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We analyze the physics of Bose-Einstein condensates confined in two dimensional �2D� quasiperiodic
optical lattices, which offer an intermediate situation between ordered and disordered systems. First, we
analyze the time-of-flight interference pattern that reveals quasiperiodic long-range order. Second, we demon-
strate localization effects associated with quasidisorder as well as quasiperiodic Bloch oscillations associated
with the extended nature of the wave function of a Bose-Einstein condensate in an optical quasicrystal. In
addition, we discuss in detail the crossover between diffusive and localized regimes when the quasiperiodic
potential is switched on, as well as the effects of interactions.
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The last few years have witnessed a fastly growing inter-
est on ultracold atomic gases in laser-generated periodic po-
tentials �optical lattices �OLs��. These present neither defects
nor phonons, offering a powerful tool for investigating the
quantum behavior of periodic systems under unique control
possibilities. Thus, ultracold atoms trapped in OLs show fas-
cinating resemblances with solid-state physics, which range
from Bloch oscillations �1,2� and Wannier-Stark ladders �3�,
to Josephson arrays of Bose-Einstein condensates �BECs�
�4�, or to the superfluid to a Mott-insulator transition �5�.

These remarkable experiments have been performed in
regular cubic OLs. However, these lattices do not exhaust the
rich possibilities offered by optical potentials. More sophis-
ticated lattice geometries have been proposed, as honeycomb
�6� or Kagomé and triangular �7� lattices. Beyond, controlled
defects may be introduced to generate random or pseudoran-
dom potentials �8�, allowing for the realization of Kondo-like
physics �9�, Anderson localization, and Bose-Glass phases
�10�. Exploiting this possibility, laser speckle fields have
been employed very recently to produce BECs in random
potentials �11–13� opening very exciting experimental possi-
bilities.

Bridging between ordered and disordered structures, qua-
sicrystals �QC� have attracted a wide interest since their dis-
covery in 1984 �14�. QCs are long-range ordered materials
but without translational invariance, and consequently they
share properties with both ordered crystals and amorphous
solids �15�. In particular, QCs show intriguing structure �16�
as well as electronic conduction properties �17� at the border
between ordered and disordered systems.

Surprisingly, up to now, few works have been devoted to
optical analogues of QCs, despite of the fact that OLs offer
dramatic possibilities for designing a wide range of geom-
etries �18�. Optical QCs have been first studied in laser cool-
ing experiments �19�, in which the atomic gas, far from
quantum degeneracy, was confined in a dissipative OL where
quantum coherence was lost due to spontaneous emission. In
these systems, the temperature and spatial diffusion were
found to behave similarly as in periodic OLs. The physics of
one-dimensional �1D� quasiperiodic OLs has also been sub-
ject of recent research in the context of cold atomic gases,

including a proposal for the atom-optical realization of the
Harper model �20�, and the analysis of Fibonacci potentials
�21�.

In this paper, we study the dynamics of a BEC in a two-
dimensional �2D� optical QC. First, we show that the BEC
wave function displays quasiperiodic long-range order, a
property that may be easily probed via matter-wave interfer-
ometry. Second, we show that macroscopic quantum coher-
ence dramatically modifies the transport on the lattice com-
pared with the dissipative case. On the one hand, due to
quasidisorder in optical QC, spatial localization occurs, in
contrast to ballistic expansion in periodic lattices. The cross-
over between ballistic expansion and localization is analyzed
when the quasiperiodicity of the lattices is continuously in-
creased. On the other hand, we show that due to the extended
character of the BEC wave function, Bloch oscillations take
place. These oscillations are however quasiperiodic rather
than periodic. Additionally, we briefly discuss the effects of
the interatomic interactions in the BEC diffusion.

In the following we consider a dilute Bose gas trapped
in the combination of a smooth harmonic potential
Vho�r��= �M /2����

2 r��
2 +�z

2z2� plus an OL Vlatt�r���. In the pre-
vious expression, M is the atomic mass, � j are the harmonic
trap frequencies, and r��= �x ,y� is the position vector on the
lattice plane. We assume �z to be large enough to keep a 2D
physics on the xy plane. We consider a laser configuration
�19� consisting on Nb laser beams arranged on the xy plane
with Nb-fold symmetry rotation �Fig. 1�. The polarization �� j

of laser j with wave vector k� j is linear and makes an angle � j
with the xy plane. The optical potential is thus �22�

Vlatt�r��� =
V0

��
j

� j�2��
j=0

Nb

� j�� je
−i�k� j·r��+�j��2

, �1�

where 0�� j �1 stand for eventually different laser intensi-
ties and � j are the corresponding phases. In the following,
we are mostly interested in the fivefold symmetric configu-
ration �Nb=5 , � j =1�, similar to the Penrose tiling �23�,
which supports no translational invariance �see Fig. 1�. The
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lattice displays potential wells which are clearly not periodi-
cally arranged. We also consider the configuration obtained
by switching off lasers 1 and 4, which results in an aniso-
tropic periodic lattice.

(a) Equilibrium properties. The stationary BEC wave
function �0 is obtained from evolution in imaginary time of
the 2D Gross-Pitaevskii equation �GPE�

i	�t� = �− 	2�� 2/2M + Vho + Vlatt + g2D���2�� , �2�

where g2D=�8
	3�z /Masc, with asc the s-wave scattering
length. In order to elucidate the long-range order properties
of the BEC, we compute the momentum distribution of �0.
In the periodic case �Fig. 2�a��, as expected, the momentum
distribution displays discrete peaks corresponding to combi-
nations of elementary basis vectors of the reciprocal lattice,
n1��1+n2��2 with integer coefficients n1 and n2. As obtained in
previous experimental works �24,25�, this confirms the peri-
odic long-range order of �0. The quasiperiodic case �Fig.
2�b�� is more intriguing, resulting in a more complex struc-
ture. The momentum distribution also displays sharp peaks,
being the signature of a long-range order which is quasiperi-
odic rather than periodic �26�. As in the periodic case,
the positions of the peaks are linear combinations of
integer numbers of Nb=5 wave vectors: � j=0

Nb−1nj�� j, where
��0=k�1−k�0 and �� j =R�� j���0 is the wave vector obtained by a

rotation of angle � j =2
j /Nb of ��0. The reciprocal lattice
thus clearly shows a fivefold rotation symmetry incompatible
with any translation invariance �27�. This resembles the Pen-
rose tiling �23� and the solid state QCs observed via Bragg
diffraction �14�.

The discussed momentum distribution can be directly im-
aged via matter-wave interferometry after a time-of-flight
expansion �28�. Indeed, although the interactions are crucial
for determining local populations of each potential well, they
do not contribute significantly to the free BEC expansion
after release from the trap �24�. Such measurements, standard
in periodic OLs �24,25�, can be easily extended to quasiperi-
odic ones.

(b) Quantum transport. Certainly, not all physical proper-
ties of optical QCs can be directly interpolated from the be-
havior of periodic lattices. Indeed, solid QCs show intriguing
dynamical properties that are not yet completely understood
�15�. In the following, we investigate dynamical properties
of quasiperiodic lattices.

(b1) Coherent diffusion. Starting from the equilibrium
wave function �0, we consider the situation in which the
harmonic trap is switched off at t=0, letting the BEC evolve
in the OL. The BEC expansion is then computed using a
Crank-Nicholson algorithm for the real time-dependent GPE
�2�. Figure 3 �inset� shows the time evolution of 	x2
 and 	y2

of the interacting BEC along x and y, respectively. In the
periodic case, the condensate expands coherently as one ex-

FIG. 1. �Color online� Left: The Laser arrangement �see the text
for details�. Right: A quasiperiodic lattice potential for Nb=5,
V0
0 and � j =0. The white points correspond to potential minima.

FIG. 2. �Color online� The matter-wave interference pattern of a
BEC released from a combined OL and harmonic trap. �a� The
periodic case; �b� The quasiperiodic case. Both correspond to 87Rb
and V0=−10ER, where ER=	2k2 /2M is the recoil energy.

FIG. 3. �Color online� The crossover from ballistic to localiza-
tion regimes with �squares� and without �circles� interactions, for
V0=−7.5ER. Inset: Coherent diffusion in periodic and quasiperiodic
lattices for V0=−5ER. Fits to 	rj

2�t�
=rj0
2 +2Djt+v j

2t2 in the periodic
case are also shown.
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pects from tunnel couplings between adjacent lattice sites. In
order to infer a convenient fitting functional for the expan-
sion of the interacting BEC, let us recall that in free space for
large times 	rj

2�t�
�v j
2t2 with v j �1/M �28�. In periodic lat-

tices, the inertia is enhanced, and the expansion is expected
to be as in free space but substituting the atomic mass M by
an effective mass M*�M. We thus expect v j �1/M* and
M /M*�J where J is the site-to-site tunneling rate �29�. Nu-
merical computations for various depths of the lattice poten-
tial V0 show that v j

2 decreases exponentially with V0 as ex-
pected from the well-known exponential decay of J.
Anisotropic ballistic expansion of the BEC reflects the aniso-
tropy of our periodic lattice.

The behavior of the BEC in the quasiperiodic lattice is
dramatically different, since after a short transient the BEC
localizes �30� �inset of Fig. 3�. This behavior strongly con-
trasts with the results obtained in the context of laser cooling

where a similar classical normal expansion �	rj
2�t�
�2D̃jt�

was found for both periodic and quasiperiodic OLs �19�.
Here, spatial localization is a coherent effect induced by qua-
sidisorder due to the lack of periodicity. Indeed, the BEC
populates localized �Wannier-like� states centered on each
lattice site. In the periodic case these states have all the same
energy and are strongly coupled through quantum tunneling.
On the contrary, in the quasiperiodic lattice, the sites have
different energies. In particular, the typical difference of
depths of adjacent sites �denoted � below� can be of the
order of magnitude of �but smaller than� the potential depth.
The tunneling is not resonant and the BEC localizes.

The remarkable flexibility of OLs �18� allows for the ac-
curate study of the competition between tunneling and qua-
sidisorder. By ramping up gradually the intensity of lasers 1
and 4 while keeping constant 0, 2, and 3, one turns continu-
ously from an anisotropic periodic lattice to a fivefold sym-
metric quasiperiodic one, and hence from ballistic expansion
to spatial localization. For small intensity of the control la-
sers 1 and 4, the quasiperiodicity is mainly compositional
�the sites are still periodically displaced but the on-site ener-
gies are different from site to site�. We define the quasidis-
order � parameter as the variance of the differences of on-
site energies in adjacent sites. From the previous discussion
and to compare to the results of the nondegenerate case �19�
we fit

	rj
2�t�
 = 	rj0

2 
 + 2Djt + v j
2t2. �3�

In the considered range of parameters, all calculations fit
well with Eq. �3� with a negligible diffusive term 2Djt. We
characterize the expansion along the x direction through the
ballistic velocity v j. The behavior of vx versus the quasidis-
order parameter � is shown in Fig. 3 for the interacting BEC
and it is compared to the noninteracting case. For the latter,
we simultaneously switched off the interactions at t=0 �32�.
In both cases, as expected, coherent diffusion dramatically
decreases when quasidisorder increases. Spatial localization
occurs for ��Jx, with Jx the tunneling rate between adjacent
sites along the x direction �33�. This supports the interpreta-
tion that competition between coherent tunneling and inho-

mogeneities turns into localization as soon as tunneling be-
comes nonresonant.

To understand the effect of interactions that can help
���0.2Jx in Fig. 3� or hinder ���0.2Jx in Fig. 3� diffusion,
note first that two phenomena contribute to localization: �i�
initial inhomogeneities �due to disorder and harmonic con-
finement� that appear in the dynamics through the interaction
term g2D��0�2 �see Eq. �2�� and �ii� inhomogeneities associ-
ated to quasidisorder. Because of these inhomogeneities,
quantum tunneling is not resonant and thus less efficient.
However, during diffusion, the interaction energy is con-
verted into kinetic energy and this tends to fasten the expan-
sion. For small quasidisorder, the second phenomenon domi-
nates so that interactions contribute to expansion whereas for
larger quasidisorder, the inhomogenities significantly hinder
tunneling so that interactions contribute to localization. The
nontrivial interplay between disorder and interactions will be
the subject of further research.

(b2) Quasiperiodic Bloch oscillations. One of the most
appealing predictions of the quantum theory of solids �27� is
that homogeneous static forces induce oscillatory rather than
constant motion in periodic structures �34�. The correspond-
ing Bloch oscillations have already been observed in super-
lattice superconductors �35� and on cold atoms in OLs �1,2�.
It is a fundamental question whether such a phenomenon
also exists in less ordered systems like QCs. Arguments
based on general spectral properties of QCs �36� and numeri-
cal simulations of 1D Fibonacci lattices �37� support the ex-
istence of Bloch oscillations in quasiperiodic lattices. How-
ever, to the best of our knowledge, this effect has never been
observed experimentally. Using accelerated lattices �1,2� or
gravity �38� �we consider the latter�, this question can be
addressed experimentally in the discussed arrangement
�Fig. 1�. Starting from �0 we switched off the harmonic trap
and the interactions at time t=0 and tilt the quasiperiodic
lattice in the x direction �39�. The latter evolution of the
quantum gas is shown in the inset of Fig. 4. We find noisy-
like oscillatory motion in the �tilted� x direction and no mo-
tion in the �nontilted� y direction. The oscillations in the x
direction are clearly not periodic �40�. However, they defi-
nitely have an ordered structure, which is evidenced by the
appearance of discrete sharp peaks in the time Fourier trans-
form of the BEC mean position 	x�t�
 �Fig. 4�, corresponding
to a quasiperiodic motion �26�.

FIG. 4. �Color online� The Fourier transform of the mean posi-
tion of a BEC in a periodic or quasiperiodic lattice. Inset: The time
evolution of a BEC in a tilted quasiperiodic lattice. All beams have
the same intensity, V0=−2ER and Vtilt=0.002ER�kx.
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The Bloch-like quasiperiodic oscillations can be inter-
preted as follows. Both in periodic and quasiperiodic lattices,
the BEC wave function extends over many lattice wells, and
can be decomposed into a sum of localized �Wannier-like�
states. Due to the applied external force, these energy states
are arranged in a Wannier-Stark ladder. In periodic lattices,
the energy separation �E between the ladder states is fixed,
leading to periodic Bloch oscillations of period �	 /�E.
However, for quasiperiodic lattices, a discrete set of different
�noncommensurate� differences of on-site energies in adja-
cent wells occurs �i.e., a nonequally spaced Wannier-Stark
ladder� leading to quasiperiodic �instead of periodic� oscilla-
tions. Purely random potentials would result in a continuous
set of differences of on-site energies leading, as expected, to
the disapearance of any sort of Bloch oscillations.

Summarizing, we have investigated the physics of BECs
trapped in optical QCs. We have shown that �i� the equilib-
rium BEC wave function displays long-range quasiperiodic
order and that �ii� quantum transport shares properties with
both ordered and disordered systems. On the one hand, be-

cause of quasidisordered inhomogeneities, diffusion turns
from ballistic to localization when quasiperiodicity is
switched on. On the other hand, because of coherence ex-
tending over several lattice sites, quasiperiodic Bloch oscil-
lations occur in quasiperiodic BECs.

The discussed arrangement can be easily generated using
standard techniques, offering an exciting tool for controlled
studies of the transition between periodic, quasiperiodic, and
fully disordered systems in cold gases, a major topic of cur-
rent experimental research �11–13�. In addition, the system
can be used to address experimentally some unsolved issues
on QCs, as, e.g., the application of the renormalization
theory to the 2D case �15�.
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