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We study the localization of collective pair excitations in weakly interacting Bose superfluids in one-
dimensional quasiperiodic lattices. The localization diagram is first determined numerically. For intermediate
interaction and quasiperiodic amplitude we find a sharp localization transition, with extended low-energy states
and localized high-energy states. We then develop an analytical treatment, which allows us to quantitatively map
the localization transition into that of an effective multiharmonic quasiperiodic system.
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Quasiperdiodic systems, which are formed of a small
number of incommensurate sinusoidal components, constitute
an appealing intermediate between disordered and periodic
systems. Such structures are basic models for a wide variety
of physical systems. They appear naturally in the growth of
certain crystals [1] or as a result of charge-density waves [2].
They also describe two-dimensional lattice electrons in per-
pendicular magnetic fields [3]. Moreover, they can be created
on purpose in solid crystals [4], photonic crystals [5], and
ultracold-atom optical lattices [6–8]. In quasiperiodic systems,
the lack of translation invariance can induce localization of
linear waves, similarly as the phenomenon of Anderson lo-
calization in disordered systems [9]. In quasiperiodic systems,
however, the quasirepetition of finite patterns radically changes
the localization picture. For instance, in a one-dimensional
disordered system, any quantum particle is localized with
an energy-dependent localization length [10,11]. In contrast,
for a quasiperiodic system made of a single incommensurate
sinusoidal modulation of a main periodic lattice, there is
a localization transition for some critical strength of the
quasiperiodic component beyond which the states are local-
ized with a localization length that is independent of the
energy [12].

The extension of the concept of localization to interacting
quantum systems is attracting considerable attention as regards
phase diagrams [13], many-body localization transitions [14],
and localization of collective excitations [15–17]. These issues
have been first investigated for purely disordered systems and
extensions to quasiperiodic systems are just starting. So far,
most studies focused on the phase diagram of one-dimensional
bosons in quasiperiodic lattices at zero temperature
[18–20], finite temperature [21], and infinite temperature [22].
Conversely, the localization of collective excitations remains
largely open. This issue is particularly important because the
transport of collective excitations governs many dynamical
effects in correlated quantum systems [23], for instance, the
propagation of correlations in recently developed quench
experiments [24].

Here we study the localization of collective pair exci-
tations in weakly interacting Bose superfluids subjected to
a one-dimensional quasiperiodic lattice. We first determine
the localization diagram numerically and show that, for
intermediate interaction and quasiperiodic amplitude, there
is a sharp localization transition. This nontrivial transition
separates bands of states that are extended at low energy

and localized at high energy. We then develop an analytical
treatment, which allows us to reproduce the numerical results
accurately and to quantitatively map the localization transition
into that of an effective multiharmonic quasiperiodic system.
Finally, we discuss experimental observability and possible
extension of our results.

The starting point of our study is the Aubry-André-Hubbard
Hamiltonian,

Ĥ = −
∑
j,l

Tj,l â
†
j âl +

∑
j

Vj â
†
j âj + U

2

∑
j

â
†
j â

†
j âj âj , (1)

which governs the low-energy physics of interacting bosons
in one-dimensional (1D) quasiperiodic lattices. In Eq. (1), âj

and â
†
j are the bosonic annihilation and creation operators at

the lattice site j . The first term represents quantum tunneling
with the hopping matrix T̂ , which includes nearest-neighbor
tunneling, Tj,j±1 = t and Tj,l = 0 for |j − l| > 1, as well
as the homogeneous on-site term Tj,j = −2t , for conve-
nience. Within this convention, the free-particle spectrum,
εk = 4t sin2(k/2), is centered on ε = 2t with the band edges
ε = 0 and ε = 4t . The second term represents the on-site
quasiperiodic potential modulation, Vj = � cos(2πrj + ϕ),
where ϕ is a phase, � is the quasiperiodic amplitude, and
r is an irrational number. The third term represents on-site
repulsive interactions with the interaction energy U > 0.

In the weakly interacting regime with high occupation
number per lattice site (n � U/t , with n the mean density),
we can rely on mean-field theory [25]. A similar approach
has been presented elsewhere for disordered systems in
continuous [17,26,27] or lattice [28] spaces, and we just
outline it here. The density background nj is first determined
by minimizing the classical energy functional, obtained by
replacing the operator âj by the real-valued field φj ≡ √

nj in
Eq. (1). It yields the Gross-Pitaevskii equation (GPE),

μφj = −T̂ φj + Vjφj + Uφ3
j , (2)

where the term T̂ φj is a shortcut for the hopping matrix
contribution t(φj+1 − 2φj + φj−1) and μ is the chemical
potential. The collective pair excitations of the Bose superfluid,
which are represented by two fields uj and vj , are then
found by expanding Hamiltonian (1) up to second order in
the Bogoliubov operator δn̂j /2

√
nj + i

√
njδθ̂j , where δn̂j

and δθ̂j are the density and phase fluctuation operators,
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and diagonalizing the resulting quadratic Hamiltonian. The
excitation energy E and wave functions uj and vj are the
solutions of the Bogoliubov–de Gennes equations (BdGEs)[−T̂ + Vj − μ+ 2Unj Unj

−Unj T̂ − Vj + μ− 2Unj

] [
uj

vj

]
= E

[
uj

vj

]
.

(3)

Equations (2) and (3) form the complete set to determine the
elementary excitations of the Bose fluid in the quasiperiodic
lattice.

We first solve Eqs. (2) and (3) numerically in the 1D
quasiperiodic lattice. The number of lattice sites is chosen
to be a Fibonacci number Fp and r is taken as the ratio
Fp−1/Fp. It allows us to use periodic boundary conditions
and a good approximation of an incommensurate ratio (

√
5 −

1)/2 [12]. In practice, we use Fp = 610, which yields r =
(
√

5 − 1)/2 ± 0.000 002 [29]. The density background is com-
puted by solving the GPE using imaginary-time propagation
with a Crank-Nicolson scheme [30]. The good numerical
convergence of the imaginary-time propagation of the GPE
is a delicate point for the subsequent determination of the
collective excitations using Eq. (3). The convergence criterion
applies to the effective, imaginary-time-dependent chemical
potential μ(τ ) ≡ −�

2
d
dτ

ln(
∑

j nj ). We have checked that the
density profile is unaffected when the precision threshold
varies from 10−8 to 10−15. The same holds when the imaginary
time step �τ used in the propagation varies from 0.01/t to
0.5/t . Moreover, the density profile precisely agrees with the
perturbative expansion of the GPE solution implemented up
to order 50 [31]. All together, the precision on the density
profile nj is of the order of 10−8 for all results presented here.
The excitations are then computed by exact diagonalization of
the matrix in Eq. (3) using the Lanczos algorithm for sparse
non-Hermitian eigenproblems [30].

The numerical results are summarized on the diagram
in Fig. 1(a). It displays three different regimes. For weak
quasiperiodic amplitude � and strong interaction U , the
density background is fully connected and all excitations
are extended (“extended regime”). For a given interaction
strength U and tunneling t , the density modulations increase
with the quasiperiodic amplitude �. Above a critical value
of �c, the density profile gets fragmented (“fragmented
regime”), which yields the upper boundary on the diagram.
The fragmentation condition is chosen to be the minimal value
of � such that at least one lattice site has a density lower
than 0.01 atom per site. We have checked that varying this
arbitrary threshold down to 0.001 yields insignificant changes
of the fragmentation boundary. Moreover the latter is in good
agreement with the experimental observation of Ref. [7]. In the
fragmented regime, the density profile is cut in disconnected
pieces. It corresponds to trivial localization, a case that we
disregard in the following. Notice that in the limit U → 0, we
recover the critical value �c = 2t , which is the localization
transition of the noninteracting Aubry-André model. The
most interesting regime appears for intermediate quasiperiodic
amplitude (“ext-loc regime”). In this regime, although the
density background is fully connected, we find a localization
transition of the collective excitations. Remarkably enough,
they are the high-energy excitations that are exponentially

FIG. 1. (Color online) Numerical results. (a) Localization dia-
gram as a function of the interaction strength and the quasiperiodic
amplitude. It displays three regimes: (i) “extended regime” where the
density background is connected and all excitations are extended; (ii)
“fragmented regime” where the density background is fragmented;
and (iii) “extended-localized regime” where the density background
is connected and the excitation spectrum shows a delocalization-
localization transition with exponentially localized high-energy states
and extended low-energy states. (b), (c) Typical excitation wave
function u in the localized (b) and extended (c) regimes, plotted
in semilogarithmic scale and for the 150 first lattice sites (similar
plots are found for the v wave functions). The two panels correspond
to two excitations with consecutive energies above (b) and below (c)
the mobility edge for Un/t = 1.75 and �/t = 3.3.

localized over a few lattice sites [see Fig. 1(b)] while the
low-energy excitations are extended over the whole system
[see Fig. 1(c)]. This transition is sharp as exemplified in
Figs. 1(b) and 1(c), which correspond to two excitations of
consecutive energies for Un = 1.75t and � = 3.3t .

In order to characterize the localization transition, we
compute two Lyapunov exponents for the excitations, which
correspond to the two Bogoliubov wave functions, γu(E) ≡
− limj→∞ ln |uj |/j and γv(E) ≡ − limj→∞ ln |vj |/j . They
are extracted from fits in the tails of the logarithm of the
wave functions u and v. Figure 2(a) displays those Lyapunov
exponents versus the excitation energy E, for fixed interaction
and disorder strengths. The Lyapunov exponents γu and γv

are indistinguishable and hereafter we omit the wave function
index u or v. In the ext-loc regime the Lyapunov exponent
curves clearly show the transition, separating extended (γ = 0)
and localized (γ > 0) states [32]. The excitation spectrum
splits in several bands separated by minigaps, a general
feature in quasiperiodic systems [12,33–36]. The transition
generally lies in one of the minigaps. To determine the
mobility edge Ec, we thus rely on fits of the γ (E) curves with
several fitting functionals [linear, γ (E) ∼ E − Ec; power-law,
γ (E) ∼ Eα − Eα

c ; and logarithmic, γ (E) ∼ ln(E/Ec)]. The
result is found to be almost independent of the fitting functional
and thus provides a reliable estimate of the mobility edge.
Figure 2(b) shows the mobility edge versus the quasiperiodic
amplitude for various interaction strengths. The errorlike bars
represent the edges of the minigap containing the mobility
edge. The uncertainty on the fitted mobility edge is smaller
than these bars.

In order to interpret those results, we now turn to an
analytical treatment of the localization problem. The main
difficulty relies on the fact that localization in quasiperiodic
systems occurs for strong quasiperiodic amplitude � [12]. For
this reason, the lowest-order perturbation theory, which proved
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FIG. 2. (Color online) (a) Lyapunov exponents of the Bogoli-
ubov wave functions u and v, for Un/t = 1.75 and �/t =
3.3,3.5,3.7. The excitation spectrum is banded and displays a sharp
localization transition separating extended (γ = 0) and localized
(γ > 0) states. (b) Mobility edge as a function of the quasiperiodic
amplitude �/t as extracted from power-law fits to the numerical
γ (E) curves [solid lines on panel (a)]. Errorlike bars correspond to
the edges of the minigap containing the mobility edge. The dotted,
red line shows the analytical prediction of the locator theory applied
to the effective model (8) with the potential (11).

successful for 1D disordered systems [16,17], fails here [37].
To overcome this issue, we develop an approach based on a
generic expansion in harmonics of the quasiperiodic potential.
The structure of the GPE (2) shows that the field φj takes the
form of a series of harmonics of the quasiperiodic potential.
The density field nj thus reads nj = (μ − Ṽj )/U , where

Ṽj =
∑
p�1

Ap cos[p(2πrj + ϕ)] (4)

is a multiharmonic quasiperiodic field, the coefficients of
which can be computed iteratively [31]. Using the energy-
dependent linear transform [17]

g±
j = ±ρ

±1/2
E (uj − vj ) + ρ

∓1/2
E (uj + vj ), (5)

where ρE =
√

1 + (μ/E)2 + μ/E, the BdGEs (3) exactly
rewrite

− (
ρ−1

E E + T̂
)
g+

j +
[
Vj − 3 + ρ2

E

1 + ρ2
E

Ṽj

]
g+

j = 2ρEṼj

1 + ρ2
E

g−
j ,

(6)

(ρEE − T̂ )g−
j +

[
Vj − 1 + 3ρ2

E

1 + ρ2
E

Ṽj

]
g−

j = 2ρEṼj

1 + ρ2
E

g+
j . (7)

The solution of these equations is significantly simplified
by noticing that the lattice-space Green function of the
operator −T̂ + ρEE is of width

√
t/ρEE and amplitude

1/(ρEE + 2t)
√

1 − [2t/(ρEE + 2t)]2. Hence, for ρEE � t ,
this operator can be replaced by the local operator ρEE + 2t

in Eq. (7). It is then straightforward to write the expression
of g−

j as a function of g+
j and of the potentials Vj and Ṽj .

Inserting this expression into Eq. (6) we find a closed equation
for g+

j ,

−T̂ g+
j + VE

j g+
j = Eρ−1

E g+
j , (8)

with the effective potential

VE
j 	 Vj − 3 + ρ2

E

1 + ρ2
E

Ṽj −

( 2ρE

1 + ρ2
E

)2
Ṽ 2

j

ρEE + 2t + Vj − 1+3ρ2
E

1+ρ2
E

Ṽj

. (9)

Using exact diagonalization of Eq. (8) with the potential (9)
around energy E, we have checked that the Lyapunov
exponents and the localization transition given by our effective
model coincide with those found using direct diagonalization
of the BdGEs (3). It validates the effective model (8)–(9) and
the approximation −T̂ + ρEE 	 2t + ρEE used above.

In this model, the quantity VE
j is a multiharmonic periodic

potential of spacing 1/r incommensurate with that of the main
lattice, which is unity. Such systems are known to exhibit in
general an energy-dependent mobility edge with low-energy
extended states and high-energy localized states [33–36]. This
holds except in the particular case of self-dual models, among
which the Aubry-André model is a celebrated example [12].
Self-duality requires a specific relation between the amplitudes
of the pth harmonics and of the tunneling rate to the pth
neighbors. The latter does not apply in our case since tunneling
is strictly restricted to the first neighbors. It qualitatively
explains the localization transition of the collective excitations
reported here.

Localization properties in quasiperiodic systems can be
further inferred from locator perturbation theory [33]. Here the
localization criterion roughly corresponds to the convergence
of the self-energy in the thermodynamic limit, which reads
D(E) > 1 where D(E) is the so-called localization function.
In the case of Eq. (8), it reads

D(E) = exp

(
r

∫ 1/r

0
dx ln

∣∣∣∣∣Eρ−1
E − 2t − VE(x)

t

∣∣∣∣∣
)

. (10)

Equation (10) can, in principle, be applied to the full effective
potential VE(x). To obtain analytical results, it is, however,
worth truncating the infinite series of harmonics in VE .
Keeping only one harmonic is not sufficient to capture the
physics even qualitatively, since it would unphysically restore
duality and change the universality class of the localization
transition. On the other hand, beyond two, the number of
harmonics does not change the universality class. We may thus
restrict ourselves to the two lowest-order harmonics, which
are generated in first instance in second-order perturbation
theory. As we shall see, this order of expansion turns out to be
sufficient for a significant part of the localization diagram of
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Fig. 1. It yields the effective two-harmonic potential

VE
j 	 �

(0)
E + �

(1)
E cos(2πrj + ϕ) + �

(2)
E cos[2(2πrj + ϕ)]

(11)

with the amplitudes

�
(0)
E = 3+ρ2

E

1+ρ2
E

�2

4Un

(
fr −f 2

r

) − 2ρ2
E(

1+ρ2
E

)2

�2f 2
r

ρEE+2t
,

(12)

�
(1)
E = �

[
1 − 3 + ρ2

E

1 + ρ2
E

fr

]
, (13)

�
(2)
E = 3 + ρ2

E

1 + ρ2
E

�2

4Un

[
f 2

r

2
+

(
fr − 3

2
f 2

r

)
f2r

]

− 2ρ2
E(

1 + ρ2
E

)2

�2f 2
r

ρEE + 2t
, (14)

and fr = 1
1+2t sin2(πr)/Un

[31]. The results of the locator per-
turbation theory applied to the two-harmonic potential (11) is
shown in Fig 2(b). It predicts the correct localization transition
with collective excitations that are extended at low energy and
localized at high energy, and a mobility edge that is in very
good agreement with the full numerical result. Perturbation
theory beyond second order generates high-order harmonics
in the effective potential and renormalizes the amplitudes �(p).
For Un � 3t , we find that they induce negligible effects and
do not significantly affect the prediction for the mobility edge.
For higher values of U , however, second-order perturbation

theory is not sufficient to accurately estimate the density
background, and higher-order terms should be included.

In summary, we have shown that the collective excitations
of lattice Bose superfluids subjected to a single-harmonic
quasiperiodic potential undergo a nontrivial localization transi-
tion with extended low-energy states and localized high-energy
states. Therefore the interactions change the universality class
of the localization transition, in striking contrast with the
purely disordered case [16,17]. In the quasiperiodic case the
transition can be understood as the result of the scattering of
the excitations from the potential and the density background,
which contains an infinite series of harmonics of the potential.
It could be observed in ultracold-atom experiments, using for
instance spectroscopy techniques, which give direct access
to the excitations [38], or in quench experiments, which
generate collective excitations that govern the propagation of
experimentally observable correlations [24,39]. It could also
be observed in photonic crystals, which can combine quasiper-
diodic structures [5] and photon nonlinearities [40]. Finally, it
would be interesting to study the counterpart of the localization
transition discussed here in Fermi superconductors, which may
directly apply to electronic quasicrystals.
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and T. Giamarchi, Phys. Rev. A 78, 023628 (2008).
[20] G. Roux, A. Minguzzi, and T. Roscilde, New J. Phys. 15, 055003

(2013).
[21] V. P. Michal, B. L. Altshuler, and G. V. Shlyapnikov, Phys. Rev.

Lett. 113, 045304 (2014).
[22] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B

87, 134202 (2013).
[23] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,

Rev. Mod. Phys. 83, 863 (2011).
[24] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss,

T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Nature
(London) 481, 484 (2012); S. Trotzky, Y.-A. Chen, A. Flesch,
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Supplemental material to the paper ”Localization transition in weakly-interacting
Bose superfluids in one-dimensional quasiperdiodic lattices”

This supplemental material aims at providing some details about the harmonic structure of the density profile and
the effective potential VEj , as well as the series expansion used to determine them.

Series expansion of the density background

To determine the density background nj ≡ φ2j , we solve the Gross-Pitaevskii equation (GPE) together with the

normalization condition n = 1
LΣjnj where L is the number of sites and n is the averaged density. To do so, we

perform a series expansion in powers of the quasiperiodic potential Vj . In the absence of an external potential, we
have φj =

√
n and the chemical potential µ = Un. In the presence of an external potential, we then write

φj =
√
n
(
φ
(0)
j + φ

(1)
j + φ

(2)
j ...

)
(S1)

µ = Un
(
µ(0) + µ(1) + µ(2) + ...

)
(S2)

nj = n
(
n
(0)
j + n

(1)
j + n

(2)
j ...

)
(S3)

where the superscripts denote increasing orders in the quasiperiodic amplitude ∆, and φ
(0)
j = 1, n

(0)
j = 1, µ(0) = 1.

Notice that the chemical potential has to be expanded also to fulfill the normalization condition. Inserting the
expansions (S1) and (S2) in the GPE [Eq. (2) of the paper] and the expansion (S3) in the normalization condition,
we get

Un
(
µ(0) + µ(1) + ...

)
(φ

(0)
j +φ

(1)
j + ...) = −T̂

(
φ
(0)
j + φ

(1)
j + ...

)
+Vj

(
φ
(0)
j + φ

(1)
j + ...

)
+Un

(
φ
(0)
j + φ

(1)
j + ...

)3
(S4)

and

1

L

∑
j

(
φ
(0)
j + φ

(1)
j + ...

)2
= 1. (S5)

Then, collecting all the terms of same order p in the quasiperiodic amplitude yields(
1− 1

2Un
T̂

)
φ
(p)
j = − Vj

2Un
φ
(p−1)
j − 1

2

∑
k,`,m=p,0≤k,`,m≤p−1

φ
(k)
j φ

(`)
j φ

(m)
j +

1

2

∑
1≤k≤p−1

µ(k)φ
(p−k)
j +

µ(p)

2
(S6)

and ∑
j

2φ
(0)
j φ

(p)
j +

∑
1≤k≤p−1

φ
(k)
j φ

(p−k)
j

 = 0. (S7)

Equations (S6) and (S7) can then be used to compute all φ
(p)
j and µ(p) at any order p iteratively. The iteration process

works as follows. Given all φ
(k)
j and µ(k) at orders k < p, we calculate φ

(p)
j as a function of µ(p) from Eq. (S6) by

inverting the operator 1− T̂ /2Un. The quantity µ(p) is then found by inserting this expression for φ
(p)
j into Eq. (S7).

Having determined φ
(p)
j , we then find the density field using Eq. (S3), whose expansion in powers of the quasiperiodic

amplitude writes

n
(p)
j =

∑
0≤k,`≤p,k+`=p

φ
(k)
j φ

(`)
j . (S8)

This procedure is completely general and can be applied to any external potential Vj . In the case of the quasiperiodic

potential Vj = ∆ cos(2πrj+ϕ), the above iterative process is fully algebraic because the operator 1−T̂ /2Un in Eq. (S6)
can be analytically inverted at any order (see below). We have implemented this expansion up to order 50 and found
excellent agreement with the direct numerical solution of the GPE [Eq. (2) of the paper]. It provides a cross-check of
the precision of the numerical solution and of the convergence of the present analytical expansion.
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Analytical expansion in the case of a quasiperiodic potential

We now give some explicit formulas for the lowest order terms and discuss the harmonic structure of the density
background nj . As in the paper, we generically write the density field nj

nj = (µ− Ṽj)/U, (S9)

where the field Ṽ includes terms of all orders.

At first order, Eq. (S6) reduces to −T̂ φ(1)j + 2Unφ
(1)
j = −Vj + Unµ(1). It is straightforward to solve it in Fourier

space where the operator T̂ is diagonal. It yields φ
(1)
k = −Vk − Unµ

(1)δk,0
ε0k + 2Un

where ε0k = 4t sin2(k/2). Inserting this

expression into Eq. (S7), we find µ(1) = Vk=0/Un = 0 and φ
(1)
k = − Vk

ε0k + 2Un
. Remarkably, since the quasiperiodic

potential contains only one spatial frequency, Vk = ∆(eiϕδk,+2πr + e−iϕδk,−2πr)/2, one can immediately get back to
real space and write

φ
(1)
j = − ∆

2Un
fr cos(2πrj + ϕ), (S10)

where fr =
1

1 + ε02πr/2Un
. Hence, to lowest order, the density profile is quasiperiodic field. It follows the modulations

of the quasiperiodic potential with a reduced amplitude since fr < 1. The factor fr is a remainder of the nonlocal
operator 1 − T̂ /2Un in the l.h.s. of Eq. (S6), which reduces to an algebraic operation in the case of a quasiperiodic

potential. Then, Eqs. (S8) and (S9) yield the first order term of the field Ṽj . It reads Ṽ
(1)
j = −2Unφ

(1)
j where φ

(1)
j is

given by Eq. (S10), i.e.

Ṽ
(1)
j = ∆fr cos(2πrj + ϕ). (S11)

The next orders are found following the same process, which remains algebraic to any order in the case of the
quasiperiodic potential. To second order, it yields the term

φ
(2)
j =

(
∆

2Un

)2
[
− f2r

4
+

(
fr −

3

2
f2r

)
f2r

cos[2(2πrj + ϕ)]

2

]
, (S12)

and a negative shift on the chemical potential,

µ(2) = −

(
∆

2Un

)2

(fr − f2r ). (S13)

The field Ṽj is then given at second order by Ṽ
(2)
j = Un[µ(2) − n(2)j ] = Un[µ(2) − (2φ

(2)
j + φ

(1)2
j )] where φ(1), φ(2) and

µ(2) are given by Eqs. (S10), (S12), and (S13), i.e.

Ṽ
(2)
j = − ∆2

4Un

{
fr − f2r +

[
f2r
2

+

(
fr −

3

2
f2r

)
f2r

]
cos[2(2πrj + ϕ)]

}
. (S14)

Hence, the second-order terms φ
(2)
j and Ṽ

(2)
j contain a constant term and the second harmonics of the quasiperiodic

potential. Those terms are generated by the nonlinear term of the GPE: Since the first order term contains only the

first harmonics, φ
(1)
j ∝ cos(2πrj + ϕ), the product terms φ

(1)
j φ

(1)
j φ

(0)
j appearing in Eq. (S6) contain the zeroth and

second harmonics.

More generally, it is straightforward to show recursively that the terms of order p, φ
(p)
j and Ṽ

(p)
j , contain the p-th

harmonics of the quasiperiodic potential, cos[p(2πrj+ϕ)], as well as all lower harmonics of same parity. In particular,
a constant term in φj and a correction to the chemical potential µ appear only at even orders. Hence, the field Ṽj
takes the multi-harmonic quasiperiodic form

Ṽj =
∑
p

Ap cos[p(2πrj + ϕ)], (S15)

where the amplitude Ap of the p-th harmonics is a power series of order p, Ap ∼ αp(∆/2Un)p+αp+2(∆/2Un)p+2 + ....
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Expansion of the effective potential VE
j

The effective potential

VEj ' Vj −
3 + ρ2E
1 + ρ2E

Ṽj −

(
2ρE

1 + ρ2E

)2

Ṽ 2
j

ρEE + 2t+ Vj −
1 + 3ρ2E
1 + ρ2E

Ṽj

, (S16)

which appears in the Eq. (8) of the paper, can as well be expanded in powers of the quasiperiodic amplitude by
expanding the denominator and using the previously obtained expansions for Ṽj . Up to second order, we get

VEj ' Vj −
3 + ρ2E
1 + ρ2E

Ṽ
(1)
j − 3 + ρ2E

1 + ρ2E
Ṽ

(2)
j −

(
2ρE

1 + ρ2E

)2

ρEE + 2t

(
Ṽ

(1)
j

)2
, (S17)

where Ṽ (1) and Ṽ (2) are given in Eqs. (S11) and (S14). It yields the two-harmonic effective potential

VEj ' ∆
(0)
E + ∆

(1)
E cos(2πrj + ϕ) + ∆

(2)
E cos[2(2πrj + ϕ)] (S18)

with the amplitudes

∆
(1)
E = ∆

[
1− 3 + ρ2E

1 + ρ2E
fr

]
(S19)

∆
(2)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un

[
f2r
2

+

(
fr −

3

2
f2r

)
f2r

]
− 2ρ2E

(1 + ρ2E)2
∆2f2r

ρEE + 2t
(S20)

∆
(0)
E =

3 + ρ2E
1 + ρ2E

∆2

4Un
(fr − f2r )− 2ρ2E

(1 + ρ2E)2
∆2f2r

ρEE + 2t
. (S21)


