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We theoretically investigate the physics of interacting Bose-Einstein condensates at equilibrium in a weak
�possibly random� potential. We develop a perturbation approach to derive the condensate wave function for an
amplitude of the potential smaller than the chemical potential of the condensate and for an arbitrary spatial
variation scale of the potential. Applying this theory to disordered potentials, we find in particular that, if the
healing length is smaller than the correlation length of the disorder, the condensate assumes a delocalized
Thomas-Fermi profile. In the opposite situation where the correlation length is smaller than the healing length,
we show that the random potential can be significantly smoothed and, in the mean-field regime, the condensate
wave function can remain delocalized, even for very small correlation lengths of the disorder.
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I. INTRODUCTION

Ultracold atomic gases are currently attracting a lot of
attention from both experimental and theoretical viewpoints.
Taking advantage of the recent progress in cooling and trap-
ping of neutral atoms �1�, dilute atomic Bose-Einstein con-
densates �BEC’s� �2� and degenerate Fermi gases �DFG’s�
�3–6� are now routinely produced at the laboratory. Using
various techniques, space-dependent potentials can be de-
signed almost on demand in these systems. For example, one
can produce periodic �7,8�, quasiperiodic �9–11�, or random
potentials �12–17� by using optical means. For these reasons
and due to unique control and analysis possibilities, ultracold
gases constitute a favorite playground for revisiting standard
problems of condensed matter �CM� physics �18–21�.

Most current experiments with BEC’s lie in the mean-
field regime where the Bose gas is described by a single
wave function � governed by the �nonlinear� Gross-
Pitaevskii equation �22�. Due to the interplay between the
kinetic energy term and the interaction term, it is usually
difficult to derive an exact solution of this equation. The
importance of interactions can be characterized by the heal-
ing length �, which defines the typical distance below which
the spatial variations of � significantly contribute to the en-
ergy of the BEC via the kinetic energy term �22�. In the
Thomas-Fermi �TF� regime—i.e., when � is significantly
smaller than the typical variation scale �R of the potential
V�r� to which the BEC is subjected—the kinetic term is neg-
ligible and the BEC density simply follows the spatial varia-
tions of the potential:1

���r��2 � � − V�r� . �1�

In the opposite situation ����R�, the kinetic term should be
taken into account and the exact BEC wave function usually
cannot be found analytically.

Besides a general interest, the question of determining the
BEC wave function for an arbitrary ratio �R/� has direct
applications to the case where V�r� is a random potential.
The physics of quantum systems in the presence of disorder
is central in CM �23–25�, owing to unavoidable defects in
“real-life systems.” One of the major paradigms of disor-
dered quantum systems is due to Anderson who has shown
that the eigenstates of single-quantum particles in arbitrary
weak random potentials can be localized; i.e., � shows an
exponential decay at large distances2 �26�. Recent experi-
ments have studied the onset of strong or weak localization
effects of light waves �27,28� and microwaves �29,30�. Ul-
tracold matter waves are also widely considered as promising
candidates to investigate Anderson localization in random
�31–33� or quasirandom structures �10,31,34� and more gen-
erally to investigate the effects of disorder in various quan-
tum systems �for a recent review, see Ref. �35� and refer-
ences therein�. It is expected that the dramatic versatility of
ultracold gases would allow for a direct comparison with
theoretical studies of quantum-disordered systems.

A key peculiarity of BEC’s is that interactions usually
cannot be neglected and interaction-induced delocalization
can compete with disorder-induced localization effects
�15–17�. Generally, the interplay between the kinetic energy,
the interactions, and the disorder is still a open question that
has motivated many works �36–40�. It is clear from Eq. �1�
that, in the TF regime ��R���, where the interaction forces
the wave function to adapt to the random potential, a BEC
will not localize. Indeed, if V�r� is a homogeneous random

*URL: http://www.atomoptic.fr
1This is standard in the case of a harmonic confinement, V�r�

=m�2r2 /2. Although there is no intrinsic typical variation scale,
one can define �R as m�2�R

2 /2=�—i.e., �R=LTF—the usual TF
half size of the condensate and the validity of the TF regime reads
�	LTF. For periodic, quasiperiodic, or random potentials, �R is the
spatial period or the correlation length �see Sec. III for details�.

2In one-dimensional �1D� and 2D systems, all eigenstates are usu-
ally localized, while in 3D, they are localized below the so-called
mobility edge.

PHYSICAL REVIEW A 74, 053625 �2006�

1050-2947/2006/74�5�/053625�7� ©2006 The American Physical Society053625-1

http://dx.doi.org/10.1103/PhysRevA.74.053625


function3 �41�, so is the BEC wave function �, which, there-
fore, cannot decay at large distances. This has been con-
firmed in recent experiments �15–17�. The question thus
arises as to understand whether, as a naive transcription of
the Ioffe-Regel criterion �42� would suggest, localization can
happen when �R
�.

In this paper, we show that this criterion is actually not
sufficient for BEC’s at equilibrium if the interactions are
non-negligible �i.e., if �	L, where L is the size of the sys-
tem�. We indeed show that interaction-induced delocalization
still overcomes localization effects even when ���R. In
fact, due to the smoothing of the random potential �43�, the
effect of disorder turns out to be reduced when � /�R in-
creases.

In the following, we develop a general formalism based
on perturbation theory �see Sec. II� to determine the BEC
wave function in any given weak potential V�r� for an arbi-
trary ratio �R/�. We find that the BEC density ���2 is still
given by Eq. �1�, except that the potential V�r� has to be

replaced by a smoothed potential Ṽ�r�. We derive an exact
formula for the smoothed potential up to first order in the
perturbation series. We then apply our results to the case
where V�r� is a 1D homogeneous random potential �see Sec.
III� and derive the statistical properties of the smoothed ran-

dom potential Ṽ�r�. From this, we conclude that an interact-
ing BEC remains delocalized, even for ���R �if �	L�.

II. SMOOTHING EFFECT IN INTERACTING
BOSE-EINSTEIN CONDENSATES

Consider a low-temperature Bose gas in d dimensions
with contact atom-atom interactions, gdD��d��r�, where gdD is
the d-dimensional interaction parameter. In 3D geometries,
g3D=4�
2asc /m, where asc is the scattering length �22� and
m is the atomic mass. Low-dimensional geometries �1D or
2D� can be realized in ultracold atomic samples using a tight
radial confinement, so that the radial wave function is frozen
to zero-point oscillations in the form ��

0 �r��, where r� is
the radial coordinate vector. In this case, gdD
=g3D�dr����

0 �r���4. For instance, one finds g1D=2
��asc,
for a 2D harmonic radial confinement of frequency ��. In
addition, the Bose gas is assumed to be subjected to a given
potential V�r�, with a typical amplitude VR and a typical
variation scale �R. Possibly, the potential V�r� may have
various length scales. In this case, we assume that �R is
the smallest. Assuming weak interactions—i.e., n̄2/d−1

�mgdD/
2, where n̄ the mean density �44,45�—we treat the
BEC in the mean-field approach �22� and we use the Gross-
Pitaevskii equation �GPE�

���r� = �− 
2�2

2m
+ V�r� + gdD���r��2���r� , �2�

where � is the BEC chemical potential and where the wave
function � is normalized to the total number of condensed

atoms, �dr���r��2=N. Note that � minimizes the N-body en-
ergy functional so that � is necessary a real function �up to a
nonphysical uniform phase�. In 1D and 2D geometries and in
the absence of trapping, no true BEC can exist due to sig-
nificant long-wavelength phase fluctuations �46�. In this case,
no macroscopic wave function � can be defined. However,
because density fluctuations are strongly suppressed in the
presence of interactions, the Bose gas forms a quasiconden-
sate �46� and the density n can be treated as a classical field.
It turns out that 	n is governed by Eq. �2�. Therefore, even
though we only refer to BEC wave functions in the follow-
ing, our formalism also applies to quasicondensates, after
replacing � by 	n.

A. Thomas-Fermi regime

In the simplest situation, the healing length of the BEC is
much smaller than the typical length scale of the potential
��	�R�. Therefore, the kinetic energy term in the GPE �2� is
small and the BEC density ���2 simply follows the spatial
modulations of the potential:

���r��2 = �� − V�r��/gdD for � � V�r� ,

���r��2 = 0 otherwise. �3�

This corresponds to the TF regime. Note that for VR	�, one
has

��z� 
 �0 −
V�r��0

2�
, �4�

with �0=	� /gdD being the BEC wave function at V�r�=0.
Therefore, the BEC wave function itself follows the modu-
lations of the potential V�r�.

B. Beyond the Thomas-Fermi regime: The smoothing effect

The situation changes when the healing length is of the
order of, or larger than, the typical length scale of the poten-
tial ����R�. Indeed, the kinetic contribution limits the
smallest variation length of the spatial modulations of a BEC
wave function to a finite value of the order of the healing
length �22�. Therefore, the BEC can only follow modulations
of the potential on a length scale typically larger than � and
Eq. �3� no longer holds.

For a weak amplitude of the potential,4 we can use per-
turbation theory techniques. We thus write the BEC wave
function as ��r�=�0+���r� where we assume that ��	�0

and �0 is the zeroth-order solution of the GPE �2�:

��0 = −

2

2m
�2�0 + gdD�0

3. �5�

Since the BEC is homogeneous at zero order, one has �0
=	� /gdD. Then, the first order term of the perturbation series
is given by

−

2

2m
�2���� − �� − 3gdD�0

2��� = − V�r��0. �6�

3In this context, the term “homogeneous” means that all local
statistical properties of the random potential are independent of the
position.

4A precise condition for the validity of the perturbative approach
will be given later �see Eq. �16��.
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Since �−3gdD�0
2=−2�, we are left with the equation

−
�2

2
�2���� + �� = −

V�r��0

2�
, �7�

where �=
 /	2m� is the healing length of the BEC. We
straightforwardly find the solution of Eq. �7�, which reads

���r� = −� dr�G�r − r��
V�r���0

2�
, �8�

where G�r� is the Green function of Eq. �7�, defined as the
solution of

�−
�2

2
�2 + 1�G�r� = ��d��r� �9�

or, equivalently, in Fourier space

� �2

2
�k�2 + 1�Ĝ�k� = 1/�2��d/2, �10�

where Ĝ�k�= 1
�2��d/2 �drG�r�e−ik·r is the Fourier transform of

G. In contrast to the case of single particles, the Green func-

tion Ĝ�k� has no singularity point so that the perturbative
approach can be safely applied for any wave vector k.

The explicit formula for the Green function G depends on
the dimension of the system. After some simple algebra, we
find

in 1D, G�z� =
1

	2�
exp�−

�z�

�/	2

 , �11�

in 2D, G��� =
1

��2K0�+
���

�/	2

 , �12�

in 3D, G�r� =
1

2��2�r�
exp�−

�r�

�/	2

 , �13�

where K0 is the modified Bessel function. Finally, up to first
order in the perturbation series, the BEC wave function reads

��r� 
 �0 −
Ṽ�r��0

2�
, �14�

with

Ṽ�r� =� dr�G�r��V�r − r�� . �15�

Interestingly enough, the Green function in any dimension
shows a exponential decay, with a typical attenuation length,
�, and is normalized to unity,5 �drG�r�=1. Therefore, G�r�
can be seen as a smoothing function with a typical width �.
Indeed, it should be noted that Eq. �14� is similar to Eq. �4�,
except that the potential V�r�, which is relevant in the case

�	�R, changes to the potential Ṽ�r� for ���R. The poten-

tial Ṽ�r� is a convolution of V�r� with a function which has a
typical width � and thus corresponds to a smoothed potential
with an amplitude smaller than VR. In addition, if �R corre-
sponds to the width of the correlation function of a random
potential V, the correlation length of the smoothed random

potential Ṽ is of the order of max��R,�� �for details, see
Sec. III�.6

Note that, for �	�R, G�r� can be approximated by

��d��r� in Eq. �15� and Ṽ�r�
V�r�. We thus recover the re-
sults of Sec. II A, valid for the TF regime.

The validity condition of the perturbation approach di-
rectly follows from Eq. �14�:

Ṽ�r� 	 � . �16�

Note that if ���R, the potential can be significantly
smoothed so that the above condition can be less restrictive
than the a priori condition V�r�	�.

The results of this section show that the potential V�r� can
be significantly smoothed in interacting BEC’s. We stress
that this applies to any kind of potentials provided that

�	L and Ṽ�r�	�. In the next section, we present an
illustration of the smoothing effect in the case of a random
potential.

III. APPLICATION TO A TRAPPED INTERACTING
BOSE-EINSTEIN CONDENSATE
IN A 1D RANDOM POTENTIAL

A. Trapped 1D Bose-Einstein condensate
in a random potential

In this section, we consider a 1D Bose gas subjected to a
weak homogeneous random potential V�z�, with a vanishing
average value ��V�=0�, a standard deviation VR, and a spatial
correlation length �R, significantly smaller than the size of
the system. In addition, we assume that the gas is trapped in
a confining harmonic trap,7 Vh�z�=m�2z2 /2, as in almost all
current experiments on disordered BEC’s �14–17�. We con-
sider a situation such that 
�	ng1D	
2n2 /m—i.e., the
Bose gas lies in the mean-field regime—and in the absence
of disorder, the interactions dominate over the kinetic
energy.8 The situation mimics the experimental conditions of
Ref. �15,17�. The presence of the harmonic confinement in-
troduces a low-momentum cutoff for the phase fluctuations

5This property follows directly from the definition �10� of the

Green function. Indeed, �drG�r�= �2��d/2Ĝ�k=0�=1.

6In contrast, for example in the case of a deterministic periodic
potential V�z�=VR cos�kz�, the variation scale �R=2� /k corre-

sponds to the period of the potential, and we find Ṽ�z�=
VR cos�kz�

1+k2�2 .

The potential is indeed smoothed as the amplitude of Ṽ is smaller

than that of V. Nevertheless, the period of the smoothed potential Ṽ
is the same as that of the bare potential V.

7All results also apply if there is no trapping. In this case, all
zeroth-order terms simply do not depend on z.

8This corresponds to the usual TF regime for confined BEC’s in
the absence of disorder �22�. However, no restriction is imposed for
the ratio �R/�, so that the BEC can be out of the TF regime as
defined in Sec. I.
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so that the 1D Bose gas forms a true condensate at low
temperatures �44,45�. In this case, the BEC wave function is

�0 = 	�0�z�/g1D, �17�

where �0�z�=�−m�2z2 /2 is the local chemical potential.
This corresponds to an inverted parabolic density profile
with a half-size LTF=	2� /m�2, where the chemical poten-

tial is �=�TF= 
�
2

� 3Nmg1Dl

2
2
�2/3

, with l=	
 /m� being the ex-
tension of the ground state of the harmonic oscillator.

As LTF� �� ,�R�, it is legitimate to use the local density
approximation �LDA� �22�; i.e., in a region significantly
smaller than LTF, the quantities �0 and �0 can be considered
as uniform. We can thus directly apply the results of Sec.
II B. From Eqs. �14�–�17�, we immediately find that

n�z� 
 n0�z� −
Ṽ�z�
g1D

, �18�

where

Ṽ�z� =� dz�

exp� − �z��

�0�z�/	2



	2�0�z�
V�z − z�� �19�

is the smoothed potential, with �0�z�=
 /	2m�0�z� being the
local healing length. The density profile of the BEC is thus
expected to follow the modulations of a smoothed random
potential.

Note that the total number of condensed atoms is N

=�dz�	n0�z�+���2
�dz�n0�z�− Ṽ�z� /g1D� up to first order in

Ṽ /�. Since �Ṽ�=0, one has �N�
�dzn0�z�, owing to the as-
sumed self-averaging property of the potential �41�. In addi-
tion, we have �=�TF.

We now compare our predictions to the exact solutions of
the GPE �2� as obtained numerically. For the sake of con-
creteness, we consider a speckle random potential �47� simi-
lar to the one used in recent experiments �14–17� �see Fig.
1�. Briefly, a speckle pattern consists in a random intensity
distribution and is characterized by its statistical properties.
First, the single-point amplitude distribution is a negative
exponential

P�V�z�� =
exp�− �V�z� + VR�/VR�

�VR�
if

V�z�
VR

� − 1,

P�V�z�� = 0 otherwise, �20�

corresponding to the average value �V�=0 and the standard
deviation �V=	��V�z�− �V��2�= �VR�. Second, the spatial cor-
relations are characterized by the autocorrelation function
C��z�= �V��z�V�0��, the correlation length of which is de-
noted �R and can be chosen at will �17,47�. For the numeri-
cal calculations, we numerically generate a 1D speckle pat-
tern using a method similar to the one described in Ref. �48�
in 1D and corresponding to the correlation function

C��z� = VR
2 �sinc�	3�z/	2�R��2, �21�

where sinc�x�=sin�x� /x. For the sake of simplicity, it is use-
ful to approximate C��z� to a Gaussian function �see, for
example, Sec. III B�. Up to second order in �z /�R, we have
C��z�
VR

2 exp�−�z2 /2�R
2 �.

Numerical solutions of the GPE �2� are presented in Fig. 2
for two values of the ratio �R/�, where � is the BEC healing
length at the trap center. In the first case �Fig. 2�a��, we have
�	�R and the density simply follows the modulations of the
bare random potential, according to Eq. �3�. In the second
case �Fig. 2�b��, we have ���R, and as expected, the BEC
wave function does not follow the modulations of the bare
random potential V�z� but actually follows smoother modu-

lations of the smoothed potential Ṽ�z�. Figure 2�b� �and the
inset� shows that the numerically computed density can
hardly be distinguished from Eq. �18�. This supports the va-
lidity of our approach.

B. Statistical properties of the smoothed random potential

It is useful to compute the statistical properties of the

smoothed random potential Ṽ�z� as they will be imprinted on
the BEC density profile according to Eq. �18�. From Eq.

�15�, we immediately find that �i� Ṽ�z� is a random homoge-

neous potential, �ii� the average value of Ṽ vanishes,

�Ṽ� = �V� = 0, �22�

and �iii� the correlation function of Ṽ is given by

C̃z��z� =� du dvC��z + �v − u��Gz�u�Gz+�z�v� , �23�

where C��z�= �V��z�V�0�� is the correlation function of the
bare potential V and Gz�u� is given by Eq. �11� with � re-
placed by �0�z�. In the following, we assume that �z	LTF so
that Gz
Gz+�z and we omit the subscripts. Assuming for
simplicity a Gaussian correlation function for the bare ran-
dom potential, C��z�
VR

2 exp�−�z2 /2�R
2 �, we find after

some algebra

C̃��z� = VR
2 ���R

�0
,
�z

�0

 , �24�

with

−2

−1

0

1

2

3

4

5

6

7

−1 −0.5 0  0.5 1

V
(z

) 
/ V

R

z / LTF

FIG. 1. �Color online� Example of the realization of a speckle
random potential with �R
10−2 LTF.
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���̄R,�z� = �̄R
2 exp�−

�z2

2�̄R
2 
 +

	�

4
�̄R�1 − 2�̄R

2

− 	2�z�exp��̄R
2 + 	2�z�erfc�2�̄R

2 + 	2�z

2�̄R



+
	�

4
�̄R�1 − 2�̄R

2 + 	2�z�exp��̄R
2

− 	2�z�erfc�2�̄R
2 − 	2�z

2�̄R

 , �25�

where �̄R=�R/�0, �z=�z /�0, and erfc�x�= 2
	�

�x
�dte−t2 is the

complementary error function. The correlation function
�� �R

�0
, �z

�0
� is plotted in Fig. 3.

This function � clearly decreases with �R/�0, indicating
the onset of an increasing smoothing effect. At �z=0, we
have a simple asymptotic expression for �R��0:

���R/�0,0� 
 1 − � �0

�R

2

, �R � �0. �26�

So, as expected, ���R/�0 ,0�→1 as �R/�0→�; i.e., the ran-
dom potential is hardly smoothed. For �R	�0,

���R/�0,0� 

	�

2

�R

�0
, �R 	 �0. �27�

So ���R/�0 ,0�→0 as �R/�0→0; i.e., the amplitude of
the smoothed random potential is significantly reduced
compared to the amplitude of the bare random potential.

Generally speaking, from Eq. �24�, we have �Ṽ2�= C̃�0�
=VR

2 ���R/�0 ,0�. It follows that �Ṽ2� is an increasing func-

tion of �R/�0 and that �Ṽ2��VR
2 . This is consistent with the

idea of a smoothing of the random potential.
In addition, the correlation length �̃R of the smoothed

random potential Ṽ is given by the width at 1 /	e of the
function �z→���̄R/�0 ,�z /�0�. At �R��0, the smoothing is
weak and �̃R
�R. For �R
�0, the smoothing is significant,
so that �̃R saturates at �̃R
�0, as expected. Roughly speak-
ing, we have �̃R�max��R,�0� �see Fig. 3�.

C. Effect of disorder in interacting Bose-Einstein condensates

We finally discuss the properties of the BEC wave func-
tion in the presence of disorder. It follows from Eq. �18� that
the BEC density follows the modulations of a random poten-

tial Ṽ. In the TF regime ��	�R�, Ṽ
V, while when ���R,

Ṽ is smoothed. Since Ṽ is a homogeneous random potential,
there is no decay of the wave function. In particular, Ander-
son localization does not occur, even for ���R. In the case
when ���R, it turns out that the BEC density is actually less
affected by the random potential than in the TF regime
��	�R�. This is in striking contrast with the case of nonin-
teracting particles where localization effects are usually
stronger at low energy �41�.

More quantitatively, using the statistical properties of the

smoothed random potential Ṽ, one can easily compute the
fluctuations �n�z�=	��n�z�−n0�z��2� of the BEC density
around the average value n0�z�= ��−m�2z2 /2� /g1D. From

Eq. �18�, we find �n2
 C̃�0� /g1D
2 . Note that �n2 depends on

the displacement from the trap center through the depen-
dence of �0 on z. At the trap center, we find

0

 0.2

 0.4

 0.6

 0.8

1

−1 −0.5  0  0.5  1

L T
F
|ψ

|2  / 
N

z / LTF

a)

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5  0  0.5  1

L T
F
|ψ

|2  / 
N

z / LTF

b)
 0.45

 0.55

−0.48 −0.46 −0.44

FIG. 2. �Color online� Density profiles of a BEC confined in a
combined harmonic plus random potential �VR=0.1�, �R=7.5
�10−3 LTF�. The solid �red online� line corresponds to the numeri-
cally computed BEC wave function, the dashed �green online� line
is the TF profile in the absence of disorder, and the black dotted line
is a plot of the disordered TF profile �Eq. �3��. �a� Case where the
healing length at the trap center, �, is smaller than the correlation
length of the random potential: �R/�
10. In this case, the density
profile follows the modulations of the random potential according
to Eq. �3�. �b� Opposite situation: �R/�
0.5. In this case, the BEC
density profile, obtained numerically, significantly differs from Eq.
�3�, but can hardly be distinguished from Eq. �18� �also plotted in
Fig. 2�b� as a dotted �purple online� line�. The inset shows a mag-
nification of the plot in a very small region of the BEC.

FIG. 3. �Color online� Left: plot of the correlation function

�� �R

�0
, �z

�0
�. Right: width at 1 /	e of the normalized correlation

function �� �R

�0
, �z

�0
���� �R

�0
,0�.
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�nc =
VR

g1D

	���R/�,0� . �28�

We recall that �=�0�0�=
 /	2m� is the BEC healing length
in the trap center.

We have numerically extracted the fluctuations of
the density in the trap center, according to the formula �nc


	 1
LTF/2�−LTF/4

+LTF/4dz�n�z�−n0�z��2. This provides a good esti-

mate of �nc as �0�z� changes by less than 3% in the range
�−LTF/4 , +LTF/4�. As shown in Fig. 4, the numerical results
perfectly agree with Eq. �28� over a large range of the ratio
� /�R. The numerical calculations are performed for the
speckle potential described in Sec. III B and no fitting pa-
rameter has been used. In addition, note that we have used a
single realization of the random potential for each point in
Fig. 4. Averaging over disorder turned out to have little im-
portance, since the random potential is almost self-averaging
in the range �−LTF/4 , +LTF/4�, if �R	LTF.

Finally, we find from Eq. �16� that the perturbative ap-
proach that we have performed is valid whenever
�n	n0—i.e., whenever

VR
	���R/�0,0� 	 � . �29�

Note that this effect is more restrictive in the trap center
where �0 is minimum.

IV. CONCLUSION

In summary, we have presented an analytical technique,
based on the perturbation theory, to compute the static wave

function of an interacting BEC subjected to a weak potential.
This applies to the case where both the healing length of the
BEC ��� and the spatial scale of the potential ��R� are much
smaller than the size of the system �L�, but without restric-
tion for the ratio � /�R. In particular, we have shown that
when the healing length is larger than the space scale of the
potential, the BEC is sensitive to a smoothed potential which
can be determined within our framework.

Applying these results to the case of a 1D random poten-
tial, we have shown that the wave function of a static inter-
acting BEC is delocalized, similarly as in the TF regime �15�.
This is confirmed by numerical calculations. The results of
this analysis show that, for an interacting BEC at equilib-
rium, the larger the healing length, the smaller the perturba-
tion induced by the disorder. It is worth noting that the con-
clusions of the present work hold for static BEC’s in the
mean-field regime and when the interaction energy domi-
nates over the kinetic energy in the absence of disorder—i.e.,
when the healing length is significantly smaller than the BEC
half size ��	L�. Going beyond the mean-field regime, it is
interesting to study the interplay of interactions, disorder,
and kinetic energy in a Bose gas for interactions ranging
from zero �where localization is expected� to the TF regime
�where the BEC is delocalized as shown in this work�. This
question is addressed in Ref. �49�.

Finally, we note that the transport properties of a BEC can
show significantly different physics. For instance, localiza-
tion has been studied in matter-wave beams �33� and in the
expansion of an interacting BEC �15–17�. In the latter two
cases, localization indeed does occur although non-negligible
interactions can modify the usual picture of localization
�15,17,33�.
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