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We investigate the dynamics of Brownian particles in internal state-dependent symmetric and periodic
potentials. Although no space or time symmetry of the Hamiltonian is broken, we show that directed transport
can appear. We demonstrate that the directed motion is induced by breaking the symmetry of the transition
rates between the potentials when these are spatially shifted. Finally, we discuss the possibility of realizing our
model in a system of cold particles trapped in optical lattices.
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In usual Brownian motion[1], thermal fluctuations act as
a reservoir of energy in which distillation within the system
of particles results in random trajectories and molecular
chaos on a microscopic scale, and in symmetric spatial dif-
fusion on a macroscopic scale. The problem of converting
the energy of noise into deterministic mechanical work(i.e.,
rectificationof the energy of noise) to induce directed motion
was first addressed by Schmoluchowski and Brillouin[2],
and has attracted much attention during the past years(see
Ref. [3] and references therein). This question is crucial, in
particular, for understanding how molecular pumps work in
biological environments[4] or for designing new synthetic
pumps for chemistry[5]. It is by now clear[6] that the nec-
essary and generally sufficient conditions for noise rectifica-
tion are: (i) breaking the spatiotemporal symmetry of the
Hamiltonian(to match the Curie principle[7]) and (ii ) non-
thermodynamic equilibrium situations(to avoid detailed bal-
ance and resulting zero current[8]).

Most studies rely on Brownian particles experiencing a
spatially periodic potentialusxd plus eventually a time
t-periodic forcefstd. After Curie’s principle[7], if both sym-
metry conditions

usxd = us2x0 − xd s1d

and

fst + t/2d = − fstd s2d

are fulfilled (x0 being any given position), then no directed
motion is possible. On the contrary, breaking one of these
symmetries is generally sufficient to ensure a net motion of
the particles[6]. Both cases of spatial symmetry(1) breaking
[8,9] and temporal symmetry(2) breaking [10] have been
widely studied in a large variety of systems, and evidences
for directed transport have been given. In these systems, the
nonequilibrium requirement is ensured by either non-
Gaussian noise, temperature oscillations, or flashing poten-
tials [6]. In recent years, more elaborate systems that mimic
biological systems more properly have been investigated. It
has been thus demonstrated that, interestingly, directed mo-

tion can be obtained in symmetric potentials and in the ab-
sence of a time-dependent force, i.e., in systems where con-
ditions (1) and (2) are fulfilled. This requires complex
situations, e.g., position-dependent mobility in flashing po-
tentials [11], state-dependent mobility[12], or time-
dependent spatial fluctuations of walls[13].

In this work, we propose a very simple system for which
directed motion is obtained, despite the validity of both spa-
tial (1) and temporal(2) conditions. Here, it is the whole
dynamics made of Hamiltonian motion phases and dissipa-
tive processes which are nonsymmetric. More precisely, di-
rected motion is induced for low-damped particles in internal
state-dependent periodic potentials with spatially shifted pin-
ning points and for different transition rates between the po-
tential curves. The behavior is explained on symmetry
grounds and with the help of a simple rectification process
that qualitatively describes the dynamics of the particles. Our
conclusions are supported by a study of the influence of the
relevant parameters(shift between the potentials and
strengths of the transition rates). We finally discuss the pos-
sibility of experimental observation of such an effect in a
system of cold particles trapped in optical lattices.

Consider a Brownian particle living inN internal states
(indexed by j P f0. . .N−1g) corresponding(eventually) to
different momentum diffusion constantsDv jsxd and different
spatially modulated potentialsujsxd, and submitted to a time-
dependent homogeneous forcef jstd. For example, the differ-
ent potentials may correspond to different chemical species
and the transitions to chemical reactions or to different quan-
tum internal atomic states and light-induced transitions, re-
spectively.

The Fokker-Planck equation(FPE) for the population
Wjsx,v ,td of the state characterized byx,v (external state)
and j (internal state), reads[14]

f]t + v]xgWj + ]vfv + uj8sxd − f jstd + Dv jsxd]vgWj

= o
j8Þ j

g j8→ jsxdWj8 − o
j8Þ j

g j→ j8sxdWj, s3d

whereg j8→ j represents the transition rate from internal state
j8 to state j . The FPE(3) is written in time units of the
friction coefficient and in space units of the typical variation
scale of the potentialsuj, so that all variables are dimension-
less. The left-hand side of Eq.(3) is a usual FPE for a par-
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ticle submitted to a friction force, a potential-induced force, a
time-dependent force, and a momentum diffusion, and thus
captures the one-dimensional Brownian motion in a regime
ranging from overdamping to low damping. The left-hand
side of Eq.(3) is a source term that accounts for random
jumps between the internal states. Nonthermal transition
rates(e.g., induced by chemical reactions or optical transi-
tions) result in nonthermodynamic equilibrium situations[8].
In the following, we suppose thatuj is spatially periodic and
symmetric in the sense of(1), and thatf j is t-periodic and
fulfills (2); note that the average value off j vanishes,
s1/tde0

t dtf jstd=0.
We consider the case of a double symmetric potential

sN=2d with sfd-shifted maxima(see Fig. 1) with (in general)
nonsymmetric transition ratessg0,1Þg1,0d and in the absence
of a time-dependent forcesf j ;0d. More precisely, we use
sine potentials with the same period 2p,

u0sxd = A0 cossxd,

u1sxd = A1 cossx + fd. s4d

We assume that the mean kinetic energy(proportional to the
temperature) of the system is smaller than the depth of the
trapping wells corresponding to the potential minima(i.e.,
typically Dv,Aj). Moreover, we assume the energy damping
to be much smaller than the typical frequency of the oscilla-
tions in the potential wells(i.e.,ÎuAju@1), so that the dynam-
ics falls into the low-damping regime. Thus the particles are
essentially trapped in the wells and their basic behavior con-
sists of weakly damped and noisy oscillations at the bottom
of the potential minima.

For the sake of simplicity, we finally assume minimal re-
quirements for the phenomenon of directed transport demon-
strated in the reminder of the paper:A0=A1=A, Dv j is
position and internal state-independentsDv j =Dvd, and
g+s=g0→1d andg−s=g1→0d are position independent and dif-
ferent in general.

Focus first on the Hamiltonian part of the dynamics. It is
clear that the Hamiltonian is symmetric with respect to both
space and time. Indeed, it is invariant through
huesxdj↔ hu1−es2x0−xdj, where x0 is the middle point be-

tween a maximum ofu0 and a maximum ofu1. Moreover,
there is no explicit time dependence in the equations of mo-
tion (3). Therefore, the Hamiltonian part of the dynamics is
clearly symmetric with respect to both conditions(1) and(2)
and cannot induce any directed motion. However, the dy-
namics has to be regarded as an intercombination of Hamil-
tonian motion(motion on the potential curves) and dissipa-
tive processes(transitions between different internal states).
Here, the system no longer preserves the spatiotemporal
symmetry since it is not invariant throughhuesxd ,gej
↔ hu1−es2x0−xd ,g1−ej except for g+=g−. Hence, different
transition rates break the spatiotemporal symmetry of the
system and force-free directed motion can be expected. It is
the aim of the following paragraphs to(i) demonstrate this
phenomenon and(ii ) describe the corresponding microscopic
mechanism.

We performed numerical simulations of the dynamics of
the particles in the system described above by means of a
Monte Carlo integration with a set of typically 2000 atoms. It
is then straightforward to determine the mean position of the
cloud of particles as a function of time from which we de-
duce the average velocitysVd of the cloud,

V =
dkxl
dt

, s5d

wherek·l stands for the ensemble average over all particles.
For all the results presented in this work, we found a con-
stant mean velocity(see inset of Fig. 2).

We first study the behavior of the mean velocityV as a
function of the space shiftf between the potentialsu0 andu1
in a situation where the transition rates between the internal
states are significantly differentsg−=3g+d. The results of the
numerical simulations are shown in Fig. 2. The cloud of
particles clearly shows a directed motion through the poten-
tials for almost all values off. These results show that a
directed transport of low-damped Brownian particles can be
induced in a two-state spatially symmetric potential with
shifted minima. The main features of Fig. 2 can be explained
under symmetry considerations. First, the average velocity
vanishessV=0d only for discrete values off corresponding
to symmetric situationssf=0,pd. Here the symmetry is dif-

FIG. 1. (Color online) Diagram of the system considered in this
work. A Brownian particle can live in two different internal states 0
and 1 corresponding tof-shifted potentials; the transition rates are
asymmetricsg+Þg−d. The rectification process is shown in the
right-hand side of the figure(see text).

FIG. 2. Mean velocity of the particles as a function of the phase
f. Inset: displacement of the particles as a function of time for two
different values off. Numerical parameters for this simulation are
A=200,Dv=75, g−=0.75G, g+=0.25G, andG=10.

LAURENT SANCHEZ-PALENCIA PHYSICAL REVIEW E70, 011102(2004)

011102-2



ferent from the one discussed above and reads
huesxd ,gej↔ hues−xd ,gej. Note that this space inversion is
valid only for f=0 or f=p, and thusV=0 only for these
values off. Second, changingf into s2pd−f, the shift of
the minima ofu1 with respect to the minima ofu0 gets op-
posed and this results in the inversion of the direction of
motion of the particles as observed on Fig. 2. Third, we find
that the mean speedsuVud of the directed transport is maxi-
mum for values off close top /2 or 3p /2, i.e., in a situation
where the minima of the potentials are almost maximally
shifted.

We now describe the noise rectification mechanism. In the
low-damping regime considered in this work, the micro-
scopic dynamics of the particles consist of noisy oscillations
at the bottom of the potential wells interrupted by random
transitions from a potential curve to another. Suppose now
that 0,g+,g−. Then a particle spends most of the time in
potentialu0 and oscillates around a given minima. Due to the
finite value ofg+, it may be transferred into potentialu1. If
the minima and maxima ofu0 and u1 are spatially shifted
(fÞnp, with n an integer), the particle initially localized
near a minimum ofu0 falls away from a minimum ofu1, and
consequently experiences a force oriented towards the left
[for 2np,f, s2n+1dp] or towards the right[for s2n
−1dp,f,2np]. It thus moves in the corresponding direc-
tion. It is finally rapidly pumped back to potentialu0, gener-
ally in the initial trapping well. As a consequence of this
cycle (see the right-hand side of Fig. 1), a mean directed
force is exerted on the particle and the center of the oscilla-
tions of this particle in a well ofu0 is shifted[towards the left
for 2np,f, s2n+1dp or towards the right for s2n
−1dp,f,2np]. This formally lowers the potential barrier
for escaping the trapping well in the corresponding direction
and raises it in the opposite direction. This clearly induces a
directed average motion of the cloud of particles. Note that
this mechanism matches the mean features of Fig. 2 de-
scribed above.

As discussed previously, considering different values of
the transition ratesg+Þg− is crucial to break the spatiotem-
poral symmetry of the system and correspondingly to induce
a directed motion of the particles through the periodic struc-
ture. We now investigate the influence of the transition rates
on the average velocityV. We plotV as a function ofg+ on
Fig. 3 for three different values of the total transition rate
G=g++g− and in a situation where the potentialsu0 andu1
are significantly shiftedsf=3p /2d. We find thatV strongly
depends ong+/G, as expected. Forg+/G=0sg−/G=1d or
g+/G=1sg−/G=0d, the system is equivalent to a Brownian
particle in a single symmetric potential and therefore does
not show any directed motion:V=0 [7]. g+/G=0.5sg+=g−d
corresponds to a symmetric situation as discussed above and
results in no directed motion as confirmed by Fig. 3. For all
other values ofg± /G, a directed motion is clearly demon-
strated. The maximum ofuVu is found to correspond to
strongly asymmetric values ofg+ and g− (typically for
g± /g7.8). This is consistent with the rectification mecha-
nism proposed above. It is indeed clearly necessary that par-
ticles get trapped in the wells ofue se=0,1d and encounter
short transitions inu1−e to induce a significant directed mo-

tion. We finally note thatg+/G↔1−g+/G results in V
↔−V. This is an obvious consequence of the antisymmetry
of the system through exchange of the internal states 0↔1
and corresponding change of the phase shift:f↔−f. We
finally note that uVu decreases whenG increases, and this
indicates that the rectification process is no longer efficient
for high values ofG. Indeed, in this case, a particle under-
goes many cycles so that it experiences an average potential
sg−u0+g+u1d /G which is symmetric, and again, no directed
motion is possible[7].

We now discuss the possibility of realizing our model in
experimental setups. Ratchet effects have been studied in a
large variety of systems[3], but few of them allow for inde-
pendent control of the physical parameters in wide ranges
with accuracies as good as in systems of cold atoms trapped
in optical lattices[15,16]. We thus propose to use such a
system to observe the phenomenon of directed transport in a
double symmetric potential. Optical lattices are formed by
the interference pattern of laser beams[17]. In appropriate
configurations, matter-light interactions create(i) a periodic
and symmetric potential for the atoms,(ii ) a frictionlike
force, and(iii ) random fluctuating forces. The competition
between the last two phenomena results in an equilibrium
kinetic energy lower than the potential depth. The atomic
dynamics have been shown to be equivalent to Brownian
motion in a periodic potential[18,19] in the low-damping
regime [20]. Therefore, these properties match the require-
ments considered in this work for observing directed trans-
port in a double symmetric potential. In fact, the parameters
used for the simulations presented in this work roughly
mimic optical lattices. In order to induce a double potential,
we suggest to follow the scheme recently presented in Ref.
[21]. By illuminating 133Cs with two lasers, respectively,
near resonant with two atomic transitions, the atoms see a
double sinelike potential. Moreover, the atom-light interac-
tion induces nonthermal transition rates between these poten-
tials. It is finally worth noticing that the space shift among
the potentials, the potential depths, and the transition rates
can be controlled experimentally. Therefore, we believe that
this system matches the main characteristics of the model
studied in this work(phase-shifted symmetric potentials,
nonthermal and different transition rates, temperature below
the potential depth, low-damping regime) and should be well
suited for observing directed motion.

FIG. 3. Average velocityV of the cloud of particles as a function
of the transition rates between internal states.V is plotted versusg+

for a fixed value ofG=g++g−. Parameters of the simulation areA
=200,Dv=75, andf=3p /2.
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To sum up, we have studied the directed motion of par-
ticles induced by spatiotemporal symmetry breaking in a
multilevel periodic system. Our system consists of low-
damped Brownian particles in a multilevel flashing periodic
and symmetric potential. We have shown that directed mo-
tion is induced whenever the minima of the different poten-
tials are shifted and for different transition rates. This breaks
the spatiotemporal symmetry of the complete dynamics of
the particles, which corresponds to a combination of Hamil-
tonian motion(on the potential curves) and dissipation(re-
lated to the internal state transitions). We have finally pro-
posed a system based on cold atoms trapped in an optical
lattice where directed transport in a double symmetric poten-
tial may be experimentally observed and characterized with a
high degree of accuracy.

Exploring Brownian motors and corresponding ratchet ef-
fect helps in understanding the physics of protein motors,
Josephson junction arrays, and quantum dots. Usual models

consider particles in space asymmetric potentials[9] or un-
dergoing time-asymmetric forces[10]. More recent models
consider elaborate schemes in symmetric potentials[11–13].
In this work, we have proposed a very simple scheme in
which ratchet effects can be observed in symmetric poten-
tials. In fact, our system considers a low-damped Brownian
particle minimally in a two-state potential with shifted
minima and different transition rates. This simplicity makes
the scheme quite general and it could be observed in various
systems, for example, in cold atom optical lattices.

We are indebted to Professor Anders Kastberg for enlight-
ening discussions on the physics of double optical lattices
and for valuable comments on the paper. Laboratoire Kastler
Brossel is an “unité mixte de recherche de l’Ecole Normale
Supérieure et de l’Université Pierre et Marie Curie associée
au Centre National de la Recherche Scientifique(CNRS).”
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