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Abstract. We theoretically investigate the localization of an expanding
Bose—Einstein condensate (BEC) with repulsive atom—atom interactions in a
disordered potential. We focus on the regime where the initial inter-atomic
interactions dominate over the kinetic energy and the disorder. At equilibrium
in a trapping potential and for the considered small disorder, the condensate
shows a Thomas—Fermi shape modified by the disorder. When the condensate
is released from the trap, a strong suppression of the expansion is obtained in
contrast to the situation in a periodic potential with similar characteristics. This
effect crucially depends on both the momentum distribution of the expanding
BEC and the strength of the disorder. For strong disorder as in the experiments
reported by Clémenrgt al 2005Phys. Rev. Let95 170409 and Forét al 2005

Phys. Rev. Lett95 170410, the suppression of the expansion results from the
fragmentation of the core of the condensate and from classical reflections from
large modulations of the disordered potential in the tails of the condensate.
We identify the corresponding disorder-induced trapping scenario for which
large atom—atom interactions and strong reflections from single modulations of
the disordered potential play central roles. For weak disorder, the suppression
of the expansion signals the onset of Anderson localization, which is due
to multiple scattering from the modulations of the disordered potential. We
compute analytically the localized density profile of the condensate and show
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that the localization crucially depends on the correlation function of the disorder.
In particular, for speckle potentials the long-range correlations induce an
effective mobility edge in 1D finite systems. Numerical calculations performed

in the mean-field approximation support our analysis for both strong and weak

disorder.
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1. Introduction

1.1. Disorder and ultracold atomic gases

Understanding the effect of disorder in physical systems is of fundamental importance in
various domains, such as mechanics, wave physics, solid-state physics, quantum fluid physics
or atomic physics. Although in many situations this effect is weak and can be ignored in
first approximation, it is not always so. Strikingly enough, even arbitrarily weak disorder can
dramatically change the properties of physical systems and result in a variety of non-intuitive
phenomena. Many of them are not yet fully understood. Examples in classical systems include
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Brownian motion [], percolation P] and magnetism in dirty spin systen®-f[7]. In quantum
systems, the effects of disorder can be particularly strong owing to the complicated interplay of
interference, particle—particle interactions and disorder. The paradigmatic example is (strong)
Anderson localization (AL) of non-interacting particlég-f[11]. Other interesting effects of
disorder in quantum systems include weak localization and coherent back-scatigfiing [
disorder-driven quantum phase transitions and the corresponding Bos€el§lag$d] and spin

glass [L6, 17] phases.

AL signals out in two equivalent ways, either as the suppression of the transport of
matterwaves in disordered media, or as an exponential decay at large distances of the envelope of
the eigenstates of free-particles in a disordered poteritifl Both properties strongly contrast
with the case of periodic potentials, in which transport is free and all eigenstates extend over the
full system as demonstrated by the Bloch theor&#h [AL is due to a destructive interference of
particles (waves) which multiply scatter from the modulations of a disordered potential. Itis thus
expected to occur when interference plays a central role in the multiple scattering pddgess [

In three dimensions (3D), it requires the particle wavelength to be larger than the scattering
mean free path as pointed out by loffe and Regelg]. One then finds a mobility edge at
momentumk=1/1, below which AL can appear. In 1D and 2D, all single-particle quantum
states are predicted to be localized]f-[22], although for certain types of disorder one has an
effective mobility edge in the Born approximatio23—[25].

Ultracold atomic gases are now widely considered to revisit standard problems of
condensed matter physics under unique control possibilities. Dilute atomic Bose-Einstein
condensates (BEC)2f]-[29] and degenerate Fermi gases (DFQGYPH[34] are produced
routinely taking advantage of the recent progress in cooling and trapping of neutral
atoms B5—[37]. In addition, controlled potentials with no defects, for instance periodic
potentials (optical lattices), can be designed in a large variety of geome8&s I
periodic optical lattices, transport has been widely investigated, showing lattice-induced
reduction of mobility B9—-[41] and interaction-induced self-trapping?, 43]. Controlled
disordered potentials can also be produced optically as demonstrated in several recent
experiments 44]-[48], for instance using speckle pattern$9[ 50]. Other techniques can
be employed to produce controlled disorder such as the use of magnetic traps designed on
atomic chips with rough wiresbfl]-[55], the use of localized impurity atom&6, 57], or the
use of radio-frequency field$§]. However, the use of speckle potentials has unprecedented
advantages from both practical and fundamental points of view. Firstly, they are created using
simple optical devices and their statistical properties are very well kn&&r6p]. Secondly,
they have finite-range correlations which offers richer situations than theoré&tomalelated
potentials (i.e. uncorrelated disorder) and the correlation functions can be designed almost at
will by changing the geometry of the optical devicg8,[60]. Finally, both the amplitude and the
correlation length (down to fractions of micrometres) can be controlled accurately and calibrated
using ultracold atomsig].

Within the context of ultracold gases, important theoretical efforts have been devoted
to disordered optical lattices which mimic the Hubbard modédl,[[61]-[64]. For bosons,
guantum phase transitions from superfluid to Bose glass and Mott insulator phases have been
predicted 65, 66] and evidence of the Bose glass has been obtained experimeb@lIy\ith
Fermi—Bose mixtures, the phase diagram is even richer and includes the formation of a Fermi-
glass, a quantum percolating phase and a spin i@} 0]. Effects of disorder in Bose gases
at equilibrium without optical lattice have been addressed in connection with the behavior of
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the BEC phase transitio], 72], the quantum states of Bose gasé3{[76], the localization
of Bogolyubov quasi-particles’[r, 78], the dynamics of time-of-flight imaging of disordered
BECs [79, 80], and random-field-induced order in two-component Bose gaxesP).

1.2. Scope and main results of the paper

The dynamics of BECs in disordered (or quasi-disordered) potentials is also attracting
significant attention in a quest for observing AL in non-interacting BESBsg3, 84] or in BECs

with repulsive interactions2f], [85]-[87]. Recent experiments have demonstrated the strong
suppression of transport in expanding BECs in the presence of optical speckle potdbtials [
46, 48], but this effect is not related to AL4p).

In this paper, we theoretically and numerically analyze the expansion of an interacting 1D
BEC in a disordered potential. We focus on a regime where the inter-atomic interaotiy
exceed the kinetic energy (Thomas—Fermi regime), a situation that significantly differs from the
textbook AL problem but which is relevant for almost all current experiments with disordered
BECs @5]-[48], [79, 80]. We distinguish two regimes that we narsieong disorderandweak
disorder, respectively.

The case of strong disorder corresponds to the situation of the experimeas 46,[48]
where the interaction energy in the center of the BEC remains large during the expansion
and where the reflection coefficient from a single modulation of the disordered potential is
of the order of unity. In this case, our numerical results reproduce the strong suppression of the
transport of the BEC as observed in the experimentd§f46, 48]. We analyze the scenario of
disorder-induced trappingroposed in45] in which two regions of the BEC are identified. The
first region corresponds to the center, where the trapping results from a competition between
the interactions and the disorder. The second region corresponds to the tails of the BEC, where
almost free particles are multiply scattered from the modulations of the disordered potential.
There localization is rather due to the competition between the kinetic energy and the disordered
potential, but is ultimately due to the almost total classical reflection of the matterwave from a
single barrier. These two effects are responsible for blurring AL effd&sifp].

Weak disorder corresponds to a situation where the probability of large and wide
modulations of the disordered potential is small. In this case, we show that AL does occur
as a result of multiple quantum scattering from the modulations of the disordered potential.
Let us briefly describe the scenario first proposed2f.[Initially, the repulsive interactions
are important as compared to the kinetic energy and to the potential energy associated to the
disordered potential. Then, the interactions induce the expansion of the BEC and determine the
momentum distribution of the BEC. After a time typically equal to the inverse of the initial
trapping frequency, the interactions vanish and the momentum distribution reaches a steady
state. Then, the BEC is a superposition of non-interacting waves of moméntbdach wave
localizes with its own localization length.(k). By calculating analytically the superposition
of the localized waves, we show that the BEC can be exponentially localized or only show an
algebraic decay depending on the correlation function of the disordered potential. In particular,
due to peculiar long-range correlations, the BEC localizes exponentially in speckle potentials
only if &, > ogr, Whereg, is the initial healing length of the BEC aiag is the correlation length
of the disorder.
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1.3. Organization of the paper

The paper is organized as follows. In sectiyme review the properties of a BEC at equilibrium

in a combined harmonic plus disordered potential, in particular in the non-trivial regime where
the healing length of the BEC exceeds the correlation length of the disordered potential. The
next two sections deal with the expansion of an interacting BEC in a disordered potential.
Section3 is devoted to the case of strong disorder. We reproduce and complete our previous
results g5 which demonstrate the suppression of the expansion of the BEC in a speckle
potential with similar parameters as in the experiments4& @6, 48]. The scenario of
disorder-induced trapping is analyzed and characteristic properties of the BEC trapped by
the disorder are calculated analytically and compared to numerical results. In particular, we
derive an analytic expression for the central density of the BEC trapped by disorder which
happens to be characteristic of the disorder-induced trapping phenomenon and we show that
the ultimate suppression of the expansion of the BEC is due to classical reflections from the
large modulations of the disordered potential. We also compare these findings with the case of
a BEC expanding in a periodic potential with similar characteristics as the disordered potential.
Sectiond is devoted to the case of weak disorder. We show that AL can show up in an expanding,
interacting BEC under appropriate conditions that are clarified. We show that the localization
properties of the density profile crucially depend on both the momentum distribution
of the expanding BEC and the correlation function of the disordered potential. In particular, in
the case of a speckle potential, we find adffective mobility edg&Ve calculate analytically the
expected localization lengths and compare our findings to the results of numerical calculations.
Finally in section5, we summarize our findings and discuss expected impacts of our work on
experiments on disordered BECSs.

2. Condensates at equilibrium in a combined harmonic trap plus disordered
potential

2.1. Interacting BECs in a 1D inhomogeneous potential

We consider a low-temperature 1D Bose gas with short-range atom—atom interagtians
whereg is the 1D coupling constant. The Bose gas is assumed to be subjected to (i) a harmonic
potential of frequencw and (ii) an additional inhomogeneous potentidk). In a finite system

as considered in this work, assuming weak interactionsi i.mg/h? wheren is the average
density andn the atomic mass3g, 89, the Bose gas will form a BEC even in low-dimensional
(e.g. 1D) geometries8P]. Hence, we can treat the BEC within the mean-field approagp]

using the Gross—Pitaevskii equation (GPE):

—h?3?2 N Mw?Z?
2m 2

ihoy (z, t)=[ +V(Z)+g|10(2,t)|2—u} v(z,1), 1)
wherepu is the BEC chemical potential.

In the following, we investigate the situations where the additional potential M@is-
VR (2) with v(z) being either a disordered or a periodic function with vanishing average and
unity standard deviation. Therefore, we ha¥z)) = 0 and./(V(2)2) — (V(2))2 = |Vkr|. The
sign of Vkr depends on the definition of the functietiz) and on the kind of potential one
considers. For instance, in optical speckle potentials, the quantdy+ 1 is defined to be
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positive andvr > 0 for blue-detuned laser light (case of the experimentg&f48, 79]) while
VR < 0O for red-detuned laser light (case of the experimentgd4f46, 80]). For a sine-periodic
potential, using/r < 0 or Vk > 0 does not change the physics. See appeAdor details.

2.2. The BEC wavefunction

Here, we briefly discuss the influence of an inhomogeneous potential on the BEC at equilibrium
in the harmonic trap. We assume that the amplitude of the disordered potential is smaller than the
chemical potential of the BEC/& « 1) and thatu > hw. This question has been investigated
in detail in [74]. Here, we only outline the results.

At equilibrium, the BEC wavefunction is real (up to an irrelevant uniform phase) and is the
solution of equationX) with o,y = O:
—h?32  mw?Z?

+ +V(2) +g|w<z>|2} v (2). 2)

uy(z2) = [ om >

For Vk = 0 andu > hw, the kinetic term can be neglected (Thomas—Fermi regikh and
the BEC wavefunction igo(z) = +/ng(z) with
— Mw?7%/2
No(2) = %, )

for z such thatu > mw?z?/2 andny(z) = 0 elsewhere. The density profitg(z) is an inverted

parabola of length.tr = /21 /mw? much larger than the healing length = h//4mu [29]
(notice that this definition is different from the one @#], where we used = v/2&;, ).

In the presence of an inhomogeneous potentigl # 0), the parabolic shape of the
density profile is perturbed. In general, the kinetic term cannot be neglected any longer. In
particular, wherg;, 2 og, the short-range modulations of the potentét) induce short-range
modulations of the BEC wavefunction which contribute significantly in equa@rnhfough
the kinetic term. In order to take into account the effect of the inhomogeneous potential, we use
a perturbative approach along the linesof][ we write v (z) = vyo(2) + 8y (2) with v < Y.

The first-order term of the perturbation series of equat®)ns(governed by the equation

V(@) Yo

— .O 2492 + = —

(&in)70,(8Y) + 6y 2010 (4)
where&? = &,//1— (z/Lte)?is the local healing length. Sindere > (&in, or), it is legitimate
to use the local density approximation (LDA9], i.e. in a region smaller thab+g, the quantity
No can be considered as uniform. In this approximation, the solution of equdbios ¢asily
found by turning to the Fourier space. We fiswl (q) = —V (qQ)¥o/29ng, Where

~. V@)
YO Tty ©
and finally,
N V(2)
V(2) = Yo(2) [1— 2010 (Z)} , (6)

or equivalently,
N(z) ~ no(2) — V(2)/9. 7)
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This solution justifiesa posteriorithe use of a perturbative approach ¥ < 1, whereVg =
\/(\7(2)2) —(V(2))? is the standard deviation of the potenti&(z). Notice that the equality

(V(2)) = 0 directly follows from equation5).

An important consequence of the solutior® and (7) is that the BEC wavefunction
is only weakly perturbed by the inhomogeneous potenfiat) if Vi < . It follows from
equation §) that for&,, < or, V(2) >~ V (2) and the relative inhomogeneities of the BEC density
aresn/n~ Vg/n < 1. Foré&, 2 > or, the relative inhomogeneities are even smaller since all
Fourier components of are smaller than those d. More precisely, the effective potentid|
is roughly obtained fronV by suppressing the Fourier components with a wavelength smaller
than the healing length. In other words, the BEC density does not follow the modulations of the
bare disordered potenti&(z) but actually follows the smoother modulations of #reoothed
disordered potentiaV/(z).

Therefore, an interacting BE@Gt equilibriumin a disordered potential is not localized
in the sense of Anderson. One may wonder whether this conclusion still holds for stronger
disorder or weaker interactions, where the meanfield approach can break down. This question
has been addressed ing. It turns out that for very weak interactions, the Bose gas forms a
so-calledLifshits glasswhich corresponds to a Fock state of various localized single-particle
states. These states belong to the Lifshits tail of the non-interacting spectrum and are strongly
trapped. Therefore, AL can hardly be observed unambiguously in this case. It seems more
favorable to find evidence of AL in transport experiments of interacting BECs, rather than
studying BECs at equilibrium in a disordered trap.

3. Strong disorder: suppression of the expansion of a BEC in a speckle potential
and disorder-induced trapping scenario

In this section, we investigate the transport properties of a coherent BEC in a disordered
potential in the situation of the experiments 45F-[48]. We thus assume (i) that the chemical
potential of the BEC is larger than the depth of the disordered potential\r) and (ii) that the
correlation length of the disordered potential is much larger than the healing length of the BEC
and much smaller than the (initial) size of the BEG,< or < L. We present numerical
results which reproduce the suppression of the transport of the BEC in a speckle potential,
observed in45, 46, 48], and discuss a scenario to explain this phenomenon. In addition, we
compare the observed behavior to the case of a periodic potential with similar characteristics.

3.1. Expansion of an interacting BEC in a speckle potential

In order to induce transport, we start from a BEC at equilibrium in the harmonic and disordered
potentials (see sectid). Attimet = 0, we suddenly switch off the trapping harmonic potential,
keeping the disordered potential. This process is similar to the one us#&d #6[ 48, 85]. The
evolution of the BEC is thus governed by the GPIE ith w =0 and the initial condition
corresponds to the TF wavefunction discussed in se&tian

The time evolution of theoot mean squaré¢rms) size of the BECAz(t) = /(Z2) — (2)?,
as obtained from the numerical integration of the time-dependent GPIS plotted in figurel
for several amplitudeSy of the disordered potential. In the absence of disorder, the interacting
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. - Theory,Vg=0-
- Vg=0

- Vg=0.10p
Vp=0.15u |

Az (L)

- VR=030p |

15 20 25 30

Figure 1. Time-evolution of the rms-size of the BEC wavefunction evolving
in the disordered potentia¥/ for several values of the amplitudéz. The
(black) dashed line is the theoretical prediction of the scaling thed®y (
with a vanishing disordered potential. Here, we have useg 0.012L +r and

fin =57x 1U4LT|:.

BEC expands self-similarly as predicted by the scaling apprd2@®[]:

_ ¥lz/bt), 0] mZb(t)
whereb(t) is thescaling parametewhich is governed by the equation
b(t) = /%) (9)

with the initial conditionsb(t = 0) = 1 andb(t = 0) = 0. Integrating these equations, we find
VB BE) — 1) +In [\/b(t)+\/b(t) —1] = V20t (10)

which asymptotically reduces to a linear expansion at large titig,~ +/2wt. The numerical
calculations agree with this expression as shown in figure

The situation is significantly different in the presence of disorder. In this case, the initial
BEC wavefunction is the usual Thomas—Fermi inverted parabola perturbed by the disordered
potential [/4]. For t < 1/w, the scaling form &) is still a good solution of the GPE and,
according to the scaling theor®(, 91] the BEC wavefunction expands. For larger times
and small amplitudes of the disordered potenti§{ £ 0.1 ), the effect of disorder on the
expansion observed in the numerical calculations is small and the BEC expands by about
one order of magnitude far= 10/w. For larger amplitudes of the disordé&ry(=> 0.15u), the
expansion of the BEC stops after an initial expansion stage described above. This effect signals
the localization of the BEC wavefunction due to the presence of disorder.

Important information can be obtained from density profiles of the localized BEC. For
instance, density profiles corresponding to a single evolution are plotted at two different times
in figure 2. From these it appears that the localized BEC is made of two distinct parts: a static
dense core and fluctuating dilute tails (see also fi@urén particular, the small fluctuations of
Az observed in figurd are due to the contribution of the tails of the BEC that still evolve while
the core of the wavefunction is localized (see sec8@).
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Figure 2. Density profiles of the BEC fo¥r = 0.2u, or = 0.012L1¢ andé, =
5.7 x 10~*L1¢ (solid red lines) for two different values of the expansion time
7 and expected Thomas—Fermi profiles in the absence of a disordered potential
(dashed green lines). We also show the disordered potential normalized so as to
be homogeneous to a densiy/(; dotted blue line).
1.0 0.20
(@ - ot=10
0.8 - - ot=20 4
) = Analytic
NE 0.6 2
s i
:‘,'_- 04
0.2
O 1 1 1 ¥ M
-0.4 -0.2 0 0.2 0.4
2zl

2zl

Figure 3. Density profiles of the BEC during the evolution in the disordered
potential at different times fovg = 0.2« in the core (a) and in the tails (b) of
the BEC. Both are magnifications of the plots of fig@rdhe solid (red online)
and dashed (blue online) lines correspond, respectively, to the éimesl0 and

= 20 of the same evolution and the dotted (purple online) line corresponds to

equation {3) with n. as a fitting parameter. Notice the different scales in the two
figures.

It is worth noticing that the BEC expansion stops for amplitudes of disorder significantly
smaller than the typical energy per particle in the initial BB < u. This suppression
of transportis phenomenologically similar to what is expected from A3]{10]. Strictly
speaking, AL relies on the existence of localizethgle-particle eigenstateand on the
subsequent absence of diffusioBl].[ However, we have stressed that the presence of
predominant inter-atomic interactions dramatically changes the pictiiie On one hand,
repulsive interactions are expected to reduce the localization e#éc®?]. During the initial
expansion of the BEC, the interaction energy greatly dominates over the kinetic energy in the
center of the BEC so that no Anderson-like localization effect is expected in this region. On the
other hand, although the particles in the tails are weakly interacting due to the small density,
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the initial interactions determine their typical energy as the initial expansion stage converts the
interaction energy into kinetic energy. We will see that, for strong disorder as considered here,
the modulations of the disordered potential will ultimately stop the expansion of the dilute tails,
masking any Anderson-like effect (in the case of weak disorder, however, AL can be obtained
in this region as discussed in sectidn In the following, we detail the scenario disorder-
induced trappingutlined above and first proposed #H].

3.2. Scenario of disorder-induced trapping

The dynamics of the BEC in the disordered potential is governed by three different forms of
energy: (i) the potential energy associated to the disordered potential, (ii) the interaction energy
and (iii) the kinetic energy. It is thus useful to evaluate and compare the kinetic and interaction
energies to understand the behavior of the BEC in the disordered potential. To this end, notice
first that it follows from the initial expansion of the BEC that the fast atoms populate the tails of
the expanding BEC while the slow atoms stay close to the center. In addition, notice that, except
for very small amplitudes of the disordered potential and subsequent long expansion times, the
density in the core of the BEC remains large whereas it drops to zero in the tails (se€figure
We thus distinguish two different regions of the BEC: (i) the core where the density is large and
the interaction energy is dominant and (ii) the tails where the density is small and the kinetic
energy dominates. The behavior of the BEC turns out to be completely different in these two

regions 5.

3.2.1. Quasi-static Thomas—Fermi profile in the core of the BE&ar the sake of clarity, we
define the core of the BEC as half the total size of the initial condensatg:/2 <z < L1g/2
and call

1 +LTr/2
ne(t) = — f dz [y 2 O, (11)

LTF Ltg/2

the average BEC density in the center. In particular, at tireé, due to the parabolic envelope
resulting from the harmonic trap, we find

11u

129

in the absence of disorder but also in the presence of a self-averaging disordered potential
During the initial expansion stage, the average density in the ngrelowly decreases and

the parabolic envelope disappears. Since the interaction energy significantly exceeds the kinetic

energy, we expect the local densjiy(z, t)|? to follow almost adiabatically the instantaneous
value ofn.(t) approximately in the Thomas—Fermi regime so that

¥ (z, P = ne(t) - V(2/9. (13)

In order to check this prediction, we plot in figuBfa) the result of the numerical
integration of the GPEL] for the density profile in the central region of the BEC during the
evolution in the disordered potential at two different times, together with a plot of the analytical

Ne(t = 0) = (12)

2 In the context of disordered systems, a quantity is said to be ‘self-averaging’ when it verifies the principle of
‘spatial ergodicity’. In other words, it means that the average over realizations of the disordered potentials of a
relevant quantityF, equals the corresponding spatial average{ké.~ %fOL dzF(2).
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expression 13). In particular, two properties are of special interest here. Firstly, we observe
that the time-dependent fluctuations of the density profile are significantly smaller than the
modulations of the disordered potentiiz)/g. Secondly, the density profiles are in good
agreement with equatiorid). This observation supports the scenario of an adiabatic decrease
of the density in the center of the BEC. The valuengfat the end of the expansion turns out

to be characteristic of this scenario. In the following, we show tQaian indeed be computed
from the statistical properties of the disordered potential.

The expansion of the core of the BEC in the disordered potential stops when the condensate
fragments i.e. when the effective chemical potential in the center of the BEG=Qn.)
decreases down to the value of typically two large modulations of the disordered potential.
At this time, the energy per patrticle in the core of the BEC becomes too small to over-pass the
potential barriers and the core of the BEC gets trapped between these large modulations. This
scenario allows us to determine the final value of the average degsitythe core of the BEC.

Let us callNyeard V) the number of maxima of the disordered potential in the central part of the
BEC (—Ltr/2 < z < L1¢/2) with an amplitude larger than a given vaMeand assume that it

can be computed from the statistical properties of the disordered potential. The density in the
center of the BEC after the trapping has occurred thus corresponds to the maximum value of
n. below which two modulations o¥ in average are present in the center of the BEC. This

is simply computed by solving foNpeadV = ncg) = 2. Although this scheme is general, it
appears clearer when applied to a case whizeg{ V) can be explicitly computed. Let us now
consider the case of a speckle potenti#), [60] with Vg > 0. It is shown in appendiA (see

equation A.5)) that in this cas@pead V) >~ o (;-:) exp[—ﬁviR] wherex >~ 0.30 andg ~ 0.75.

From this, we easily find that the final density of the core of the BEG; is % (%) In [“LTF].

20R

In addition, we notice that the final density cannot exceed the initial density as resulting from
an expansion. Therefore, equatiddis valid only for 3 (%) In [M} < 1/g. Inthe opposite

20r
situation, the BEC is already multiply fragmentedtat O and the final density saturates at
Ne =~ %% (see equationl?)). In summary, we expect that the average density of the BEC trapped
by the disorder is

Ne >~ min {E (E) In [aLTF] , &} . (14)
B\ 9 20r | 129

In order to check equationl{), we have extracted the averaged central density (see
equation {1)) from the wavefunctiong calculated numerically for several amplitudésand
correlation lengthgr of the disordered potential. In figure we plotn. as a function ofvg
for severabg together with the predictioriLé). The results show that equatiobdj provides a
good estimate of the final density in the core of the BEC. In particular, for small amplitudes
of the disordern, grows linearly withVr with a coefficient in agreement with equatia) up
to about 10%. For larger amplitudes of the disordesaturates below 11/12g as expected.

This behavior agrees with experimental results for a blue-detuned speckle potential
(Vr > 0) [48]. Itis worth naticing that our scenario is expected to apply also to the case of a red-
detuned speckle potentidVg < 0) as used in46]. In this case, the fragmentation occurs when
i = |VRr| independently of the correlation length of disordekgjf« or). Then, the fragmented
BEC is trapped in the small wells of the disordered potential with a typicalegizend with a
central densityn, >~ |Vr|/g (independent oéR). Instead, for a blue-detuned speckle potential
as investigated above, the BEC is trapped between large modulations that may be separated by
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Figure 4. Average densityn; in the core of the BEC trapped by the disorder
versus the amplitude of the disordered potenialfor different values of the
correlation lengthogr and comparison to equatiori4). The horizontal (red
online) line corresponds to the saturation limjt= 11 /12g.

a distance much larger than. As a consequence the final density at the center is expected to
be significantly larger. This is confirmed by the numerical result 98 |

3.2.2. Strong reflections in the tails of the BEQ'he situation is completely different in the
tails of the BEC. Due to the small atomic density, the kinetic energy now dominates over
the interaction energy. The tails are populated by fast moving, weakly interacting atoms that
undergo multiple scattering from the modulations of the disordered potential. Ultimately,
the trapping of these atoms results from almost total classical reflection on a single large
modulation of the disordered potential with an amplitude exceeding the typical energy of a
single particle 45, 46]. This scenario is supported by the density profiles plotted in figure
where one can observe a sharp drop of the atomic density at the edges of the BEC (i.e. at
positionszy,i, >~ —7L ¢ and znax >~ 8L 1¢ in figure 2). Notice that significant drops correspond
either (i) to modulations of the disordered potential larger than the initial chemical potential
(e.g. atzyin >~ —7L+¢) or (ii) to a concentration of weaker barriers (e.gzat >~ —3.5L1F).

In contrast with the situation in the core of the BEC, it is expected that (i) the density profile
does not show a Thomas—Fermi shape and (ii) the local density is not stationary. Both properties
agree with our numerical results as shown in figd(l® where we plot a magnification of a small
region corresponding to the tails of the BEC of fig@rén particular, the shorter modulations of
the wavefunction observed in figuBéb) are due to the kinetic energy of the particles in the tails.
This statement is corroborated by the calculation of the energy per paetidele to energy
conservation, the energy can be computed at the initial tiea® (i.e. right after releasing the
BEC from the trapping potentialy, = & [ dz|v (2)|?[V (2) + 9|y (2)|?/2]. Using equationT),
we easily find that

2] as)

The disordered potential perturbs the energy per particle only at second-okégpinand, for
VR < 1, We haves o« . From this we expect that the typical wavelengtlof the fluctuations in
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Figure 5. (a) Time-evolution of the rms-size of the BEC wavefunction evolving
in a periodic potential for several amplitud&s and for A = 0.11L+¢. The
theoretical prediction corresponding to equatibf) (n free space is also shown
(black dotted line). The inset shows the velocity of the expansion of the BEC
together with the theoretical estimate’). (b) Density profiles of the BEC in the
harmonic trap and after an expansion time in the periodic potentia:=040/w

for VR =0.2 .

the tails would be of the order of the healing length in the initial condensate, sa tBat~ &,.
This is confirmed by the properties of the momentum distribution of the BEC which show two
sharp peaks located aroupd~ +h/&,.

3.3. Expansion of a condensate in a periodic potential

Up to this point, our analysis has shown how the competition between inter-atomic interactions
and disorder (in the center of the BEC) or between kinetic energy and disorder (in the tails of the
BEC) can strongly suppress the coherent transport of an interacting matterwave in a disordered
potential. A natural extension of our analysis is to compare these findings to the situation in
a periodic potential with similar characteristics (see appe®dixin the case of a periodic
potential, no suppression of transport is expected as no large peak can provide a sharp stopping
of the expansion, and obviously, no ‘a la Anderson’ localization should occur.

Numerical results for the expansion of the BEC in the periodic potential described in
appendiXA.3 are shown in figuré(a). The difference with the case of a disordered potential (see
figure 1) is striking: as expected, the BEC now expands linearly with time with an asymptotic
expansion rate that decreases when the amplitidef the periodic potential increases. A
detailed analysis shows, however, that the transport of the BEC in a periodic potential and in a
disordered potential share some properties for the parameters used in this section, as we discuss
below.

Again, important information is contained in the density profiles such as the ones plotted
in figure 5(b) (to be compared to figur2 which corresponds to the disordered case). Initially
(wt = 0), the density profile follows the modulations of the periodic potential modulated by the
parabolic envelope associated to the harmonic trappidig During the initial expansion stage,
the density in the center decreases slowly and follows adiabatically a Thomas—Fermi shape
with a slowly decreasing instantaneous chemical poteftidlhen, the evolution of the center
stops when the chemical potentjalexactly matches the potential depth, i.e. when the BEC
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Figure 6. Average density in the center of the BEC trapped in the periodic
potential versus the lattice dept¥, and for two lattice spacings. The
theoretical predictionl() is also plotted (green dashed line).

fragments. This is similar to the disordered case. However, in the case of a periodic potential, it
is a deterministic process which appears when
: VR 11u
nc_mln{ﬁ<g>,lzg}. (16)
As shown in figures, this formula provides a very good value of the average density in the center
of the BEC trapped in the periodic potential. Remarkably, equafiGnghows thah, does not
depend on the lattice spacingas confirmed by the numerical results shown in figur€his is
different from the case of a blue-detuned speckle potenta( 0) wheren, has been shown
to depend explicitly on the correlation length of the disordered potential (see equatjand
figure4).
During the subsequent evolution, a part of the BEC is thus trapped in the center while the
tails still expand as shown in figufe Let us focus now onto the tails of the BEC. To do so,
let us first write the BEC wavefunction = v/ + ¥,, wherey,, and, account for the center
(I1z] < Lt¢) and for the tails|i| > L+1g), respectively. As the supports of andi, are spatially
separated, we hawez? = [ dz Z|y|?+ [ dz Z|yw|?. The center gets trapped after a transient
time so that/" dz Z|y|* tends to a constanfz3, at large times. In contrast, the tails expand so
that their density decreases. After a typical timie;1la substantial part of the interaction energy
is converted into kinetic energy and the interaction term can be neglected for the subsequent
dynamics. We also neglect the periodic potential which has a small amplitude compared to
the typical energy per particle in the tails. Now, in free space, = % [dz Z|y|? ~ f\%tz at
large times wherg&,, is the total (kinetic) energy in the tails of the BEC. Due to the conservation
of the total energy during the expansion, we h&e= E.+ E,, wheree is the energy per
particle given by equationlg), and the energy in the center of the BEE, = VZL1¢/g, is
easily computed from the Thomas—Fermi profile in the center of the BEC (see equaipn (

2
We finally find that E,/N =~ 2 [1—175 (%) ] so that Az2~ AZ2+v2t? at times larger
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2 15 /Ve\ 2|7
vz’:\/ga)LT,: [1_7<IR>} . (17)

In the absence of disordeiV{ =0), equation {7) is consistent with the scaling theory
(equation {0)) for which Az(t) =b(t)Lt¢/+/5. In the presence of disorder, it provides a
reasonable agreement with the numerical findings as shown in the inset of @)raNe
attribute the discrepancy at the largest value¥pto the main two approximations that have
been used. Firstly, a strict separation between the tails and the certerf latr has been

used to comput&,, and we have thus neglected the small intermediate region. Secondly, the
interaction of the atoms with the periodic potential is expected to increase the inertia of the
expanding gas and this should contribute to slightly lower the expansion velocity compared to
the prediction {7).

than J/w with

4. Weak disorder: onset of AL in the expansion of a condensate

In section3, we have shown that in the experimental conditions4d 6, 48], AL effects

are blurred in an expanding, interacting BEC owing (i) to important repulsive interactions
in the center of the BEC and (ii) to strong reflections from single barriers of the disordered
potential in the tails of the BEC. Both effects are related to the presence of large modulations
of the disordered potential. It thus appears necessary to work in a parameter range where
the probability of single large modulations of the disorder is negligible in order to observe
unambiguous AL of an expanding BEC.

In this section, we work within the regime of weak disorder (a precise definition is given
below, see equatior2()). Following the theory of25], we show that in this situation, AL of an
interacting BEC can be observed under appropriate conditions that we identify pre2iely [

We consider both cases of an impurity model of disorder and of a speckle potential. In particular,
for a speckle potential, we show that the long-range correlations induceséfdddve mobility
edge i.e. strong exponential localization is obtained onlyggr> or.

4.1. General model of AL of an expanding BEC

4.1.1. Expansion of a BEC.Let us examine again the expansion of the BEC in the disordered
potential (see sectiod.1). For weak disorder, the initial interaction energy strongly exceeds the
potential energy associated with the disorder so that the first stage of expansion of the BEC
is hardly affected by the disorder. For instance, the numerical results of figiareVg = 0.5

and 01 x confirm this assertion for durations of expansion up to abautl0/w. Within this

time window, the momentum distribution of the expanding BEC can thus be approximated to
that of a BEC expanding in free space (see equasn Calculating the Fourier transform of

the scaling solution for interacting BECs expanding in free space,t), using the stationary
phase approximation (valid fars> h/u ), we find the momentum distribution

_ 3Ngy/4 Ken  \° Ken  \°
”k’“—m{“(m”x@[“(m)] 1o
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Figure 7. (a) Stationary momentum distribution of an expanding, interacting
BEC at large timest(> 1/w). (b) Lyapunov exponent of single-particles of
energyE as a function of the momentukn= v/ 2mE/h .

where® is the Heaviside step function. Siné) ~ v/2wt, the momentum distribution reaches
a steady-state at timés> 1/ w:

Dk = 2 s [1- (k)] x © [1- (kn)?]. (19)
An important feature of the momentum distributidrd) is that it has a high-momentum cut-off
atk. = 1/&, (see figurer(a)).

For t > 1/w, almost all the initial interaction energy is converted into kinetic energy.
Neglecting the effect of disorder at this stage, this property can be obtained from the scaling
solution @) [90, 91]. We find that the interaction energy . (t) >~ Ej,(0)/b(t). Then using
the property of conservation of the total energy during the expansion, we find that the ratio
of the kinetic energy to the interaction energy Egin(t)/Ein:(t) ~ b(t) — 1 which is much
larger than unity fot > 1/w. It follows from this analysis that for times typically larger than
1/w, the expanding BEC is a coherent superposition of almost non-interacting plane waves of

momentunk:

dk -« :
W(Z» t) = / EW(K t)elkz7 (20)

the momentum distributiorﬂ)(k):hﬁ(k, t)|> being stationary and determined by the
interaction-driven first expansion stadgb].

4.1.2. AL of quantum single particles in a correlated disordered potentlderefore, the
interaction of eack-wave with the disordered potential can be treated independently. According
to the Anderson theoryg], the k-waves will exponentially localize as a result of multiple
scattering from the modulations of the disordered potential. In other words, each compnent e
in equation 20) will become a localized functiogy(z), characterized by an exponential decay
at large distances: Iy (2)| ~ —y (k)|z|, wherey (k) = 1/Loc(K) is the so-called Lyapunov
exponent, and. (k) is the localization length. The Lyapunov exponent can be calculated
analytically in a correlated disordered potential using the phase formalism app8zth¢bee

also appendixB). At the lowest order of the Born expansion, which is valid provided that
y(K) <k, i.e. for

h%k 12
Vror K F(kGR) , (21)
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we find the Lyapunov exponent

N A 2 R
y(o = 5= (ER) (kor)?6(2korR), (22)
where E = h%k?/2m, and é(k) = \j’T‘Lﬂc(u)ei"u is the Fourier transform of the reduced

correlation functionc(u) (see appendid). A plot of the Lyapunov exponents versus the
momentunk is shown in figure/(b) for a speckle potential and for a Gaussian impurity model.

Deviations from a pure exponential decayfturn out to be important here. They can be
obtained using diagrammatic metho85,[96], and one finds an integral formula for the average
density of eaclk-wave:

70 /°° _ ( 1+02 )2
(6@ =—5 A du u sinh(rru) 1+ costiru)
x exp{—2(1+u?)y (k)|z]}, (23)

where y (k) is given by equation 42). Notice that at large distancesz|> 1/y (K)),
equation 23) reduces to

7/2 _
T ) o EXP 2y (K)|z|} (24)

2\ ~
(¢(2)[?) = (64«/W EE

so that the exponential decay of the density of the localized single-particle states is corrected by
an algebraic decay/1z|*/>.

4.1.3. AL of the BEC.In the regime of weak disorder defined by conditidtl)( the AL
transforms each plane wavé&Zewhich appears in the superpositioR0 into the localized
wave ¢,(z) =r(2)sin[#(2)], where 6(z) ~kz andr(z) is a slowly decaying envelope (see
appendixB). Therefore, the Fourier transform @k(z) is peaked around. It follows that
the interaction of th&-wave with the disordered potential only weakly affects the momentum
distribution of the BEC. Hence, once each indepen#tentive is localized, the density of the
BEC is given by the equation

2

>, (25)

No(2) ~ 'f ﬁv?(k t) i (2)
0 - \/Z 9 k

with |1&(k, t)|? ~ D(k). Assuming that the phases of the functignsz), which are determined

by the local properties of the disordered potential and by the evolution time, are random,
uncorrelated functions for different momenta, i@, (2)¢x(2)) >~ 278(k — k'), the density of

the BEC reduces to

No(2) =2 fo kD (K) (16217, (26)

where we have used the propertiegk) = D(—k) and(|¢«(2)|2) = (|¢_«(2)|?). This formula is
transparent and contains the main ingredients of the AL of an interacting BEC in a disordered
potential. In a first stage, the interactions drive the expansion of the BEC and determine the
momentum distributiorD(k). In a second stage, the interactions vanish and the BEC is formed
of a superposition of plane waves of enerdgies h’k?/2m. Then eaclk-wave localizes with its

own localization length (k) = 1/y (k). We will show in the next paragraphs that the precise
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localization properties of the BEC which are determined by the integ@al¢trongly depend on
the correlation function of the disordered potential. This is reminiscent of the strong dependence
of the single-particle Lyapunov exponentk) on the correlation function.

4.2. AL of an expanding BEC in an impurity model of disorder

Let us consider the case of the impurity model of disorder described in the appeadibk

is made of a series of Gaussian peaks of widtlhnd amplitudeVv,, all identical and spread
randomly along the-axis. This potential is generic and in the limit— 0 with Vow fixed,

we recover the widely usegicorrelated (i.e. un-correlated) disorder made of a random series
of § peaks used in a number of theoretical investigation of disordered sys&HnsThis
Gaussian impurity model of disorder can also be implemented using the so-called impurity
atom technique with ultracold atomic gasés$,[57]. In this case, the Fourier transform of the
reduced correlation function reads

C(k) = /7 /2 exp(—«?/4) (27)

and the amplitude and correlation length arg= \/gvo and or = 2w, respectively (see
appendixA.2). Inserting equation7) into (22), we find

Tm?Viog

T exp[-(kor)?] (28)

y (k) =
which is plotted in figure/(b) (blue, dotted line).

Using equations19), (23), (26) and @£8), we now calculate the density profile of the
localized BEC. Since the density profilg(z) is the sum ovek of the functions|¢y(2)|?) which
decay exponentially with a rate/2k), the long-tail behavior offip(z) is mainly determined by
thek-components with the smallegtk), i.e. those witlk close to the high-momentum cut-off
k. = 1/&p. Therefore, integrating in equatiog) we limit ourselves to the leading order terms
in Taylor series foD (k) andy (k) atk close tok.. We find

exp{—2yer| 2|}

No(z
0(2) 7z

(29)

where  yert =y (K= 1/&n). (30)

This means that the AL of an expanding, interacting BEC occurs, provided that the
disordered potential is weak enough. In the case of a Gaussian impurity model of disorder,
the density profile shows an exponential decay with the effective Lyapunov exponent equal to
the one of a single particle of momentwes= k. = 1/, (see equation3(0)), i.e.

7T/32 (VR
Veft =

2
—) (0v/ ) XPI=(0r/En)?]. (31)
Sin n

These are clear characteristics of AL of the BEC which can be observed in experiments on
ultracold atoms using direct imaging techniques.
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4.3. AL of an expanding BEC in a speckle potential

Let us examine now the case of a speckle potential (see apparbitor which, in 1D, the
Fourier transform of the reduced correlatign4) function reads

Ck)=/m/2(0—«k/2)O(L—«/2), (32)

where® is the Heaviside step function. The case of a speckle potential is particularly interesting
for two reasons. Firstly, it corresponds to the model of disorder used in almost all present
experiments with disordered BEC#4]—-[46], [48, 79, 80]. Secondly, we will see that speckle
potentials offer much richer situations than the impurity model discussed above due to peculiar
long-range correlationp].

One important feature of the speckle potential is the fact that the Fourier trans3@ym (
of the correlation function has a finite support. After equatie) (it results that the Lyapunov
exponent vanishes fér> 1/0R, i.e. that strong AL occurs for non-interactikgvaves only for
k < 1/or [25]. In other words, there is a 1D mobility edge a% in the Born approximation.
Strictly speaking, higher orders in the Born expansion may provide a non-vanishing Lyapunov
exponent forkk > 1/0r. However, we have shown using direct numerical calculations that the
localization length (inverse Lyapunov exponent) kot 1/0r strongly exceeds typical sizes of
ultracold atomic samples, so that we can conskderl/or as areffective mobility edgm our
problem 5.

It follows that a part of the expanding BEC (i.e. its Fourier components kvithl/oR)
expands to infinity while all the Fourier components wktk: 1/05 localize exponentially with
thek-dependent Lyapunov exponent

2\/2
(k) = T VeoR
2h"k?

found by inserting equatior3@) into (22). Equation 83) is plotted in figurer(b) (solid, red line)
and show that for a 1D speckle potential, the high-momentum clk-effmin{1/&,, 1/or} in
the integral formulaZ6) for the BEC density is twofold. The cut-of= 1/&;, is related to the
momentum distribution of the expanding BEC and is due to the initial atom—atom interactions,
while the cut-offk = 1/0r is related to the correlation function of the 1D speckle potential and
is due to the peculiar finite range correlations of the disordered potential. Now, two very different
situations must be distinguishez.

For &, > ogr, the high-momentum cut-oH; is provided by the momentum distribution.
In this case, all non-interacting functionigp«(2)|%) are exponentially localized with a finite
Lyapunov exponenty (k) > y(1/&y,) > 0. This situation is then similar to the case of the
Gaussian impurity model and, integrating equati®g) (we find

(1— kO'R)®(1—kO'R), (33)

exp{—2yer|z|}
No(2) |Z|—7/2, (34)
where  yerr =y (K= 1/&n). (35)

Finally, the BEC density profile is exponentially localized with the effective Lyapunov exponent

7T/32 (VR
Veff =

2
: 7) (0r/&in) (1 — 0r/&in) O (1 — or/&in). (36)
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Figure 8. Upper panel: density profile of the localized BEC in a speckle potential
att = 150/w. Shown are the numerical data (black points), the fit of the result
from equations19), (23) and @6) (red solid line), and the fit of the asymptotic
formulae 34) and @5) (blue dotted line). Inset: time evolution of the rms size
of the BEC. The parameters akg = 0.1 u, &, = 0.01Lr and or = 0.78%;,.
Lower panel: (a) Lyapunov exponend; in units of 1/Lt¢ for the localized BEC

in a speckle potential, in the regingg > or. The solid line isy (1/&;,) from
equation 86). (b) Exponent of the power-law decay of the localized BEC in the
regimes, < or. The parameters are indicated in the figure.

Foré&i, < oR, the situation is completely different. In this case, the cukpi$ provided by
the correlation function, and singgk = 1/0g) = 0, the relevant Lyapunov exponenigK) for
all k < 1/0R) do not have a finite lower bound. Then, integrating equata (ve find that the
BEC density profile is not exponentially localized but rather showalgebraicdecay P5|:

1
No(2) 2 (37)

We now present numerical results performed within the Gross—Pitaevskii approximation
for the expansion of a BEC in a speckle potentéd][ The inset of figure3 (upper panel) shows
that the expansion is strongly suppressed and for long times, the BEC density profile is localized
as shown in figur& (upper panel). Let us discuss now the behavior of the tails.

For &, > or, the density profile obtained numerically is found to be exponentially
localized. In addition, fitting the functiony(z) o< exp{—2yes|z|}/12|”/? to the numerical results
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with the amplitude angl as fitting parameters, we find that the resultsyigrare in excellent
agreement with the predictioB€) as shown in figur&(a) (lower panel).

For &, < or, we find that the density profile decays algebraically. We fit the function
No(2) o 1/|z|P" with the amplitude ange as fitting parameters, and we find th&k ~ 2 in
agreement with the predictioB7) as shown in figur&(b) (lower panel).

5. Conclusion and perspectives

In summary, we have theoretically investigated the localization of an expanding 1D BEC with
repulsive atom—atom interactions characterized by the initial healing lépgtha disordered
potential of finite correlation lengthr. We have restricted our study to the regime where the
initial interactions of the trapped BEC dominate over the kinetic energy and the disorder, a
situation relevant to almost all current experiments with disordered BEGs[{8], [79, 80].

When the BEC is released from the trapping potential while keeping the disordered potential
on, we find a strong suppression of the expansion, similar to earlier experimental observations
[45, 46, 48]. We have shown that this localization effect has completely different causes
depending on the strength of the disorder.

5.1. Strong disorder

The case of strong disorder corresponds to the situation where several modulations of the
disordered potential individually are strong-enough to induce an almost total reflection of
noninteracting particles of energy equal to the typical expansion energy per particle of the
BEC. In particular, this case is relevant to the experimentg§f46, 48] and to the numerics

of [45, 93, 97]. In this case, the localization results frordigorder-induced trappinf45], whose
scenario involves two processes: (i) the fragmentation of the core of the BEC on one hand and
(ii) classical total reflections from single large modulations of the disordered potential on the
other hand. In the core of the BEC, the interactions remain important during the initial expansion
stage. The BEC is in a quasi-static Thomas—Fermi regime with an effective chemical potential
which first slowly decreases during the expansion. When the BEC fragments, the expansion of
the core of the BEC stops. In the tails of the BEC, the interactions are negligible and the patrticles
undergo multiple scattering from the modulations of the disordered potential but the expansion
is ultimately stopped by single large modulations. Hence, in the case of strong disorder, the
localization is not related to AL.

5.2. Weak disorder

In the case of weak-enough disorder, the probability of modulations of the disordered potential
such that the reflection of a particle of typical eneggyapproaches unity is negligible, and

AL can show up in an expanding BEC. The scenario is then as foll@®ls In a first stage,

the interaction energy dominates over both the kinetic energy and the disorder, and drives
the initial expansion of the BEC. After a typical time ofd where w is the frequency

of the initial trapping potential, the interaction energy vanishes and the momentum distribution
of the expanding BEC becomes stationary. At this stage, the interactions can be neglected and
the BEC wavefunction is a superposition of (almost) non-interacting waves of moméntum
Eachk-wave Anderson localizes with its owkrdependent localization length.(k). The
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density profile of the localized BEC is thus the superposition of the locakzedves and
strongly depends on the correlation function of the disordered potential.

The case of speckle potentials is particularly interesting as the Fourier transform of their
correlation function has a finite support. It follows that the localization of the expanding BEC
is exponential only fog&j, > or (in the lowest order of the Born expansion, see secfjorin
the opposite situatiortf, < ogr), the density profile of the BEC decays algebraically Ag|1.
Therefore, for speckle potentials, there isedi®ective mobility edgeat &, = or for the AL of an
expanding, interacting BEQJ).

5.3. Perspectives

Our results suggest that the 1D AL can be observed in an interacting BEC (initially in the
Thomas—Fermi regime) expanding in a disordered potential in experiments similar to those
reported in 5, 46, 48]. We stress that special attention should be paid to using weak-enough
disorder to allow the dilution of the BEC during the first expansion stage and to avoid strong
reflections from large modulations of the disordered potential. In addition, we have shown
that the correlation function of the disordered potential plays a crucial role for the localization
properties of the BEC.

However, a couple of challenges have to be taken up to observe AL in current experiments
with expanding BECs. Indeed, in addition to being able to produce long-enough expansions
and to measure very small densities, it appears that both disorder and interactions have to be
carefully controlled.

In this respect, using disordered potentials created by optical speckle patterns is particularly
promising. On one hand, from a practical point of view, the correlation functions of speckle
potentials are very well controlled and can be designed almost at will. This allows for a direct
comparison between experimental observations and theoretical predictions. On the other hand,
for a 1D speckle potential, the Fourier transform of the correlation function has a cut-off
at k = 1/20r which induces areffective mobility edgat k = 1/or for single-particles and,
correspondingly, a%, = or for an expanding, interacting BEC. The presence of this effective
mobility edge gives rise to two qualitatively different regimes, which might be observed in
experiments, namelgxponential localizatiorfor &, > og and algebraic decayof the BEC
density profile forj, < or.

Equation 86) shows that for a speckle potential, the stronger localization is obtained for
&n = 3or/2 and for this valuel . increases witlog. It is thus more favorable to work with
the shortest correlation length of the disordered potential. To date, correlation lengths about
or =~ 0.3 um have been produced experimentatig]|

The first experiments on the expansion of a BEC in a speckle poteffiad$, 48] were
operated a&j, ~ or/10. In order to reach the regime of AL, it is crucial to lower the interaction
energy of the initial condensate in order to increase the healing |€pgMne can either use a
Feshbach resonance to directly control the atom—atom interaction strength or lower the density
by lowering the number of atoms afaf the radial confinement of the magnetic guide used
in [45, 46, 48]. In the latter case, the dynamics of the expanding BEC in the radial direction
can play a role. As the radial confinement is kept during the expansion of the BEC, we expect
the radial dynamics to be slow compared to the longitudinal expansion. As a result, the radial
profile of the BEC would follow adiabatically the local 1D (longitudinal) density, reducing
the dynamics to a quasi-1D problem. However, a part of the potential and interaction energies
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associated to the smooth radial confinement will be converted into longitudinal kinetic energy
during the expansion. If the BEC is initially in the 3D Thomas—Fermi regimest hw, ), the
effective de Broglie wavelength of the 1D expansion can be expectedighe0.85%;, to be
compared t@;, in the pure 1D case studied here. Hence, for elongated BECs, we do not expect
strong differences compared to the 1D situation we have studied in the present work. A more
detailed discussion would require further investigation which is beyond the scope of this paper.

We expect that this work will pave the way for the experimental observation of those
non-trivial 1D localization properties. This work could also be extended to higher dimensions
(namely 2D and 3D geometries)§, 99] where similar scenarios can be expected but where
localization properties would be significantly different.
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Appendix A. Random and periodic potentials

In this appendix, we give a couple of details about the inhomogeneous pot&figate which
the atoms are subjected (see secdi)i.e. a disordered speckle potential, a Gaussian impurity
model of disorder and a periodic potential. We plot in figiré typical realizations of these

potentials.
Generally, we write the potenti& (z) as
V(2) = Vrv(Z/0Rr) (A1)
and the spatial auto-correlation functiGriz) = (V(Z +2)V (Z)) — (V)?, as
C(2) = Vic(z/ow), (A.2)

whereVg is the typical amplitude of potentiadg is the typical space scale (correlation length
in the case of disordered potentials) and) is a given function characteristic of the model
of inhomogeneous potential. In this work, we assume thét)) =0 where(.) represents
averaging over realizations of disordered potentials or spatial averaging.

A.1l. Speckle disordered potential

The main model of disorder we consider is the speckle potential, as it is the one used in many
experimental studies of disordered BE@4]F[46], [48, 79, 80]. In brief a speckle pattern is
formed by diffraction of a laser beam through a rough plate. The intensity of the speckle pattern
is proportional to the intensity of the incident laser and the correlation function is determined by
the transmission of the diffusive platgd, 60] (see @8] for practical realizations in the context

of disordered BECSs). A disordered potential (e.g. a speckle potential) is characterized by its
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Figure A.1. Typical realizations of the potentials(z) considered in this work.

(a) Speckle and periodic potentials: the solid line (red online) shows a typical
realization of a disordered speckle potential with~ 1.39 x 10~?Lx and

the dotted line (blue online) shows the periodic potential it 10~ L.

(b) Gaussian impurity model of disorder witih= 2 x 10~?Lr¢.

statistical properties, mainly the single-point intensity distribution and the two-point correlation
function.

Within the scaling defined above (see equatiohd) and @A.2)), a speckle potential is
represented by a random functiofu) whose single-point statistical distribution is a decaying
exponential

Plv(w)] = exp[-{v(u)+1}], forv(u) > -1 (A.3)
and P[v(u)] =0, otherwise

The laser intensity pattern creates an inhomogeneous light shift for the atoms (sea figa)ke
For a laser which is blue-detuned compared to the atomic resonance line, weghav@and
for red detuningvir < 0 [10Q.
For the numerical calculations presented in the paper, we numerically generate a 1D
speckle pattern using a method similar to the one describé®ja(1] in 1D and corresponding
to the following reduced correlation function:

c(u) = sinqu)?. (A.4)

Another useful characteristics of the speckle potential in the case of blue detuning

(Vr > 0) is the average number of peaks with an intensity larger than a given Vali¢hin

a given region of lengthLtr (see sectior3.2). Elaborate methods to compute a number
of characteristics of speckle potentials can be found5® p0O]. Here, we use a simple
approximation which suits our purpose. From the probability distributfoB)( we easily find

that the probability density that the local disordered potential is larger than a givenWalue

is P(V) =exp[— (V +VR)/VR]. Now, the density of peaks (local maxima of the disordered
potential) is ¥d whered « oR is the typical distance between two peaks. Therefore, typically,

the number of peakBlyeaksWithin a region of length_+¢ with intensity larger thav scales as
i exp(—22 ) . However, this rough estimate does not take into account the interplay between
the local intensity distribution and the finite correlation length of the disordered potential. In the
simulated speckle potentials, we find that the typical number of peaks with intensity larger than
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Figure A.2. Average number of peaks within a rangg- with amplitude larger
thanV for different values of the correlation length of the disordered potential
and comparison to equatioA.b).

V in aLte-long region can be approximated by

Npeaks(v) . (ﬁ) exp[_ﬂv . VR] ’ (A-5)
o Vi

R R

with « >~ 0.30 andg ~ 0.75, with very good accuracy as shown in figé&.

A.2. Impurity model of disorder

A model of disorder which is very popular in theoretical studies of quantum disordered system
is the impurity model $4]:

V(@) =Vo) d(z-Z), (A.6)

]
whereg is a real-valued function peaked at 0, of width w and such that & g(z) < 1.
The locations of the impuritieg; are random and their average distance is dendtethe

disordered potential is then formed of a series of impurities, all identical but randomly displaced
along thez-axis (see figuré.1(b)). Here, we consider Gaussian-shaped impurities:

9(2) = exp(—Z%/2w?). (A.7)

This potential can be realized using ultracold atoms (of another species than the BEC) trapped
in the Wannier states of the fundamental Bloch band of an optical lai&&F, 102.
From equationA.6), we find that the statistical average of the poten#abj is

Vo w
V)= / dx g(x) = V27 Vo (E> (A.8)
and the correlation function is
2
C(2 = \;—0 / dx g(xX)g(x +2z) = Vch(z/aR), (A.9)

with c(u) = /7 exp(—x?), Vk = /5 Vo andog = 2w.
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A.3. Periodic potential
For periodic potentials (see figufel(a)), we use

V (2) = V/2Vg co272/1) (A.10)

corresponding to the mean val() = 0 and the standard deviatiaxVV = |Vg|. Such potentials
are currently realized using interference patterns of laser beams in geometries with tunable
lattice spacings3s, 103.

Appendix B. Phase formalism for the calculation of Lyapunov exponents in
1D disordered potentials with finite-range correlations

In this section, we outline the phase formalism method used to calculate the Lyapunov exponent
(inverse localization length) of a non-interacting particle of enefgy h?k?/2m in a 1D
disordered potential with finite-range correlatioi®gl][ The idea consists in calculating the
propagation of the particle using a perturbation onghaseof the wavefunction/ (z). Notice
that the perturbation isot on the wavefunction itself.
The starting point is the Schrodinger equation
R d2

Ev (2= 7V @+V@Y Q). (B.1)

Without any loss of generality, we can write the wavefunction and its spatial derivative in the
form

¥ (2) =r(2)sino(2)], (B.2)

Y¥'(2) = kr(z) cosp(z2)], (B.3)

wherer (z) and6(z) represent the amplitude and the phase/@f), respectively. Substituting
equationsB.2) and B.3) into equation B.1), we find the coupled equations

0@ =k— VD sivra ), (B.4)
h<k

In[r(2)/r (0)] = /Zdz’ m;/Z(:/) sin[20(Z)]. (B.5)
0

Notice that the amplitude(z) is not involved in equatior&.4). It follows that for weak disorder
(see conditionB.9)), it can be solved easily in the lowest order of a perturbation series of the
phase& (z). We writef(z) = 6o+ kz+ §6(z) and we find
2mV(z
V) Sirtlgo +k2] (B.6)

6(2) ~0y+kz— dz
2) ~ 6o /O =

in the Born approximation (lower order). Finally, substituting equati®g)into (B.5), we find,
in the limit |z] — oo

In[r (2)/r (O)] = +y (K)|z], (B.7)
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where y(k):ﬁfjﬁj dz C(z)cos2kz), where C(z) is the correlation function of the
disordered potential (see equati@gn)) or equivalently

27 (V)2
(k) = gz (ER) (kor)26(2kor), .)

is the Lyapunov exponent.

Notice that the solutiong.7) corresponds to an exponentiatreaseof the envelope of the
wavefunctiony (z). In general, the solution of the Schrodinger equation in a disordered potential
is the sum of an exponentially increasing function and of an exponentially decaying function.
In a finite system, boundary conditions fix the coefficients and one finds true localized states
(i.e. wavefunctions with an exponentially decaying envelop for lzoth +oo andz — —o0).

In a time-dependent propagation scheme, the conservation of probability also imposes that the
coefficient of the exponentially increasing function vanishes. In the present calculation, since
we do not impose boundary conditions, only the exponentially increasing function remains at
infinite distance.

In spite of this unimportant limitation, this technique provides a very useful analytic
formula for the Lyapunov exponent, valid for any weak 1D disordered potential, possibly with
finite-range correlations. An important point is that the phase formalism techrdduedrifies
the AL effect in 1D disordered potentials. Hence, on small distances (say of the oralg); of
the interaction of the wavefunction with the disordered potential induces a small perturbation
of the phase# (z) (see equationR.4)), but hardly affect the amplitude(z). Nevertheless, the
coupling between the phase and the amplitude (see equdié)) (s crucial and induces
at large distances (say of the order lof, = 1/y) an exponential envelope, characteristic
of AL. Finally, the non-interacting localized state of eneryis essentially a plane wave

of wavenumbek = /2mE/h? modulated by an exponential envelope. This makes clear the
condition of application of the phase formalism approach which requiré&s <« k in order
for the phase to be only weakly perturbed. It follows for equatiBr8) that this condition
reduces to
h?k 12
Vror K F(kUR) /2, (B.9)

whereVg is the amplitude andr is the correlation length of the disordered potential.
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