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Abstract

Mobility edges, separating localized from extended states, are known to arise in the
single-particle energy spectrum of disordered systems in dimension strictly higher than
two and certain quasiperiodic models in one dimension. Here we unveil a different
class of mobility edges, dubbed anomalous mobility edges, that separate energy inter-
vals where all states are localized from energy intervals where all states are critical in
diagonal and off-diagonal quasiperiodic models. We first introduce an exactly solvable
quasi-periodic diagonal model and analytically demonstrate the existence of anomalous
mobility edges. Moreover, numerical multifractal analysis of the corresponding wave
functions confirms the emergence of a finite energy interval where all states are critical.
We then extend the sudy to a quasiperiodic off-diagonal Su-Schrieffer-Heeger model and
show numerical evidence of anomalous mobility edges. We finally discuss possible exper-
imental realizations of quasi-periodic models hosting anomalous mobility edges. These
results shed new light on the localization and critical properties of low-dimensional sys-
tems with aperiodic order.
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1 Introduction

The concept of mobility edge (ME), separating localized from nonlocalized phases, is central
to the Anderson localization realm [1,2]. While arbitrarily weak disorder is sufficient to local-
ize all the wavefunctions in dimension one (1D) or two, an energy threshold to localization
(ME) appears in the spectrum of systems in dimension strictly higher than two [3]. The ME
is characterized by multifractal wavefunctions, which are neither exponentially localized nor
fully extended [4–6]. Anderson localization [7] has now been demonstrated in a variety of
experiments, using photonic systems [8–10], acoustic waves [11], ultracold atoms [12–16],
and quantum wires [17]. However, a direct experimental observation of MEs remains a chal-
lenge [18–22].

Quasiperiodic systems offer an appealing intermediate between periodically ordered and
fully disordered systems, and various models have already been realized in experiments with
ultracold atoms [23–27], photonic crystals [28], and polariton condensates [29, 30]. While
some engineered disorder correlations feature effective MEs in low dimensions [31–36],
quasiperiodic systems allow for true localization transitions in 1D. The most considered case
is the paradigmatic 1D Aubry-André (AA) model, which displays a localization transition at a
critical amplitude of the quasiperiodic potential [37,38]. The AA model is, however, character-
ized by a special self-dual symmetry, which prevents the existence of a ME, and all the states
in the spectrum suddenly change from extended to localized at the critical point [39–43].
Such features persist even when considering some non-Hermitian extensions [44–47]. An-
other widely studied case is the Maryland model, in which the quasiperiodic potential is un-
bounded [48–50]. In this case, however, (almost all) the eigenstates are exponentially local-
ized and the Maryland model does not display a localization transition nor a ME. In other
models, such as the Fibonacci chain, all the eigenstates are critical and there is no ME ei-
ther [40,51].

Great interest has been devoted to find low-dimensional quasicrystals with MEs, including
special incommensurate potentials with generalized AA self-duality [47,52,53], shallow multi-
chromatic potentials [25,47,54–59], flat-band lattices [60], quasiperiodic mosaic lattices [61],
and quasiperiodic pseudo-particle models [62]. Recently, it has been shown that long-range
hopping can induce an energy threshold between extended and multifractal states [63]. In
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this case, however, localization is destroyed.
Here we show that (short-range) quasiperiodic models can give rise to an energy inter-

val of critical states while stabilizing localization in other energy intervals, hence inducing
unconventional MEs, here dubbed anomalous mobility edges (AMEs). We first demonstrate
mathematically the existence of such AMEs for an exactly-solvable diagonal model and cor-
roborate this prediction using multifractal analysis within numerical calculations. We then
show that AMEs can also appear in a nondiagonal but local quasiperiodic model. In the ab-
sence of an exact mathematical solution, we rely exclusively on numerical simulations and
show evidence of the onset of AMEs separating critical energy intervals from localized energy
intervals. Our results shed new light on localization and critical properties of aperiodic media,
showing the existence of new classes of MEs in systems with properly designed quasiperiodic
correlations. Possible implementations of the models considered here are discussed, including
Floquet-engineered classical and quantum systems to emulate unbounded incommensurate
potentials.

2 AME in an unbounded quasiperiodic potential: Mathematical
proof

To prove the existence of AMEs, consider first a tight-binding model with nearest-neighbor
hopping and quasiperiodic on-site potential, defined by the eigenvalue equation

Eψn =ψn+1 +ψn−1 + v(2παn+ θ )ψn , (1)

where ψn is the wavefunction amplitude at the lattice site n, E its energy, and the hopping
amplitude is set to unity. The function v is periodic, v(x+2π) = v(x), θ is a phase, and α is an
irrational Diophantine number. A typical choice is the inverse golden number, α= (

p
5−1)/2,

which we adopt here. The AA model corresponds to the choice v(x) = V cos(x), with V the
quasiperiodic amplitude [37, 38]. It displays a localization transition at V = 2 but no ME:
For |V | < 2, all the wave functions are extended while for |V | > 2 they are all exponentially
localized. This is a well known consequence of the self-dual symmetry [38]. In contrast,
almost any self-duality-breaking potential v induces a standard ME, separating a localized
energy interval from an extended energy interval at some critical energy [25,47,52–58].

Consider now an unbounded potential Vn = v(2παn + θ ), which, however, does not di-
verge at any lattice site n ∈ Z. Any classical particle would be trivially localized in between
two sites where the potential Vn exceeding the particle energy. In contrast, for a quantum
particle, tunneling allows for leaks. The Simon-Spencer theorem, however, states that, abso-
lutely continuous spectra – and thus extended states – are forbidden [64]. It suggests that the
wavefunctions may be localized. It is indeed so in the Maryland model, corresponding to the
potential v(x) = V tan(x), which dislays a pure point spectrum with only exponentially local-
ized states for any V 6= 0, see refs. [48,50]. Below, we however show that this is not always the
case and that an appropriate choice of the potential v(x) allows for a critical energy interval.

Consider for instance the potential

v(x) =
V

1− a cos(x)
, (2)

where V is the potential strength and a a tuning parameter. This model has been studied in
the bounded case, 0< a < 1, in ref. [53] and recently emulated with ultracold atoms [65]. In
this case, the model displays a generalized AA self-dual symmetry and standard MEs appear.
Here we focus on the unbounded case, a > 1, where the self-duality argument breaks down.
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Figure 1: Anomalous mobility edge in an unbounded quasiperiodic potential.
(a) Lyapunov exponent versus energy for the model of Eqs. (1) and (2), as found
analytically [Eq. (5)]. The Insets show cartoons of localized and critical states in the
corresponding phases. (b) Inverse participation ratio IPR versus potential amplitude
and energy for the same model, as found using numerical calculations. The solid
blue lines show the AMEs at Em = ±2.

Setting θ /∈ ±[arccos(1/a) + 2kπ− 2παZ] ensures that the potential is unbounded but finite
at any lattice site n. We compute the Lyapunov exponent (LE, inverse localization length),
γ = 1/ξ, using Avila’s global theory for unbounded quasiperiodic operators [66–68]. It reads
as

γε(E) = lim
n→∞

1
2πn

∫ 2π

0

ln‖Tn(θ + iε)‖dθ , (3)

where ‖Tn(θ + iε)‖ is the norm of the transfer matrix, given by the ordered product

Tn(θ ) =
n−1
∏

l=0

�

E − v(2παl + θ ) −1
1 0

�

. (4)

Note that the complexification of the phase (θ → θ + iε) plays a crucial role. The calculation
may then be performed analytically by factorizing out the unbounded term and taking the
limit ε→ 0 (see Appendix A). It yields

γ(E) =max
±

�

ln

�

�

�

�

E ±
p

E2 − 4
2

�

�

�

�

�

. (5)

A plot of the LE versus energy is shown in Fig. 1(a). Remarkably, γ(E) is independent of the
potential parameters V and a, provided a > 1. For |E| > 2, we find γ(E) > 0 and for α a
Diophantine number, we conjecture that, like for other quasiperiodic models, the LE provides
the asymptotic (n→±∞) exponential decay rate of the wave function. Hence, for |E|> 2, the
spectrum is pure point and the eigenfunctions are exponentially localized with the localization
length ξ(E) = 1/γ(E). In contrast, for |E| < 2, we find γ(E) = 0. While the vanishing of
the LE is generally associated to extended states and absolutely continuous spectrum, this is
forbidden for the unbounded potential we consider [64]. Hence we have to conclude that
the energy spectrum in the interval [−2,2] is singular continuous and the wave functions
are all critical, i.e. they are neither exponentially localized nor extended, but multifractal.
This mathematically proves the onset of AMEs at the energies Em = ±2 for the quasiperiodic
potential of equation (2).
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3 Multifractality in the unbounded quasiperiodic potential

These analytic predictions are supported by numerical calculations, based on exact diagonal-
ization of the Hamiltonian of the model (1) with the potential (2). The localization properties
of a wavefunctionψ, normalized as

∑

n |ψn|
2 = 1, are characterized by the generalized inverse

participation ratio,
IPRq =

∑

n

|ψn|
2q , (6)

with q > 1. Since localized states are unaffected by the boundaries, they are characterized
by an IPR independent of the system size L (in units of the lattice spacing), i.e. IPRq ∼ 1/Lτq

with τq = 0. In contrast, an extended state in dimension d scales as the system size, i.e.
τq = d(q− 1), while critical states are multifractal and characterized by the scaling exponent
τq = Dq(q−1), where 0< Dq < 1 is a noninteger fractal dimension. In the latter two cases, the
IPRq vanishes in the thermodynamic limit, for q > 1. Without loss of generality, in practical
numerical calculation, we focus on the q = 2 case and ignore the subscript q. Numerical results
for the IPR versus the potential amplitude V and the eigenenergy E j of the jth eigenstate, run
for a large system of L = 1000 sites, are shown in Fig. 1(b). Consistently with the analytical
predictions, they show clear transitions between localized states (characterized by a finite IPR)
for |E|> 2 and nonlocalized states (characterized by a vanishingly small IPR) for |E|< 2. Note
that the phase θ in Eq. (1) is essentially irrelevant (see Appendix B).

To further characterize the wave functions, we use multifractal analysis. The size of the
system L is chosen as the mth Fibonacci number Fm. The advantage of this arrangement is
that the inverse golden number can be approximately replaced by the ratio of two successive
Fibonacci numbers, i.e., α= (

p
5−1)/2= limm→∞ Fm−1/Fm, see for instance ref. [40]. Then,

for each wave functionψ j
n, a scaling exponent β j

n can be extracted from the nth on-site proba-

bility P j
n = |ψ

j
n|2 ∼ (1/Fm)β

j
n . According to multifractal analysis, when the wave functions are

extended, the maximum of P j
n over n scales as maxn(P

j
n) ∼ 1/Fm, i.e., β j

min ≡ minn(β
j
n) = 1.

On the other hand, when the wave functions are localized, P j
n peaks at very few sites and is

nearly zero at the other sites, yielding maxn(P
j
n) ∼ const. and β j

min = 0. As for the critical

wave functions, the corresponding β j
min is located within the interval (0, 1), and can be used

to discriminate extended and critical states. The multifractality analysis of the parameter β j
min

applied to standard quasiperiodic models, namely the Aubry-André model and that of Eq. (2)
but with 0 < a < 1, confirms this intuitive picture (see Appendix C). As usual, significant
fluctuations are oberved at criticality. To reduce these fluctuations, we use the average scaling
exponent, βmin =

1
L′
∑

β
j
min, over the L′ wave functions either in the energy interval (−2, 2)

or outside it.
Figure 2(a) shows the scaling exponent βmin as a function of the inverse Fibonacci index

1/m for various amplitudes V of the quasiperiodic potential. For states with an eigenenergy
within the interval (−2, 2) (brown markers), we find that βmin has finite values between and
strictly different from 0 and 1. Extrapolating linearly to the thermodynamic limit, 1/m→ 0,
we find that βmin asymptotically tends to about 0.4, nearly independently of the potential
amplitude V , clearly indicating the criticality of corresponding wave functions. In contrast,
for states with an eigenenergy outside the interval (2, 2) (red markers), βmin asymptotically
tends to zero in the thermodynamic limit, indicating that the corresponding wave functions
are localized. This clearly confirms the onset of AMEs, separating an energy interval of critical
states in the energy interval (−2, 2) from localized states outside it.

Critical states appearing in the energy interval (−2,2) can also be distinguished from ex-
tended states using the scaling of the IPR. Figure 2(b) shows the mean value of the IPR,
M I PR= 1

L′
∑

I PRn over the corresponding wave functions. For wave functions with an energy
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Figure 2: (a) Minimal scaling exponent βmin as a function of the inverse Fibonacci
index 1/m for the various potential strengths V and a = 2. The brown markers cor-
respond to the eigenenergies in the interval (−2, 2), and the red markers correspond
to the other energies, i.e., outside (−2, 2). (b) Mean IPR (MIPR) versus the inverse
system size 1/L for states in the critical phase for V = 1 (brown markers). It shows
the power law behaviour M I PR ∼ 1/L0.56, clearly different from extended states
(1/L, shown as the dashed black line for reference).

in the interval (−2, 2), we find the scaling M I PR∼ 1/L0.56 (brown markers), clearly different
from the scaling 1/L expected for extended sates (dashed black line). This further proves that
the wave functions within the interval (−2,2) are indeed critical, rather than extended.

4 Quasiperiodic Su-Schrieffer-Heeger model

Having demonstrated the existence of AMEs in an exactly-solvable model, it is tempting to
ask whether other models can support such AMEs. The mathematical treatment above sug-
gests that diagonal, unbounded quasiperiodic models such that γ vanishes on a certain en-
ergy interval are good candidates. Here, we rather consider another class of models, namely
bounded models with off-diagonal quasi-periodicity. The simplest one consists in considering
a tight-binding model with a hopping modulated by a quasiperiodic term, tn = 1 + Vn, with
Vn = V cos(2παn + θ ). This model, however, displays a critical ampitude at V = 1 but no
ME [69]. To remedy this issue, consider the quasiperiodic Su-Schrieffer-Heeger (SSH) chain
governed by the eigenvalue problem

Ean = (1+λ)bn−1 + (1−λ+ Vn)bn ,

Ebn = (1−λ+ Vn)an + (1+λ)an+1 ,
(7)

where an and bn are the wave function amplitudes on the sublattices A (blue spheres) and
B (red spheres) of the n-th unit cell, respectively, see Fig. 3(a). The bn−1-an bond (double
red bond) is the usual strong bond of hopping amplitude tn = 1 + λ, with λ the dimeriza-
tion strength, while the weak bond an-bn (single blue bond) is modulated quasi-periodically,
t ′n = 1 − λ + Vn. In the absence of an analytical solution for this model, we exclusively rely
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Figure 3: (a) Cartoon picture of the quasiperiodic Su-Schrieffer-Heeger chain. The
blue and red spheres represent the sublattices A and B, respectively. The bn−1-an
bond has a uniform hopping amplitude tn = 1+λ, with λ the dimerization strength,
the an-bn bondis modulated quasi-periodically, t ′n = 1−λ+Vn. (b) Opposite of the IPR
scaling exponent, −τ, versus potential amplitude V and eigen energy E. (c) Minimal
exponent βmin of individual eigenstates in the three phases (localized, extended, and
critical) as a function of the inverse Fibonacci index 1/m for the various potential
strengths V and energies E.

on numerics. To emphasize the difference between extended, critical, and localized states, we
consider the IPR scaling exponent, τ = −d log(IPR)/d log(L), rather than the bare value of
the IPR. A typical result of −τ versus the quasiperiodic amplitude V and the eigenstate energy
E is shown in Fig. 3(b) for the dimerization strength λ = 0.3. It yields a rich phase diagram
comprising extended (τ' 1, black points), localized (τ' 0, bright yellow points), and critical
(0 < τ < 1, orange-red points) states 1. Similar results are found for other values of λ (see
Appendix D). The spectrum splits into three main branches. For weak quasi-periodic modu-
lation V , all states are extended up to a branch-dependent critical value. For the upper two
branches, the states are localized for V above the critical value. On the lower main branch,
however, narrow energy intervals of critical states, characterized by 0 < τ < 1, appear on the
lower and upper parts of the main branch, for V ¦ 0.7. Moreover, for 0.7 ® V ® 1.2, the
intermediate states also appear critical. This points towards the existence of one or several
AMEs, depending on the value of V . These results are further supported by the finite-size
scaling analysis of the βmin exponent of individual states picked up in the various phases, see
Fig. 3(c). For extended and localized states, βmin tends towards 1 and 0, respectively, in the
thermodynamic limit. In contrast, for critical states, the asymptotic limit yields 0< βmin < 1.

While the exact determination of the AME in this model is still an open question, it is
tempting to interprete it by analogy with the diagonal model discussed above. The results of
Fig. 3(b) for λ= 0.3, as well as those obtained for other values of λ (see Appendix D), suggest
that AMEs are found for V ¦ 1−λ, that is the point where some bounds have arbitrary small
(although non zero) hopping terms. Hence vanishingly small but finite values of hopping
amplitudes in the off-diagonal quasiperiodic SSH model play a similar role as arbitrary large
but finite values of the on-site potential in the diagonal model.

1Note that due to the chiral symmetry of the quasiperiodic SSH model, we just need to plot the positive energy
sector, E > 0. Since we do not study topological properties here, we do not plot the E = 0 case.
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5 Physical implementations

We now briefly discuss physical realizations of the models considered in this work, consider-
ing first the diagonal unbounded model of Eqs. (1) and (2). The physical realization of an
unbounded potential may be difficult for it involves arbitrary large energies. To avoid this
issue, we may instead use Floquet engineered Hamiltonians. A periodically-kicked quantum
or classical system is described rather generally by the Schrödinger equation

i
∂Ψ

∂ t
= K(p)Ψ + V (x)

∑

n

δ(t − n)Ψ , (8)

for the wave function Ψ = Ψ(x , t), where x and p are conjugate variables. Working along the
lines of refs. [70, 71], the Floquet eigenvalue problem associated to Eq. (28) is mapped onto
the spectral problem of Eqs. (1) and (2) provided the permanent and kicked components are
engineered such that

K(p) = −2atan[aE cos(p)] ,

and
V (x) = −2atan[2 cos(2παx)] .

Such terms in the Hamiltonian can be emulated in various systems (see details in Ap-
pendix E). For instance, one may use propagation of light waves in lens guides or optical
resonator systems [72]. Such optical systems have been exploited to observe phenomena like
dynamical localization and quantum chaos (see e.g. refs. [73–77] and references therein). In
order to realize the model considered here, one may use a Fabry-Perot optical cavity in a self-
imaging configuration [78–81], formed by two flat end mirrors with two intracavity focusing
lenses of focal length f and appropriately tailored phase gratings placed at near- and far-field
planes of the cavity. The eigenvalue equation that defines the optical modes of the cavity is
precisely Eq. (1) with the irrational α = λ f /(A1A2), where λ is the light wavelength and A1,2
are the spatial periods of the two gratings.

In a different physical context, one may use ultracold atoms in a bichromatic optical lattice
made of a strong primary lattice and a second shallow lattice, similarly as in ref. [23]. Here we
propose to periodically kick the primary lattice from a large to a weak value, hence kicking the
hoping term. In contrast to previous realizations of kicked quantum rotators [82,83], here we
kick the kinetic term instead of the potential term, and localization should, correspondingly,
be observed in real space instead of momentum space. Crucially, it permits to engineer the
unbounded potential v(x) using bounded lattices. The system is then governed by Eq. (8)
with exchanged position and (quasi-)momentum, x → p and p → −x . The periodicity of
V (p) is realized from the dispersion relation of the Bloch waves in the tight-binding regime.
The bounded potential K(x) can finally be appropriately designed within the secondary lattice
using standard digital micromirror device (DMD) methods.

The quasiperiodic SSH model may be realized in different quantum or classical settings
using matter, electromagnetic or acoustic waves, such as in dimerized lattices of Rydberg
atoms [84], atomic wires with modulated hopping energies [85], arrays of optical waveg-
uides or coupled resonators with engineered evanescent mode coupling [86,87], and acoustic
waveguide structures [88]. For example, in ref. [84] atoms in Rydberg states trapped in a con-
trolled array of optical tweezers were used to emulate the standard SSH model. In this exper-
iment, the alternating hopping energies were controlled by alternating the distance between
the trapping sites between a large and a smaller value. Such an approach may be extended to
eumulate the model of Eq. (7) by further modulating quasiperiodically the shortest distance.
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6 Discussion

In summary, we have shown the emergence of AMEs, separating energy intervals of localized
states from energy intervals of critical states, in various quasi-periodic models. On the one
hand, we have rigorously demonstrated the existence of AMEs in an exactly solvable diagonal
model and validated in numerical calculations using multifractal analysis. On the other hand,
we have extended the concept to a quasi-periodic off-diagonal SSH model and obtained clear
evidence of AMEs in numerical calculations.

These results pave the way to both experimental and theoretical developments. On the one
hand, we have shown that the models proposed here can be emulated in photonic systems
and ultracold atomic gases. Other platforms allowing a controlled design of various quasi-
periodic structures, such as polariton condensates, could also be considered. On the other
hand, while our mathematical proof suggests an approach to build unbounded quasi-periodic
models hosting AMEs, our results leave open the fundamental question of understanding the
necessary and sufficient conditions for a quasi-periodic model to host such AMEs. In this
respect, it would be interesting to extend our results to other classes of quasi-periodic systems
displaying AMEs, including either bounded or unbounded models, as well as to non-Hermitian
quasi-crystals.
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A Lyapunov exponent analysis and anomalous mobility edges

Here we detail the analytical derivation of the Lyapunov exponent using ideas of Avila’s global
theory [66], suitably extended to the case of unbounded potentials [68]. The Lyapunov expo-
nent (LE) γ0(E) for the spectral problem with incommensurate potential vn

ψn+1 +ψn−1 + vnψn = Eψn , (9)

with vn = v(x = 2παn+θ ), v(x) = V/[1−a cos(x)] (a > 1), α irrational, is defined as [66–68]

γ0(E) = lim
n→∞

1
2πn

∫ 2π

0

dθ log ||Tn(θ )|| , (10)

where ‖Tn(θ )‖ is the norm of the 2× 2 transfer matrix Tn(θ ), given by the ordered product

Tn(θ ) =
n−1
∏

l=0

�

E − v(2παl + θ ) −1
1 0

�

=
n−1
∏

l=0

T (2παl + θ ) , (11)

with

T (θ ) =

�

E − v(θ ) −1
1 0

�

=

�

E − V
1−a cosθ −1
1 0

�

. (12)
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Let us consider a complex extension of the LE, denoted by γε(E), which is obtained from
Eq. (10) by letting θ → θ + iε, with θ and ε real, i.e.

γε(E) = lim
n→∞

1
2πn

∫ 2π

0

dθ log ||Tn(θ + iε)|| . (13)

To apply Avila’s global theory [66], we remove the singularity of T (θ ) by letting [68]

T (θ ) =
1

1− a cosθ
B(θ ) , (14)

with matrix elements B(θ ) analytic functions of θ . One then readily obtains

γε(E) =
1

2π

∫ 2π

0

dθ log
1

|1− a cos(θ + iε)|
+ γ1

ε(E) , (15)

i.e.
γε(E) = −|ε| − log

�a
2

�

+ γ1
ε(E) , (16)

where we have set

γ1
ε(E) = lim

n→∞

1
2πn

∫ 2π

0

dθ log ||Bn(θ + iε)|| . (17)

Since B is an analytic function of θ , it follows that γ1
ε(E) is a continuous function of ε. Hence

γε(E) is a continuous function of ε as well because of Eq. (16). To calculate γε(E) at ε = 0,
we can thus compute the limit of γε(E) as |ε| → 0. To compute γε(E) for ε > 0, let us first
consider the limit ε→∞. Uniformly in θ , one has

T (θ + iε) = T∞ [1+O(exp(−ε))] , (18)

where

T∞ =

�

E −1
1 0

�

, (19)

so that one readily obtains

γε(E) = lim
n→∞

1
n

log









�

E −1
1 0

�n






+O(1)

= log

�

�

�

�

E ±
p

E2 − 4
2

�

�

�

�

+O(1) , (20)

as ε→∞. In Eq. (20), the ± sign on the right hand side should be chosen so that to get the
largest value of γε. Since for ε 6= 0 (A,α) is an analytic cocycle , we can apply the quantization
theorem of acceleration [66], so that

γε(E) = log

�

�

�

�

E ±
p

E2 − 4
2

�

�

�

�

, (21)

for all ε sufficiently large. In addition, due to the convexity, continuity and symmetry of γε(E)
(i.e. γ−ε(E) = γε(E)), one necessarily has

γε(E) = log

�

�

�

�

E ±
p

E2 − 4
2

�

�

�

�

, (22)

for any ε (including ε = 0 for continuity), i.e. the Lyapunov exponent γε(E) is independent
of ε. Such a property is analogous to the behavior found in the Maryland model [68] and
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closely related to the unbounded nature of v(x). However, as compared to the Maryland
model, in our model the Lyapunov exponent γ0(E) is not always strictly positive. In fact, we
have γ0(E) > 0 only for |E| > 2. In this region, we conjecture that, like for the Maryland
model [50, 68], for α irrational Diophantine the spectrum is pure point with exponentially-

localized eigenfunctions and localization length given by ξ(E) = 1/γ0(E) = 1/ ln | E±
p

E2−4
2 |.

This result is confirmed by the numerical analysis given in the main text and in Appendix C.
In contrast, for |E| < 2 one has γ0(E) = 0. Since for unbounded potentials the absolutely
continuous spectrum is empty [64], we conclude that the energy spectrum in the interval
(−2,2) is singular continuous, and corresponding wave functions are critical, i.e. they are not
exponentially localized neither extended in the Bloch’s sense (see Appendix C). Remarkably,
the mobility edges are independent of potential parameters V and a (with |a|> 1).

B Influence of the phase θ

Figure 4 shows that the phase θ in Eq. (1) does not affect the spectrum nor the localization
properties of the model (2).

Figure 4: Inverse participation ratio IPR versus potential amplitude and energy for
the model of Eqs. (1) and (2), and various values of the phase θ .
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C Multifractal analysis of quasiperiodic models and spatial distri-
butions of wave functions

Here we provide numerical results for the multifractal analysis of various quasiperiodic models.
Let us start with the same model as considered in the main paper but in the bounded

case [53], 0 < a < 1, see Fig. 5(a). In this case, there exists a standard mobility edge Em
separating localized from extended states. Correspondingly, we find that, for extended states
(E < Em, black markers), βmin tends to 1 in the thermodynamic limit. In contrast, for localized
states (E > Em, red markers), βmin tends 0. In both cases, a clear linear behaviour of βmin
versus the inverse Fibonacci index 1/m is found.

In contrast, the Aubry-André model does not display any mobility edge but a criticall po-
tential amplitude at V = 2. In the extended pahse, V < 2, we find that βmin tends to 1 in the
thermodynamic limit, see Fig. 5(b) (black makers). When, instead, V > 2, the system is in
the localized phase and the corresponding βmin tends to 0 (red markers). At the phase tran-
sition, V = 2, the system is in the critical phase and the corresponding βmin is clearly within
the interval (0, 1) (brown markers). Significant fluctuations are observed as a function of the
Fibonacci index m. However, these states are clearly be distinguished from extended and lo-
calized states. This proves that the multifractal analysis can be used to distinguish extended,
critical, and localized states in a wide variety of quasiperiodic systems.

We have also implemented the numerical calculation for the unbounded model discussed in
the main paper. The corresponding results are shown in the main text for the tuning parameter
a = 2 and in Fig. 5(c) and (d) for a = 6 and a = 11. They confirm the existence of AMEs with
all states critical in the energy range (−2,2) and all states localized otherwise.

The onset of AMEs can be also explicitly confirmed by an inspection of the spatial distri-
butions of wave functions. Figure 6 plots the wave functions of six eigenenergies separated
by the AME Em = 2 when V = 2. An inspection of the figure clearly indicates that the wave
functions with eigenenergies above Em [panels (b), (d), and (f)] are maximally localized at
one site of the chain. In contrast, the wave functions with corresponding eigenenergies below
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Figure 5: (a) βmin as a function of the inverse Fibonacci index 1/m for the model
of Ref. [53] (same as our model but with 0 < a < 1) and a = 0.5. The ME is
Em = 2(2 − V ) = 0.4 for V = 1.8, Em = 0 for V = 2, and Em = −1 for V = 2.5.
(b) βmin as a function of the inverse Fibonacci index 1/m for the Aubry-André model.
(c) βmin as a function of the inverse Fibonacci index 1/m for the model in this paper
with the tuning parameter a = 6. (d) βmin as a function of the inverse Fibonacci
index 1/m for the model in this paper with the tuning parameter a = 11.
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Figure 6: Spatial distributions of ψn for a few eigenfunctions with eigenenergies
either below or above the AME Em = 2. A lattice with L = 4181 sites has been used
in numerical simulations. Here we choose six eigenenergies (with four significant
digits): critical states below Em [(a), (c) and (e)], and localized states above Em
[(b), (d) and (f)].

Em [panels (a), (c), and (e)] are neither localized nor extended over the whole space. Instead,
they display clear self-similarities, which is the characteristic of critical states. This confirms
that the AME Em = 2 distinctly separates localized from critical states.

D Additional results for the SSH model

Here we give additional results for the inverse participation ratio of the SSH model. Figure 7
shows the counterpart of Fig. 3(b) of the main paper for two other values of the dimerization
parameter, λ= 0 [Figure 7(a)] and λ= 0.5 [Figure 7(b)].

The spectrum splits into three main branches, clearly identifiable at V ' 0. For low values
of V , all states are extended (black points). For the two upper branches, we find a transition
to localized states (yellow dots). For the lower branch, however, we obtain energy intervals
where the states are critical (red-orange dots). The critical value of the potential is compatible
with the simple estimate V ' 1−λ [see also Fig. 3(b) of the main paper]. Beyond the critical
point, we obtain AMEs separating critical energy intervals from localized energy intervals.

13

https://scipost.org
https://scipost.org/SciPostPhys.12.1.027


SciPost Phys. 12, 027 (2022)

(a) (b)

Figure 7: Opposite of the IPR scaling exponent, −τ = log(IPR)/ log(L), versus po-
tential amplitude V and eigen energy E for the quasiperiodic SSH model of Eq. (7)
in the main paper, with (a) λ= 0 and (b) λ= 0.5.

E Physical implementations of the unbounded potential model

Spectral problem of a periodically-kicked system

Spectral problems involving diverging potentials v(x) on a lattice are known to arise in perio-
dically-kicked classical or quantum systems, such as in the periodically-kicked quantum rotator
model [70,71] or in its linear version, known as the Maryland model [48–50,89,90], and they
are related to major physical effects such as dynamical and Anderson localization. In the kicked
rotator model, the kinetic energy K(p) is a quadratic function of the momentum p, while in
the Maryland model K(p) is assumed to be linear in p. In the latter case, the unbounded
potentials v(x) is described by the trigonometric tangent function. The ability to engineer the
kinetic energy K and the potential term V in the Schrödinger equation can give rise to spectral
problems on the lattice with different and tailored unbounded potentials v(x).

Let us consider rather generally the dynamics of a one-dimensional periodically-kicked
quantum particle, described by the dimensionless Schrödinger equation

i
∂Ψ

∂ t
= K(p̂)Ψ + V (x)

∑

n

δ(t − n)Ψ , (23)

for the wave function Ψ = Ψ(x , t), where p̂ = −i∂x , K(p) is the dispersion relation of the
kinetic energy term, and V (x) is the external potential. The evolution of the wave function
before each kick, Ψ(m)(x) = Ψ(x , t = m−), is governed by the following map

Ψ(m+1)(x) = exp[−iK(p̂x)]exp[−iV (x)]Ψ(m)(x) . (24)

After setting Ψ(m)(x) = Ψ(x)exp(−iµm), where µ is the Floquet quasi-energy which varies in
the range (−π,π), the following spectral problem is obtained

exp(−iµ)Ψ(x) = exp[−iK(p̂)]exp[−iV (x)]Ψ(x) . (25)

Following the method outlined in Refs. [70, 71], let us introduce the auxiliary potential
W (x) = tan[V (x)/2] so that

exp[−iV (x)] =
1− iW (x)
1+ iW (x)

. (26)
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After setting

ψ(x) =
Ψ(x)

1+ iW (x)
, (27)

from Eqs. (25), (26), and (27), one obtains

[1+ iW (x)]ψ(x) = exp[iµ− iK(−i∂x)] {[1− iW (x)]ψ(x)} . (28)

Let us now assume that the potential V (x), and thus the function W (x), is a periodic function
of x with period 1/α, so that W (x) =

∑

n Wn exp(2πiαnx), where α is irrational. We can thus
search for a solution to Eq. (28) of the Bloch form, ψ(x) =

∑

nψn exp(2πiαxn+ iθ x), with
θ constant. From Eq. (28), it follows that the Fourier coefficients ψn satisfy the equation

ψn + i
∑

l

Wn−lψl = {exp[iµ− iK(2παn+ θ )]}

�

ψn − i
∑

l

Wn−lψl

�

, (29)

Equation (29) is solved by letting
∑

l

Wn−lψl = Snψn , (30)

with
1+ iSn

1− iSn
= exp[iµ− iK(2παn+ θ )] . (31)

To obtain a tight-binding model with nearest-neighbor hopping, let us assume a potential V (x)
such that W (x) = −2 cos(2παx), i.e.

V (x) = −2 atan
�

2cos(2παx)
�

. (32)

In this case, from Eqs. (30), (31), and (32), one finally obtains

ψn+1 +ψn−1 + v(2παn+ θ )ψn = Eψn , (33)

where we have set

E ≡
1

tan(µ/2)
, (34)

and

v(x) =
1+ E2

E
1

1+ 1
E tan

�

K(x)
2

� . (35)

Clearly, Eq. (33) describes the spectral problem of a tight-binding lattice with a potential v(x),
which depends on the energy E. However, such a dependence of the potential on the energy
is not a major issue for the model discussed in our work and for the appearance of anomalous
mobility edges. In fact, let us assume a periodic kinetic energy K(p) of the form

K(p) = −2atan
�

D cos(px)
�

. (36)

The corresponding potential reads as

v(x) =
V

1− a cos(x)
, (37)

with V = (1 + E2)/E and a = D/E, i.e. the model considered in the main text. Since the
spectral properties and mobility edges for the potential given by Eq. (37) are independent of
the potential amplitude V and the only condition for an unbounded potential is |a| > 1, we
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Figure 8: Schematic of a self-imaging optical resonator with flat end mirrors and
with two phase gratings placed at the near-field (flat end mirror at the left side)
and Fourier (far-field) planes. The spatial periods of the two gratings are A1 and
A2, respectively. The irrational α is defined in terms of physical parameters by
α= λ f /(A1A2), where f is the focal length and λ is the light wavelength.

can conclude that critical mobility edges, separating exponentially localized states and critical
states for irrational α with Diophantine properties, arise at the energy E = Em = 2, i.e. at the
quasi-energy µm = 2 atan(1/2), whenever the condition D > 2 is satisfied.
In the previous analysis we assumed that the quantum particle is periodically kicked by an
external potential, however likewise one could kick the kinetic energy term instead of the
potential term. In the latter case localization should be observed in real space instead of mo-
mentum space.
We now suggest two possible physical implementations of periodically-kicked systems, a clas-
sical system (the optical resonator mode) and a quantum system (ultracold atoms in a kicked
bichromatic optical lattice).

The optical resonator model

Here, we show that the map (24) and the associated spectral problem (25) naturally arise
in the calculation of cavity modes of light waves in an optical resonator [72]. We note that
wave and ray propagation of light in lens guides and optical resonator systems have been
often employed to study and observe phenomena like dynamical localization and quantum
chaos (see e.g. refs. [73–77] and references therein). Specifically, let us consider a Fabry-
Perot optical cavity in so-called self-imaging (or 4- f ) configuration [78–81], formed by two
flat end mirrors with two focusing lenses of focal length f , as schematically shown in Fig. 8. For
the sake of simplicity, we assume a one-transverse spatial dimension X . Two phase gratings,
with transmission field amplitudes t2(X ) = exp[−i g2(X )/2] and t1(X ) = exp[−i g1(X )/2], are
placed at the near-field and far-field planes (γ and q) of the resonator, as shown in Fig. 8.
The spatial period of the two gratings are A1 and A2, respectively, i.e. g1(X +A1) = g1(X ) and
g2(X+A2) = g2(X ). In the scalar and paraxial approximations, wave propagation at successive
transits inside the optical cavity can be readily obtained from the generalized Huygens integral
by standard methods [72]. Neglecting finite aperture effects, the field envelope Ψ(m)(X ) of
the progressive wave at the reference plane γ in the cavity and at the m-th round-trip evolves
according to the map

Ψ(m+1)(X ) = exp[−i g2(X )]

∫ ∞

−∞
dθ Q(X ,θ )Ψ(m)(θ ) , (38)
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where the kernel Q of the integral transformation is given by [80,81]

Q(X ,θ ) =
�

1
λ f

�

∫

dξexp
�

−i g1(ξ) +
2πiξ(X − θ )

λ f

�

, (39)

and λ = 2π/k is the optical wavelength. In writing Eq. (39), we assumed g1(−X ) = g1(X ).
Taking into account that the integral transformation Q can be written as the exponential of a
differential operator, namely

∫ ∞

−∞
dθ Q(X ,θ )Ψ(θ ) = exp

�

−i g1

�

−i
λ f
2π

∂

∂ X

��

Ψ(X ) , (40)

after introduction of the dimensionless spatial variable x ≡ A1X/(λ f ), the map Eq. (38) can
be written in the form of Eq. (24) with kinetic energy and potential terms given by

K(p) = g1

�

A1

2π
p
�

, V (x) = g2

�

λ f
A1

x
�

. (41)

Note that the arithmetic numberα, i.e. the frequency of V (x), is defined in terms of the physical
parameters A1, A2, λ and f (grating periods, light wavelength, and focal length) by the relation

α=
λ f

A1A2
. (42)

Therefore, the profiles of K(p) and V (x) required to simulate the unbounded potential
v(x) = V/[1− a cos(x)] and given by Eqs. (32) and (36), are basically obtained by suitably
tailoring the phase grating profiles g1,2(X ) according to Eq. (41) .

Ultracold atoms in a kicked bichromatic optical lattice

The proposed model may alternatively be realized in ultracold-atom systems. Consider atoms
subjected to a kicked (primary) optical lattice in the tight-binding regime plus a weak (sec-
ondary) potential, see Fig. 9. The Hamiltonian of the system reads as

Ĥ = Ĥ1

∑

i

δ(t − iT ) + Ĥ2 , (43)

where Ĥ1 = −Jτ
∑

n

�

â†
n+1ân + â†

n−1ân

�

is the primary lattice Hamiltonian mutiplied by the
duration of a kick, assumed to be much shorter than the inter-kick time τ� T . It describes
atoms tunneling from site n to the nearest-neighbor sites n ± 1 with the hopping energy J ,
where ân and â†

n are, respectively, the annihilation and creation operators of an atom at site
n. The second term, Ĥ2 =

∑

n Vnâ†
nân, accounts for the light-shift potential induced by the

secondary lattice, which modulates the energy Vn of an atom at site n. In practice, one real-
izes a primary optical lattice with a large amplitude, so that the tunneling is negligible, and
periodically quenches this amplitude to a weaker value so that the tunneling energy acquires
a finite value J for a short time τ. The model is realized provided the latter is much shorter
than the relevant time scales, τ� T,ħh/J . A secondary lattice, with a much weaker amplitude,
realizes the on-site energy modulation Vn of an atom at the site n of the primary lattice. Note
that the effective on-site energy changes during the kicks but this is irrelevant since the effect
of Ĥ2 is negligible for vanishingly short kicks.

Let us denote |n〉 the Wannier state at site n in the lowest-energy band of the primary
lattice, and |q〉 the corresponding Bloch states. The primary lattice Hamiltonian is diagonal in
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Figure 9: Ultracold-atom scheme to realize the proposed model. Lower panel: The
atoms are trapped in a deep optical lattice (red line) with lattice sites labelled by
n ∈ N and vanishingly small hopping amplitude. The atoms occupy the correspond-
ing Wannier fuctions, with a uniform on-site energy (lower dotted red bars) An addi-
tional weak optical potential (orange line) modulates on on-site energies (solid red
bars) according to Eq. (48). The primary lattice is periodically kicked every time T
to a smaller amplitude (solid blue line) for a short time τ, hence setting up a finite
hopping energy J . Upper panel: Time sequence of the lattice amplitude with color
scheme consistent with the lower panel

the Bloch basis with energies Eq = −2J cos(q). The single-kick evolution operator then reads
as

Û1 =
∑

q

e−iEqτ/ħh|q〉〈q|=
1− iW (q)
1+ iW (q)

|q〉〈q| , (44)

with

W (q)'
Eqτ

2ħh
= −

Jτ
ħh

cos(q) , (45)

since Jτ/ħh � 1. It generates the cosine modulation of the function W discussed above and
the effective nearest-neighbour tight-binding hopping term Jτ

2ħh (ψn+1 +ψn−1), similar to that
of Eq. (33) up to trivial rescalings of the length, 2παx → q, and energy 1→ Jτ/2ħh.

The secondary lattice Hamiltonian generates the on-site term

Sn =
Jτ
2ħh

�

1+ E2

E
1

1+ tan(VnT/2ħh)
E

− E

�

, (46)

with
E =

1
tan(µT/2ħh)

, (47)

and µ the Floquet quasienergy. The model (33) is thus realized by setting

Vn = −
2ħh
T

atan [aE cos(2παn+ θ )] , (48)
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see Eq. (36). Such a potential varies smoothly on the primary lattice length scale, which is
nothing but the optical wavelength. It can be engineered using standard digital micromirror
device (DMD) techniques, which are now routinely used in ultracold-atom experiments.

It is finally worth commenting our scheme. The tight-binding model of Eq. (33) may in
principle be realized directly in a static (nonkicked) primary optical lattice modulated by a
secondary lattice such that Vn =

V
1−a cos(2παn+θ ) . This potential is, however, unbounded and

cannot be striclty engineered with DMD techniques. In contrast, Floquet engineering allows
one to emulate the effective unbounded potential Vn using a bounded secondary optical field
Vn, which, in turn, can be realized by DMD techniques.

Kicked quantum rotator models have been previously realized with ultracold-atom systems
to study dynamical localization in one and higher dimensions [82, 83]. In these works, the
kicked term was a cosine potential as realized by an optical lattice periodically switched on for
a short time τ, and the static term was the free-particle kinetic energy. The former generated
the nearest-neighbour tight-binding term of the effective model while the latter generated a
quasi-disordered potential term. The latter is, however, hard to engineer beyond the quadratic
(free-particle) or cosine-like (lattice-particle) dispersion relation. Our proposed implementa-
tion overcomes this issue by, instead, using the cosine dispersion relation of tightly-bound
particles to generate the effective tight-binding term and the easily-engineered potential term
to generate the unbounded potential of the effective model. As a result, localization is to be
observed directly in real space while it was observed in momentum space in kicked rotators
realized so far.
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