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We study the competition between one-body and two-body couplings in weakly interacting two-component
Bose gases, in particular as regards field correlations. We derive the mean-field theory for both ground-state
and low-energy pair excitations in the general case where both one-body and two-body couplings are position
dependent and the fluid is subjected to a state-dependent trapping potential. General formulas for phase and
density correlations are also derived. Focusing on the case of homogeneous systems, we discuss the pair-excitation
spectrum and the corresponding excitation modes, and use them to calculate correlation functions, including both
quantum and thermal fluctuation terms. We show that the relative phase of the two components is imposed by that
of the one-body coupling, while its fluctuations are determined by the modulus of the one-body coupling and by
the two-body coupling. One-body coupling and repulsive two-body coupling cooperate to suppress relative-phase
fluctuations, while attractive two-body coupling tends to enhance them. Further applications of the formalism
presented here and extensions of our work are also discussed.
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I. INTRODUCTION

Multicomponent (spinor) quantum fluids underlie a variety
of physical systems, such as 3He-4He mixtures in three-fluid
models [1], Bose-condensed spin-polarized hydrogen gases in
the two lowest-energy states [2–4], optically excited excitons
in high-quality Cu20 crystals [5,6], as well as gaseous Bose-
Einstein condensates either in two overlapped atomic hyper-
fine states [7–9] or in adjacent traps coupled by tunnel effect
[10]. The dynamics of spinors sparks a variety of physical
effects, including quantum phase transitions, topological de-
fects, and spin domains, governed by the complex interplay of
particle-particle interaction, exchange coupling, magneticlike
ordering, and temperature effects. Early studies focused on
the possibility of observing Bose-Einstein condensation [11],
as well as stability conditions [1,12,13], phase separation
[8,14–20], and spontaneous symmetry-breaking mechanisms
[21–24] in two-component Bose-Einstein condensates. Two-
component Bose gases have also been used to study phase
coherence [25], Josephson-like physics [26–30], the dynamics
of spin textures [31–34], random-field-induced order effects
[35,36], and twin quantum states for quantum information
processing [37–39].

In the context of ultracold gases the combination of optical
and magnetic fields designed to manipulate the internal states
of alkali-metal atoms offer a wide range of possibilities to
accurately engineer multicomponent quantum fluids. Such
systems offer a new tool to study quantum coherence in
various contexts [9,25,27,30]. For instance, measurement of
the relative-phase correlation function of a coupled binary
Bose gas in one dimension was reported in Ref. [30]. In
the latter case, the coupling was of the Josephson (one-body)
type.

In this paper, we consider a two-component Bose gas with
both one-body (field-field) and two-body (density-density)
couplings and focus our analysis on the pair-excitation
spectrum and the relative-phase correlation function at both
zero and finite temperature. The most general case can
be realized in ultracold-atom gases by using a mixture of

atoms in two different internal hyperfine states (noted 1 and
2) of the same atomic species. The two-body interaction
with coupling constant g12 results from short-range particle-
particle interactions between atoms in different internal states,
while the one-body interaction can be implemented by
two-photon Raman optical coupling, which transfers atoms
from one internal state to the other (see schematic view
on Fig. 1). In Sec. II, we present the model and derive the
mean-field theory of the coupled two-component Bose fluid
for both ground-state and low-energy pair excitations. The
theory is formulated in the most general case, where both
one-body and two-body couplings are position dependent and
the fluid is subjected to a state-dependent trapping potential.
In addition, we use the phase-density Bogoliubov-Popov
approach, which allows us to treat true condensates and
quasicondensates on equal footing [40,41]. General formulas
for phase and density correlations are derived. In Sec. III,
we focus on the case of homogeneous systems, which allow
considerable simplification of the formalism and contain most
of the physical effects. After rewriting the general mean-field
equations for homogeneous systems (Sec. III A), we discuss
the pair-excitation spectrum and the corresponding fields and
use them to calculate the correlation functions including both
quantum and thermal fluctuation terms (Sec. III B). Our main
conclusions are as follows. The phase of the one-body coupling
term imposes alone the relative phase of the two components
at the mean-field background level. Then, the fluctuations
of the relative phase are determined by the interplay of the
modulus of the one-body term and the two-body term. On the
one hand, the one-body coupling always favors local mutual
coherence of the two components but the correlation length
decreases when the modulus of the one-body term increases.
On the other hand, repulsive two-body coupling cooperates
with one-body coupling to further suppress relative-phase
fluctuations, while attractive two-body coupling competes
with one-body coupling to enhance relative-phase fluctuations.
These results are summarized in more detail in Sec. IV, where
we also discuss further possible applications of the formalism
presented here.
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FIG. 1. (Color online) Coupled two-component Bose gas. The
gas is made of bosonic particles of a single atomic species, which
can be in two different internal states (labeled 1 and 2). It is
described by the two field operators ψ̂1(r) and ψ̂2(r), corresponding
to each component. In this work, we assume that the two components
are coupled by one-body and/or two-body interactions of coupling
constants � and g12, respectively. In the most general case, the two
coupling constants can be position dependent.

II. MEAN-FIELD THEORY OF A TWO-COMPONENT
BOSE GAS

Consider a two-component Bose-Bose mixture at thermo-
dynamic equilibrium at temperature T and in the weakly in-
teracting regime. We assume that the two components (labeled
by σ ∈ {1,2}) interact with each other and can exchange atoms
to maintain chemical equilibrium. The average total number
of atoms, N = N1 + N2, is conserved but the average number
of atoms in each component, Nσ , is not. The physics of this
system is governed by the grand-canonical Hamiltonian

Ĥ ≡ Ĥ − μN̂ = Ĥ1 + Ĥ2 + Ĥ12, (1)

where Ĥ is the many-body Hamiltonian and N̂ = N̂1 + N̂2 is
the total number operator, with N̂σ = ∫

dr ψ̂†
σ (r)ψ̂σ (r) and

ψ̂σ (r) the (bosonic) field operator of component σ . Assuming
two-body contact interactions, the Hamiltonian associated to
the sole component σ (written in the grand-canonical form for
the chemical potential μ of the mixture) is

Ĥσ =
∫

dr ψ̂†
σ

[
−�

2∇2

2m
+ Vσ − μ + gσ (r)

2
ψ̂†

σ ψ̂σ

]
ψ̂σ (2)

and the coupling Hamiltonian is

Ĥ12 =
∫

dr
{

g12(r)ψ̂†
1ψ̂

†
2ψ̂1ψ̂2 +

[
��(r)

2
ψ̂

†
2ψ̂1 + H.c.

]}
.

(3)

The single-component Hamiltonian Ĥσ contains (i) a kinetic
term (m is the atomic mass), (ii) a potential term, Vσ (r),
both associated with single-particle dynamics, and (iii) an
intracomponent interaction term of coupling parameter gσ .
The coupling Hamiltonian, Ĥ12, contains (i) a term originating
from elastic contact interaction between two atoms in different
components characterized by the intercomponent coupling
constant g12, and (ii) an exchange term proportional to �,
which transfers atoms from one component to the other and
in particular permits chemical equilibrium. In ultracold-atom
systems, the exchange one-body term can be realized by
two-photon Raman or radio-frequency coupling [7] or by

Josephson coupling between two adjacent traps [26,30,42–44],
whereas the two-body coupling can be controlled by Feshbach
resonance techniques [45]. In the most general case, all
coupling terms g1, g2, g12, and � can be position dependent.
Hereafter, we write �(r) ≡ �0(r)e−iα(r), with �0 = |�| and
α(r) the phase of the exchange coupling, for convenience.

In the following, we first reformulate the above Hamil-
tonians into the phase-density formalism, which is more
appropriate for our study. We then apply the Gross-Pitaevskii
approach, which describes the mean-field quasicondensate
background of the two-component Bose-Bose mixture and
develop the Bogoliubov–de Gennes theory for the mixture,
which provides the spectrum of collective excitations and can
be used to describe finite-temperature effects. We finally write
the general expressions for the density and phase correlation
functions, which are calculated in the next sections. Although
the process we follow is standard, we generalize previous work
to the case where their couplings can be position-dependent.
We thus detail the derivation of the main equations.

A. Phase-density formalism

The complete grand-canonical Hamiltonian Ĥ is in-
variant under the gauge transformation {ψ̂1(r),ψ̂2(r)} →
eiθ0{ψ̂1(r),ψ̂2(r)} for any value of θ0 ∈ R, as can be easily
checked in Eqs. (2) and (3). More precisely, if �(r) ≡ 0, the
phases of the two components are independent and Ĥ is invari-
ant under the more general transformation {ψ̂1(r),ψ̂2(r)} →
{eiθ1

0 ψ̂1(r),eiθ2
0 ψ̂2(r)} for any values of θ1

0 ,θ2
0 ∈ R. If, however,

�(r) �≡ 0, the phases of the two components are coupled via
the last term in Eq. (3) and the relative phase is a determined
quantity. In both cases, the phases of the field operators
ψ̂σ (r) are not fully determined and it is useful to turn to the
phase-density formalism. The latter is successfully used in the
literature for a long time [40,46] and was recently developed
in a lattice formulation, which allows for a precise definition
of the phase operator [47]. We write the field operator for each
component in the form

ψ̂σ (r) = eiθ̂σ (r)
√

n̂σ (r), (4)

where the density (n̂σ ) and phase (θ̂σ ) operators satisfy
the Bose commutation rule [n̂σ (r),θ̂σ ′(r′)] = iδσσ ′δ(r − r′).
Replacing ψ̂σ by expression (4) into Eqs. (2) and (3), we
find

Ĥσ =
∫

dr
√

n̂σ

[−�
2

2m
(∇2 − |∇θ̂σ |2)

+Vσ − μ + gσ

2
n̂σ

]√
n̂σ (5)

and

Ĥ12 =
∫

dr
[
g12n̂1n̂2 +

{
��

2

√
n̂2e

i(θ̂1−θ̂2)
√

n̂1 + H.c.

}]
.

(6)

Expressions (5) and (6) determine the complete Hamiltonian
(1) in terms of density and phase operators [48]. This form is
particularly suitable for perturbative expansion in the conden-
sate or quasicondensate regime, where the density fluctuations
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are suppressed by strong-enough repulsive interactions but the
phase fluctuations can be large [40,41,47,49,50].

B. Mean-field background: Gross-Pitaevskii theory

The zeroth-order term in quantum and thermal fluctuations
corresponds to the mean-field background. The latter is deter-
mined using the Gross-Pitaevskii approach [51,52], adapted
to the two-component mixture. It amounts to minimize the
grand-canonical energy functional EMF ≡ 〈ψMF|Ĥ |ψMF〉 with
the two-component Hartree-Fock ansatz

|ψMF〉 = (â†
1)N1

√
N1!

(â†
2)N2

√
N2!

|vac〉, (7)

where â†
σ creates an atom in component σ with a spatial wave

function ψσ (r) ≡ eiθσ (r)√nσ (r). At this stage, the number
of atoms in each component, Nσ , and the corresponding
phase [θσ (r)] and density [nσ (r)] fields are unknown varia-
tional quantities. Here, we use the normalization condition∫

dr nσ (r) = Nσ and we recall that the chemical potential
μ is determined implicitly by the relation

∫
dr [n1(r) +

n2(r)] = N .
Proceeding in the standard way, we evaluate the complete

grand-canonical Hamiltonian (1) within the Hartree-Fock
ansatz (7) and find

EMF = 〈Ĥ1〉MF + 〈Ĥ2〉MF + 〈Ĥ12〉MF, (8)

where 〈Ĥσ 〉MF and 〈Ĥ12〉MF are given by Eqs. (5) and (6)
with the phase θ̂σ (r) and density n̂σ (r) operators replaced by
the corresponding Hartree-Fock fields θσ (r) and nσ (r). Then,
minimizing EMF with respect to θσ (r) and nσ (r) yields the
following coupled Euler-Lagrange equations:

0 = − �
2

2m

(∇2√nσ√
nσ

− |∇θσ |2
)

+ Vσ − μ + gσnσ + g12nσ̄

+ ��0

2

√
nσ̄

nσ

cos(θ − α), (9)

0 = �
2

m
∇(nσ∇θσ ) ± ��0

√
n1n2 sin(θ − α), (10)

where θ (r) ≡ θ1(r) − θ2(r) is the relative phase between the
two components, σ̄ is the conjugate of σ [i.e., σ̄ = 2 (1) for
σ = 1 (2)], and the ± sign in Eq. (10) is + (−) for σ = 1 (2).

C. Excitations: Bogoliubov–de Gennes theory

The low-energy spectrum of the collective excitations
of the two-component Bose gas is then determined using
the Bogoliubov–de Gennes approach [40,41,53–55], which
amounts to perform a perturbative expansion of Hamiltonian
(1) in phase and density fluctuations. We write n̂σ = nσ + δn̂σ

and θ̂σ = θσ + δθ̂σ , with nσ (r) and θσ (r) given by the mean-
field Gross-Pitaevskii theory, and

|δn̂σ | 
 nσ and |∇δθ̂σ | 
 mc/�, (11)

where c = √
μ/m is the velocity of sound in a single-

component Bose-Einstein (quasi-)condensate of chemical
potential μ. These conditions are usually well verified in
weakly interacting ultracold, two-component gases [7–9,56].

1. Weak-fluctuation expansion of the Hamiltonian

Proceeding up to second order in phase and density
fluctuations, it is convenient to define the position-dependent
operators

X̂σ (r) ≡ δn̂σ (r)

2
√

nσ (r)
(12)

and

P̂σ (r) ≡
√

nσ (r)δθ̂σ (r), (13)

which are canonical conjugates (up to a multiplying factor of
1/2); i.e., [X̂σ (r),P̂σ ′(r′)] = iδσ,σ ′δ(r − r′)/2. Then, inserting√

n̂σ � √
nσ + X̂σ − X̂2

σ /2
√

nσ and θ̂σ = θσ + P̂ /
√

nσ into
Eqs. (5) and (6), we find

Ĥ � EMF + Ĥ
(2)
1 + Ĥ

(2)
2 + Ĥ

(2)
12 . (14)

The zeroth-order term, EMF, coincides with the mean-field
energy (8) where the fields nσ and θσ are substituted to
the solutions of the coupled Euler-Lagrange equations (9)
and (10). The first-order term, Ĥ (1) = ∑

σ {δn̂σ · ∂Ĥ
∂n̂σ

|ψMF +
δθ̂σ · ∂Ĥ

∂θ̂σ
|ψMF}, vanishes since the zeroth-order term minimizes

〈ψMF|Ĥ |ψMF〉 = EMF. The second-order terms, Ĥ
(2)
1 ,Ĥ

(2)
2 ,

and Ĥ
(2)
12 , are found after some straightforward algebra, which

yields

Ĥ (2)
σ =

∫
dr X̂σ

[
− �

2

2m

(
∇2 − ∇2√nσ√

nσ

)
+ 2gσnσ

]
X̂σ

+
∫

dr P̂σ

[
− �

2

2m

(
∇2 − ∇2√nσ√

nσ

)]
P̂σ

+
∫

dr
2�

2

m
∇θσ · (

√
nσ X̂σ )∇(P̂σ /

√
nσ ), (15)

where some irrelevant constant terms have been dropped, and

Ĥ
(2)
12 = −

∑
σ

∫
dr

��0

2

√
nσ̄

nσ

cos(θ − α)
[
X̂2

σ + P̂ 2
σ

]

+
∫

dr [4g12
√

n1n2 + ��0 cos(θ − α)]X̂1X̂2

+
∫

dr ��0 cos(θ − α)P̂1P̂2

+
∫

dr ��0 sin(θ − α)[X̂1P̂2 − X̂2P̂1]

−
∫

dr ��0 sin(θ − α)

[√
n2√
n1

X̂1P̂1 −
√

n1√
n2

X̂2P̂2

]
.

(16)

We now apply the canonical transformation [57] to our
quadratic Hamiltonian [58],

B̂σ ≡ X̂σ + iP̂σ , (17)

such that the operators B̂σ satisfy the Bose commutation rules

[B̂σ (r),B̂σ ′(r′)] = 0, (18)

[B̂σ (r),B̂†
σ ′(r′)] = δσσ ′δ(r − r′). (19)
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Then, summing all contributions of Eq. (15) for σ = 1 and
σ = 2 and those of Eq. (16), we find

Ĥ (2) = 1

2

∑
σ

∫
dr [B̂†

σ Aσ B̂σ + B̂σ A∗
σ B̂†

σ

+{gσnσ B̂σ B̂σ + H.c.}]
+

∫
dr [g12

√
n1n2B̂1B̂2 + H.c.]

+
∫

dr
[{

g12
√

n1n2 + ��

2
eiθ

}
B̂

†
2B̂1 + H.c.

]
,

(20)

where we have used the coupled Euler-Lagrange equation
(9) to simplify a couple of terms, and have introduced the
superoperator

Aσ = − �
2

2m
(∇2 + 2i∇θσ · ∇ − |∇θσ |2) + Vσ − μ

+ 2gσ nσ + g12nσ̄ . (21)

Finally, the Hamiltonian (20) can be written in a more compact
form by introducing the four-component operators

B̄ ≡ [B̂†
1,−B̂1,B̂

†
2,−B̂2] and B ≡

⎡
⎢⎢⎣

B̂1

B̂
†
1

B̂2

B̂
†
2

⎤
⎥⎥⎦ , (22)

so that

Ĥ (2) = 1

2

∫
dr B̄(r)M(r)B(r) + const, (23)

where M(r) is the 4 × 4 superoperator defined by

M ≡
[
LGP

1 	

	∗ LGP
2

]
, (24)

with

LGP
σ =

[
+Aσ +gσnσ

−gσnσ −A∗
σ

]
(25)

and

	 =
[
+g12

√
n1n2 + ��∗

2 e−iθ +g12
√

n1n2

−g12
√

n1n2 −g12
√

n1n2 − ��
2 e+iθ

]
.

(26)

2. Bogoliubov transformation

The second-order term (23) in the expansion of the many-
body Hamiltonian (1) governs the low-energy excitations of
the two-component Bose gas. Its quadratic form is conve-
nient for diagonalization via the usual Bogoliubov method
[40,41,53,54], adapted to the two-component Bose gas. Here,
we extend previous approaches [12,26] to the most general
case where the coupling terms can be position-dependent.

Inserting the modal expansion

B(r) =
∑

ν

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

u1ν(r)

v1ν(r)

u2ν(r)

v2ν(r)

⎤
⎥⎥⎥⎦ b̂ν +

⎡
⎢⎢⎢⎣

v∗
1ν(r)

u∗
1ν(r)

v∗
2ν(r)

u∗
2ν(r)

⎤
⎥⎥⎥⎦ b̂†ν

⎞
⎟⎟⎟⎠ , (27)

with b̂ν the annihilation operator of an elementary excitation
of the coupled two-component Bose gas, into Eq. (23), we find

Ĥ (2) = 1

2

∑
ν

Eν(b̂†ν b̂ν + b̂ν b̂
†
ν), (28)

provided that the wave functions fulfill the so-called coupled
Bogoliubov equations,

[
LGP

1 	

	∗ LGP
2

]⎡
⎢⎢⎢⎣

u1ν

v1ν

u2ν

v2ν

⎤
⎥⎥⎥⎦ = Eν

⎡
⎢⎢⎢⎣

u1ν

v1ν

u2ν

v2ν

⎤
⎥⎥⎥⎦ (29)

and the biorthogonality conditions

∑
σ

∫
dr [uσν(r)u∗

σν ′(r) − vσν(r)v∗
σν ′(r)] = δνν ′ , (30)

∑
σ

∫
dr [uσν(r)vσν ′(r) − vσν(r)uσν ′(r)] = 0. (31)

These modes (indexed by ν), being of bosonic nature,
satisfy the Bose commutation rules [b̂σν,b̂

†
σ ′ν ′ ] = δσσ ′δνν ′ and

[b̂σν,b̂σ ′ν ′] = 0.
Notice that within this approach, we have disregarded the

contribution of zero-mode terms in the modal expansion (27).
The latter corresponds to two conjugate operators representing
collective coordinates [47]. They induce quantum phase
diffusion [59] and fluctuations of the numbers of particles
[47]. These effects are expected to be small in the limit of
large numbers of particles that we consider here.

3. Orthogonal field operator

Another subtle issue of the present approach is that the
normal terms B̂σ (r) defined in Eq. (27) do not fulfill the bosonic
commutation relations. As pointed out in Refs. [47,60], the
field operators B̂σ (r) should be orthogonalized with respect
to the (quasi-)condensate wave function ψσ (r) ≡ eiθσ

√
nσ ,

which amounts to apply the substitution B̂σ (r) → �̂σ (r) with

�̂σ (r) ≡ B̂σ (r) − ψσ (r)

Nσ

∫
dr′ B̂σ (r′)ψ∗

σ (r′). (32)

We then have

�̂σ (r) =
∑

ν

[u⊥
σν(r)b̂ν + v⊥∗

σν (r)b̂†ν], (33)

with

u⊥
σν ≡ uσν − ψσ (r)

Nσ

∫
dr′ uσν(r′)ψ∗

σ (r′), (34)

v⊥
σν ≡ vσν − ψ∗

σ (r)

Nσ

∫
dr′ vσν(r′)ψσ (r′). (35)
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According to Eqs. (18) and (19), the orthogonal field operators
�̂σ satisfy the modified commutation rules

[�̂σ (r),�̂σ ′(r′)] = 0, (36)

[�̂σ (r),�̂†
σ ′(r′)] = δσσ ′

[
δ(r−r′) − ψσ (r)ψ∗

σ (r′)
Nσ

]
. (37)

The solutions of the non-Hermitian eigenvalue problem
(29), together with the bi-orthogonality conditions (30) and
(31) and the orthogonalization process (34) and (35), deter-
mine the excitation spectrum of the two-component Bose
gas in the weakly interacting regime. A mode ν describes
a coupled two-component elementary excitation (Bogoliubov
quasiparticle) of the mixture. The energy and wave functions
of these excitations are Eν and {u⊥

1ν(r),v⊥
1ν(r),u⊥

2ν(r),v⊥
2ν(r)},

respectively. They can be determined numerically or, in certain
cases, analytically. All physical observables can then be
constructed by expansion on the corresponding basis.

D. Correlation functions

We now consider the correlation properties of observable
quantities, namely the phases and the densities of the two-
component Bose gas. These quantities can be measured inde-
pendently for each component in experiments with ultracold
atoms, using a gaseous mixture of a single bosonic atom
prepared in two different internal states [7–9,56] and internal-
state-dependent imaging techniques [61]. The density profiles,
fluctuations, and correlation functions of each component
are then found directly from the images [62,63]. The phase
fluctuations and correlation functions of each component
are found by time-of-flight [64,65] or Bragg spectroscopy
[66–68] techniques. The total and relative density profiles
are then obtained by addition or subtraction of those of
each component, which also provides their fluctuations and
correlation functions. Finally, the correlation function of the
relative phase, θ = θ1 − θ2, can be found using matter-wave
interference techniques [9,30].

For each component σ , the phase correlation function is

Gσ
θ (r,r′) ≡ 〈θ̂σ (r)θ̂σ (r′)〉 − 〈θ̂σ (r)〉〈θ̂σ (r′)〉

= −〈: (�̂σ − �̂†
σ )(�̂′

σ − �̂†′
σ ) :〉

4
√

nσ n′
σ

, (38)

where the nude (primed) quantities are evaluated at point r (r′).
The operator :: represents normal ordering with respect to the
orthogonal field operators �̂ and �̂†, which is used to avoid
unphysical divergences [47]. Similarly, the density correlation
function is

Gσ
n (r,r′) ≡ 〈nσ (r)nσ (r′)〉 − 〈nσ (r)〉〈nσ (r′)〉

= √
nσ n′

σ 〈: (�̂σ + �̂†
σ )(�̂′

σ + �̂†′
σ ) :〉. (39)

Using the expansion of the orthogonal field operator into the
basis of orthogonal Bogoliubov modes, Eq. (33), and the usual

auxiliary wave functions [69]

f p
σν(r) = u⊥

σν(r) − v⊥
σν(r), (40)

f m
σν(r) = u⊥

σν(r) + v⊥
σν(r), (41)

we then get the following explicit expressions after some
algebraic calculations:

Gσ
θ (r,r′) = 1

2
√

nσn′
σ

∑
ν

Re
[
f p

σνf
p′∗
σν Nν − f p

σνv
⊥′∗
σν

]
(42)

and

Gσ
n (r,r′) = 2

√
nσ n′

σ

∑
ν

Re
[
f m

σνf
m′∗
σν Nν + f m

σνv
⊥′∗
σν

]
, (43)

where

Nν = 1

exp(Eν/kBT ) − 1
(44)

is the thermal population of mode ν, according to the Bose-
Einstein statistical distribution. Note that expressions (42) and
(43) are symmetric in (r,r′). This can be checked by noting
that the commutation rule [�̂σ (r),�̂σ (r′)] = 0 [see Eq. (36)]
implies the relation

∑
ν u⊥

σν(r)v⊥∗
σν (r′) = ∑

ν u⊥
σν(r′)v⊥∗

σν (r).
The two-point correlation function of the relative phase is

defined by the same formula as Eq. (38), with θσ replaced with
θ = θ1 − θ2. The same calculation strategy yields

Gθ (r,r′) = 1

2

∑
ν

Re

[(
f

p
1ν√
n1

− f
p
2ν√
n2

)(
f

p′
1ν√
n′

1

− f
p′
2ν√
n′

2

)∗
Nν

−
(

f
p
1ν√
n1

− f
p
2ν√
n2

)(
v⊥′

1ν√
n′

1

− v⊥′
2ν√
n′

2

)∗]
. (45)

Having developed a general formalism for calculating
the excitation modes of the two-component Bose gas with
arbitrary one- and two-body couplings and established general
formulas for the density and phase correlation functions, we
explicitly calculate these quantities in the homogeneous case
in the next section.

III. HOMOGENEOUS SYSTEMS

In this section, we consider a homogeneous system, where
all potentials (V1 and V2) and coupling terms (g1, g2, g12,
and �) in Hamiltonians (2) and (3) are independent of the
position. Assuming that the potentials V1 and V2 are equal [70],
it can be assumed without loss of generality that V1 = V2 = 0.
This case allows for analytical calculations and contains the
main physical effects discussed below. Hereafter, we first
rewrite the formalism of Sec. II in a form adapted to the
homogeneous case (Sec. III A). We then solve it in the most
general situation where both one-body and two-body couplings
coexist to discuss the excitation spectrum and wave functions,
as well as density, phase, and relative-phase fluctuations of the
two-component gas (Sec. III B).

A. Mean-field equations

Since all derivative terms in the Euler-Lagrange equations
(9) and (10) vanish in the homogeneous case, it immediately
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follows from Eq. (10) that θ − α = 0 or π if � = �0e
−iα �= 0.

Inserting these two solutions into the mean-field version of
Eq. (6), we find that θ = α is a maximum of EMF and is thus
an unstable solution. The stable solution is θ = α + π , which
is a minimum of EMF. For instance, the two components are
in phase (out of phase) when � ∈ R− (� ∈ R+). If � = 0,
the relative phase θ is not a determined quantity as already
discussed in the first paragraph of Sec. II A. Inserting the stable
solution into Eq. (9), we then find

g1n1 + g12n2 − μ − ��0

2

√
n2

n1
= 0, (46)

g2n2 + g12n1 − μ − ��0

2

√
n1

n2
= 0, (47)

and n1 + n2 = n = N/V , with N the total number of particles
andV the volume of the system. We assume that the parameters
are such that the two components are miscible, i.e., there exists
a homogeneous solution of Eqs. (46) and (47) of minimal
energy with n1 > 0 and n2 > 0.

Translation invariance ensures that the Bogoliubov modes
are the plane waves

uσk(r) = 1√
V

ũσke
ik·r, (48)

vσk(r) = 1√
V

ṽσke
ik·r, (49)

f
p/m
σk (r) = 1√

V
f̃

p/m
σk eik·r, (50)

where we label the modes by the wave vector k (instead of
ν). In the following, we omit the tilde sign to simplify the
notations. Then, the amplitudes u1k, v1k, u2k, and v2k are the
solutions of the eigenproblem (29) for the diagonal blocks

LGP
σ =

[ +Aσk +gσnσ

−gσnσ −Aσk

]
, (51)

with Aσk = εk + 2gσnσ + g12nσ̄ − μ, where εk = �
2k2/2m

is the free-particle dispersion relation, and for the off-diagonal
blocks

	 =
[+g12

√
n1n2 − ��0/2 +g12

√
n1n2

−g12
√

n1n2 −g12
√

n1n2 + ��0/2

]
.

(52)

The biorthogonality conditions (30) and (31) reduce to∑
σ=1,2

(|uσk|2 − |vσk|2) = 1 (53)

or equivalently

f m
1kf

p
1k + f m

2kf
p
2k = 1, (54)

since the f
p/m
σk functions can be chosen to be real. Note

that since the classical fields φσ are homogeneous and the
Bogoliubov wave functions uσk and vσk are plane waves, the
orthogonalization procedure of Eqs. (30) and (31) is irrelevant
for k �= 0.

Finally, the correlation functions introduced in Sec. II D are
found by inserting Eqs. (48) and (49) into Eqs. (42) and (43),
which yields the following explicit formulas. For the phase
correlation function of component σ ,

Gσ
θ (r,r′) = 1

2nσV
∑
k �=0

[∣∣f p
σk

∣∣2
Nk − f

p
σkv

∗
σk

]
cos[k · (r − r′)].

(55)
For the density correlation function of component σ ,

Gσ
n (r,r′) = 2nσ

V
∑
k �=0

[∣∣f m
σk

∣∣2
Nk + f m

σkv
∗
σk

]
cos[k · (r − r′)].

(56)
Similarly, the correlation function of the relative phase is

Gθ (r,r′) = 1

2V
∑
k �=0

[∣∣∣∣ f
p
1k√
n1

− f
p
2k√
n2

∣∣∣∣
2

Nk

−
(

f
p
1k√
n1

− f
p
2k√
n2

)(
v1k√
n1

− v2k√
n2

)∗]

× cos[k · (r − r′)]. (57)

Notice that, for simplicity, we have indicated only k �= 0 below
the sum symbols of Eqs. (55)–(57). As a matter of fact, we
will see that in general the Bogoliubov spectrum displays two
branches, over which the sums should be performed.

B. Excitation spectrum and correlations

We now study the excitation spectrum and the correlation
functions of the homogeneous two-component Bose gas.
Detailed calculations in the most general case are provided
in Appendix A. In brief, we generically find that the excitation
spectrum is composed of two branches (see Fig. 2), one
being gapped provided �0 �= 0, and the other one being
ungapped and of Bogoliubov type. Both are particlelike at

0

2

4

6

8

 10

 12

 14

 16

 18

0  0.5 1  1.5 2  2.5 3  3.5 4

E
k 

/ μ
0

kξ0

Ek
off

Ek
in

FIG. 2. (Color online) Bogoliubov spectrum of the coupled ex-
citations in a homogeneous two-component Bose gas with g12 �= 0
and � �= 0. Plotted are the two energy branches E

in/off
k [Eqs. (59) and

(60)] in the case g1 = g2, for g12 = 0.7g1 and ��0 = 0.4g1n. This
corresponds to a situation where g12n > ��0 and the two branches
cross at a certain momentum kc (see text). For g12n < ��0, there is no
crossing point and the “off” branch is always above the “in” branch.
Here, μ0 = g1N/2V is the chemical potential in the absence of any
coupling, and ξ0 = �/

√
2mμ0 is the corresponding healing length.
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high energy. The two branches are found to be always distinct
except if �0 = g12 = 0, in which case they both coincide with
the usual Bogoliubov spectrum, Ek = √

εk(εk + 2μ). This
holds for any positive values of g1 and g2. For the sake of
simplicity, we restrict in the following to the case where the two
intracomponent couplings are equal, g1 = g2, which captures
the main physics of the problem and is technically simpler.
We assume that g12 < g, which is the miscibility condition for
�0 = 0 [14].

1. Mean-field background and Bogoliubov excitations

In the case g1 = g2 ≡ g, the mean-field densities of the two
components are equal, n1 = n2, and Eqs. (46) and (47) yield
the chemical potential

μ = (g + g12)n/2 − ��0/2, (58)

with n = n1 + n2 the total density. The excitation spectrum
is computed in Appendix A 2 [see Eq. (A17) together with
Eqs. (A15) and (A16)]. As mentioned above, it is composed
of two branches, which explicitly read

Ein
k =

√
εk(εk + gn + g12n), (59)

Eoff
k =

√
(εk + ��0)[εk + ��0 + (g − g12)n]. (60)

as a function of the problem parameters. The meaning
of the labels “in” and “off” used to distinguish the two
branches will become clear later. The spectrum is plotted
in Fig. 2. The “in” branch shows the usual (ungapped)
Bogoliubov-like dispersion relation: It is phononlike for
εk 
 gn,g12n and Ein

k � c�k with c = √
(g + g12)n/2m the

sound velocity; it is free-particle-like for εk � gn,g12n

and Ein
k � εk + (g + g12)n/2. Conversely, the “off” branch

is gapped and free-particle-like in both low- and high-
energy limits, provided �0 �= 0: For εk 
 (g − g12)n,��0,
we have Eoff

k � Egap + 2��0+(g−g12)n
2
√

��0[��0+(g−g12)n]
εk, where Egap =√

��0[��0 + (g − g12)n]; for εk � (g − g12)n,��0, we have
Eoff

k � εk + ��0 + (g − g12)n/2. Thus, at low energy, the
“off” branch is always above the “in” branch. At higher energy,
though, it depends on the strengths of the two couplings,
since the two branches are separated by an energy � =
limk→∞(Eoff

k − Ein
k ) = ��0 − g12n. For attractive two-body

coupling, g12 < 0, we have Ein
k < Eoff

k for any momentum
k, and the separation Eoff

k − Ein
k increases with both �0

and g12. Therefore, attractive two-body coupling cooperates
with one-body coupling. In contrast, repulsive two-body
coupling, g12 > 0, competes with one-body coupling and
tends to decrease the separation between the branches. If
the repulsive interactions are strong enough, g12n > ��0, the
two curves exhibit a crossing point, above which Ein

k > Eoff
k .

This happens at the energy εc
k ≡ (�kc)2/2m = ��0[��0 +

(g − g12)n]/2(g12n − ��0). When increasing the repulsive
intercomponent interactions, this crossing first appears at high
momentum k ≈ ∞ and then moves to lower momenta.

In the particular case where �0 = 0, the “off” branch as well
turns to be Bogoliubov-like; it is ungapped and phononlike

at low energy and Eoff
k � c�k with c = √

(g − g12)n/2m the
sound velocity. In this case, which can be viewed as the limiting
situation where the crossing of the two branches takes place at
k = 0, the “off” branch entirely lies above the “in” branch for
g12 < 0, and entirely below for g12 > 0.

Let us come back to arbitrary values of �0. The computation
of the Bogoliubov wave functions is performed in the general
case in the Appendix A 1 [see Eqs. (A11) to (A14)]. Their
expressions in the case g1 = g2 follow from the procedure
indicated in Appendix A 2 and read

f
m,in
1k = f

m,in
2k =

[
εk

2Ein
k

]1/2

, (61)

f
p,in
1k = f

p,in
2k =

[
Ein

k

2εk

]1/2

, (62)

for the “in” branch and

f
m,off
1k = −f

m,off
2k =

[
εk + ��0

2Eoff
k

]1/2

, (63)

f
p,off
1k = −f

p,off
2k =

[
Eoff

k

2εk + 2��0

]1/2

, (64)

for the “off” branch. In the following, we omit the branch
labels (“in”/“off”) in the functions f

p/m
σk for simplicity, except

when necessary. The moduli of the f
p/m
σk functions, which

do not depend on the component σ in the case g1 = g2

considered here, are plotted in Fig. 3. For the “in” branch, each
component behaves as an effective single-component Bose
gas with renormalized effective parameters, since the previous
Bogoliubov spectrum and wave functions are similar to those
of a single-component gas. Notice in particular the divergence
of the f

p
σk functions. In contrast, the gapped dispersion relation

of the “off” branch yields a different behavior for the f
p/m
σk

functions. They do not depend much on k as soon as ��0

0

1

2

3

4

5

0  0.5 1  1.5 2  2.5 3  3.5 4

|f σ
k|

kξ0

fσk
m off

fσk
p off

fσk
m in

fσk
p in

FIG. 3. (Color online) Amplitudes of the wave functions f
p/m
σk

of the coupled Bogoliubov excitations for a homogeneous two-
component Bose gas with g12 �= 0 and � �= 0. Plotted are the absolute
values, |f p/m

σk | [see Eqs. (61) to (64)] for the same parameters as in
Fig. 2. Since g1 = g2, the absolute values are independent of the
component σ . The excitations are in phase in the “in” branch (Ein

k )
and off phase for the “off” branch (Eoff

k ).
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and gn are of the same order, and in particular, the f
p
σk

functions no longer diverge at low energy, since the gap acts
as a low-momentum cutoff.

It follows as well from Eqs. (61) to (64) that, for a given
component σ , the f m

σ (r) and f
p
σ (r) wave functions are always

in phase [i.e., f m
σkf

p
σk > 0]. Conversely, the modes associated

to the components 1 (f m
1k,f

p
1k) and 2 (f m

2k,f
p
2k) are off phase

in the “off” branch and in phase in the “in” branch; hence the
denomination used to label the two branches. More precisely,
since the separation Eoff

k − Ein
k increases with �0, we find that

the one-body coupling �(r) tends to favor fluctuations of the
phases of the components that are in phase, independently of
its sign and more generally independently of its phase α. This
contrasts with the behavior of the mean-field phases θ1 and
θ2, the difference of which is imposed by the phase of �(r)
(see Sec. III A). Indeed, the behavior of the fluctuations can be
understood from the fact that the one-body coupling tends to
impose the difference between the total phases of the two com-
ponents. Since it is realized at the mean-field level, the phase
fluctuations tend to be in phase, whatever the phase of �(r). As
regards two-body coupling, we find that Eoff

k − Ein
k decreases

with g12, so that for g12 > 0, the two-body coupling favors
off-phase density fluctuations, whereas for g12 < 0, it favors
in-phase density fluctuations. This can be traced to the fact that
for repulsive intercomponent interactions (g12 > 0), off-phase
density fluctuations (f m

1kf
m
2k < 0) cost less interaction energy

than in-phase density fluctuations (and the other way round
for g12 < 0). Therefore, for attractive two-body coupling, in-
phase fluctuations are energetically favored, cooperatively by
one-body and two-body couplings. Conversely, if the two-body
coupling is repulsive and strong enough to compete with the
one-body coupling (g12n > ��0), so that the two branches
cross, they compete with the following result: For low-energy
excitations (εk < εc

k), in-phase fluctuations cost less energy
than off-phase fluctuations, whereas it is the opposite for
high-energy excitations (εk > εc

k).

2. Fluctuations and correlations

The phase and density correlations in each component σ

are determined by the f
p
σk and f m

σk functions [see Eqs. (55)
and (56)]. Due to the similarity, in the in-phase branch, of
the dispersion relation and formulas for the f

p/m
σk functions

with those of a single-component Bose gas, each component
behaves as an effective single-component gas. The effective
parameters, however, depend on all coupling parameters g1, g2,
and g12 and are, in general, different for the two components
(if g1 �= g2). Then the density fluctuations remain small for
strong-enough interaction parameters and low temperatures
in any dimension. In contrast, the behavior of the phase
fluctuations strongly depends on the dimension, owing to the
1/

√|k| divergence of the f
p,in
σk functions. In three dimensions,

the two components form true Bose-Einstein condensates
with intracomponent phase coherence. In lower dimensions,
they form quasicondensates with strong intracomponent phase
fluctuations driven by the ungapped Bogoliubov-like spectrum
of the in-phase branch.

Let us turn to the relative-phase correlations. Equation (57)
shows that in the case g1 = g2 that we consider here, only
the off-phase branch contributes to the sum. The correlation

function for the relative phase can thus be rewritten

Gθ (r,r′) = 1

2Vn

∑
k �=0

{
2Nk +

(
1 − εk + ��0

Eoff
k

)}

× ∣∣f p,off
1k − f

p,off
2k

∣∣2
cos[k · (r − r′)], (65)

making apparent the thermal and quantum contributions.
Owing to the gap in the off-phase branch, its contribution
remains finite, which ensures mutual phase coherence between
the two Bose gases, in any dimension. This is, however, not
true in the particular case �0 = 0, where the off-phase branch
is ungapped: There, the two components are mutually phase
coherent only in three dimensions, but show no true long-range
mutual phase coherence in lower dimensions. Therefore, a
finite one-body coupling suppresses the fluctuations of the
relative phase, in agreement with the previous discussion
according to which it tends to impose the phase at the
mean-field level, favoring in-phase fluctuations of the phase.
To be more quantitative, we can rewrite Eq. (65) into the form

Gθ (r,r′) = 1

nV
∑
k �=0

[√
εk + (g − g12)n + ��0

εk + ��0

× coth

(
Eoff

k

2kBT

)
− 1

]
× cos[k · (r − r′)]. (66)

Since Eoff
k increases with �0 and both coth(Eoff

k /2kBT ) and√
[εk + (g − g12)n + ��0]/(εk + ��0) decrease when �0 in-

creases, the relative-phase fluctuations Gθ (r,r) indeed de-
crease when the intensity of the one-body coupling increases.
The influence of the two-body coupling on relative-phase

fluctuations is more involved. On the one hand, coth
(Eoff

k
2kBT

)
is an increasing function of g12 since Eoff

k decreases when g12

increases [see Eq. (60)]. Indeed, an increase of the two-body
coupling lowers the contributing off-phase branch, increasing
its thermal occupancy. On the other hand, the amplitude of

phase fluctuations in the off-phase branch,
√

εk+(g−g12)n+��0

εk+��0
=

Eoff
k /(εk + ��0) ∝ (f p,off

k )2, is a decreasing function of g12,
which is intimately linked to the previously discussed ob-
servation that an increasing g12 enhances the amplitude
of off-phase density fluctuations. To determine the overall
behavior of the relative-phase fluctuations, it is worth replacing√

[εk + (g − g12)n + ��0]/(εk + ��0) with Eoff
k /(εk + ��0)

in Eq. (66). Then, since ucoth(u) is an increasing function
of u (for u > 0) and Eoff

k is a decreasing function of g12,
we conclude that the relative-phase fluctuations decrease
when the two-body coupling increases. In particular, the
relative-phase fluctuations are maximally suppressed when
g12 > 0 approaches g from below. In other words, in a
homogeneous two-component Bose gas, repulsive intercom-
ponent interactions reduce relative-phase fluctuations while
attractive intercomponent interactions enhance relative-phase
fluctuations.

Let us mention that the physics of the general case g1 �=
g2 can be expected to be slightly different. Indeed, in this
case, the contribution of the in-phase branch to the relative-
phase correlation function is nonzero [see Eq. (57)] and the
divergence of the f

p,in
σk functions in this branch can lead to large
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FIG. 4. (Color online) Correlation function of the relative phase
for a 1D two-component Bose gas with one-body (�0 �= 0) and
two-body (g12 �= 0) couplings, plotted for various temperatures
(kBT/μ0 = 0, 1, 1.5, 2) in the case where g1 = g2 ≡ g. The parame-
ters here correspond to N = 104 atoms of 87Rb (m � 144 × 10−27 kg)
in a 1D box of size 2L = 10−4 m and interacting via the scattering
length a1 = a2 = 5.95 nm. It corresponds in the absence of any
coupling to the chemical potential μ0 = gn = 7.88 × 10−31 J, which
we choose as the energy unit. In these units, we use the parameters
��0 = 1μ0 and g12n = 0.75μ0.

fluctuations in low dimensions. Therefore, a small difference
between g1 and g2 suppresses mutual phase coherence on large
scales.

Let us discuss as well the behavior of the relative-phase
correlation function Gθ (r,r′) versus temperature, in the case
g1 = g2. Equation (66) is plotted on Fig. 4 as a function of
|r − r′| for various temperatures in the one-dimensional (1D)
case. The function Gθ (r,r′) generically decreases with |r − r′|
and goes to zero at large separations. Furthermore, it increases
with the temperature T , as is easily checked from Eq. (66),
since the thermal contribution gets more and more important.

At zero temperature, the relative-phase correlation function
reads

Gθ (r)= 1

n

∫
dk

(2π )d

[
Eoff

k

εk + ��0
− 1

]
cos(k · r), (67)

which is found by replacing the discrete sum in Eq. (66)
by an integral. It can be seen from Eq. (60) that this
function identically vanishes in the limit g12 = g. For (g −
g12)n 
 ��0, we can approximate Eoff

k
εk+��0

− 1 by (g−g12)n
2(εk+��0)

and analytically calculate the integral in Eq. (67). In 1D, it
yields the exponentially decaying correlation function

G1D
θ (r) = m(g − g12)n

2n�2L−1
θ

e−|r|/Lθ , for T = 0, (68)

where the correlation length is

Lθ =
√

�

2m�0
. (69)

Equation (68) accurately reproduces the exact formula (67)
plotted on Fig. 4, which corresponds to (g − g12)n = 0.25��0.
In 3D, we find

G3D
θ (r) = m(g − g12)n

4πn�2|r| e−|r|/Lθ , for T = 0, (70)

which exhibits a divergence in r = 0 and decreases over the
same characteristic length Lθ as in 1D [Eq. (69)]. For larger
values of (g − g12)n, a formal expansion in powers of (g −
g12)n/��0 of the term inside the brackets in Eq. (67) shows that
the main dependence of the relative-phase correlation function
in e−|r|/Lθ is preserved, with a multiplicative correction that
is polynomial in |r|/Lθ . We numerically checked that the
previous analytical formulas continue to hold up to this
polynomial correction in both 1D and 3D. They predict, in
particular, the correct correlation length, which therefore very
weakly depends on the two-body coupling, although they tend
to slightly overestimate the value of Gθ (0).

At finite temperature, the behavior of Gθ (r) at large
separations |r| can as well be obtained analytically. To do
so, we replace in Eq. (66) the discrete sum by an integral and
use Eq. (60), which yields

Gθ (r)= 1

n

∫
dk

(2π )d

[
Eoff

k

εk + ��0
coth

(
Eoff

k

2kBT

)
− 1

]
cos(k · r).

(71)
The behavior at large |r| is dominated by the components of
momentum k smaller than 1/r . Thus, for kT |r| � 1, where
kT is defined by Eoff

kT
= kBT , we have kBT � Eoff

k for all
contributing terms of the integral. Then, if kBT � (εk + ��0),
Eq. (71) can be simplified to

Gθ (r) � 1

n

∫
dk

(2π )d
2kBT

εk + ��0
cos(k · r). (72)

Notice that the previous condition requires that kBT �
Egap, ��0, Eq. (72) thus being valid in a large-separation
and high-temperature regime. For kT |r| � 1, the integral in
Eq. (72) can be calculated, yielding

G1D
θ (r) � 2mkBT

n�2L−1
θ

e−|r|/Lθ (73)

in 1D and

G3D
θ (r) � mkBT

πn�2|r|e
−|r|/Lθ (74)

in 3D. Remarkably, we find the same expression for the
correlation length of the relative phase [Eq. (69)], as for zero
temperature. In 1D, this result recovers that of Ref. [26] and
extends it to the case where one-body and two-body couplings
coexist. The correlation length of the relative phase then
weakly depends on the two-body coupling and decreases when
the one-body coupling increases. For smaller separations, the
previous formulas no longer hold. A cutoff at kT in the integral
would have to be taken into account, which, in particular,
would solve the apparent divergence found in Eq. (74) for
r = 0.

We finally discuss the temperature dependence of the
relative-phase fluctuations, which are given by Gθ (r = 0).
As already pointed out, the relative-phase fluctuations always
decrease with the one-body coupling �0, which thus favors
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FIG. 5. (Color online) Relative-phase fluctuations as a function
of temperature for a 1D two-component Bose gas with one-body
(�0 �= 0) and two-body (g12 �= 0) couplings, plotted for the same
parameters as in Fig. 4. The solid blue line with dots is the exact
calculation, corresponding to Eq. (71) in r = 0. The solid red line
is the expansion (75) and the dotted red line corresponds to the first
left-hand-side term in Eq. (75). While the quantum fluctuations are
small, the thermal contribution increases with temperature. At high
temperature, the exact calculation is accurately reproduced by the
high-temperature expansion (75), whereas the linear dominant term
proves insufficient to do so.

mutual phase coherence between the two condensates. More-
over, repulsive two-body coupling (g12 > 0) tends to reduce
the fluctuations of the relative phase while attractive two-
body coupling enhances them. The temperature dependence
of those fluctuations is shown in Fig. 5 for the 1D case.
The zero-temperature fluctuations, which are given by their
quantum contribution, are smaller than those of a single
condensate [26]. The fluctuations then unsurprisingly increase
with temperature. Their high-temperature behavior can be ob-
tained by an analytical expansion, which we detail in the
Appendix B. We find that for kBT � ��0,(g − g12)n, the
dominant term is linear in T and reads 2mkBT /n�

2L−1
θ , which

coincides with the prefactor in Eq. (73) and the result of
[26]. In particular, the one-body coupling favors local mutual
phase coherence between the two components. However, the
dominant contribution is generally not sufficient to accurately
reproduce the exact calculations as shown in Fig. 5. In order to
get a better accuracy, we include the next-order contribution,
which scales as

√
T and, remarkably, is independent of

the couplings. More precisely, we find the high-temperature
expansion

Gθ (r = 0) � 2mkBT

n�2L−1
θ

− I1

π

√
2kBT

�2n2/2m
+ O(1), (75)

where I1 = ∫ ∞
0 du [1/u2 − coth(u2) − 1] � 1.82. As can be

seen in Fig. 5, Eq. (75) provides a fair approximation to the
exact calculations. In particular, we find that the

√
T correction

significantly lowers the relative-phase fluctuations.

IV. CONCLUSIONS

In this paper, we have derived a general mean-field
theory for a two-component Bose gas in the presence of

both one-body and two-body couplings. We considered the
most general situation where both one-body and two-body
couplings can be position dependent and where the gas can
experience a component-dependent external potential. Our
formulation uses the phase-density formalism, which allows us
to capture both cases of true condensates and quasicondensates
with large phase fluctuations. We have written the coupled
Gross-Pitaevskii equations, which determine the ground-state
background, as well as the Bogoliubov equations, which
determine the pair-excitation spectrum of the mixture. We
obtained general formulas for phase and density correlation
functions within each component, as well as for their relative
phase, at zero and finite temperature.

We have then applied our formalism to a homogeneous
case where both one-body and two-body couplings coexist
(Sec. III B). Our discussion then focused on the excitation
spectrum and the relative-phase fluctuations in the case of
equal intracomponent interactions, which captures the main
physics. We summarize our main results in the following.

The excitation spectrum is composed of two branches,
which are distinct provided at least one of the couplings
is present. The first branch, which corresponds to in-phase
fluctuations of the two Bose gases, is of Bogoliubov type. It
depends only on the two-body coupling while being unaffected
by one-body coupling. The second branch, which corresponds
to off-phase fluctuations, is gapped as soon as the one-body
coupling is nonzero. The two branches cross each other at a
given momentum if the two-body coupling is repulsive and
exceeds the one-body coupling.

As regards phase and density fluctuations, each component
behaves as an effective single-component Bose gas with
coupling parameters that are renormalized by the interspecies
two-body coupling. In particular, while the density fluctuations
remain small in all dimensions, the two components exhibit
strong intracomponent phase fluctuations in low dimensions,
driven by the ungapped Bogoliubov-like spectrum of the
in-phase branch.

The behavior of the relative phase is more involved. At
the mean-field level, it is imposed by the one-body coupling,
and in particular by its phase. Then, the fluctuations of the
relative phase depend only on the modulus of the one-body
coupling and on the two-body coupling. At variance with the
phase and density fluctuations within each component, the
relative-phase fluctuations are mostly determined by the off-
phase branch of the spectrum, provided that the intraspecies
interaction strengths are not too different. This is strictly the
case where they are equal (g1 = g2). Then, the two component
are mutually phase coherent in any dimension, due to the
gap in the contributing off-phase branch (provided ��0 �= 0).
Therefore, the one-body coupling always favors relative-phase
coherence of the two Bose gases, independently of its phase. As
regards the two-body coupling, two mechanisms compete. On
the one hand, an increasing g12 tends to lower the contributing
off-phase branch, hence increasing its thermal occupancy. On
the other hand, it enhances the amplitude of off-phase density
fluctuations and therefore reduces the amplitude of phase
fluctuations in the contributing off-phase branch. We found
that the latter effect always dominates. Therefore, repulsive
intercomponent interactions suppress relative-phase fluctua-
tions while attractive intercomponent interactions enhance
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relative-phase fluctuations. Then, repulsive two-body coupling
cooperates with one-body coupling and further suppresses
relative-phase fluctuations, while attractive two-body coupling
competes with one-body coupling and enhances relative-phase
fluctuations. Closed analytical forms were eventually found for
the relative-phase correlation function, in the high-temperature
and large-separation regime. This enabled us to identify a
correlation length for the relative phase, which was found
to decrease when the one-body coupling increases and to be
roughly independent of the two-body coupling.

Our work generalizes previous results to the case where
both one-body and two-body couplings are present between
the two Bose components. The homogeneous cases we have
analyzed are expected to contain the main physics of relative-
phase coherence. The formalism that we have developed here
can be directly applied to more complicated situations. For
instance, the effect of inhomogeneous trapping, which can be
component dependent, is particularly relevant in the context
of ultracold-atom systems. In this case, one may resort to
numerical solutions of the Gross-Pitaevskii and Bogoliubov
equations. Other interesting applications of this formalism
include the study of the effects of strong inhomogeneities
in interacting Bose gases, in particular random couplings,
which is attracting much attention in ultracold-atom systems
[71]. One may envision several applications. First, disordered
potentials have been shown to induce Anderson localization
of the Bogoliubov excitations in single-component Bose
gases [72–75]. How does it extend to the case of coupled
Bose gases? Second, disorder can be included in interaction
terms using inhomogeneous Feshbach resonances [76]. What
would be the effect of random interspecies coupling? Third,
disorder can be included in one-body coupling, which has
been shown to produce random-field-induced order of the
relative phase of two Bose-Einstein condensates at zero
temperature [35,36,77,78]. How does finite temperature affect
this behavior?

Note added. Recently, we were made aware of a related
work, reporting the analysis of the excitation spectrum and
the structure factors of coupled two-component Bose-Einstein
condensates [79].
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APPENDIX A: GENERAL FORMULAS FOR THE
HOMOGENEOUS TWO-COMPONENT BOSE GAS

In this Appendix, we compute the excitation spectrum and
wave functions of the homogeneous two-component Bose gas
in the most general situation where both one-body and two-
body couplings are present.

1. General case, g1 �= g2

In principle, the first step is to solve the mean-field
background, Eqs. (46) and (47). However, in the most general
case with g1 �= g2, �0 �= 0, and g12 �= 0, we did not find a
simple closed solution [80,81]. Thus, in the following, we
write directly the Bogoliubov equations as a function of n1,
n2, and μ.

Given the mean-field solution n1, n2, and μ, one has to
solve the homogeneous Bogoliubov equations (29) together
with (51) and (52). By taking the sum and difference of the
first two rows on the one hand and of the last two rows of
the other hand, we can rewrite those Bogoliubov equations in
terms of the f

p,m
σk functions,

Ekf
m
σk =

(
εk + ��0

2

√
nσ̄

nσ

)
f

p
σk − ��0

2
f

p
σ̄k, (A1)

Ekf
p
σk =

(
εk + ��0

2

√
nσ̄

nσ

+ 2gσnσ

)
f m

σk

+
(

2g12
√

n1n2 − ��0

2

)
f m

σ̄k, (A2)

where σ̄ is the conjugate of component σ [σ̄ = 2 (1) for σ = 1
(2)]. Using the normalization condition (54), it yields

E2
kf

p
σk = (εσk + 2Uσ )

(
εσkf

p
σk − ��0

2
f

p
σ̄k

)

+
(

2U12 − ��0

2

)(
−��0

2
f

p
σk + εσ̄kf

p
σ̄k

)
,

(A3)

Ek = f
p
1k

(
ε1kf

p
1k − ��0

2
f

p
2k

)
+ f

p
2k

(
ε2kf

p
2k − ��0

2
f

p
1k

)
,

(A4)

where we have defined εσk ≡ εk + ��0

2

√
nσ̄

nσ
, Uσ ≡ gσnσ , and

U12 ≡ g12
√

n1n2. By defining as well

Akσ = εσk(εσk + 2Uσ ) − ��0

2

(
2U12 − ��0

2

)
, (A5)

Bkσ = εσ̄k

(
2U12 − ��0

2

)
− ��0

2
(εσk + 2Uσ ), (A6)

we can rewrite Eq. (A3) separating the terms in f
p
σk from those

in f
p
σ̄k,

f
p
σ̄kBkσ = f

p
σk

[
E2

k − Akσ

]
. (A7)

The Bogoliubov energies are then found from the ratio of the
two avatars of Eq. (A7) corresponding to σ = 1 and σ = 2,
respectively. It yields

E±
k =

√
1

2
(Ak1 + Ak2) ±

√
(Ak1 − Ak2)2/4 + Bk1Bk2.

(A8)
The excitation spectrum is composed of two branches, the one
labeled by (+) always being above the one labeled by (−).
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Their low- and high-momentum behaviors are easily found
from a low- and high-momentum expansion of the Akσ and
Bkσ . At low momentum, the (−) branch is ungapped and
phononlike; conversely, the (+) branch exhibits a finite gap
as soon as �0 �= 0, given by

Egap =
[

�
2�2

0

4

(
2 + n1

n2
+ n2

n1

)

+ ��0
√

n1n2(g1 + g2 − 2g12)

]1/2

. (A9)

At high energy, both branches are particlelike and separated
by an energy

� =
[(

��0

2

n2 − n1√
n1n2

+ g1n1 − g2n2

)2

+ (2g12
√

n1n2 − ��0)2

]1/2

. (A10)

In between, the two branches can possibly coincide at a specific
k provided the equation (Ak1 − Ak2)2/4 + Bk1Bk2 = 0 has
a solution (see Sec. III B for a precise example in the case
g1 = g2).

In the particular case where �0 = g12 = 0, and only in
this case [82], the two branches are identical and correspond
to the usual single-particle Bogoliubov spectrum, E±

k =√
εk(εk + 2μ). Notice that this holds even for g1 �= g2 because

the mean-field background is identical for the two Bose
gases, i.e., g1n1 = g2n2 = μ [see Eqs. (46) and (47) with
�0 = g12 = 0]. In this case, the spectrum shows twofold
degeneracy (there is also a trivial +k ↔ −k degeneracy, which
we disregard here).

Given the excitation spectrum, we can then compute the
Bogoliubov wave functions f

p,m
σk . To do so, we use Eq. (A7)

and express f
p
2k as a function of f

p
1k. Inserting this expression

into Eq. (A4), we find

f
p
1k =

√√√√ Ek

ε1k − ��0
E2

k−Ak1

Bk1
+ ε1k

(E2
k−Ak1

Bk1

)2
(A11)

up to an arbitrary phase that we set to zero. Using again
Eq. (A7), we find

f
p
2k = E2

k − Ak1

Bk1

√√√√ Ek

ε1k − ��0
E2

k−Ak1

Bk1
+ ε1k

(E2
k−Ak1

Bk1

)2
.

(A12)

Notice that although f
p
2k could also be expressed by a

symmetric expression as Eq. (A11), this would not be sufficient
to determine its relative phase with respect to f

p
1k. We finally

deduce the f m
σk waves from the f

p
σk using Eq. (A1). It yields

f m
1k = ε1k − ��0

(
E2

k − Ak1
)
/2Bk1√

Ek
[
ε1k − ��0

E2
k−Ak1

Bk1
+ ε1k

(E2
k−Ak1

Bk1

)2] (A13)

and

f m
2k = ε2k

(
E2

k − Ak1
)/

Bk1 − ��0/2√
Ek

[
ε1k − ��0

E2
k−Ak1

Bk1
+ ε1k

(E2
k−Ak1

Bk1

)2] . (A14)

2. Symmetric case, g1 = g2

In the case discussed in Sec. III B where the intracomponent
couplings are equal, g1 = g2, we have by symmetry of the two
components n1 = n2, Ak1 = Ak2 ≡ Ak, and Bk1 = Bk2 ≡ Bk,
with

Ak =
(

εk + ��0

2

)(
εk + ��0

2
+ gn

)

− ��0

2

(
ng12 − ��0

2

)
, (A15)

Bk =
(

εk + ��0

2

)(
ng12 − ��0

2

)

− ��0

2

(
εk + ��0

2
+ gn

)
. (A16)

Equation (A8) then reads E±
k = √

Ak ± |Bk|. Therefore,

the two energies corresponding to a given momentum k,
irrespective to the branches, are nothing but

√
Ak ± Bk. This

allows for redefining the two branches of the spectrum in a
different way:

E
in/off
k =

√
Ak ± Bk. (A17)

Although none of the branches is now systematically above
or below the other one, this convention for the “in” branch
and the “off” branch will prove more convenient in Sec. III B,
especially while computing the Bogoliubov wave functions.
Indeed, notice that (E2

k − Ak1)/Bk1 = 1 for the “in” branch
and −1 for the “off” branch. This enables us to considerably
simplify Eqs. (A11) to (A14) for the Bogoliubov wave
functions in the case g1 = g2.

APPENDIX B: HIGH-TEMPERATURE EXPANSION FOR
THE ONE-DIMENSIONAL FLUCTUATIONS OF THE

RELATIVE PHASE

We perform here a high-temperature expansion of the
relative-phase fluctuations in the 1D case, valid for kBT �
��0,(g − g12)n. The relative-phase fluctuations are given
by

Gθ (0) = 1

nπ

∫ ∞

0
dk

[
Eoff

k

εk + ��0
coth

(
Eoff

k

2kBT

)
− 1

]
, (B1)

with Eoff
k = √

(εk + ��0)[εk + ��0 + (g − g12)n]; see
Eqs. (60) and (71).

1. General expansion and leading term

Introducing kT such that Eoff
kT

= kBT , we can split the
integral in Eq. (B1) into two parts, corresponding to k < kT and

to k > kT , respectively. For k � kT , coth
(Eoff

k
2kBT

) ≈ 1 up to some
exponentially decaying terms. Hence, we can safely approx-

imate the first part of the integral by 1
nπ

∫ ∞
kT

dk
( Eoff

k
εk+��0

− 1
)
,

the leading-order term of which scales as 1/kT ∝ 1/
√

T

in the high-temperature limit. We can thus disregard this
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contribution. For k 
 kT , we have Eoff
kT


 2kBT so that we can
use the expansion coth(x) ≈x→0 1/x + x/3 − x3/45 + · · · ,
yielding the contribution

1

nπ

∫ kT

0
dk

[
2kBT

εk + ��0
+ εk + ��0 + (g − g12)n

6kBT
− · · · − 1

]
,

(B2)

where we have retained the first two contributions. At high
temperature, the first term is linear in T and reads 2mkBT

n�2L−1
θ

, where

Lθ =
√

�

2m�0
. Then, all terms coming from the expansion

of the coth function are of order
√

T and more, and the
last term coming from the −1 is constant. Therefore, at
high temperature, the relative-phase fluctuations scale linearly
with T :

Gθ (r = 0) � 2mkBT

n�2L−1
θ

+ O(
√

T ). (B3)

Obtaining the next correcting terms, scaling as
√

T , from
Eq. (B2) is not straightforward since one would have to
evaluate all terms of the integral and resum them. Furthermore,
with this approach, each term would depend on kT , which was
introduced as a typical bound to split the integral and is thus
somehow defined up to an arbitrary constant of the order of one.
It would prevent us to extract the correct numerical prefactor
of the

√
T term.

2. Higher-order terms

In order to overcome this issue, we resort to another
approach. As can be checked from Eq. (B2), the term in
(g − g12)n contributes to the expansion only in terms of
order 1/

√
T and more. We can thus neglect it here. With

this approximation, we have Eoff
k � εk + ��0, so that we can

simply rewrite Eq. (B1) in the form

Gθ (0) = 1

π

√
2kBT

�2n2/2m

∫ ∞

0
du [coth(u2 + η) − 1], (B4)

where we defined the small parameter η = ��0/2kBT . We
now split the integral into two parts. For u 
 √

η, u2 + η 
 1
so that we can use the previous expansion of the coth function,

and obtain

1

π

√
2kBT

�2n2/2m

∫ √
η

0
du

(
1

u2 + η
+ u2 + η

3
+ · · · − 1

)
.

(B5)

Each term can then be exactly integrated. The first term gives a
contribution linear in temperature, which reads mkBT

n�2L−1
θ

. Notice

that, comparing to Eq. (B3), it yields only one half of the
leading-order term linear in T . All the other terms are of orders
1, 1/T , 1/T 2, . . ., thus strictly smaller than the

√
T term

we are looking for. For u � √
η, we can use the expansion

coth(u2 + η) ≈ coth(u2) + η coth(1)(u2) + · · · , where coth(n)

is the nth derivative of coth, which yields

1

π

√
2kBT

�2n2/2m

∫ ∞

√
η

du

×
⎧⎨
⎩[coth(u2) − 1] +

∑
n�1

ηn

n!
coth(n)(u2)

⎫⎬
⎭ . (B6)

Notice first that each term contains a contribution that is linear
in T . Indeed, their respective equivalents in 0 are nonintegrable
and read [coth(u2) − 1] ∼u→0 1/u2 and coth(n)(u2) ∼u→0

n!(−1)n/u2n+2, so that all the terms in Eq. (B6) scale
once integrated as 1/

√
η. Together with the global prefactor√

2kBT , it yields a linear scaling. The latter can be explicitly
calculated by integrating the previous equivalents, which
yields 4mkBT

nπ�2L−1
θ

× (1 − 1/3 + 1/5 − 1/7 + · · · ) = mkBT

n�2L−1
θ

, that

is, one half of Eq. (B3). Together with the contribution of
the first part of the integral, we thus recover exactly the same
linear term as in the above section. Then, coming back to
Eq. (B6), we can find the next-order terms by subtracting from
each term its equivalent in u = 0. The first correction reads
1
π

√
2kBT

�2n2/2m

∫ ∞√
η
du[coth(u2) − 1 − 1/u2]. The latter scales as√

T when η → 0 since the function u → coth(u2) − 1 − 1/u2

is integrable. One can then check that the contributions of the
other terms will respectively scale as 1/

√
T , 1/T 3/2, . . .. We

hence find the final expansion

Gθ (r = 0) � 2mkBT

n�2L−1
θ

− I1

π

√
2kBT

�2n2/2m
+ O(1), (B7)

where I1 = ∫ ∞
0 du [1/u2 − coth(u2) − 1] � 1.82.
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[30] T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, G. Kazakov,

I. E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, and
J. Schmiedmayer, Phys. Rev. Lett. 106, 020407 (2011).

[31] K. Kasamatsu, M. Tsubota, and M. Ueda, Int. J. Mod. Phys. B
19, 1835 (2005).

[32] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-
Kurn, Phys. Rev. Lett. 100, 170403 (2008).

[33] M. Vengalattore, J. Guzman, S. R. Leslie, F. Serwane, and
D. M. Stamper-Kurn, Phys. Rev. A 81, 053612 (2010).

[34] J. Guzman, G.-B. Jo, A. N. Wenz, K. W. Murch, C. K. Thomas,
and D. M. Stamper-Kurn, Phys. Rev. A 84, 063625 (2011).

[35] J. Wehr, A. Niederberger, L. Sanchez-Palencia, and
M. Lewenstein, Phys. Rev. B 74, 224448 (2006).

[36] A. Niederberger, T. Schulte, J. Wehr, M. Lewenstein, L.
Sanchez-Palencia, and K. Sacha, Phys. Rev. Lett. 100, 030403
(2008).

[37] J. I. Cirac, M. Lewenstein, K. Mølmer, and P. Zoller, Phys. Rev.
A 57, 1208 (1998).

[38] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G.
Kurizki, and M. K. Oberthaler, Nature (London) 480, 219
(2011).
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[43] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and

M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005).
[44] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, and M. K.
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