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Anderson Localization of Expanding Bose-Einstein Condensates in Random Potentials
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We show that the expansion of an initially confined interacting 1D Bose-Einstein condensate can
exhibit Anderson localization in a weak random potential with correlation length op. For speckle
potentials the Fourier transform of the correlation function vanishes for momenta k > 2/0 so that the
Lyapunov exponent vanishes in the Born approximation for k > 1/0. Then, for the initial healing length
of the condensate &;, > o the localization is exponential, and for &;, < o it changes to algebraic.
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Disorder in quantum systems can have dramatic effects,
such as strong Anderson localization (AL) of noninteract-
ing particles in random media [1]. The main paradigm of
AL is that the suppression of transport is due to a destruc-
tive interference of particles (waves) which multiply scat-
ter from the modulations of a random potential. AL is thus
expected to occur when interferences play a central role in
the multiple scattering process [2]. In three dimensions,
this requires the particle wavelength to be larger than the
scattering mean free path, /, as pointed out by loffe and
Regel [3]. One then finds a mobility edge at momentum
k,, = 1/1, below which AL can appear. In one and two
dimensions all single-particle quantum states are predicted
to be localized [4—6], although for certain types of disorder
one has an effective mobility edge in the Born approxima-
tion (see Ref. [7] and below). A crossover to the regime of
AL has been observed in low dimensional conductors
[8,9], and recently, evidences of AL have been obtained
for light waves in bulk powders [10] and in 2D disordered
photonic lattices [11]. The subtle question is whether and
how the interaction between particles can cause delocali-
zation and transport, and there is a long-standing discus-
sion of this issue for the case of electrons in solids [12].

Ultracold atomic gases can shed new light on these
problems owing to an unprecedented control of interac-
tions, a perfect isolation from a thermal bath, and the
possibilities of designing controlled random [13-17] or
quasirandom [18] potentials. Of particular interest are the
studies of localization in Bose gases [19,20] and the inter-
play between interactions and disorder in Bose and Fermi
gases [21,22]. Localization of expanding Bose-Einstein
condensates (BEC) in random potentials has been reported
in Refs. [15-17]. However, this effect is not related to AL,
but rather to the fragmentation of the core of the BEC, and
to single reflections from large modulations of the ran-
dom potential in the tails [15]. Numerical calculations
[15,23,24] confirm this scenario for parameters relevant
to the experiments of Refs. [15-17].

In this Letter, we show that the expansion of a 1D inter-
acting BEC can exhibit AL in a random potential without
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large or wide modulations. Here, in contrast to the situation
in Refs. [15-17], the BEC is not significantly affected by a
single reflection. For this weak disorder regime we have
identified the following localization scenario on the basis of
numerical calculations and the toy model described below.

At short times, the disorder does not play a significant
role, atom-atom interactions drive the expansion of the
BEC and determine the long-time momentum distribution,
D(k). According to the scaling theory [25], D(k) has a
high-momentum cutoff at 1/&;,, where &, = h//4mu
and w are the initial healing length and chemical potential
of the BEC, and m is the atom mass. When the density is
significantly decreased, the expansion is governed by the
scattering of almost noninteracting waves from the random
potential. Each wave with momentum k undergoes AL on a
momentum-dependent length L(k) and the BEC density
profile will be determined by the superposition of localized
waves. For speckle potentials the Fourier transform of the
correlation function vanishes for k > 2/, where oy is
the correlation length of the disorder, and the Born ap-
proach yields an effective mobility edge at 1/c. Then, if
the high-momentum cutoff is provided by the momentum
distribution D(k) (for &;, > o), the BEC is exponentially
localized, whereas if the cutoff is provided by the correla-
tion function of the disorder (for &;, < o) the localization
is algebraic. These findings pave the way to observe AL in
experiments similar to those of Refs. [15-17].

We consider a 1D Bose gas with repulsive short-range
interactions, characterized by the 1D coupling constant g
and trapped in a harmonic potential V},(z) = mw?z%/2.
The finite size of the trapped sample provides a low-
momentum cutoff for the phase fluctuations, and for
weak interactions (n >> mg/h?, where n is the 1D density),
the gas forms a true BEC at low temperatures [26].

We treat the BEC wave function /(z, #) using the Gross-
Pitaevskii equation (GPE). In the presence of a superim-
posed random potential V(z), this equation reads

2
ihop — [2m 02 + Vio(2) + V(2) + glyl? — u}w, (1)
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where ¢ is normalized by [dz|y|* = N, with N being
the number of atoms. It can be assumed without loss of
generality that the average of V(z) over the disorder, (V),
vanishes, while the correlation function C(z) =
(V(z')V(Z' + z)) can be written as C(z) = Vac(z/op),
where the reduced correlation function c(u#) has unity

height and width. So, Vx = \/(V?) is the standard devia-
tion, and o is the correlation length of the disorder.

The properties of the correlation function depend on the
model of disorder. Although most of our discussion is
general, we mainly refer to a 1D speckle random potential
[27] similar to the ones used in experiments with cold
atoms [13-17]. It is a random potential with a truncated
negative exponential single-point distribution [27]:

exp[—(V(z) + Vg)/ V] ) V(z)
Vr ( Vr

PIV()] = + 1), )
where O is the Heaviside step function, and with a corre-
lation function which can be controlled almost at will [17].
For a speckle potential produced by diffraction through a
1D square aperture [17,27], we have

C(z) = Vic(z/og), c(u) = sin*(u)/u®>.  (3)
Thus the Fourier transform of C(z) has a finite support:
C(k) = Viogélkay),
&(k) = /21 = «/2)0(1 = «/2),

so that C(k) = 0 for k > 2/o. This is actually a general
property of speckle potentials, related to the way they are
produced using finite-size diffusive plates [27].

We now consider the expansion of the BEC, using the
following toy model. Initially, the BEC is assumed to be at
equilibrium in the trapping potential V},(z) and in the
absence of disorder. In the Thomas-Fermi regime (TF)
where u > hw, the initial BEC density is an inverted
parabola, n(z) = (1/g)(1 — 2/L3)O(1 — |zl/Ly), with
Ltr = \/2u/m? being the TF half-length. The expansion
is induced by abruptly switching off the confining trap at
time ¢ = 0, still in the absence of disorder. Assuming that
the condition of weak interactions is preserved during the
expansion, we work within the framework of the GPE (1).
Repulsive atom-atom interactions drive the short-time (¢ <
1/w) expansion, while at longer times (> 1/w) the
interactions are not important and the expansion becomes
free. According to the scaling approach [25], the expanding
BEC acquires a dynamical phase and the density profile is
rescaled, remaining an inverted parabola:

¥(z, 1) = (Plz/b(1), 01/3/b(1) explimz*b(t) /2nb(1)}, (5)

where the scaling parameter b(¢) = 1 for r = 0, and b(¢) =
V2wt for t > 1/w [15].

We assume that the random potential is abruptly
switched on at a time #;, > 1/w. Since the atom-atom
interactions are no longer important, the BEC represents

“4)

a superposition of almost independent plane waves:
) = [t expliks) ©)
1) = | —=ylk, t) explikz).
N2 P

The momentum distribution D(k) follows from Eq. (5).
For t > 1/w, it is stationary and has a high-momentum
cutoff at the inverse healing length 1/&;,:

D) = 1k, )P =80 (1 = 22)6(1 - k), ()
with the normalization condition [*% dkD(k) = N.

According to the Anderson theory [1], k waves will
exponentially localize as a result of multiple scattering
from the random potential. Thus, components exp(ikz) in
Eq. (6) will become localized functions ¢, (z). At large
distances, ¢(z) decays exponentially, so that In|¢(z)| =
—(k)|z|, with y(k) = 1/L(k) the Lyapunov exponent, and
L(k) the localization length. The AL of the BEC occurs
when the independent k waves have localized. Assuming
that the phases of the functions ¢(z), which are deter-
mined by the local properties of the random potential and
by the time 7y, are random uncorrelated functions for
different momenta, the BEC density is given by

no(2) = (YP) = 2 [0 " dkDEN SR, (®)

where we have taken into account that D(k) = D(—k) and
(@) = PP

We now briefly outline the properties of the functions
¢«(z) from the theory of localization of single particles.
For a weak random potential, using the phase formalism
[28] the state with momentum k is written in the form

di(z) = r(z)sin[0(2)], 9.0, = kr(z)cos[0(z)], (9)

and the Lyapunov exponent is obtained from the relation
y(k) = —limy,_(log[r(z)]/|z]). If the disorder is suffi-
ciently weak, then the phase is approximately kz and
solving the Schrodinger equation up to first order in
|9.6(z)/k — 1], one finds [28],

y(k) = (V27/80 ) (Vr/E)*(kag)?é(2kay),  (10)

where E = 7%k?/2m. Such a perturbative (Born) approxi-
mation assumes the inequality

Veor < (h2k/m)(kog)'/?, (11)

or equivalently y(k) < k. Typically, Eq. (11) means that

the random potential does not comprise large or wide peaks.
Deviations from a pure exponential decay of ¢, are

obtained using diagrammatic methods [29], and one has

7T2’y(k) 00 ) 1+ u? 2
<|¢k(Z)|2> = — ﬁ) duu smh(wu)[m}

X exp{—2(1 + u?)y(k)|z|}, (12)

where (k) is given by Eq. (10). Note that at large distances
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(y(®)|zl > 1), Eq. (12) reduces to
(772 /642y (k) 2*/) exp{—2y(K)|z[}.
The localization effect is closely related to the properties
of the correlation function of the disorder. For the 1D speckle
potential the correlation function C(k) has a high-

momentum cutoff 2/o, and from Eqgs. (4) and (10) we
find

() =

am*Viog
2ntk?
13)

y(k) =vo(k)(1 —kog)O(1 —kog),  yolk)=

Thus, one has y(k) > 0 only for ko < 1 so that there is a
mobility edge at 1/0 in the Born approximation. Strictly
speaking, on the basis of this approach one cannot say that
the Lyapunov exponent is exactly zero for k> 1/0p.
However, direct numerical calculations of the Lyapunov
exponent show that for k > 1/0p it is at least 2 orders of
magnitude smaller than y,(1/0y) representing a character-
istic value of y(k) for k approaching 1/og. For ox =
1 pwm, achievable for speckle potentials [17] and for Vj
satisfying Eq. (11) with k ~ 1/0, the localization length
at k > 1/0y exceeds 10 cm which is much larger than the
system size in the studies of quantum gases. Therefore,
k = 1/ 0 corresponds to an effective mobility edge in the
present context. We stress that it is a general feature of
optical speckle potentials, owing to the finite support of the
Fourier transform of their correlation function.

We then use Eqgs. (7), (12), and (13) for calculating the
density profile of the localized BEC from Eq. (8). Since the
high-momentum cutoff of D(k) is 1/&;,, and for the
speckle potential the cutoff of y(k) is 1/0, the upper
bound of integration in Eq. (8) is k, = min{l/&;,, 1/ox}.
As the density profile ny(z) is a sum of functions (| ¢;(z)|?)
which decay exponentially with a rate 2y(k), the long-tail
behavior of ny(z) is mainly determined by the components
with the smallest y(k), i.e., those with k close to k., and
integrating in Eq. (8) we limit ourselves to leading order
terms in Taylor series for D(k) and y(k) at k close to k..

For &;, > o, the high-momentum cutoff k. in Eq. (8) is
set by the momentum distribution D(k) and is equal to
1/&;,. In this case all functions {|¢(z)|*) have a finite
Lyapunov exponent, y(k) > y(1/&;,), and the whole BEC
wave function is exponentially localized. For the long-tail
behavior of n¢(z), from Egs. (7), (8), and (12) we obtain

no(z) « |z| 772 exp{=2y(1/&p)lzl} &in > o (14)

Equation (14) assumes the inequality y(1/&;,)]z] > 1, or
equivalently vo(k.)(1 — og/&n)lzl > 1.

For &;, < o, k. is provided by the Lyapunov exponents
of {|¢(2)|?) so that they do not have a finite lower bound.
Then the localization of the BEC becomes algebraic and it
is only partial. The part of the BEC wave function, corre-
sponding to the waves with momenta in the range 1/op <
k<1/&,, continues to expand. Under the condition
Yolk)(1 — €2 /a})|z| > 1 for the asymptotic density dis-
tribution of localized particles, Eqgs. (8) and (12) yield

no(z) « |z 72, &in < O (15)

Far tails of ny(z) will be always described by the asymp-
totic relations (14) or (15), unless &;, = ok. In the special
case of &, = og, or for &, very close to o and at
distances where yo(k)|(1 — &2 /0%)z| < 1, still assum-
ing that y(k,.)|z| > 1 we find ny(z) = |z] 3.

Since the typical momentum of the expanding BEC is
1/&;,, according to Eq. (11), our approach is valid for
Vi < u(&;,/0or)"/2. For a speckle potential, the typical
momentum of the waves which become localized is 1/0,
and for &;, <oy the restriction is stronger: Vp <
w(&,/or)?. These conditions were not fulfilled, neither
in the experiments of Refs. [15—17], nor in the numerics of
Refs. [15,23,24].

We now present numerical results for the expansion of a
1D interacting BEC in a speckle potential, performed on
the basis of Eq. (1). The BEC is initially at equilibrium in
the combined random plus harmonic potential, and the
expansion of the BEC is induced by switching off abruptly
the confining potential at time 7 = 0 as in Refs. [15-
17,20]. The differences from the model discussed above
are that the random potential is already present for the
initial stationary condensate and that the interactions are
maintained during the whole expansion. This, however,
does not significantly change the physical picture.

The properties of the initially trapped BEC have been
discussed in Ref. [22] for an arbitrary ratio &;,/og. For
éin << op, the BEC follows the modulations of the random
potential, while for &, = o, the effect of the random
potential can be significantly smoothed. In both cases,
the weak random potential only slightly modifies the den-
sity profile [22]. At the same time, the expansion of the
BEC is strongly suppressed compared to the nondisordered
case. This is seen from the time evolution of the rms size of

the BEC, Az = \/(z?) — (z)*, in the inset of Fig. 1. At large
times, the BEC density reaches an almost stationary pro-
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FIG. 1 (color online). Density profile of the localized BEC in a
speckle potential at # = 150/w. Shown are the numerical data
(black points), the fit of the result from Egs. (7), (8), and (12)
[red solid line], and the fit of the asymptotic formula (14) [blue
dotted line]. Inset: Time evolution of the rms size of the BEC.
The parameters are Vp =0.1u, &, =0.01L1g, and o =0.78¢;,.
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FIG. 2 (color online). (a) Lyapunov exponent 7y in units of
1 /L for the localized BEC in a speckle potential, in the regime
&in > og. The solid line is y(1/&;,) from Eq. (13). (b) Exponent
of the power-law decay of the localized BEC in the regime &;, <
og. The parameters are indicated in the figure.

file. The numerically obtained density profile in Fig. 1
shows an excellent agreement with a fit of ny(z) from
Egs. (7), (8), and (12), where a multiplying constant was
the only fitting parameter. Note that Eq. (8) overestimates
the density in the center of the localized BEC, where the
contribution of waves with very small & is important. This
is because Eq. (13) overestimates y(k) in this momentum
range, where the criterion (11) is not satisfied.

We have also studied the long-tail asymptotic behavior
of the numerical data. For &, > o, we have performed
fits of |z|~7/2e27enlel to the data. The obtained 7. are in
excellent agreement with y(1/&;,) following from the pre-
diction of Eq. (14), as shown in Fig. 2(a). For &;, < o, we
have fitted |z| A to the data. The results are plotted in
Fig. 2(b) and show that the long-tail behavior of the BEC
density is compatible with a power-law decay with B =
2, in agreement with the prediction of Eq. (15).

In summary, we have shown that in weak disorder the
expansion of an initially confined interacting 1D BEC can
exhibit Anderson localization. Importantly, the high-
momentum cutoff of the Fourier transform of the correla-
tion function for 1D speckle potentials can change local-
ization from exponential to algebraic. Our results draw
prospects for the observation of Anderson localization of
matter waves in experiments similar to those of Refs. [15—
17]. For Vg =0.2u, &, = 30/2, and og = 0.27 um,
we find the localization length L(1/&;,) =460 um.
These parameters are in the range of accessibility of cur-
rent experiments [17]. In addition, the localized density
profile can be imaged directly, which allows one to distin-
guish between exponential and algebraic localization.
Finally, we would like to raise an interesting problem for
future studies. The expanding and then localized BEC is an
excited Bose-condensed state as it has been made by
switching off the confining trap. Therefore, the remaining
small interaction between atoms should cause the depletion
of the BEC and the relaxation to a new equilibrium state.
The question is how the relaxation process occurs and to
which extent it modifies the localized state.
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