg � 5Er, well-separated bands can
no longer be identified (gray lines).

the structure of which depends on the band, as discussed
in Sec. IV.

B. Harmonic approximation

If V/Er is sufficiently large, the eigenstates are distributed
around the local minima of the potential. Neglecting tunneling
between degenerate local minima, which are sufficiently far
apart, each local minimum may accommodate a set of well-
localized Wannier functions, corresponding to the ground and
excited states in a given well. Figures 3(a) and 3(b) show such
local minima in a unit cell for the moiré potentials with twist
angles θ3,5 ≈ 28.07◦ and θ2,1 ≈ 36.87◦, respectively. The low-
est minimum (red, labeled by u = 1) is unique, while the
higher ones (green, u = 2; blue, u = 3; purple, u = 4) are
fourfold degenerate. Note that in agreement with Eqs. (5)

FIG. 3. Zoom of two twisted moiré unit cells for angles (a) θ3,5 ≈
28.07◦, where M3,5 = 4, and (b) θ2,1 ≈ 36.87◦, where M2,1 = 2,
using the same color scale as in Fig. 1. Colored points denote distinct
sets of potential minima with index u (white numbers), ordered from
lowest to highest energy. Note that minima located on the unit cell
edges or corners are marked by their geometrically identical local
maxima within the unit cell (sets 1 and 4), for clarity (see text).
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FIG. 4. Comparison of continuous (gray lines) and harmonic (colored lines) energy spectra (E − Eg)/Er, where Eg is the continuous
ground-state energy. The lowest gray lines thus correspond to Eg = 0. (a1)–(a4) The twist angle θ3,5 ≈ 28.07◦. (b1)–(b4) The twist angle
θ2,1 ≈ 36.87◦. From the left to right columns, we consider decreasing potential depths of (a1), (b1) V = 1000Er, (a2), (b2) V = 100Er, (a3),
(b3) V = 10Er, and (a4), (b4) V = 6Er. The colors of the harmonic energies denote the uth distinct set of potential minima, as in Fig. 3, with
some arrows at lower V/Er indicating bands in which continuous-space eigenstates match or look similar to a harmonic eigenstate.

and (6), we find, respectively, M3,5 = 4 and M2,1 = 2 dis-
tinct local minima in each unit cell. By shifting V (r) such that
the global minimum is enclosed in the unit cell center, i.e., a
positional shift of (+�/2, +�/2), and setting +V to −V , we
have the same potentials as depicted in Fig. 3. In other words,
twisted square moiré potentials will exhibit the same physics
for both blue- or red-detuned systems (i.e., localization of
atoms to minima or maxima), and hence we write the minima
with u = 1 (red) and u = 4 (purple) at the equivalent sets of
local maxima in Fig. 3 for compactness.

Expanding the potential around a local minimum centered
at R, we write

V (R + r) = V (R) + 1
2 (
xxx2 + 2
xyxy + 
yyy2)

+O(. . . ), (8)

where 
uv = ∂2V/∂u∂v and O(. . . ) accounts for anharmonic
corrections. Diagonalizing the Hessian matrix 
, we then find

V (R + r) ≈ V (R) + M

2
(ω2

+x′2 + ω2
−y′2), (9)

with

ω2
± =


xx + 
yy ±
√

(
xx − 
yy)2 + 4
2
xy

2M
,

(10)

and x′-y′ coordinates in a rotated orthogonal frame. The eigen-
values of the 2D harmonic oscillator in Eq. (9) are given by

En+/n− = V (R) + h̄ω+(n+ + 1/2) + h̄ω−(n− + 1/2), (11)

where n± ∈ N. If ω+ = ω−, the nth excited state of the spec-
trum will be (n + 1)-fold degenerate. However, in general,

we have ω+ �= ω−, i.e., all degeneracies are split, except for
some accidental matchings. The final spectrum is then the
combination of all energies from Eq. (11) for each potential
minimum labeled by its position R. Each minimum forms a
ladder set, which are degenerate within a given family of min-
ima u. Depending on the relative strength of V/Er, different
sets for different minima may be located between one another,
or potentially overlap, leading to an intricate spectrum.

In Figs. 4(a1)–4(a4), we compare the exact spectra of
Eq. (7) (gray lines) at midband k�m,n = (π/2, π/2) to that
of Eq. (11), using the moiré angle θ3,5 and for decreasing
values of V/Er. Colored lines show the harmonic energies
of Eq. (11), with different colors, corresponding to each
unique type of potential minimum shown in Fig. 3 and la-
beled by u = 1, 2, 3, and 4. Starting with the larger values
of V/Er = 1000 and V/Er = 100 in Figs. 4(a1) and (a2),
we find good agreement between the exact and harmonic
spectra. Each minimum forms a series of distinct bands,
where each state in a harmonic band matches a state in the
continuous-space bands (including degeneracies). Prominent
gaps can also form, depending on the relative separation be-
tween eigenenergies of the local minima. Discrepancies and
degeneracy splitting between exact and harmonic eigenener-
gies becomes more apparent at higher energy. This is expected
since the higher-energy eigenstates contain larger components
further away from a local minima, and anharmonic corrections
become more important. For smaller lattice amplitudes, for
instance V/Er = 10 and V/Er = 6 in Figs. 4(a3) and 4(a4),
we still find some qualitative agreement between the exact
and harmonic results for some of the lowest-energy states.
Some colored arrows for the lowest-energy states are also
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plotted, indicating which continuous-space bands match with
the harmonic bands in terms of similar looking eigenstates.
Discrepancies between energy levels are again seen due to
the fact that smaller V/Er will enhance anharmonic terms.
Overall, we find that the low-energy bands and gap structure
of the twisted moiré potential remains reminiscent of that of
the harmonic spectrum, with quantitative accuracy for large
potential depths.

Equivalent properties are also observed at different moiré
angles, e.g., θ2,1 as shown in Figs. 4(b1)–4(b4). For this angle,
we generally find larger gaps compared to that of θ3,5, which
can be explained as follows. Each θm,n corresponds to Mm,n

distinct local minima. If Mm,n is small (which implies that the
moiré cell is small due to the dependence on �m,n), the relative
energy between different minima will be large, therefore pro-
ducing wide spectral gaps. On the contrary, if Mm,n is large
(which implies that the moiré cell is also large), the underlying
gaps are less significant due to the smaller energy differences
between minima.

IV. TIGHT-BINDING MODELS

As discussed in the previous sections, the single-particle
spectrum of twisted optical potentials separates into distinct
energy bands. The energy range of the latter can be ap-
proximately understood via harmonic energies associated to
different sets of local minima. In order to describe the dis-
persion relation of the various bands, we now introduce finite
tunneling rates between these minima. Tunneling processes
are dominated by the resonant ones, i.e., those that cou-
ple minima with equal energies. This leads to tight-binding
models with different structures in different bands, as we
discuss now. Throughout this section, we focus on the case
of amplitude V = 6Er and twist angle θ = θ3,5 from Fig. 2.
However, as we will show, the approaches and classifications
here can be applied to any commensurate angle and suffi-
ciently large potential amplitude. To ease on notation, we omit
the commensurate twist angle indices and write the moiré unit
length � = �m,n.

A. Band β = 1

We start with the simplest case of band β = 1, which
describes the ground state, the density distribution of which
is shown in Fig. 5(a1). The approach we use is standard and
we briefly outline it for reference. Since there is a single
minimum in each unit cell, we can model the band with a
simple square lattice, where sites are located at those minima,
as in Fig. 5(a2). In such bands, the Hamiltonian is

Ĥ = εβ
∑

i

â†
i âi − Jβ

∑
〈i, j〉

â†
i â j, (12)

where i, j are site indices, εβ is the on-site energy, Jβ is
the corresponding tunneling between sites, and 〈i, j〉 denotes
summation over nearest-neighboring sites. The dispersion re-
lation is readily found by introducing the Fourier-transformed
operators,

âi = 1√
N

∑
k

âkeik·ri , (13)

FIG. 5. Plot of (a1) the ground-state density profile for band 1
and (a2) the corresponding tight-binding model, taking density spots
as lattice sites (purple disks) with nearest-neighbor coupling J1. This
produces a square lattice with period �, where the white and black
squares in (a1) and (a2) denote the moiré unit cell.

where N is the total number of sites and k spans a discrete set
of step 2π/N in each direction x and y within the first Brillouin
zone, kx/y� ∈ [−π . . . π ]. Using∑

i

ei(k−k′ )·ri = Nδk,k′ (14)

and ri spanning the lattice sites, Hamiltonian (12) may be
written as

Ĥ =
∑

k

ε(k)â†
kâk, (15)

where the dispersion relation ε(k) is given by

ε(k) = εβ − 2Jβ (cos kx� + cos ky�). (16)

This generates a standard band dispersion relation with cosine
dependence in both the x and y directions. The unknown quan-
tities εβ and Jβ can then be readily extracted by fitting Eq. (16)
to the exact dispersion relation found from continuous-space
calculations, as done in Sec. III A. The result is discussed
in Sec. V.

B. Bands β = 3, 4, 5

For all other bands, we have a different situation, where
there are now four potential minima within each moiré cell,
with different geometries in different bands; see Fig. 6 for
bands β = 3, 4, and 5. For now, we forgo the discussion
of band 2, which is more complicated, and focus on bands
3–5. In order to model one of these bands, we separate the
tunneling rates into two distinct energy scales: intracell tun-
nelings (Iβ and I ′β for band β) and intercell tunneling (Jβ

α

for subband α in band β). Owing to the exponential decay
of tunneling rates with site separation, the intracell couplings
generally exceed the intercell couplings, i.e., Iβ, I ′β � Jβ

α .
We may then treat the intercell couplings as perturbations of
the intracell ones.

We begin by writing the Hamiltonian describing the in-
tracell tunnelings within one unit moiré cell, corresponding
to one of the green squares in Figs. 6(a2), 6(b2), and
6(c2). Note that in Figs. 6(b2) and 6(c2), we have shifted
the green unit cell across the diagonal in order to enclose
four sites in the vicinity of the cell center and have a
description similar to that of band 3 in Fig. 6(a2). Each
unit cell contains four sites located at the spots of the
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FIG. 6. Plots of the (a1), (b1), and (c1) density profiles for a
state in bands 3, 4, and 5, respectively, and (a2), (b2), and (c2) the
corresponding tight-binding models, taking density spots (maxima)
as lattice sites (purple disks). The green squares in (a2), (b2), and
(c2) are unit cells of length �, which contain four sites with nearest-
neighbor coupling Iβ (blue) and next-nearest-neighbor coupling
I′β (red).

considered band. In matrix form, the Hamiltonian can be
written as

Ĥcell =

⎛
⎜⎜⎜⎝

εβ −Iβ −I ′β −Iβ

−Iβ εβ −Iβ −I ′β

−I ′β −Iβ εβ −Iβ

−Iβ −I ′β −Iβ εβ

⎞
⎟⎟⎟⎠, (17)

where Iβ denotes nearest-neighbor tunneling, I ′β is next-
nearest-neighbour tunneling, and εβ is the on-site energy of
the band. Since all sites lie in equivalent potential minima
and the system has fourfold rotational symmetry, εβ is the
same for each site. Moreover, each set of intracell tunnelings
is equal. The matrix in Eq. (17) can thus be diagonalized, with

FIG. 7. Intercell couplings between the intracell eigenstates from
Eq. (18) and nearest-neighbor green unit cells as in Figs. 6(a2),
6(b2), and 6(c2). Black lines denote the states of each subband α,
with corresponding energy Eβ

α , where Eβ

B = Eβ

C . The energy spacing
between states is shown outside the right-hand green cell.

normalized eigenstates given by

|a〉 = 1

2

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠, |B〉 = 1√

2

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠,

|C〉 = 1√
2

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠, |d〉 = 1

2

⎛
⎜⎜⎝

1
−1
1

−1

⎞
⎟⎟⎠, (18)

and eigenvalues

Eβ
a = εβ + 2Iβ − I ′β, Eβ

B,C = εβ + I ′β,

Eβ

d = εβ − 2Iβ − I ′β, (19)

where the degeneracy Eβ
B = Eβ

C is also due to the fourfold
rotational symmetry. Each isolated moiré cell of Fig. 6 can
thus be described as a four-level system, with each level
corresponding to each eigenstate of Hamiltonian (17). Two of
them (a and d) are isolated in energy, while two others (B and
C) are exactly degenerate due to fourfold rotational symmetry
of the system. It implies that the state |C〉, which is obtained
by a π/2 rotation of the state |B〉, has exactly the same energy
as the latter. We adopt a convention where uppercase and
lowercase letters denote degenerate and nondegenerate states,
respectively.

To capture tunneling between nearest-neighbor moiré cells,
we then couple the four-level systems by different intercell
tunnelings, as depicted in Fig. 7. This forms an effective
square lattice with period �, where each site has four internal
states. Restricting ourselves to the dominant (resonant) inter-
cell tunnelings between equal energy eigenstates, we find the
effective tight-binding Hamiltonian,

Ĥ = Eβ
a

∑
i

â†
i âi − Jβ

a

∑
〈i, j〉

â†
i â j + Eβ

B

∑
i

(B̂†
i B̂i + Ĉ†

i Ĉi )

− Jβ
B

∑
〈i, j〉

(B̂†
i B̂ j + Ĉ†

i Ĉ j ) −
∑
〈i, j〉

W β
B;i, j (B̂

†
i Ĉ j + Ĉ†

i B̂ j )

+ Eβ

d

∑
i

d̂†
i d̂i − Jβ

d

∑
〈i, j〉

d̂†
i d̂ j, (20)
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where âi, B̂i, Ĉi, and d̂i are the annihilation operators of a
particle in site i for the corresponding eigenstate in Eq. (18).
Note that a directional dependence in the coupling W β

B;i, j
between different degenerate states from adjacent sites is nec-
essary to account for the crossed features of quasidegenerate
subbands as in the center of Fig. 2(b). However, overall,
fourfold symmetry of the system implies that the values of
the coefficients W β

B;i, j are opposite in orthogonal directions,

i.e., W β
B;x = −W β

B;y; see details in Appendix C 1. To determine
the dispersion relations, we again introduce Fourier-transform
operators as in Eq. (13) for each state |a〉, |B〉, |C〉, and |d〉.
The momentum-space Hamiltonian is then

Ĥ =
∑

k

εβ
a (k)â†

kâk +
∑

k

ε
β

d (k)d̂†
k d̂k

+
∑

k

ε
β
B (k)(B̂†

kB̂k + Ĉ†
kĈk )

+
∑

k

w
β
B (k)(B̂†

kĈk + Ĉ†
kB̂k ), (21)

with

εβ
a (k) = Eβ

a − 2Jβ
a (cos kx� + cos ky�), (22)

ε
β
B (k) = Eβ

B − 2Jβ
B (cos kx� + cos ky�), (23)

w
β
B (k) = −2W β

B (cos kx� − cos ky�), (24)

ε
β

d (k) = Eβ

d − 2Jβ

d (cos kx� + cos ky�). (25)

To remove the nondiagonal operators of the form B̂†
kĈk and

Ĉ†
kB̂k, we rewrite B̂k and Ĉk in terms of new operators that

diagonalize the coupling part, i.e.,

(B̂†
k Ĉ†

k )

(
ε

β
B (k) w

β
B (k)

w
β
B (k) ε

β
B (k)

)(
B̂k

Ĉk

)

= (b̂†
k ĉ†

k )

(
ε

β
B (k) + w

β
B (k) 0

0 ε
β
B (k) − w

β
B (k)

)(
b̂k
ĉk

)
,

(26)

where b̂k = B̂k+Ĉk√
2

and ĉk = B̂k−Ĉk√
2

, allowing Hamiltonian (21)
to be diagonalized as

Ĥ =
∑

k

εβ
a (k)â†

kâk +
∑

k

ε
β

d (k)d̂†
k d̂k

+
∑

k

ε
β

b (k)b̂†
kb̂k +

∑
k

εβ
c (k)ĉ†

kĉk, (27)

where ε
β

b,c(k) = ε
β
B (k) ± w

β
B (k), i.e.,

ε
β

b (k) = Eβ
B − 2

(
Jβ

b cos kx� + Jβ
c cos ky�

)
, (28)

εβ
c (k) = Eβ

B − 2
(
Jβ

c cos kx� + Jβ

b cos ky�
)
, (29)

and

Jβ

b = Jβ
B + W β

B and Jβ
c = Jβ

B − W β
B . (30)

From this, there are four distinct dispersion relations, given
by Eqs. (22), (25), (28), and (29), corresponding to four dis-
tinct subbands, α ∈ {a, b, c, d}. Subbands a and d have the

FIG. 8. Plot of the (a1) density profile for a state in band 2 and
(a2) the corresponding tight-binding model, taking spots as lattice
sites (purple disks). The blue and red squares in (a2) are unit cells of
length �/2, which contain two sites with nearest-neighbor coupling
Iβ (black). The light-gray line in (a2) shows the original moiré cell
from (a1), with the red and blue cells forming a superlattice structure
in this unit cell.

standard dispersion relation, with different shifts Eβ

a,d and

tunnelings Jβ

a,d . In contrast, the subbands b and c have the

same shift but different dispersion relations. Each one, ε
β

b (k)
and εβ

c (k), is anisotropic and breaks the fourfold rotational
symmetry individually. However, the combination of both
does not because they are rotated by an angle π/2 with respect
to one another. In other words, if we rotate the whole system
by π/2, we recover the same set of dispersion relations. Sim-
ilar to band 1, the energy shifts Eβ

α and band widths Jβ
α can

then be extracted by fitting them to the continuous dispersion
relations; see Sec. V.

C. Band β = 2

In order to derive the tight-binding model for band 2, we
follow a process similar to that of bands 3–5, where we sepa-
rate strong and weak couplings. For band 2, however, the sites
or spots are now located near the moiré unit cell boundaries, so
that the dominant couplings are across these boundaries; see
Fig. 8(a1). To derive the relevant tight-binding model, we use
a superlattice of strongly coupled internal states, as depicted
in Fig. 8(a2). The smaller blue and red cells, with length �/2,
now contain pairs of sites with the strongest couplings. This
allows us to treat intercell couplings in perturbation of intra-
cell couplings, consistent with the prior discussions. Note that,
however, there are two types of cells (blue and red), which are
identical up to a π/2 rotation. Here, the inner Hamiltonian for
each blue or red cell is

Ĥcell =
(

εβ −Iβ

−Iβ εβ

)
, (31)

which has eigenvalues

Eβ
A = εβ + Iβ, Eβ

B = εβ − Iβ, (32)

and normalized eigenstates

|A〉 = |A′〉 = 1√
2

(
1
1

)
, |B〉 = |B′〉 = 1√

2

(
1

−1

)
, (33)
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FIG. 9. Coupling of states from Eq. (31) between red-to-red,
blue-to-blue, and red-to-blue cells of Fig. 8(a2). Black lines denote
the states of each subband α, with corresponding energy Eβ

α . Due to
fourfold rotational symmetry, we have Eβ

A = Eβ

A′ and Eβ

B = Eβ

B′ . The
energy spacing between states is shown outside the right-hand cells.

where the eigenstates (|A〉, |B〉) and (|A′〉, |B′〉) belong to the
blue and red cells in Fig. 8(a2), respectively. The implicit basis
used to write the Hamiltonian and the eigenstates, given by
Eqs. (31) and (33), is rotated with an angle π/2 for red cells
with respect to blue cells. This creates two energy-separated
subbands, A − A′ on the one hand and B − B′ on the other
hand, with negligible couplings between the two. In contrast,
couplings between A and A′ states, which have degenerate on-
site energies, must be taken into account. The same holds for
B and B′ states. By coupling the different cells as in Fig. 9
and retaining only the nearest-neighbor terms of each type,
the Hamiltonian for band β = 2 can be expressed as

Ĥ = ĤA + ĤB, (34)

with

ĤA = Eβ
A

∑
i

(Â†
i Âi + Â′†

i Â′
i ) −

∑
〈i, j〉∈R↔B

W β
A Â†

i Â′
j

−
∑

〈i, j〉∈B→B

Jβ
A;i, j Â

†
i Â j −

∑
〈i, j〉∈R→R

Jβ

A′;i, j Â
′†
i Â′

j, (35)

and a similar formula for ĤB, where 〈i, j〉 ∈ B ↔ R denotes a
sum over pairs of nearest-neighboring cells from both a blue
cell to a red cell and a red cell to a blue cell, i.e., 〈i, j〉 ∈
B → B between blue cells and 〈i, j〉 ∈ R → R between red
cells. Since the red cells (corresponding to the primed
symbols) are obtained from a π/2 rotation of blue cells
(corresponding to the nonprimed symbols), we must have
Jβ

A;x = Jβ

A′;y, Jβ
A;y = Jβ

A′;x, Jβ
B;x = Jβ

B′;y, and Jβ
B;y = Jβ

B′;x; see
Appendix C 2. The unit cell with only blue-to-red intercell
couplings has a smaller square length of �/

√
2, and larger

square Brillouin-zone length of 2
√

2π/�. In the following,
we restrict the discussion to the subband A − A′. Since the
Hamiltonians ĤA and ĤB have the same structure, all formulas
for the subband B − B′ are the same as for the subband A − A′
replacing A’s by B’s.

By transforming the operators to momentum space, the
Hamiltonian reads

ĤA =
∑

k

[
ε

β
AA(k)Â†

kÂk + ε
β

A′A′ (k)Â′†
k Â′

k

]

+
∑

k

w
β

AA′ (k)(Â†
kÂ′

k + Â′†
k Âk ), (36)

where

ε
β
AA(k) = Eβ

A − 2
(
Jβ

A;x cos kx� + Jβ
A;y cos ky�

)
,

ε
β

A′A′ (k) = Eβ
A − 2

(
Jβ

A;y cos kx� + Jβ
A;x cos ky�

)
, (37)

w
β

AA′ (k) = −4W β
A

(
cos

kx�

2
cos

ky�

2

)
.

To diagonalize the problem, we then use a similar procedure
as before and introduce new operators â, â′, â†, and â′†, which
diagonalize terms coupling Â, Â′, Â†, and Â′†,

(Â†
k Â′†

k )

(
ε

β
AA(k) w

β

AA′ (k)

w
β

AA′ (k) ε
β

A′A′ (k)

)(
Âk

Â′
k

)

= (â†
k â′†

k )

(
εβ

a (k) 0

0 ε
β

a′ (k)

)(
âk
â′

k

)
, (38)

where

εβ
a (k) = ε

β
AA(k) + ε

β

A′A′ (k) +
√[

ε
β
AA(k) − ε

β

A′A′ (k)
]2 + 4w

β

AA′ (k)2

2
(39)

and

ε
β

a′ (k) = ε
β
AA(k) + ε

β

A′A′ (k) −
√[

ε
β
AA(k) − ε

β

A′A′ (k)
]2 + 4w

β

AA′ (k)2

2
.

(40)
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Using these formulas and similar ones for the B − B′ subband, we find that the final Hamiltonian is

Ĥ =
∑

k

εβ
a (k)â†

kâk +
∑

k

ε
β

a′ (k)â′†
k â′

k +
∑

k

ε
β

b (k)b̂†
kb̂k +

∑
k

ε
β

b′ (k)b̂′†
k b̂′

k. (41)

We thus find four distinct subbands α ∈ {a, a′, b, b′} within
band β = 2.

We can then extract the energy shifts Eβ
A and Eβ

B , as
well as the intercell tunnelings Jβ

A;x, Jβ
A;y, W β

A , Jβ
B;x, Jβ

B;y,

and W β
B , by fitting them to the continuous-space disper-

sion relations; see Appendix D 4. Note that these bands
have nonstandard dispersion relations, given by Eqs. (39)
and (40), with Eq. (37). In most cases, couplings between
blue-to-red cells dominate over those between cells with
the same due to the smaller distance; see Fig. 8(a2). We
then have

ε
β

a/a′ (k) ≈ Eβ
A ± w

β

AA′ (k) = Eβ
A ∓ 4Jβ

a

(
cos

kx�

2
cos

ky�

2

)
,

ε
β

b′/b′ (k) ≈ Eβ
B ± w

β

BB′ (k) = Eβ
B ∓ 4Jβ

b

(
cos

kx�

2
cos

ky�

2

)
,

(42)

with Jβ

a/b = W β

A/B. The momentum dependence can be
written as

4W β cos
kx�

2
cos

ky�

2
= 2W β

(
cos

k̄x�√
2

+ cos
k̄y�√

2

)
, (43)

with k̄x = k · x̄ and k̄y = k · ȳ, where x̄ = (x̂ + ŷ)/
√

2 and
ȳ = (x̂ − ŷ)/

√
2 are unit vectors of the smaller (rotated)

square lattice. The subbands a and a′ are thus centered around
energy Eβ

A and have almost opposite variations with k. The

Harmonic

Bands

Intracell

Splitting

Intercell

Coupling

FIG. 10. Energy scales within twisted moiré potentials. On the
left, we have degenerate harmonic bands with characteristic separa-
tion h̄ω, corresponding to the four sites (purple disks in the lower
gray square) of an isolated moiré cell. By coupling the sites from a
given unit cell, degenerate harmonic bands are split into subbands,
with separation depending on the intracell tunneling I. Finally, by
coupling nearest-neighbor moiré cells, the energy spectrum will ex-
hibit cosinelike dispersions for each subband, with width scaled to
the intercell tunneling J .

same holds for subbands b and b′, but they are centered around
a different energy Eβ

B and the amplitude of variations is differ-
ent from that of subbands a and a′.

V. EFFECTIVE TIGHT-BINDING PARAMETERS

So far, we have separated different energy scales in order to
characterize the continuous-space spectra and devise effective
tight-binding models. Figure 10 illustrates the different en-
ergy scales present in twisted moiré potentials as a reminder.
First, we have the basic structure of well-separated bands,
which are captured with a harmonic approximation around
each minima. Next, by coupling different minima in a moiré
cell together, degenerate harmonic states are split into distinct
subbands, with intracell tunnelings governing the separation
between each subband. Finally, by coupling different moiré
cells together, we introduce the final energy scale of intercell
couplings, which produces the cosinelike features in the dis-
persion relations.

We now compare the predictions of the effective tight-
binding models constructed in Sec. IV with the exact results
obtained in Sec. III from the continuous-space model. The
parameters of tight-binding models (energy shifts Eβ

α and
band widths ∝ Jβ

α ) are obtained by fitting the tight-binding
dispersion relation for each subband to the corresponding
one for the continuous-space model. We show the momen-
tum dependence, with the on-site energy offsets set to zero
and modulations of cosine functions set to unity, of some
example bands and subbands in Fig. 11, comparing contin-
uous (upper row) and tight-binding (lower row) dispersion
relations at the moiré angle of θ3,5. From the comparisons,
we immediately see that the momentum dependence of the
continuous-space dispersions is accurately captured with the
tight-binding models. For the ground-state subband β = 1 in
the first column of Fig. 11, the dispersion relation follows the
standard dispersion of a 2D square lattice, given by Eq. (16).
In the second and third columns, corresponding to β = 2,
we show two quasidegenerate subbands α = (b, b′). The dis-
persion relations are consistent with the nonstandard forms
given in Eqs. (39) and (40), with Eq. (37). We also find good
agreement with the approximation of Eq. (42). Next, in band
β = 3, corresponding to the last three columns in Fig. 11, we
have two nondegenerate subbands α = d (fourth column) and
α = a (not shown), with dispersions again following that of a
standard 2D square lattice. Finally, in the last two columns, we
show the degenerate subbands α = c and α = b, which have
strongly anisotropic dispersions, due to the π/2-rotational
symmetry as discussed in the prior section, consistent with
Eqs. (28) and (29).

More precisely, we quantify the agreement between the
continuous-space and tight-binding models with a resid-
ual parameter γ β

α , defined as the average difference be-
tween the tight-binding εTBM and continuous-space εC
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FIG. 11. Momentum (k) dependence of the dispersion relations from the (a1)–(a6) continuous results when V = 6Er and (b1)–(b6) fitted
tight-binding models. The color scales only show the momentum dependence of each dispersion relation, i.e., without an on-site energy offset
and width scaling by tunneling rates. We consider bands and subbands (a1), (b1) β = 1; (a2), (b2) β = 2 and α = b; (a3), (b3) β = 2 and
α = b′; (a4), (b4) β = 3 and α = d; (a5), (b5) β = 3 and α = c; (a6), (b6) β = 3 and α = b. In all cases, lattice and continuous results are in
good agreement. Equivalent properties are also observed for the other bands and subbands.

dispersion relations,

γ β
α = �2

4π2

∫ π/�

−π/�

∫ π/�

−π/�

dkx dky |εTBM(k) − εC(k)|. (44)

Since the dispersions are scaled by the tunneling rates Jβ
α , we

consider the ratio γ β
α /Jβ

α for each band and subband in order
to provide meaningful comparisons. In Fig. 11, we find that
the largest residuals are γ β

α /Jβ
α ∼ 0.04, i.e., there are no no-

ticeable differences between dispersion relations. These errors
may be further reduced by including beyond-nearest-neighbor
couplings within the tight-binding models. However, in the
present work, we find it sufficient to consider only couplings
with separation up to the moiré length � for high accuracy
across a range of potential depths.

For smaller potential depths V/Er, it is to be expected
that the effective tunneling rates of tight-binding models will
increase, but at the same time the validity of the tight-binding
approximation should progressively deteriorate. To under-
stand the scaling of tight-binding parameters and the range
of validity, we consider the moiré potential for a range of
potential depths V and two twist angles, θ3,5 in Figs. 12(a1)–
12(a4) and θ2,1 in Figs. 12(b1)–12(b4). Here, different bands
are colored according to the uth minima in Fig. 3 and la-
beled according to the equivalent harmonic energy Eu

n+,n− .
The matching between states is performed by comparing the
structure and localization of a continuous state with harmonic
eigenstates, e.g., continuous states that are Gaussian-like
around some minima u are labeled as Eu

0,0 and likewise for
higher excitations in n±. As discussed, different minima cor-
respond to different ladders of energy bands, which may cross
at certain values of V/Er. We then plot some of the lowest
ground-state and excited bands to illustrate this. In particular,
we plot εβ , the intracell or on-site energy of band β, which
is equivalent to the average shift of the subband energy; see
Appendix D. We also plot (γ /J )βmax, which is defined as the
largest value of γ β

α /Jβ
α for band β. Finally, we also plot Jβ

max

FIG. 12. Tight-binding parameters as a function of V/Er, for an-
gles (a1)–(a4) θ3,5 and (b1)–(b4) θ2,1. For different bands, we plot the
(a1), (b1) on-site energy ε; the (a2), (b2) largest residual (γ /J )βmax;
the (a3), (b3) largest intercell coupling Jβ

max; and the (a4), (b4) largest
intracell coupling Iβ

max. Different bands are labeled according to the
related harmonic energy Eu

n+,n− [see Eq. (11)], with colors for the uth
minima as in Fig. 3, where squares are ground states and diamonds
are excited states. Colored dashed lines are guides to the eye, with the
gray line in (a2), (b2) showing (γ /J )βmax = 1, the effective threshold
for the tight-binding validity.
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(the largest intercell tunneling of a band, in magnitude) and
Iβ

max (the largest intracell tunneling of a band, in magnitude).
Note that we take the absolute values of the tunnelings to
determine the maximum since both positive and negative
tunnelings exist within different bands. In Figs. 12(a1) and
12(b1), we observe a familiar structure of energy gaps in
the spectrum close to that of Fig. 4, with crossings at larger
V � 9Er (red and purple diamonds) and V � 11Er (green and
purple diamonds) for the excited harmonic states. We find
that the energy shifts increase with the potential depth. This
is to be expected since they are governed by the energies at
the potential minima (proportional to V ) and the frequencies
of the harmonic approximation (proportional to

√
V ). The

quasilinear behavior observed here suggests that the energy
shifts are dominated by the former contribution, while the
latter is negligible. To show that the tight-binding models are
indeed valid across a range of V , we plot the largest resid-
uals (γ /J )βmax in Figs. 12(a2) and 12(b2), which shows that
(γ /J )βmax � 1 for the majority of bands. For bands generated
from excited harmonic states (diamonds), the accuracy of the
tight-binding model is not as good for the considered potential
amplitudes, owing to larger on-site energies. We, however,
expect to find good agreement for larger potential amplitude,
consistent with the observed tendency of decreasing γ /J with
V . The intercell (Jβ

max) and intracell (Iβ
max) couplings decrease

exponentially with V , as observed in Figs. 12(a3) and 12(b3),
and Figs. 12(a4) and 12(b4). This is also to be expected since
the potential barriers increase with V .

For large V/Er, all tunnelings and γ β
α become smaller.

Each potential minima are decoupled and can be described
more accurately via the harmonic approximation introduced
in Sec. III. As V/Er becomes smaller, coupling between poten-
tial minima or sites splits the degeneracies that are associated
to the harmonic approximation. However, localized Wannier
functions can still form in the low-energy bands, resulting in
very small values of (γ /J )βmax, so tight-binding theory can
still be applied. Higher-energy bands have larger values of
(γ /J )βmax due to the more extended behavior of the associated
Wannier functions across space. While visible distortions of
the full 2D dispersion are small, the continuous dispersion
relation is no longer modulated by nearest-neighbor tunnel-
ing alone, meaning that (γ /J )βmax is more sensitive to small
fluctuations. Finally, it is also important to note that at smaller
V/Er, the subbands of certain bands are no longer isolated
in energy from other bands, and hence the considered tight-
binding framework cannot be applied. For θ3,5, this occurs for
the u = 2, 3, 4 minima around V/Er ∼ 3–4. Similar properties
also occur for excited states within different minima, e.g.,
E1

0,1 and E2
0,1 bands being absent for V/Er � 7 (red and green

diamonds).
The intercell tunnellings in Fig. 12(a3) usually grow in

magnitude as the band index increases, giving the approxi-
mate ordering J1

α < J2
α < J3

α . . . , and likewise for the intracell
couplings in Fig. 12(a4). The reason behind this can be linked
to the fact that higher band indices denote states that are
either localized in higher-energy potential minima or excited
Wannier states in the potential minima, which extend further
away from the minima and thus enhance tunneling probabili-
ties. Note that there are some special cases where this may not

occur, e.g., between bands 2 and 3 in Fig. 12(a3) (green and
blue squares), where the nearest-neighbor intercell couplings
have the separation ∼�/

√
2 (larger tunneling) rather than ∼�

(smaller tunneling) due to the superlattice structure. For more
general or more exotic moiré potentials, a similar breakdown
may also occur.

When considering different moiré angles, the distribu-
tion of tight-binding parameters can drastically change. In
Figs. 12(b1)–12(b4), we plot the same results for the commen-
surate angle θ2,1. For this angle, we have two distinct minima
as in Fig. 3(b), where bands and subbands can be mod-
eled using the same tight-binding models as before, with red
points equivalent to band 1 from Sec. IV A and green points
equivalent to band 4 from Sec. IV B. The energy separation
between minima for the commensurate angle θ2,1 is larger,
allowing for the formation of more prominent spectral gaps in
Fig. 12(b1). Furthermore, the spatial separation between min-
ima is smaller, thus enhancing the observable tunneling rates
in Figs. 12(b3) and 12(b4). This contrasts with the behavior
observed for θ3,5 in Figs. 12(a1)–12(a4), in which the moiré
cell is enlarged and has more distinct potential minima, with
smaller relative separations in energy. This leads to more, but
smaller gaps and tunnelings since the minima are distributed
further across space.

VI. GENERALIZATION: CLASSIFICATION OF BANDS

So far, the bands we have studied for θ = θ3,5 and θ = θ2,1

fall into three distinct classes. For completeness, we now
discuss the geometrical classification of bands for arbitrary
θ . When V/Er is deep enough, the low-energy eigenstates are
well localized around distinct sets of potential minima. Each
set forms a distinct geometry for an underlying tight-binding
model, with examples from the prior sections.

Based on the fourfold rotational symmetry and the fact that
there are, at most, four degenerate minima in the moiré cell,
we may generally identify four unique classes of bands or
geometrical arrangements that can appear in twisted square
moiré potentials. These are shown in Fig. 13, with the green
areas denoting regions of space where a site is closer to the
moiré cell boundary than the center (defined up to a shift of
the cell). In practice, we find that the shortest distance between
sites determines the strongest couplings. It may, however, not
be excluded that some short-distance couplings are suppressed
by high potential barriers. Hence, more precisely, in our clas-
sification, sites in the white regions correspond to cases where
intracell couplings dominate over intercell couplings (as for
bands 1, 3, 4, and 5 discussed above), while, on the contrary,
sites in the green regions correspond to cases where intercell
couplings dominate over intracell couplings (as for band 2
discussed above). Note that the cases on the upper and lower
rows of the same column in Fig. 13 are actually equivalent
upon a shift or rotation of the unit moiré cell.

A. Class I

We start with the simplest case of class I in Fig. 13. Here,
we effectively have one potential minima enclosed by the
moiré cell, with components located at the cell center or at
corners. The dispersion is that of a square lattice, which was
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FIG. 13. Unique arrangements of potential minima in a moiré cell with fourfold rotational symmetry (blue and orange dotted lines are
symmetry lines), ordered into classes of tight-binding models or bands. Green areas denote regions of space that will always be closer to an
adjacent moiré cell than the center, defined up to a shift of the cell. For class I bands, we have one minima in the center of the cell or, by
shifting the cell, a group of quarter minima at each of the four corners. For class II bands, we have a half minima at the midpoint of each edge
or, by shifting the cell, one minima in the center with a group of quarter minima at the four corners. Class III bands have four minima in the
cell along symmetry lines, outside the green regions. Finally, class IV bands have four minima inside the green regions or, by shifting the unit
cell, a group of eight total half minima along the four edges.

discussed in Sec. IV A. Sites of class I bands are always
located at the global minima of the potential. There is one
subtle point to note about these bands, however. From the
harmonic spectrum at larger V/Er in Figs. 4(a1) and 4(b1), the
nth excited states in these minima are implied to be (n + 1)-
fold degenerate, which would require a generalized matrix
diagonalization procedure to describe the bands. In practice,
anharmonic terms may split this degeneracy beyond that of
the tunneling rates, allowing for each subband of the excited
state to be treated by the model in Sec. IV A. For potential
depths V < 12Er that are typical in cold-atom experiments,
the largest excited state to appear isolated in the spectrum is
the first excited state (see Fig. 12), although tunneling rates
may now be larger than the degeneracy splitting. For such
cases, the dispersions of the first excited class I subbands will
then be similar to Eqs. (28) and (29).

B. Class II

In Fig. 13, we also show the configuration of class II bands.
Here, we have four potential minima at the midpoints of the
unit cell edges. In other words, there are two effective minima
enclosed by the cell, which would produce two subbands. At
present, this class has not been observed in the considered
cases with square lattices, including other commensurate an-
gles with moiré lengths �m,n < 10a. While a class II band can
form if larger supercells are used as the unit cell, the lattice
points of a class II band are then that of the global potential
minima. In other words, we can always form a smaller, square
cell and reduce a class II band to a class I band. In general,
however, we cannot fully rule out the possibility of forming

this class for larger moiré lengths and/or nonsquare lattices,
hence why we include a brief discussion for completeness.
The model of this band structure is a simplified version of
the one covered in Sec. IV C. Here a superlattice similar to
that of Fig. 8(a2) is formed, but with a single site in each
nonempty superlattice cell. For this reason, there is a single
type of state in each cell: |A〉 in blue cells and |A′〉 in red cells.
The Hamiltonian is

Ĥ = εβ
∑

i

(Â†
i Âi + Â′†

i Â′
i ) (45)

−W β
A

∑
〈i, j〉∈R↔B

Â†
i Â′

j

− Jβ
A

∑
〈i, j〉∈B→B

Â†
i Â j − Jβ

A

∑
〈i, j〉∈R→R

Â′†
i Â′

j .

Note that the on-site energy is directly εβ and the hopping
is not directional. The latter can be diagonalized as ĤA in
Sec. IV C, and we find two bands,

εβ
a (k) = εβ − 2Jβ

A (cos kx� + cos ky�)

+ 4W β
A

(
cos

kx�

2
cos

ky�

2

)
,

ε
β

a′ (k) = εβ − 2Jβ
A (cos kx� + cos ky�)

− 4W β
A

(
cos

kx�

2
cos

ky�

2

)
. (46)

These formulas are similar to Eqs. (39) and (40) for Jβ
A;x = Jβ

A;y

and thus ε
β
AA(k) = ε

β

A′A′ (k).
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C. Class III

The next class III geometries in Fig. 13 describe a wider
variety of bands in twisted moiré potentials. For these cases,
four potential minima are now located within the unit cell. The
minima are located outwith the green, superlattice cell, i.e.,
they are localized towards the unit cell center. The resulting
class III bands can then be modeled using the procedures
outlined in Sec. IV B.

D. Class IV

The final set of class IV bands in Fig. 13 describes a
more complex series of bands that must be described by a
superlattice structure. There are again four potential minima in
the cell, but now located within the green, superlattice cells. In
other words, intercell couplings dominate over intracell ones.
This situation can be treated using the superlattice scheme
discussed in Sec. IV C for band β = 2.

VII. CONCLUSIONS

In summary, we have discussed the single-particle spec-
trum of twisted moiré potentials across a range of potential
depths and described how effective tight-binding models are
constructed in different bands. Our construction is mainly
based on energy separation, as illustrated in Fig. 10. If the
moiré potentials are deep enough, each distinct minima of the
potential contributes to unique sets of bands within the overall
spectrum, with the exact form derived from the anisotropic
harmonic approximation. As the potential depth is decreased,
couplings between potential minima become significant. Lo-
calized Wannier states can still form at potential minima,
allowing for bands and subbands to be characterized by one
of four distinct classes of tight-binding geometries. The latter
are determined by a hierarchy of energy scales encompass-
ing strong local couplings, and weak couplings that support
long-range coherence. This allows us to build various effective
tight-binding models, the parameters of which (tunneling and
on-site energies) can be fitted to the exact continuous-space
spectrum. Furthermore, the accuracy between the continuous-
space and tight-binding dispersions is then related to the
localization of eigenstates. If an eigenstate is too extended
across space, i.e., at very small potential depths, the introduc-
tion of longer-range coupling and overlapping bands reduces
the accuracy of the models. Otherwise, for larger potential
depths, eigenstates become more localized, in agreement with
the harmonic approximation.

In this work, we have focused on single-particle energy
spectra, but our findings are also directly relevant to the
many-body, bosonic counterpart of Hamiltonian (1) with 2D
contact interactions [38]. In the strongly interacting regime,
spectral gaps can be mapped to insulating phases, and bands of
states to compressible phases. For the compressible domains,
we may have either a superfluid (SF) or normal fluid (NF),
and the calculated tunnelings serve as a typical temperature
scale for which the system transitions from one to the other:
If the temperature T of the many-body system is such that
k BT � Jβ

α for the given band, then the compressible phase
will be that of a SF. Otherwise, for k BT � Jβ

α , we will have a
thermal, NF phase. Our results therefore illustrate the thermal

stability of SF order in twisted moiré potentials. In realistic ex-
periments with a typical T ∼ 10nK , we have k BT ∼ 10−2Er

for most atomic species. For most of the low-energy bands,
we then have Jβ

α � 10−2, so SF order will generally not be
stable for small chemical potentials μ/Er. There are, however,
some exceptions, notably for moiré potentials with smaller
unit cells, in which effective couplings are enhanced by virtue
of the smaller separation between sites [38].

Our work may be extended in various directions. For in-
stance, while we have focused on square-lattice examples, the
framework and procedures that we have introduced here can
also be applied to other, more general twisted potentials as
well, provided one can identify a separation of energy scales
similar to that of Fig. 10. Finally, the physics of twisted moiré
potentials can be extended to twisted bilayer or multilayer
systems for strong interlayer couplings [37]. This includes,
for instance, twisted bilayer graphene, which can be modeled
using state-dependent, hexagonal rather than square optical
potentials with a twist [35].
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APPENDIX A: GEOMETRICAL PROPERTIES
OF MOIRÉ POTENTIALS

Here, we provide further details and derivations on the ge-
ometrical properties of twisted moiré potentials. To begin, we
discuss the origin of moiré angles. Given two square-lattice
vectors,

am,n/a = mx̂ + nŷ, bm′,n′/a = m′Rθ x̂ + n′Rθ ŷ, (A1)

where x̂, ŷ are unit vectors along the x and y axes, and Rθ is
the rotation matrix with angle θ ,

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
, (A2)

a commensurate angle is defined when the lattice vectors
coincide, i.e.,

am,n = bm′,n′ ,

(
m
n

)
=

(
m′ cos θ − n′ sin θ

n′ cos θ + m′ sin θ

)
, (A3)

from which it follows that

cos θ = mm′ + nn′

m′2 + n′2 , sin θ = m′n − mn′

m′2 + n′2 . (A4)

The numbers in the numerators and denominators of Eq. (A4),

Z1 = mm′ + nn′,

Z2 = m′n − mn′,

Z3 = m′2 + n′2, (A5)
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are all integers since m, m′ n, and n′ are integers. The num-
bers Z1, Z2, and Z3 thus form a Pythagorean triple, which
constrains m and n to be coprime integers, with m′ = n and
n′ = m. Align (A4) can then be simplified into

cos θm,n = 2mn

m2 + n2
, sin θm,n = n2 − m2

m2 + n2
, (A6)

where θm,n is the moiré angle, as in Eq. (4).
Two twisted lattices will therefore intersect at points r/a =

(0, 0) and r/a = (m, n), separated by a distance
√

m2 + n2/a.
One would then expect, in general, that this distance is the
period of the moiré lattice �m,n. However, some care has to
be taken when considering the parities of m or n, and the
uniqueness of θm,n. The full set of moiré angles can be defined
in the range [0 . . . 45◦]. Any moiré angle outside this range
must be mapped into one within the range. As an example, let
us choose the smallest, nontrivial moiré angle θ2,1 ≈ 36.87◦,
which we have studied in the main text. Note that a non-
trivial moiré angle refers to an angle in which the resulting
optical lattice is not that of a simple square lattice. We also
have θ3,1 ≈ 53.13◦ = −36.87◦, i.e., cos θ2,1 = sin θ3,1. Both
θ2,1 and θ3,1 are geometrically equivalent, but care has to be
taken in the way the unit cell is defined with m and n. Let us
consider two cases: m + n an odd or even number. For m + n
odd, e.g., θ2,1 with m + n = 3, m2 + n2 = 5 is also an odd
and prime number. For m + n even, e.g., θ3,1 with m + n = 4,
m2 + n2 = 10 is an even number. Clearly, the true moiré pe-
riod must be �2,1 = √

5 ≡ �3,1 = √
10/2. In summary, given

a moiré angle θmo,no where mo + no is an odd number, there
is a geometrically equivalent moiré angle θme,ne for me + ne as
an even number, which are related via

m2
o + n2

o = m2
e + n2

e

2
. (A7)

Given this condition, the true moiré period �m,n is then
written as

�m,n/a =
{√

(m2 + n2)/2 if m + n even,√
m2 + n2 if m + n odd,

(A8)

as in Eq. (5).
By superimposing two square optical potentials, we can

then generate a twisted moiré potential by tuning the twist
angle to θm,n. This generates an intricate superlattice structure,
with distinct sets of potential minima in the moiré cell. The
total number of distinct minima in a moiré potential follows
the relation given in Eq. (6). Note that this relation is empir-
ical. The formal derivation of the number of distinct minima
requires solutions to the problem ∂V (r)/∂x = ∂V (r)/∂y = 0.
However, to the best of our knowledge, no analytical solutions
to this problem exist. However, Eq. (6) always produces an
integer number, which can be shown as follows. As m and
n are two coprime integers, we may distinguish two cases:
(i) one is an odd number and the other is an even number;
(ii) both are odd numbers. For case (i), m and n have dif-
ferent parities and we may suppose m is odd and n is even,
without loss of generality. For three integers a, b, c, it can be
shown that if a ≡ b mod c, then a2 ≡ b2 mod c. Since m
is an odd number, m ≡ 1 mod 4 or m ≡ 3 mod 4. Further-
more, since 32 ≡ 1 mod 4, we always have m2 ≡ 1 mod 4.

Finally, since m + n is odd, according to Eq. (5), �m,n/a =√
m2 + n2. So �2

m,n/a2 = m2 + n2 ≡ 1 mod 4, which means
that Mm,n [Eq. (6)] is an integer. For case (ii), m and n are both
odd numbers. Since m is an odd number, m ≡ 1 or 3 or 5 or 7
mod 8, then m2 ≡ 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 mod 8. Similarly,
when n is an odd number, we also have n2 ≡ 1 mod 8. Thus,
we have m2 + n2 ≡ 2 mod 8 so that m2+n2

2 ≡ 1 mod 4. As

m + n is even, according to Eq. (5), �2
m,n/a2 = m2+n2

2 . So in
this case also, Mm,n [Eq. (6)] must also be an integer.

APPENDIX B: BUILDING TIGHT-BINDING MODELS

In this Appendix, we outline the general construction of
tight-binding models. We start from a wave function written
in the Bloch form,

ψ (r) = eik·ru(r); (B1)

see Sec. III A. For a sufficiently deep potential V (r), the func-
tion u(r) in Eq. (B1) is distributed around potential minima
on a length scale of the order of δr � a. It then follows
|∇2u| � |k · ∇u| � |k2u| and, according to Eq. (7), u(r) is
almost independent of k. We may then write

u(r) � 1√
N

∑
j

w j (r), (B2)

where j spans the set of N local potential minima and w j (r)
are normalized functions that are localized around each min-
imum j on a length scale δr � a. The eigenfunctions of the
Hamiltonian Ĥ then take the form

ψ (r) �
∑

j

w j (r)ψ j, (B3)

where ψ j are complex numbers normalized by
∑

j |ψ j |2 = 1.
By substituting this relation into the Schrödinger align, we
reduce the eigenvalue align to a tight-binding form,

Eψ j = ε jψ j −
∑
� �= j

J j,�ψ�, (B4)

where ε j = ∫
dr w∗

j (r)Ĥw j (r) is the on-site energy at site
j and J j,� = − ∫

dr w∗
j (r)Ĥw�(r) is the tunneling energy

between the sites j and �. Note that in our notations for this
work, J is used to designate tunnelings in the basis of lattice
sites or minima, and J is used for tunnelings in a composite
eigenstate basis for specific classes of energy bands and sub-
bands. Conversion between each basis can be performed using
the relations in Appendix C. The coefficients ε j and J j,� may
then be used as fitting parameters for the energy spectrum.
The solution of Eq. (B4) yields the eigenenergy E as well
as the eigenfunction coefficients ψ j . The latter can be used to
reconstruct the continuous-space wave functions via Eq. (B3),
where the functions w j (r) are found from Eq. (B2).

Finally, in the second-quantization formalism, the field op-
erator can also be written as ψ̂ (r) � ∑

j w j (r)â j , leading to
the Hamiltonian

Ĥ �
∑

j

ε j â
†
j â j −

∑
〈 j,�〉

J j,�â†
j â�, (B5)
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FIG. 14. Origin of inhomogeneous eigenstate couplings. Here,
we show sites in the lattice site basis (black numbers), in a red
central cell and four black neighboring cells. Real-space tunnelings
J β

u,v between a site u in the red cell and v in a black cell must
preserve the fourfold rotational symmetry of the moiré potential.
As an example, this implies that all of the marked, blue tunnelings
must be equal. These conditions then impose constraints on the
corresponding eigenstate-basis couplings Jβ

α , according to Eq. (C1).

where â j is the annihilation operator for a particle in the state
w j , or site j and 〈 j, �〉 denotes a sum between pairs of minima
� and j, i.e., connected sites or minima with |J j,�| > 0.

APPENDIX C: EIGENSTATE BASIS
TO LATTICE SITE BASIS

When constructing tight-binding models, it is also interest-
ing to consider their representation in the basis of lattice sites,
rather than the eigenstate basis. These representations are also
important to understand the origin of anisotropic tunneling
rates in the eigenstate basis. For band β = 1 (more generally,
class I and II bands in Fig. 13), each moiré cell or superlattice
cell will, respectively, contain one lattice site, and hence no
conversion is necessary for these bands. However, for the
other bands (classes III and IV), the situation is different
since the intracell Hamiltonians contain more than one unique
eigenstate.

1. Class III Bands

As discussed in Sec. IV B, tunneling rates W β
B;i, j must

be equal for a class III band, but with flipped sign to
preserve global fourfold rotational symmetry. To show this,
we rewrite Hamiltonian (20) in the basis of lattice sites. This
can be done by representing the eigenstates in Eq. (18) with
operators that create or destroy particles at each of the four in-
tracell sites. For example, we have âi = (ŝi + t̂i + ûi + v̂i )/2,
where the operators ŝi, t̂i, ûi, and v̂i destroy a particle at sites
1, 2, 3, and 4 in Fig. 14, respectively. The other eigenstate
operators B̂i, Ĉi, d̂i can be represented in a similar way. When
we convert Hamiltonian (20) to the lattice site basis, we get
terms such as ŝ†

i t̂ j , e.g., a tunneling operator from site 1 to site

2 of an adjacent cell, etc. Each site of a cell couples to four
sites of an adjacent cell, producing 16 distinct tunneling rates
and on-site terms in the lattice site basis. For the tunneling
operators, the coefficients between a site u in one cell and a
site v in an adjacent cell can be computed as

J β
u,v = Jβ

a auav + Jβ

d dudv + Jβ
B (BuBv + CuCv )

+ W β
B;u,v (BuCv + CuBv ), (C1)

where the coefficients ai are the components of eigenstate
|a〉 at index i. Likewise, the intracell and on-site couplings
between sites u and v will be

ηβ
u,v = Eβ

a auav + Eβ

d dudv + Eβ
B (BuBv + CuCv ). (C2)

One can then verify that for each u and v, ηβ
u,v will simply be

equal to one of the intracell parameters of the original, decou-
pled Hamiltonian in Eq. (17), i.e., η

β

1,1 = εβ , η
β

1,2 = Iβ , etc.
Based on the geometry of the moiré potential, the real-space
tunnelings J β

u,v must preserve fourfold rotational symmetry;

see Fig. 14. As an example, this implies that J β

1,4 across the +y

direction must be equal to J β

3,4 across the +x direction. Each
tunneling can be explicitly written as

J β

1,4 = 1
2 Jβ

a − 1
2 Jβ

d − 1
4W β

B;1,4,

J β

3,4 = 1
2 Jβ

a − 1
2 Jβ

d + 1
4W β

B;3,4. (C3)

For rotational symmetry to be preserved, we must have
W β

B;1,4 = −W β

B;3,4. More generally, W β
B;x = −W β

B;y = W β
B ,

where x and y refer to the direction of the considered bound.

2. Class IV Bands

A similar process can be performed for class IV bands,
such as β = 2. Each superlattice cell has two sites, giving
four unique couplings between two different cells. The real-
space tunneling rates between the different types of cells are
given by

J B→B
u,v = Jβ

A;u,vAuAv + Jβ
B;u,vBuBv,

J R→R
u,v = Jβ

A′;u,vAuAv + Jβ

B′;u,vBuBv,

J B↔R
u,v = W β

A AuAv + W β
B BuBv. (C4)

The intracell and on-site couplings can also be expressed as

ηβ
u,v = 2

(
Eβ

A AuAv + Eβ
B BuBv

)
, (C5)

which are again equal to the intracell parameters of Hamil-
tonian (31). The couplings J B→B

u,v and J R→R
u,v have a similar

form and unit cell, but are aligned across different directions.
In order to preserve fourfold rotational symmetry, we require
that Jβ

A;x = Jβ

A′;y, Jβ
A;y = Jβ

A′;x, Jβ
B;x = Jβ

B′;y, and Jβ
B;y = Jβ

B′;x.

APPENDIX D: EXTRACTING TIGHT-BINDING
PARAMETERS FROM CONTINUOUS DISPERSIONS

Here, we outline the extraction of tight-binding parameters
for the different classes of bands in Fig. 13.
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1. Class I

Class I bands, such as band β = 1 in Sec. IV A for θ3,5,
have a standard cosine dispersion as in Eq. (16). The average
and amplitude of the dispersion relations can be calculated to
extract εβ and Jβ .

2. Class II

For class II bands in Eq. (46), we have two aligns and three
parameters to fit. First, we consider the average dispersion,

εβ
a (k) + ε

β

a′ (k)

2
= εβ − 2Jβ

A (cos kx� + cos ky�), (D1)

from which εβ
a and Jβ

A can be found as for a class I band,
independent from W β

A . Instead, W β
A is calculated by fitting the

difference of dispersions,

εβ
a (k) − ε

β

a′ (k)

2
= −4W β

A

(
cos

kx�

2
cos

ky�

2

)
, (D2)

which is independent of εβ
a and Jβ

A .

3. Class III

For class III bands, such as those considered in Sec. IV B,
we must extract three intracell parameters and four intercell
couplings from four dispersion relations. For the two nonde-
generate subbands a and d , eigenvalues Eβ

a,d and tunnelings

Jβ

a,d can be extracted from the standard cosine dispersions as
for class I. For degenerate bands b and c, we consider average
and difference functions,

ε
β

b (k) + εβ
c (k)

2
= Eβ

B − 2Jβ
B (cos kx� + cos ky�) = ε

β
B (k)

(D3)

and

ε
β

b (k) − εβ
c (k)

2
= −2W β

B (cos kx� − cos ky�) = w
β
B (k),

(D4)

which yield Eβ
B and Jβ

B , on the one hand, and W β
B , on the

other hand, from independent fits. The effective tunneling
energies Jβ

b and Jβ
c associated to the final dispersion relations

are then found from Eq. (30). Finally, the eigenvalues Eβ
α of

the intracell Hamiltonian are simply the energy shifts to each
dispersion relation, allowing for the intracell parameters to be

calculated as

εβ = 1
4

(
Eβ

a + Eβ

d + 2Eβ
B

)
,

Iβ = 1
4

(
Eβ

a − Eβ

d

)
,

I ′β = 1
4

(− Eβ
a − Eβ

d + 2Eβ
B

)
, (D5)

which is equivalent to Eq. (19).

4. Class IV

Finally, for class IV bands, such as the one considered in
Sec. IV C, we first consider the average dispersion for each
degenerate set of subbands,

εβ
a (k) + ε

β

a′ (k)

2
= ε

β
AA(k) + ε

β

A′A′ (k)

2

= Eβ
A − 2

(
Jβ

A;x + Jβ
A;y

)
(cos kx� + cos ky�).

(D6)

Here we focus on subbands A − A′, and similar formulas are
found for subbands B − B′. In this way, we can fit the values
for Eβ

A and Eβ
B , and determine the intracell parameters from

the energy shifts,

εβ = 1
2

(
Eβ

A + Eβ
B

)
,

Iβ = 1
2

(
Eβ

A − Eβ
B

)
, (D7)

as well as the widths Jβ
A;x + Jβ

A;y and Jβ
B;x + Jβ

B;y. Next, we take
the differences,

εβ
a (k) − ε

β

a′ (k) =
√[

ε
β
AA(k) − ε

β

A′A′ (k)
]2 + 4w

β

AA′ (k)2. (D8)

First, we consider a k direction in which w
β

AA′ (k) = 0, e.g.,
ky/� = π . We then have

ε̃β
a (k) − ε̃

β

a′ (k) = ∣∣εβ
AA(k) − ε

β

A′A′ (k)
∣∣

= −2
∣∣(Jβ

A;x − Jβ
A;y

)
(cos kx� + cos ky�)

∣∣,
(D9)

from which we may extract the widths Jβ
A;x − Jβ

A;y. We can then

solve the individual couplings Jβ
A;x and Jβ

A;y by using the results
from Eq. (D6). Finally, we can consider a k direction in which
ε

β
AA(k) = ε

β

A′A′ (k), i.e., kx = ky. This yields

εβ
a (k) − ε

β

a′ (k) = 2w
β

AA′ (k) = −8W β
A

(
cos

kx�

2
cos

ky�

2

)
,

(D10)

allowing for W β
A to be extracted from the widths. The param-

eters for the B − B′ subbands are similarly found.
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