
PHYSICAL REVIEW A 92, 043611 (2015)

Propagation of collective pair excitations in disordered Bose superfluids
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We study the effect of disorder on the propagation of collective excitations in a disordered Bose superfluid. We
incorporate local-density depletion induced by strong disorder at the mean-field level and formulate the transport
of the excitations in terms of a screened scattering problem. We show that the competition of disorder, screening,
and density depletion induces a strongly nonmonotonic energy dependence of the disorder parameter. In three
dimensions, it results in a rich localization diagram with four different classes of mobility spectra, characterized
by either no or up to three mobility edges. Implications on experiments with disordered ultracold atoms are
discussed.
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I. INTRODUCTION

The dynamics of correlated quantum systems attracts a
growing attention sparked by the recent development of
quantum devices with long coherence times and dynamical
control of parameters, e.g., superconducting circuits and
ultracold atoms [1]. An additional asset of the latter is
that disorder may be introduced in a controlled way [2].
Disorder may strongly affect dynamical processes, mainly due
to Anderson localization [3]. Understanding the interplay of
disorder and interactions in dynamical quantum systems is
thus of fundamental importance and localization in quantum
systems is still the subject of active research [4–11]. This topic
has also been addressed in the context of quasiperiodic systems
[12,13].

In correlated quantum systems, most basic dynamical
processes are determined by the transport properties of their
collective excitations [14]. An important starting point in
the understanding of localization in correlated systems thus
relies on classification according to the symmetries of their
excitations [15]. For Fermi systems, it is mostly based on the
three classes of random matrices [16] as well as chiral or
particle-hole symmetries [17]. For Bose systems, a strong dis-
tinction arises between Goldstone and non-Goldstone modes
[18]. For instance, in a Bose superfluid, while localization is
at its strongest at low energy for particlelike excitations, it is
suppressed for phonon excitations [5,7,10,19]. This conclusion
is based on a weak disorder analysis and mostly holds in
dimension d � 2 where localization occurs for arbitrary weak
disorder. It is, however, challenged in higher dimension where
the onset of the Anderson transition requires sufficiently strong
disorder, which may alter the very nature of the excitations.

In this paper we study the transport of collective excita-
tions in a disordered, weakly interacting Bose superfluid in
dimension higher than 1. We show that the competition of
disorder, screening, and density depletion yields a strongly
nonmonotonic and nonuniversal energy dependence of the
disorder parameter, which controls the localization properties.
In three dimensions, our analysis indicates that the local-
ization diagram exhibits several classes of mobility spectra,
characterized by either no or several mobility edges. We
finally discuss implications of these localization properties on
quantum-quench experiments with disordered ultracold atoms.

II. TRANSPORT THEORY OF COLLECTIVE
EXCITATIONS

A. Mean-field scattering theory

To study the transport of collective excitations in the
presence of disorder, it is worth devising a scattering problem.
For weakly interacting Bose superfluids, we may rely on
mean-field theory [20–26]. The background density field nc(r)
obeys the Gross-Pitaevskii equation (GPE)[ − �

2∇2/2m + V (r) − μ + gnc(r)
]√

nc(r) = 0, (1)

where m is the particle mass, μ is the chemical potential,
and g > 0 is the coupling constant of short-range repulsive
interactions. The disordered potential V (r) is chosen to be
spatially homogeneous, isotropic, and of vanishing statistical
average. For weak disorder, Eq. (1) can be solved perturba-
tively [27,28]. Below, we consider regimes of strong disorder
and it is necessary to extend this approach, including possible
regions where the density is vanishingly small around the
disorder maxima. To do so, we generically write the density
field in the form

nc(r) = [μ − η(r) + �]/g, (2)

where the field η(r) describes the modulations of the density
due to the disorder, and the quantity � is a shift in the chemical
potential. The latter allows us to impose the conventional
condition that η(r) is of zero statistical average. Notice that
since the density is positive everywhere, nc(r) � 0, the field
η(r) is bounded above, η(r) � μ + �. We then insert Eq. (2)
into the Gross-Pitaevskii equation (1), and linearize it, which
yields

η(r) = (μ + �) min

{
� + Ṽ (r)

μ + 3�/2
,1

}
, (3)

where, in Fourier space,

Ṽ (q) = V (q)

1 + ξ 2
�|q|2 . (4)

The quantity Ṽ (r) is a generalized smoothed potential [27],
where the healing length is renormalized by the shift � to the
value ξ� = �/

√
4m(μ + 3�/2). The zero-average condition,
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FIG. 1. (Color online) One-dimensional cut of the density profile
of a Bose superfluid in a disordered potential: Exact numerical
solution of the GPE (1) [shaded area, nc(r)] vs self-consistent solution
using Eq. (2) (dashed line), for a disordered potential [full line,
V (r)] of amplitude VR = 0.87μ and correlation length σR = ξ . The
density profile follows the modulations of the potential, smoothed at
the length scale of ξ , and may be locally vanishingly small around
disorder maxima.

〈η(r)〉 = 0, then yields

0 = � + 〈min{Ṽ (r),μ + �/2}〉, (5)

where 〈. . .〉 denotes statistical averaging. Note that Eq. (5)
ensures that μ + 3�/2 � 0, so that ξ� is well defined. In
general, the density field nc(r) is therefore found by solving
self-consistently Eqs. (4) and (5) for � and Ṽ (r), and Eq. (3)
for η(r).

This self-consistent solution is in good agreement with
the exact numerical solution of the GPE (1) (see Fig. 1).
As expected, the density modulations η(r) follow those of
the disorder, smoothed at the length scale of the healing
length [27,28]. However, both the amplitude of the smoothed
potential and the healing length are renormalized by the energy
shift �. Moreover, for strong disorder, the field η(r) locally
saturates to the constant value μ + � at positions where Ṽ (r)
typically exceeds the chemical potential μ [more precisely,
where Ṽ (r) � μ + �/2]. In those regions, which will be
referred to as strongly density-depleted regions, we thus have
nc(r) ≈ 0 (see Fig. 1). In order to interpret the shift �, we
may rewrite Eq. (5) in the form � = ∫

depl dṼ P (Ṽ ) [Ṽ −
(μ + �/2)], where P (Ṽ ) is the probability distribution of
the smoothed potential and the integral is restricted to the
strongly density-depleted regions. The quantity � can thus be
assimilated to the weight of the part of the smoothed potential
that is truncated in the strongly density-depleted regions. In
particular, in the case of weak disorder for which Ṽ (r) never
exceeds μ, we find � = 0 and we recover the solution given
by usual perturbation theory [27,28]. For stronger disorder,
� is finite, and our approach accounts for the strong local
depletion of the density around the disorder maxima.

Knowing the density field nc(r), we now treat the collective
excitations. The phase and density fluctuations, θ̂ and δn̂, are
readily found by developing the many-body Hamiltonian up to
order 2 in the operator B̂(r) ≡ δn̂(r)/2

√
nc(r) + i

√
nc(r)θ̂(r).

The resulting quadratic Hamiltonian is then diagonalized
by the Bogoliubov transform B̂(r) = ∑

ε{uε(r)b̂ε + v∗
ε (r)b̂†ε},

where b̂ε is the annihilation operator of an elementary pair
excitation of energy ε. It yields the Bogoliubov-de Gennes

equations [20,29]

L0

(
uε

vε

)
+ U(r)

(
uε

vε

)
= ε

(
uε

vε

)
, (6)

where

L0 =
(

−�
2∇2

2m
+ μ + 2� +μ + �

−μ − � +�
2∇2

2m
− μ − 2�

)

and

U(r) =
(+V (r) − 2η(r) −η(r)

+η(r) −V (r) + 2η(r)

)
.

In this form, Eq. (6) devises a well-defined two-wave scattering
problem. The dynamics of a given excitation at energy ε is
governed by the homogeneous propagator L0 and scattering
from a disordered medium defined by U(r). The latter
combines the two random fields V (r) and η(r), which are
strongly correlated [see Eqs. (3)–(5)].

At this point, one could wonder whether the Bogoliubov
approach is valid even in the presence of strong density
depletion. The main approximation here is the truncation of
the many-body Hamiltonian at second order in the Bogoliubov
operator. Since the latter is equivalent to the linearization of
the time-dependent Gross-Pitaevskii equation (tGPE) [30], it
can be tested by comparing the mean-field dynamics predicted
by the exact tGPE on the one hand and by the linearized tGPE
on the other hand. Our results show excellent agreement
between the two in all regimes, namely, the phonon, particle,
and intermediate regimes for weak to strong density depletion
(for details, see Appendix A). It validates the Bogoliubov
approach used here.

B. One-parameter scaling theory

Universal transport properties can now be inferred using the
one-parameter scaling approach [31], which can be extended
to the case of excitations, as we outline here. It consists
in developing a renormalization-group (RG) analysis of the
size-dependent conductance. The latter is identified to the
Thouless number [32], which is the ratio of the energy scale
associated to diffusion across a finite sample of size L, δε =
�DB/L2 (with DB = wεlB/d the classical diffusion constant,
wε = �

−1|∂ε/∂k| the excitation velocity, and lB the Boltzmann
transport mean free path), to the energy-level spacing, �ε =
1/N (ε)Ld [with N (ε) the density of states per unit volume].
In diffusive regimes, if kε is the momentum associated to
the energy ε, then N (ε) ∝ kd−1

ε /|∂ε/∂k| = kd−1
ε /�wε, so that

G(L) ∝ (kεlB)(kεL)d−2, and β ≡ d log G/d log L ∼ d − 2. In
localized regimes, the conductance is exponentially small,
G(L) ∼ exp(−L/Lloc) with Lloc the localization length, and
β ∼ log G. For d � 2, β(G) is strictly negative and G(L)
always flows down to the localized regime. Then, all states
are localized, with the localization length Lloc ∝ lB in one
dimension and log(Lloc/lB) ∝ kεlB in two dimensions. Con-
versely, for d > 2, the RG flow has an unstable fixed point
at kεlB ∼ 1, known as the mobility edge or the Anderson
localization transition [31]. Since the above scaling laws are
independent of the dispersion relation, these features are all
universal, except the transition point, which is determined by
the value of the inverse disorder parameter (IDP) kεlB.
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C. Disorder parameter

In order to estimate the IDP for the scattering problem
(6), we follow the approach of Refs. [7,10] and extend it
to strong disorder where the density can be vanishingly
small around potential minima (see details in Appendix B).
In brief, we note that the homogeneous propagator L0

does not support only plane-wave modes with momentum
kε such that �

2k2
ε /2m =

√
ε2 + (μ + �)2 − (μ + 2�), but

also evanescent modes of penetration length γ −1
ε such that

�
2γ 2

ε /2m =
√

ε2 + (μ + �)2 + (μ + 2�). The latter ensures
that for a scattering length larger than the penetration length the
excitation modes (uε,vε) can be decomposed into two fields
(g+

ε ,g−
ε ), where the second one is enslaved by the first one.

Retaining only the leading-disorder terms, the behavior of the
excitation is then entirely determined by the field g+

ε , which
fulfills the closed equation

�
2k2

ε

2m
g+

ε (r) = − �
2

2m
∇2g+

ε (r) + Vε(r)g+
ε (r), (7)

where

Vε(r) = V (r) − f (ε)η(r), (8)

with f (ε) = 2
√

ε2+(μ+�)2−(μ+�)√
ε2+(μ+�)2

. The so-called screened po-

tential Vε(r) results from the competition of the bare disorder
V (r) and the mean-field repulsive interaction, determined by
the field η(r). This competition is strongly energy dependent
due to the factor f (ε). Equation (7) describes an equivalent
scattering problem, which can now be solved by standard
quantum transport theory [33]. In the on-shell approximation
[34], it yields

1

kεlB(ε)
� 2πm2

�4k4−d
ε

∫
d�d

(2π )d
(1−cos θ )Cε[2kε sin(θ/2)], (9)

where d�d denotes the infinitesimal solid angle in d dimen-
sions and Cε(q) ∝ 〈|Vε(q)|2〉 is the power spectrum of the
screened potential. Notice that in one dimension the angular
integral in Eq. (9) reduces to θ = π so that one recovers the
result of Refs. [7,10] for the Lyapunov exponent.

It is worth pointing out that the previous approach describes
only excitations of energy ε > εc ≡ √

2�(μ + 3�/2). Other-
wise, we have k2

ε < 0 and all modes of L0 are evanescent. In
the following, we will thus disregard the case of excitations
ε < εc, which in most cases reduces to a very narrow energy
range at the bottom of the spectrum, since � � μ. It should as
well be pointed out that since it retains only leading terms in
disorder our theory is not expected to be quantitatively exact,
but rather to provide a qualitative description of the relevant
physics. Possible extensions of the approach are discussed in
the conclusion.

III. LOCALIZATION OF BOGOLIUBOV
QUASIPARTICLES IN AN IMPURITY MODEL

A. The impurity model

We can now discuss the behavior of the disorder parameter
of the excitations. For concreteness, let us consider a generic

FIG. 2. (Color online) Schematic view of the two-impurity
model defined by Eq. (10). It is made of two types of impurities
with, respectively, positive (+V +

0 ) and negative (−V −
0 ) amplitudes.

The impurities are randomly and independently spread over in space.
Each impurity is Gaussian shaped with a width σR.

impurity model described by the potential

V (r) =
∑

j

Vjh(r − rj ) − V . (10)

The impurities are independent Gaussian-shaped potentials
of width σR, h(r) = exp(−r2/2σ 2

R), randomly distributed in
space with density ρ, and with amplitudes Vj that take the
values +V +

0 > 0 or −V −
0 < 0 with equal probability (see

Fig. 2). The constant term V ≡ ρ(
√

2πσR)d (V +
0 − V −

0 )/2
ensures that the potential V (r) is of vanishing statistical
average. The square disorder amplitude is V 2

R ≡ 〈V 2〉 =
ρ(

√
πσR)d [(V +

0 )2 + (V −
0 )2]/2. This two-impurity model gen-

eralizes the one-impurity model, which is widely used in
studies of Anderson localization in noninteracting systems
[35,36]. Here, we introduce two types of impurities, namely,
repulsive (Vj = +V +

0 > 0) and attractive (Vj = −V −
0 < 0)

ones. In contrast to noninteracting systems, it is crucial to
distinguish repulsive and attractive impurities in the present
work because they have radically different effects on the
density background. For instance, only repulsive impurities
can induce local-density depletion. The two-impurity model
is generic in the sense that it is the simplest one to describe
a disordered system where different kinds of impurities are
present. In addition, controlled impurity models can be realized
in ultracold-atom systems where the impurities are made of
individual atoms trapped at some random sites of an optical
lattice [37]. So far, only one-impurity models have been
realized [38] but they can be extended to models with different
kinds of impurities using different atomic species.

B. Behavior of the disorder parameter

To compute the IDP for the previous impurity model, we
first numerically determine the density background η(r) and
the shift � following the previous self-consistent procedure.
This permits us to compute the screened potential, Eq. (8),
and its power spectrum, from which the IDP is inferred using
Eq. (9). Figure 3 shows the energy dependence of the IDP
for the three-dimensional (3D) balanced impurity case (V +

0 =
V −

0 ), plotted as a function of kεξ . Qualitatively similar curves
are found for lower dimensions and for imbalanced impurity
cases (V +

0 = V −
0 ). Depending on the disorder strength, the

043611-3



LELLOUCH, LIM, AND SANCHEZ-PALENCIA PHYSICAL REVIEW A 92, 043611 (2015)

 1

 10

 10

 10

 1  10

k ε
l B

kεξ

(A) V0=0.32μ
(B) V0=1.59μ
(C) V0=6.35μ

 4

 8

 12

 10 -4  10 -3  10 -2  10 -1

FIG. 3. (Color online) Inverse disorder parameter (IDP) vs pair-
excitation momentum for the 3D balanced impurity model, with σR =
ξ , ρσ 3

R = 2 × 10−4, and for various values of the disorder amplitude
V0 ≡ V +

0 = V −
0 . Shown are the results of Eq. (9), where the screened

power spectrum Cε(q) is calculated with the full screened disorder of
Eq. (8) (dots) or with Eq. (11) (solid line), as well as the contributions
of the bulk (dashed lines) and strongly density-depleted (dotted lines)
regions.

IDP exhibits three generic behaviors. Notice that kεξ → 0
corresponds to ε → εc.

For weak disorder (case A in Fig. 3), the IDP shows a
nonmonotonic energy dependence, which can be understood
as follows. At high energy, the excitations are insensitive to
the density background and behave as particles in the bare
disorder potential. Conversely, at low energy, the excitations
are strongly affected by the density background, which screens
the disorder and suppresses scattering. More precisely, this
holds when the chemical potential exceeds the maximum of
the smoothed potential, i.e., for V +

0 h̃(0) − V < μ where h̃(r)
is the smoothed impurity. Then, the density background has no
strongly depleted region. The power spectrum of the screened
potential, Cε(q), can be computed explicitly as a function of
that of the bare disorder, C(q), and of the excitation energy ε

using Eq. (8). It yields

Cε(q) =
(

1 − 1 + 4k2
ε ξ

2

1 + 2k2
ε ξ

2

1

1 + q2ξ 2

)2

C(q). (11)

Inserting Eq. (11) into Eq. (9), we find the solid line in
Fig. 3, which reproduces very well the data in the full
energy range for case A. Notice that the same formula as
found from Eqs. (9) and (11) was inferred from calculations
of the scattering mean free path using a different approach
in Ref. [19]. Equation (11) generalizes the one-dimensional
case [7,10]. It defines a screening function [prefactor in the
right-hand side of Eq. (11)], which can also be identified in
single-scattering processes [28] and renormalizes the disorder
by the interactions. The behavior of the IDP can now be found
by inspection of Eqs. (9) and (11). For kε � ξ−1,σ−1

R , the
screening is irrelevant and we can replace Cε(q) by C(q) in
Eq. (9). We then recover the free-particle behavior [34,39]:

kεlB ∼
(

μ2σR

V 2
Rξ

)
(kεξ )5, kε � ξ−1,σ−1

R . (12)

Conversely, for kε � ξ−1,σ−1
R , the screening strongly en-

hances kεlB compared to the free-particle case and we find

kεlB ∼
(

μ2ξd

V 2
Rσd

R

)
(kεξ )−d, kε � ξ−1,σ−1

R . (13)

This result is in agreement with the universal behavior
expected for Goldstone modes [18]. Both low-energy and
high-energy scalings reproduce the behavior of case A and
locate the minimum of the IDP at kmin

ε ∼ min(1/ξ,1/σR). Note
that a nonmonotonic behavior of the IDP is also found in the
propagation of other kinds of waves, such as photonic [40] and
acoustic [41] ones.

For intermediate to strong disorder (cases B and C in Fig. 3),
the energy dependence of the IDP found from the solution of
the full scattering problem [Eqs. (8) and (9)] strongly differs
from the weak disorder case at low energy, where kεlB now
increases with the energy. To understand this, it should be
noticed that, for V +

0 h̃(0) − V > μ, the background density is
now vanishingly small around the positive impurities. Hence,
during its propagation, an excitation goes through two types of
regions, namely, the strongly density-depleted region, and the
rest, which constitutes the density bulk. In the bulk, the field
η(r) may be approximated by Ṽ (r), provided we neglect the
quantity �, which is valid for low impurity density, ρσd

R � 1.
It yields a nonmonotonic contribution to kεlB similar to case A,
with a smaller overall magnitude due to the truncation around
the positive impurities (dashed lines in Fig. 3). Conversely, in
the strongly density-depleted regions, the field η(r) saturates
to the value μ + �. The bare disorder in those regions is
thus protected against screening and Eq. (8) may be replaced
by Vε(r) � V (r) − (μ + �)f (ε). In this field, the excitations
behave as (non-Goldstone) free particles, yielding a monotonic
contribution to kεlB (dotted lines). In the white-noise limit
(kεσR � 1), this contribution is

kεlB ∼ (kεξ )4−d, kε � σ−1
R . (14)

The various behaviors of the IDP observed in Fig. 3 can
then be interpreted as follows. Neglecting the correlations
between the contributions of the bulk and strongly depleted
regions, the disorder parameter (kεlB)−1 is approximately
the sum of these two contributions. Its inverse (the IDP
kεlB, which is plotted in Fig. 3) is thus dominated by the
smallest corresponding contribution. At low energy, because
of the screening in the bulk, the contribution of the strongly
density-depleted region always dominates if it exists, and
captures the free-particle-like behavior of kεlB. At intermediate
energy the behavior of kεlB crucially depends on the relative
magnitude of the two contributions. When V +

0 h̃(0) − V � μ

(case B), only the upper fraction of the positive impurities is
truncated and the bulk starts to dominate at moderate energy.
It results in a turning point kmax

ε where bulk and strongly
depleted regions equally contribute to the IDP, yielding there
a local maximum. When V +

0 increases, the strongly density-
depleted region dominates in a wider energy range and kmax

ε

moves to higher values. When V +
0 h̃(0) − V � μ (case C),

the positive impurities are almost entirely truncated, and kmax
ε

eventually merges with the local minimum kmin
ε , which does
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FIG. 4. (Color online) Localization diagram of pair excitations
in the 3D impurity model, plotted as a function of the amplitudes of
positive (V +

0 ) and negative (V −
0 ) impurities, for σR = ξ and ρσ 3

R =
2 × 10−4. It exhibits four classes of mobility spectra, characterized
by zero (0), one (I), two (II), or three (III) mobility edges. Note the
different scales on the two axes.

not significantly depend on V +
0 . The curve then becomes

monotonic.

C. Localization diagram

We now turn to the localization properties of the collective
excitations, focusing on the 3D case where mobility edges
appear at the localization threshold kεlB ∼ 1. We determine
the latter from IDP curves as those of Fig. 3 for the general
model with different amplitudes of the positive (V +

0 ) and
negative (V −

0 ) impurities. In all cases, they are of type A,
B, or C with an overall magnitude and positions of the local
maximum and minimum that depend on the parameters of the
disorder potential. The resulting localization diagram, shown
in Fig. 4, displays several localization classes with between
zero and three mobility edges in the excitation spectrum.
The high-energy states are always extended. The regions of
the diagram are then determined by three conditions. First,
the existence of strongly density-depleted regions requires
V +

0 h̃(0) − V � μ, which defines the roughly vertical line
on the diagram. On the left, the IDP curves are of type A
and the low-energy excitations are extended (kεlB > 1). Just
on the right, they are of type B. The low-energy excitations
are then localized (kεlB < 1), and there is at least one mobility
edge. Second, when the local minimum of the IDP curve,
(kεlB)min, is below the localization threshold a band of localized
states appears at intermediate energy, giving rise to two
additional mobility edges. For V +

0 � V −
0 , the condition reads

1 ∼ (kεlB)min ∝ 1/(V −
0 )2, which yields the nearly horizontal

line on the diagram. Third, when V +
0 increases, the local

maximum of the IDP curve decreases. In the region with three
mobility edges (III), the two low-energy ones disappear. In the
region with one mobility edge (I), the IDP curve turns from
type B to type C, without affecting the number of mobility
edges.

The localization diagram of Fig. 4 is expected to be
generic. In particular, the competition of disorder, screening,
and density depletion determines the diversity of mobility
spectra. Yet, a given model of disorder does not necessary
display all cases and the imbalanced impurity model with
a finite correlation length is the simplest we found that
does. For instance, for only positive impurities or in the

balanced case, the only possibilities are (0) and (I) because
the minimum of the IDP cannot be controlled independently
of the density depletion. Conversely, for only negative im-
purities, the strongly depleted region is absent and the only
possibilities are (0) and (II). The case of white-noise disorder is
also limited because the smoothed impurity potential diverges
in the center, h̃(r) = e−r/ξ /4πξ 2r , so that strongly density-
depleted regions strictly appear as soon as V +

0 = 0, and the
only possibilities left are (I) and (III).

IV. CONCLUSIONS AND DISCUSSION

The physics we have discussed here is particularly relevant
to ultracold-atom experiments. In these systems, out-of-
equilibrium dynamics can be generated by a local quench,
which produces collective excitations [42]. In the presence
of disorder, their transport properties and ability to mediate
long-range energy transfer are determined by the four classes
of mobility spectra of the localization diagram. In case
(0), all excitations are protected against localization and
propagate diffusively, i.e., 〈r2〉 = 2DBt . In all other cases,
energy can only be partially transferred since some excitation
modes are localized. Energy-resolved quenches may provide
experimental evidence of such mobility spectra in ultracold
gases. Moreover, these systems offer a wide range of models
of disorder, e.g., impurities [37,38] and speckle potentials [2].
The statistical properties of the latter may be tailored, which
may lead to even richer localization diagrams [39,43,44].

The observation of the localization effects we have dis-
cussed here requires that the lifetime τ of the Bogoliubov
quasiparticles exceeds the transport mean free time τB ≡
lB/wε (with wε the excitation group velocity). On the one
hand, for low temperature, the decay of Bogoliubov excitations
is dominated by Beliaev processes [30,45]. To estimate the
corresponding decay rate � = 1/τ , we resort to local-density
approximation. The strongly depleted regions, where the
excitations behave as free particles with infinite lifetime, very
weakly contribute to �. A good estimate of � is thus given
by the bulk contribution. For a typical excitation ε ∼ μ,
it yields τ � m/10�n3/2a

5/2
sc , where asc = mg/4π�

2 is the
scattering length [45]. On the other hand, wε � √

gn/m in the
phonon regime and lB ∼ 1/kε in the region of interest, which
yields τB ∼ m/4π�nasc. Therefore, the validity condition of
our approach reads τB/τ ∼ √

nasc � 1, which is the validity
condition of the Bogoliubov approach. The latter is very
well verified in dilute-gas Bose-Einstein condensates [30].
For instance, using the parameters of Ref. [46], we find
τ ∼ 6 s and τB ∼ 5 ms, making experimental observation of
our predictions possible.

The approach used in this work provides an intuitive under-
standing of the physics at stake as well as generic qualitative
predictions for the localization behavior of collective excita-
tions. However, since it relies on lowest-order perturbation
theory, it is not expected to be quantitatively accurate. In
particular, it does not take into account the disorder-induced
energy shift, which is known, in the noninteracting case, to
result in a possibly significant shift in the position of the
mobility edge [39,47]. Moreover, numerical calculations in the
noninteracting case show that the mobility edge significantly
depends on the model of disorder [48,49]. Therefore, the
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determination of the precise localization diagram for collective
pair excitations in disordered Bose superfluids, as well as
the identification of the various classes of mobility spectra
predicted in the present work, require a full numerical
resolution of the localization problem in the two-impurity
model as well as in other models of disorder.
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APPENDIX A: VALIDITY OF THE SECOND-ORDER
DEVELOPMENT IN THE PRESENCE OF STRONG

DENSITY DEPLETION

In this appendix, we show that the Bogoliubov approach
used in this paper, i.e., a development of the many-body
Hamiltonian around the inhomogeneous density background
up to second order in fluctuation terms, is valid even in
the presence of strong local-density depletion. We perform
this check by comparing exact calculations and linearized
theory at the mean-field level. We consider the time-dependent
Gross-Pitaevskii equation (tGPE)

i�∂tψ = −�
2∇2

2m
ψ + V (r) + g|ψ |2ψ, (A1)

which governs the time evolution of a condensate wave func-
tion ψ(r,t). In the linearized approach, one writes ψ(r,t) =√

nc(r) + δψ(r,t), where nc(r) is the density background
found from the solution of the stationary GPE (1) and δψ(r,t)
is a small perturbation. At lowest order, it yields the linearized
equation

i�∂t

(
δψ

δψ∗

)
= LGP

(
δψ

δψ∗

)
, (A2)

where the matrix

LGP =
(

−�
2∇2

2m
+ V + gnc − μ gnc

−gnc +�
2∇2

2m
− V − gnc + μ

)

is exactly the one appearing in the Bogoliubov-de Gennes
equations [30]. This linearization procedure thus turns out to be
equivalent to the Bogoliubov development of the many-body
Hamiltonian to second order. Therefore, to check the validity
of the latter in the presence of strong density depletion, one
can compare the results of the time evolution of an excitation
δψ(r,t) on top of a condensate with strong local depletion
of the density nc(r), using either the exact tGPE (A1) or its
linearized version, Eq. (A2).

We have performed this test in one dimension, which is the
most unfavorable dimension due to large fluctuations. For the
sake of simplicity, the density depletion is induced by a single
strong potential barrier V (x) = V0�(a − |x − x∗|), of height
V0 = 30μ, width 2a = 0.05L, and centered on some position

-L 0 L

Ψ
(x

,t)

x

t=0
t=100, from (tGPE)

t=100, from linearized (tGPE)
kξ=1
ξ/L=0.005

-L 0 L

Ψ
(x

,t)

x

t=0
t=5.9, from (tGPE)

t=5.9, from linearized (tGPE)
kξ=5
ξ/L=0.025

-L 0 L

Ψ
(x

,t)

x

t=0
t=1.4, from (tGPE)

t=1.4, from linearized (tGPE)
kξ=10
ξ/L=0.05

FIG. 5. (Color online) Time evolution of an excitation δψ0(x) =
eikxe−(x−x0)2/2�x2

on top of a condensate with strong density depletion
in the presence of a strong potential barrier V (x) = V0�(a − |x −
x∗|), for V0 = 30μ, 2a = 0.05L, and �x = 0.05L. Three different
regimes of the excitation spectrum are considered: (i) kξ = 1 with
almost total reflection (top), (ii) kξ = 5 with reflection and transmis-
sion of the excitation of the same order to magnitude (central), and
(iii) kξ = 10 with almost total transmission (bottom). Note that for
clarity purposes ξ is varied from one panel to another. Shown are the
initial wave function ψ(x,0) = √

nc(x) + δψ0(x) (solid red line) as
well as the final wave function as given by the full time-dependent
tGPE (solid orange line) and by the linearized tGPE (blue dotted line).
The agreement between the two calculations is excellent in all cases.
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x∗. The quantity � denotes the Heaviside function. In such a
configuration, we first determine the density background nc(x)
solving the stationary GPE (1) by imaginary time propagation.
The latter is strongly depleted under the barrier (see Fig. 5).
We then add a small excitation on top on this background,
δψ0(x) = eikxe−(x−x0)2/2�x2

. The latter describes a plane wave
of momentum k inside a Gaussian envelope of width �x. In
practice, we choose k�x � 1 so that it is sufficiently narrow
around k in momentum space. We then compute the time
evolution of this initial excitation either solving Eq. (A1) for
ψ(x,t) with the initial condition ψ(x,0) = √

nc(x) + δψ0(x)
or solving Eq. (A2) for δψ(x,t) with the initial condition
δψ(x,0) = δψ0(x). We have performed this comparison in
a wide range of parameters, from nondepleted to strongly
depleted cases, and from the phonon (kξ � 1) to the free-
particle (kξ � 1) regimes. As shown in Fig. 5 in the case of
strong depletion, we found an excellent agreement in all cases,
irrespective of the values of k and of the relative strength of
reflection and transmission by the barrier. This validates the
use of the linearized equation, and thus of the Bogoliubov
approach, to study the dynamics of the collective excitations
even in the presence of strong modulations of the potential.

APPENDIX B: DERIVATION OF THE INVERSE
DISORDER PARAMETER

The background density field nc(r) being given by the
solution of Eqs. (2)–(5), the collective excitations (uε,vε) can
now be determined by solving the Bogoliubov-de Gennes
equations (BdGEs) (6):

L0

(
uε

vε

)
+ U(r)

(
uε

vε

)
= ε

(
uε

vε

)
, (B1)

where

L0 =
(−�

2∇2/2m + μ + 2� +μ + �

−μ − � +�
2∇2/2m − μ − 2�

)

and

U(r) =
(+V (r) − 2η(r) −η(r)

+η(r) −V (r) + 2η(r)

)
.

The dynamics of a given excitation at energy ε is thus governed
by the homogeneous propagator L0 and scattering from the
disordered medium defined by U(r).

In order to solve the BdGEs, we generalize the approach
of Ref. [7] to the strong disorder case where � = 0. We first
rewrite the BdGEs (B1) in the form

�
2

2m
∇2

(
uε

vε

)
=

(
−ε + μ + 2� μ + �

μ + � ε + μ + 2�

)(
uε

vε

)
(B2)

+
(

V (r) − 2η(r) −η(r)
−η(r) V (r) − 2η(r)

)(
uε

vε

)
.

A suitable basis to perform diagrammatic expansion in
leading-disorder terms is found by applying the linear

transform (uε,vε) → (g+
ε ,g−

ε ) that diagonalizes the ho-
mogeneous term in Eq. (B2), i.e., the matrix M ≡(−ε + μ + 2� μ + �

μ + � ε + μ + 2�

)
. It yields

(
g+

ε

g−
ε

)
=

(
�

2γ 2
ε

2m
−�+ε −�

2γ 2
ε

2m
+�+ε

�
2k2

ε

2m
+�−ε −�

2k2
ε

2m
−�−ε

)(
uε

vε

)
, (B3)

where −�
2k2

ε /2m ≡ −
√

ε2 + (μ + �)2 + (μ + 2�) and
�

2γ 2
ε /2m ≡

√
ε2 + (μ + �)2 + (μ + 2�) are the eigenvalues

of the homogeneous matrix M . Without any approximation at
this stage, the BdGEs in the (g+

ε ,g−
ε ) basis then read

�
2k2

ε

2m
g+

ε (r) = − �
2

2m
∇2g+

ε (r) + [V (r) − f−(ε)η(r)]g+
ε (r)

+�+(ε)η(r)g−
ε (r), (B4)

− �
2β2

ε

2m
g−

ε (r) = − �
2

2m
∇2g+

ε (r) + [V (r) − f+(ε)η(r)]g−
ε (r)

+�−(ε)η(r)g+
ε (r), (B5)

with f±(ε) = 2
√

ε2+(μ+�)2±(μ+�)√
ε2+(μ+�)2

and �±(ε) =
√

ε2+(μ+�)2±(μ+�)√
ε2+(μ+�)2

. In the absence of disorder, Eqs. (B4)

and (B5) are now decoupled and are straightforward to solve.
The g+

ε modes are plane waves of momentum kε, while the
g−

ε are evanescent waves of penetration length γ −1
ε . The latter

vanish identically if the system is infinite or has periodic
boundary conditions.

In the presence of disorder, we can therefore make the
assumption |g−

ε | � |g+
ε | since g−

ε is at least one order of
magnitude smaller that g+

ε in VR/μ and �/μ. Keeping only
the leading-order terms in Eq. (B5), we then find

g−
ε � − 2m

�2γ 2
ε

�−(ε)
∫

dr′ G1/γε
(r − r′)η(r′)g+

ε (r′), (B6)

where G1/γε
is the Green’s function associated to the dif-

ferential operator −∇2/γ 2
ε + 1. In Fourier space it reads

G1/βε
(q) = (2π )−d/2/[1 + q2/β2

ε ] and in real space it is a
positive function of integral unity, decaying exponentially on a
length scale 1/γε. Then, since 2m/�

2γ 2
ε < μ and |�−(ε)| < 1

for any energy ε, we find

|g−
ε | �

∫
G1/γε

(r − r′)|η(r′)||g+
ε (r′)|dr′/μ � (VR/μ)|g+

ε |,

which is consistent with the working assumption |g−
ε | � |g+

ε |.
Therefore, the last term of Eq. (B4) can be neglected, which
yields a closed equation for g+

ε :

�
2k2

ε

2m
g+

ε (r) = − �
2

2m
∇2g+

ε (r) + Vε(r)g+
ε (r), (B7)

where

Vε(r) = V (r) − f (ε)η(r) (B8)
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and, for simplicity, we now denote by f (ε) the quantity

f−(ε) = 2
√

ε2+(μ+�)2−(μ+�)√
ε2+(μ+�)2

. The quantity Vε(r) defines a

so-called screened potential of zero average. It can be viewed
as the screening of the bare potential V (r) by the density
background encoded in η(r). It notably depends on the energy
ε of the Bogoliubov excitation.

Therefore Eq. (B7), together with Eq. (B8), contains the
leading-disorder terms. It features an effective single-wave
scattering problem, which can now be solved by standard
quantum transport theory [33]. Localization properties are
then determined in a two-step process [50]. Firstly, the
transport mean free path is calculated in the semiclassical
approach where interference of multiple scattering paths is
neglected. Within the on-shell approximation, which amounts
to assimilate the spectral function to the disorder-free one,

diagrammatic theory yields Eq. (9):

1

kεlB(ε)
� 2πm2

�4k4−d
ε

∫
d�d

(2π )d
(1−cos θ )Cε[2kε sin(θ/2)],

(B9)
for models of disorder with isotropic correlation functions
[34], as considered in this work. For extension to anisotropic
correlation functions, see Ref. [39]. Second, localization is
found using either the one-parameter scaling theory [31] or
the self-consistent approach [50]. The one-parameter scaling
theory is used and discussed in the main text. The self-
consistent theory incorporates interference corrections on the
top of diffusive dynamics, which yields a self-consistent
equation for the diffusive constant or the localization length.
Both approaches give the approximate localization threshold
kεlB ∼ 1 used in the present paper.
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[43] M. Płodzień and K. Sacha, Phys. Rev. A 84, 023624 (2011).
[44] M. Piraud, A. Aspect, and L. Sanchez-Palencia, Phys. Rev. A

85, 063611 (2012).
[45] S. Beliaev, Sov. Phys. JETP 7, 289 (1958); 7, 299 (1958).
[46] F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse,
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