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Abstract. We theoretically investigate the localization of an expanding
Bose–Einstein condensate (BEC) with repulsive atom–atom interactions in a
disordered potential. We focus on the regime where the initial inter-atomic
interactions dominate over the kinetic energy and the disorder. At equilibrium
in a trapping potential and for the considered small disorder, the condensate
shows a Thomas–Fermi shape modified by the disorder. When the condensate
is released from the trap, a strong suppression of the expansion is obtained in
contrast to the situation in a periodic potential with similar characteristics. This
effect crucially depends on both the momentum distribution of the expanding
BEC and the strength of the disorder. For strong disorder as in the experiments
reported by Clémentet al 2005Phys. Rev. Lett.95 170409 and Fortet al 2005
Phys. Rev. Lett.95 170410, the suppression of the expansion results from the
fragmentation of the core of the condensate and from classical reflections from
large modulations of the disordered potential in the tails of the condensate.
We identify the corresponding disorder-induced trapping scenario for which
large atom–atom interactions and strong reflections from single modulations of
the disordered potential play central roles. For weak disorder, the suppression
of the expansion signals the onset of Anderson localization, which is due
to multiple scattering from the modulations of the disordered potential. We
compute analytically the localized density profile of the condensate and show
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that the localization crucially depends on the correlation function of the disorder.
In particular, for speckle potentials the long-range correlations induce an
effective mobility edge in 1D finite systems. Numerical calculations performed
in the mean-field approximation support our analysis for both strong and weak
disorder.
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1. Introduction

1.1. Disorder and ultracold atomic gases

Understanding the effect of disorder in physical systems is of fundamental importance in
various domains, such as mechanics, wave physics, solid-state physics, quantum fluid physics
or atomic physics. Although in many situations this effect is weak and can be ignored in
first approximation, it is not always so. Strikingly enough, even arbitrarily weak disorder can
dramatically change the properties of physical systems and result in a variety of non-intuitive
phenomena. Many of them are not yet fully understood. Examples in classical systems include
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Brownian motion [1], percolation [2] and magnetism in dirty spin systems [3]–[7]. In quantum
systems, the effects of disorder can be particularly strong owing to the complicated interplay of
interference, particle–particle interactions and disorder. The paradigmatic example is (strong)
Anderson localization (AL) of non-interacting particles [8]–[11]. Other interesting effects of
disorder in quantum systems include weak localization and coherent back-scattering [12],
disorder-driven quantum phase transitions and the corresponding Bose glass [13]–[15] and spin
glass [16, 17] phases.

AL signals out in two equivalent ways, either as the suppression of the transport of
matterwaves in disordered media, or as an exponential decay at large distances of the envelope of
the eigenstates of free-particles in a disordered potential [11]. Both properties strongly contrast
with the case of periodic potentials, in which transport is free and all eigenstates extend over the
full system as demonstrated by the Bloch theorem [18]. AL is due to a destructive interference of
particles (waves) which multiply scatter from the modulations of a disordered potential. It is thus
expected to occur when interference plays a central role in the multiple scattering process [11].
In three dimensions (3D), it requires the particle wavelength to be larger than the scattering
mean free pathl as pointed out by Ioffe and Regel [19]. One then finds a mobility edge at
momentumk=1/ l , below which AL can appear. In 1D and 2D, all single-particle quantum
states are predicted to be localized [20]–[22], although for certain types of disorder one has an
effective mobility edge in the Born approximation [23]–[25].

Ultracold atomic gases are now widely considered to revisit standard problems of
condensed matter physics under unique control possibilities. Dilute atomic Bose–Einstein
condensates (BEC) [26]–[29] and degenerate Fermi gases (DFG) [30]–[34] are produced
routinely taking advantage of the recent progress in cooling and trapping of neutral
atoms [35]–[37]. In addition, controlled potentials with no defects, for instance periodic
potentials (optical lattices), can be designed in a large variety of geometries [38]. In
periodic optical lattices, transport has been widely investigated, showing lattice-induced
reduction of mobility [39]–[41] and interaction-induced self-trapping [42, 43]. Controlled
disordered potentials can also be produced optically as demonstrated in several recent
experiments [44]–[48], for instance using speckle patterns [49, 50]. Other techniques can
be employed to produce controlled disorder such as the use of magnetic traps designed on
atomic chips with rough wires [51]–[55], the use of localized impurity atoms [56, 57], or the
use of radio-frequency fields [58]. However, the use of speckle potentials has unprecedented
advantages from both practical and fundamental points of view. Firstly, they are created using
simple optical devices and their statistical properties are very well known [59, 60]. Secondly,
they have finite-range correlations which offers richer situations than theoreticalδ-correlated
potentials (i.e. uncorrelated disorder) and the correlation functions can be designed almost at
will by changing the geometry of the optical devices [59, 60]. Finally, both the amplitude and the
correlation length (down to fractions of micrometres) can be controlled accurately and calibrated
using ultracold atoms [48].

Within the context of ultracold gases, important theoretical efforts have been devoted
to disordered optical lattices which mimic the Hubbard model [14], [61]–[64]. For bosons,
quantum phase transitions from superfluid to Bose glass and Mott insulator phases have been
predicted [65, 66] and evidence of the Bose glass has been obtained experimentally [67]. With
Fermi–Bose mixtures, the phase diagram is even richer and includes the formation of a Fermi-
glass, a quantum percolating phase and a spin glass [68]–[70]. Effects of disorder in Bose gases
at equilibrium without optical lattice have been addressed in connection with the behavior of
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the BEC phase transition [71, 72], the quantum states of Bose gases [73]–[76], the localization
of Bogolyubov quasi-particles [77, 78], the dynamics of time-of-flight imaging of disordered
BECs [79, 80], and random-field-induced order in two-component Bose gases [81, 82].

1.2. Scope and main results of the paper

The dynamics of BECs in disordered (or quasi-disordered) potentials is also attracting
significant attention in a quest for observing AL in non-interacting BECs [56, 83, 84] or in BECs
with repulsive interactions [25], [85]–[87]. Recent experiments have demonstrated the strong
suppression of transport in expanding BECs in the presence of optical speckle potentials [45,
46, 48], but this effect is not related to AL [45].

In this paper, we theoretically and numerically analyze the expansion of an interacting 1D
BEC in a disordered potential. We focus on a regime where the inter-atomic interactionsinitially
exceed the kinetic energy (Thomas–Fermi regime), a situation that significantly differs from the
textbook AL problem but which is relevant for almost all current experiments with disordered
BECs [45]–[48], [79, 80]. We distinguish two regimes that we namestrong disorderandweak
disorder, respectively.

The case of strong disorder corresponds to the situation of the experiments of [45, 46, 48]
where the interaction energy in the center of the BEC remains large during the expansion
and where the reflection coefficient from a single modulation of the disordered potential is
of the order of unity. In this case, our numerical results reproduce the strong suppression of the
transport of the BEC as observed in the experiments of [45, 46, 48]. We analyze the scenario of
disorder-induced trappingproposed in [45] in which two regions of the BEC are identified. The
first region corresponds to the center, where the trapping results from a competition between
the interactions and the disorder. The second region corresponds to the tails of the BEC, where
almost free particles are multiply scattered from the modulations of the disordered potential.
There localization is rather due to the competition between the kinetic energy and the disordered
potential, but is ultimately due to the almost total classical reflection of the matterwave from a
single barrier. These two effects are responsible for blurring AL effects [45, 46].

Weak disorder corresponds to a situation where the probability of large and wide
modulations of the disordered potential is small. In this case, we show that AL does occur
as a result of multiple quantum scattering from the modulations of the disordered potential.
Let us briefly describe the scenario first proposed in [25]. Initially, the repulsive interactions
are important as compared to the kinetic energy and to the potential energy associated to the
disordered potential. Then, the interactions induce the expansion of the BEC and determine the
momentum distribution of the BEC. After a time typically equal to the inverse of the initial
trapping frequency, the interactions vanish and the momentum distribution reaches a steady
state. Then, the BEC is a superposition of non-interacting waves of momentumk. Each wave
localizes with its own localization lengthL loc(k). By calculating analytically the superposition
of the localized waves, we show that the BEC can be exponentially localized or only show an
algebraic decay depending on the correlation function of the disordered potential. In particular,
due to peculiar long-range correlations, the BEC localizes exponentially in speckle potentials
only if ξin > σR, whereξin is the initial healing length of the BEC andσR is the correlation length
of the disorder.
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1.3. Organization of the paper

The paper is organized as follows. In section2, we review the properties of a BEC at equilibrium
in a combined harmonic plus disordered potential, in particular in the non-trivial regime where
the healing length of the BEC exceeds the correlation length of the disordered potential. The
next two sections deal with the expansion of an interacting BEC in a disordered potential.
Section3 is devoted to the case of strong disorder. We reproduce and complete our previous
results [45] which demonstrate the suppression of the expansion of the BEC in a speckle
potential with similar parameters as in the experiments of [45, 46, 48]. The scenario of
disorder-induced trapping is analyzed and characteristic properties of the BEC trapped by
the disorder are calculated analytically and compared to numerical results. In particular, we
derive an analytic expression for the central density of the BEC trapped by disorder which
happens to be characteristic of the disorder-induced trapping phenomenon and we show that
the ultimate suppression of the expansion of the BEC is due to classical reflections from the
large modulations of the disordered potential. We also compare these findings with the case of
a BEC expanding in a periodic potential with similar characteristics as the disordered potential.
Section4 is devoted to the case of weak disorder. We show that AL can show up in an expanding,
interacting BEC under appropriate conditions that are clarified. We show that the localization
properties of the density profile crucially depend on both the momentum distribution
of the expanding BEC and the correlation function of the disordered potential. In particular, in
the case of a speckle potential, we find a 1Deffective mobility edge. We calculate analytically the
expected localization lengths and compare our findings to the results of numerical calculations.
Finally in section5, we summarize our findings and discuss expected impacts of our work on
experiments on disordered BECs.

2. Condensates at equilibrium in a combined harmonic trap plus disordered
potential

2.1. Interacting BECs in a 1D inhomogeneous potential

We consider a low-temperature 1D Bose gas with short-range atom–atom interactionsgδ(z)
whereg is the 1D coupling constant. The Bose gas is assumed to be subjected to (i) a harmonic
potential of frequencyω and (ii) an additional inhomogeneous potentialV(z). In a finite system
as considered in this work, assuming weak interactions, i.e.n̄ � mg/h̄2 wheren̄ is the average
density andm the atomic mass [88, 89], the Bose gas will form a BEC even in low-dimensional
(e.g. 1D) geometries [89]. Hence, we can treat the BEC within the mean-field approach [28, 29]
using the Gross–Pitaevskii equation (GPE):

ih̄∂tψ(z, t)=

[
−h̄2∂2

z

2m
+

mω2z2

2
+ V(z)+ g|ψ(z, t)|2 −µ

]
ψ(z, t), (1)

whereµ is the BEC chemical potential.
In the following, we investigate the situations where the additional potential readsV(z)=

VRv(z) with v(z) being either a disordered or a periodic function with vanishing average and
unity standard deviation. Therefore, we have〈V(z)〉 = 0 and

√
〈V(z)2〉 − 〈V(z)〉2 = |VR|. The

sign of VR depends on the definition of the functionv(z) and on the kind of potential one
considers. For instance, in optical speckle potentials, the quantityv(z)+ 1 is defined to be
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positive andVR > 0 for blue-detuned laser light (case of the experiments of [45, 48, 79]) while
VR < 0 for red-detuned laser light (case of the experiments of [44, 46, 80]). For a sine-periodic
potential, usingVR < 0 or VR > 0 does not change the physics. See appendixA for details.

2.2. The BEC wavefunction

Here, we briefly discuss the influence of an inhomogeneous potential on the BEC at equilibrium
in the harmonic trap. We assume that the amplitude of the disordered potential is smaller than the
chemical potential of the BEC (VR � µ) and thatµ� h̄ω. This question has been investigated
in detail in [74]. Here, we only outline the results.

At equilibrium, the BEC wavefunction is real (up to an irrelevant uniform phase) and is the
solution of equation (1) with ∂tψ = 0:

µψ(z)=

[
−h̄2∂2

z

2m
+

mω2z2

2
+ V(z)+ g|ψ(z)|2

]
ψ(z). (2)

For VR = 0 andµ� h̄ω, the kinetic term can be neglected (Thomas–Fermi regime [29]) and
the BEC wavefunction isψ0(z)=

√
n0(z) with

n0(z)=
µ− mω2z2/2

g
, (3)

for z such thatµ >mω2z2/2 andn0(z)= 0 elsewhere. The density profilen0(z) is an inverted
parabola of lengthLTF =

√
2µ/mω2 much larger than the healing lengthξin = h̄/

√
4mµ [29]

(notice that this definition is different from the one of [74], where we usedξ =
√

2ξin ).
In the presence of an inhomogeneous potential (VR 6= 0), the parabolic shape of the

density profile is perturbed. In general, the kinetic term cannot be neglected any longer. In
particular, whenξin & σR, the short-range modulations of the potentialV(z) induce short-range
modulations of the BEC wavefunction which contribute significantly in equation (2) through
the kinetic term. In order to take into account the effect of the inhomogeneous potential, we use
a perturbative approach along the lines of [74]: we writeψ(z)= ψ0(z)+ δψ(z) with δψ � ψ0.
The first-order term of the perturbation series of equation (2) is governed by the equation

−(ξ0
in)

2∂2
z(δψ)+ δψ = −

V(z)ψ0

2gn0
, (4)

whereξ0
in = ξin/

√
1− (z/LTF)2 is the local healing length. SinceLTF � (ξin, σR), it is legitimate

to use the local density approximation (LDA) [29], i.e. in a region smaller thanLTF, the quantity
n0 can be considered as uniform. In this approximation, the solution of equation (4) is easily
found by turning to the Fourier space. We findδψ(q)= −Ṽ(q)ψ0/2gn0, where

Ṽ(q)=
V(q)

1 +(qξ0
in)

2
(5)

and finally,

ψ(z)' ψ0(z)

[
1−

Ṽ(z)

2gn0(z)

]
, (6)

or equivalently,

n(z)' n0(z)− Ṽ(z)/g. (7)
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This solution justifiesa posteriorithe use of a perturbative approach forṼR � µ, whereṼR =√
〈Ṽ(z)2〉 − 〈Ṽ(z)〉2 is the standard deviation of the potentialṼ(z). Notice that the equality

〈Ṽ(z)〉 = 0 directly follows from equation (5).
An important consequence of the solutions (6) and (7) is that the BEC wavefunction

is only weakly perturbed by the inhomogeneous potentialV(z) if ṼR � µ. It follows from
equation (5) that forξin � σR, Ṽ(z)' V(z) and the relative inhomogeneities of the BEC density
are δn/n ∼ VR/µ� 1. For ξin & σR, the relative inhomogeneities are even smaller since all
Fourier components of̃V are smaller than those ofV . More precisely, the effective potentialṼ
is roughly obtained fromV by suppressing the Fourier components with a wavelength smaller
than the healing length. In other words, the BEC density does not follow the modulations of the
bare disordered potentialV(z) but actually follows the smoother modulations of thesmoothed
disordered potential̃V(z).

Therefore, an interacting BECat equilibrium in a disordered potential is not localized
in the sense of Anderson. One may wonder whether this conclusion still holds for stronger
disorder or weaker interactions, where the meanfield approach can break down. This question
has been addressed in [75]. It turns out that for very weak interactions, the Bose gas forms a
so-calledLifshits glasswhich corresponds to a Fock state of various localized single-particle
states. These states belong to the Lifshits tail of the non-interacting spectrum and are strongly
trapped. Therefore, AL can hardly be observed unambiguously in this case. It seems more
favorable to find evidence of AL in transport experiments of interacting BECs, rather than
studying BECs at equilibrium in a disordered trap.

3. Strong disorder: suppression of the expansion of a BEC in a speckle potential
and disorder-induced trapping scenario

In this section, we investigate the transport properties of a coherent BEC in a disordered
potential in the situation of the experiments of [45]–[48]. We thus assume (i) that the chemical
potential of the BEC is larger than the depth of the disordered potential (µ > VR) and (ii) that the
correlation length of the disordered potential is much larger than the healing length of the BEC
and much smaller than the (initial) size of the BEC,ξin � σR � LTF. We present numerical
results which reproduce the suppression of the transport of the BEC in a speckle potential,
observed in [45, 46, 48], and discuss a scenario to explain this phenomenon. In addition, we
compare the observed behavior to the case of a periodic potential with similar characteristics.

3.1. Expansion of an interacting BEC in a speckle potential

In order to induce transport, we start from a BEC at equilibrium in the harmonic and disordered
potentials (see section2). At time t = 0, we suddenly switch off the trapping harmonic potential,
keeping the disordered potential. This process is similar to the one used in [45, 46, 48, 85]. The
evolution of the BEC is thus governed by the GPE (1) with ω = 0 and the initial condition
corresponds to the TF wavefunction discussed in section2.2.

The time evolution of theroot mean square(rms) size of the BEC,1z(t)=
√

〈z2〉 − 〈z〉2,
as obtained from the numerical integration of the time-dependent GPE (1), is plotted in figure1
for several amplitudesVR of the disordered potential. In the absence of disorder, the interacting
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Figure 1. Time-evolution of the rms-size of the BEC wavefunction evolving
in the disordered potentialV for several values of the amplitudeVR. The
(black) dashed line is the theoretical prediction of the scaling theory (10)
with a vanishing disordered potential. Here, we have usedσR = 0.012LTF and
ξin = 5.7× 10−4LTF.

BEC expands self-similarly as predicted by the scaling approach [90, 91]:

ψ(z, t)'
ψ [z/b(t),0]

√
b(t)

exp

(
i
mz2ḃ(t)

2h̄b(t)

)
, (8)

whereb(t) is thescaling parameterwhich is governed by the equation

b̈(t)= ω2/b2(t) (9)

with the initial conditionsb(t = 0)= 1 andḃ(t = 0)= 0. Integrating these equations, we find√
b(t)(b(t)− 1)+ ln

[√
b(t)+

√
b(t)− 1

]
=

√
2ωt, (10)

which asymptotically reduces to a linear expansion at large time,b(t)∼
√

2ωt . The numerical
calculations agree with this expression as shown in figure1.

The situation is significantly different in the presence of disorder. In this case, the initial
BEC wavefunction is the usual Thomas–Fermi inverted parabola perturbed by the disordered
potential [74]. For t . 1/ω, the scaling form (8) is still a good solution of the GPE and,
according to the scaling theory [90, 91] the BEC wavefunction expands. For larger times
and small amplitudes of the disordered potential (VR. 0.1µ), the effect of disorder on the
expansion observed in the numerical calculations is small and the BEC expands by about
one order of magnitude fort = 10/ω. For larger amplitudes of the disorder (VR& 0.15µ), the
expansion of the BEC stops after an initial expansion stage described above. This effect signals
the localization of the BEC wavefunction due to the presence of disorder.

Important information can be obtained from density profiles of the localized BEC. For
instance, density profiles corresponding to a single evolution are plotted at two different times
in figure2. From these it appears that the localized BEC is made of two distinct parts: a static
dense core and fluctuating dilute tails (see also figure3). In particular, the small fluctuations of
1z observed in figure1 are due to the contribution of the tails of the BEC that still evolve while
the core of the wavefunction is localized (see section3.2).
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τ and expected Thomas–Fermi profiles in the absence of a disordered potential
(dashed green lines). We also show the disordered potential normalized so as to
be homogeneous to a density (V/g; dotted blue line).
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Figure 3. Density profiles of the BEC during the evolution in the disordered
potential at different times forVR = 0.2µ in the core (a) and in the tails (b) of
the BEC. Both are magnifications of the plots of figure2. The solid (red online)
and dashed (blue online) lines correspond, respectively, to the timesωt = 10 and
ωt = 20 of the same evolution and the dotted (purple online) line corresponds to
equation (13) with nc as a fitting parameter. Notice the different scales in the two
figures.

It is worth noticing that the BEC expansion stops for amplitudes of disorder significantly
smaller than the typical energy per particle in the initial BEC:VR < µ. This suppression
of transport is phenomenologically similar to what is expected from AL [8]–[10]. Strictly
speaking, AL relies on the existence of localizedsingle-particle eigenstatesand on the
subsequent absence of diffusion [8]. However, we have stressed that the presence of
predominant inter-atomic interactions dramatically changes the picture [45]. On one hand,
repulsive interactions are expected to reduce the localization effect [74, 92]. During the initial
expansion of the BEC, the interaction energy greatly dominates over the kinetic energy in the
center of the BEC so that no Anderson-like localization effect is expected in this region. On the
other hand, although the particles in the tails are weakly interacting due to the small density,
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the initial interactions determine their typical energy as the initial expansion stage converts the
interaction energy into kinetic energy. We will see that, for strong disorder as considered here,
the modulations of the disordered potential will ultimately stop the expansion of the dilute tails,
masking any Anderson-like effect (in the case of weak disorder, however, AL can be obtained
in this region as discussed in section4). In the following, we detail the scenario ofdisorder-
induced trappingoutlined above and first proposed in [45].

3.2. Scenario of disorder-induced trapping

The dynamics of the BEC in the disordered potential is governed by three different forms of
energy: (i) the potential energy associated to the disordered potential, (ii) the interaction energy
and (iii) the kinetic energy. It is thus useful to evaluate and compare the kinetic and interaction
energies to understand the behavior of the BEC in the disordered potential. To this end, notice
first that it follows from the initial expansion of the BEC that the fast atoms populate the tails of
the expanding BEC while the slow atoms stay close to the center. In addition, notice that, except
for very small amplitudes of the disordered potential and subsequent long expansion times, the
density in the core of the BEC remains large whereas it drops to zero in the tails (see figure2).
We thus distinguish two different regions of the BEC: (i) the core where the density is large and
the interaction energy is dominant and (ii) the tails where the density is small and the kinetic
energy dominates. The behavior of the BEC turns out to be completely different in these two
regions [45].

3.2.1. Quasi-static Thomas–Fermi profile in the core of the BEC.For the sake of clarity, we
define the core of the BEC as half the total size of the initial condensate:−LTF/2< z< LTF/2
and call

nc(t)=
1

LTF

∫ +LTF/2

−LTF/2
dz |ψ(z, t)|2, (11)

the average BEC density in the center. In particular, at timet = 0, due to the parabolic envelope
resulting from the harmonic trap, we find

nc(t = 0)=
11

12

µ

g
(12)

in the absence of disorder but also in the presence of a self-averaging disordered potential2.
During the initial expansion stage, the average density in the core,nc, slowly decreases and

the parabolic envelope disappears. Since the interaction energy significantly exceeds the kinetic
energy, we expect the local density|ψ(z, t)|2 to follow almost adiabatically the instantaneous
value ofnc(t) approximately in the Thomas–Fermi regime so that

|ψ(z, t)|2 ' nc(t)− V(z)/g. (13)

In order to check this prediction, we plot in figure3(a) the result of the numerical
integration of the GPE (1) for the density profile in the central region of the BEC during the
evolution in the disordered potential at two different times, together with a plot of the analytical

2 In the context of disordered systems, a quantity is said to be ‘self-averaging’ when it verifies the principle of
‘spatial ergodicity’. In other words, it means that the average over realizations of the disordered potentials of a
relevant quantity,F , equals the corresponding spatial average: i.e.〈F〉 '

1
L

∫ L
0 dzF(z).
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expression (13). In particular, two properties are of special interest here. Firstly, we observe
that the time-dependent fluctuations of the density profile are significantly smaller than the
modulations of the disordered potentialV(z)/g. Secondly, the density profiles are in good
agreement with equation (13). This observation supports the scenario of an adiabatic decrease
of the density in the center of the BEC. The value ofnc at the end of the expansion turns out
to be characteristic of this scenario. In the following, we show thatnc can indeed be computed
from the statistical properties of the disordered potential.

The expansion of the core of the BEC in the disordered potential stops when the condensate
fragments, i.e. when the effective chemical potential in the center of the BEC (µ̄= gnc)
decreases down to the value of typically two large modulations of the disordered potential.
At this time, the energy per particle in the core of the BEC becomes too small to over-pass the
potential barriers and the core of the BEC gets trapped between these large modulations. This
scenario allows us to determine the final value of the average densitync in the core of the BEC.
Let us callNpeaks(V) the number of maxima of the disordered potential in the central part of the
BEC (−LTF/2< z< LTF/2) with an amplitude larger than a given valueV and assume that it
can be computed from the statistical properties of the disordered potential. The density in the
center of the BEC after the trapping has occurred thus corresponds to the maximum value of
nc below which two modulations ofV in average are present in the center of the BEC. This
is simply computed by solving forNpeaks(V = ncg)= 2. Although this scheme is general, it
appears clearer when applied to a case whereNpeaks(V) can be explicitly computed. Let us now
consider the case of a speckle potential [59, 60] with VR > 0. It is shown in appendixA (see

equation (A.5)) that in this caseNpeaks(V)' α
(

LTF
σR

)
exp

[
−β V

VR

]
whereα ' 0.30 andβ ' 0.75.

From this, we easily find that the final density of the core of the BEC isnc '
1
β

(
VR
g

)
ln

[
αLTF
2σR

]
.

In addition, we notice that the final density cannot exceed the initial density as resulting from

an expansion. Therefore, equation (14) is valid only for 1
β

(
VR
g

)
ln

[
αLTF
2σR

]
. µ/g. In the opposite

situation, the BEC is already multiply fragmented att = 0 and the final density saturates at
nc '

11
12
µ

g (see equation (12)). In summary, we expect that the average density of the BEC trapped
by the disorder is

nc ' min

{
1

β

(
VR

g

)
ln

[
αLTF

2σR

]
,

11µ

12g

}
. (14)

In order to check equation (14), we have extracted the averaged central density (see
equation (11)) from the wavefunctionsψ calculated numerically for several amplitudesVR and
correlation lengthsσR of the disordered potential. In figure4, we plotnc as a function ofVR

for severalσR together with the prediction (14). The results show that equation (14) provides a
good estimate of the final densitync in the core of the BEC. In particular, for small amplitudes
of the disorder,nc grows linearly withVR with a coefficient in agreement with equation (14) up
to about 10%. For larger amplitudes of the disorder,nc saturates below 11µ/12g as expected.

This behavior agrees with experimental results for a blue-detuned speckle potential
(VR > 0) [48]. It is worth noticing that our scenario is expected to apply also to the case of a red-
detuned speckle potential (VR < 0) as used in [46]. In this case, the fragmentation occurs when
µ̄= |VR| independently of the correlation length of disorder (ifξin � σR). Then, the fragmented
BEC is trapped in the small wells of the disordered potential with a typical sizeσR and with a
central densitync ' |VR|/g (independent ofσR). Instead, for a blue-detuned speckle potential
as investigated above, the BEC is trapped between large modulations that may be separated by
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correlation lengthσR and comparison to equation (14). The horizontal (red
online) line corresponds to the saturation limitnc = 11µ/12g.

a distance much larger thanσR. As a consequence the final density at the center is expected to
be significantly larger. This is confirmed by the numerical results of [93].

3.2.2. Strong reflections in the tails of the BEC.The situation is completely different in the
tails of the BEC. Due to the small atomic density, the kinetic energy now dominates over
the interaction energy. The tails are populated by fast moving, weakly interacting atoms that
undergo multiple scattering from the modulations of the disordered potential. Ultimately,
the trapping of these atoms results from almost total classical reflection on a single large
modulation of the disordered potential with an amplitude exceeding the typical energy of a
single particle [45, 46]. This scenario is supported by the density profiles plotted in figure2
where one can observe a sharp drop of the atomic density at the edges of the BEC (i.e. at
positionszmin ' −7LTF andzmax ' 8LTF in figure2). Notice that significant drops correspond
either (i) to modulations of the disordered potential larger than the initial chemical potentialµ

(e.g. atzmin ' −7LTF) or (ii) to a concentration of weaker barriers (e.g. atzmin ' −3.5LTF).
In contrast with the situation in the core of the BEC, it is expected that (i) the density profile

does not show a Thomas–Fermi shape and (ii) the local density is not stationary. Both properties
agree with our numerical results as shown in figure3(b) where we plot a magnification of a small
region corresponding to the tails of the BEC of figure2. In particular, the shorter modulations of
the wavefunction observed in figure3(b) are due to the kinetic energy of the particles in the tails.
This statement is corroborated by the calculation of the energy per particle,ε. Due to energy
conservation, the energy can be computed at the initial timet = 0 (i.e. right after releasing the
BEC from the trapping potential),ε =

1
N

∫
dz|ψ(z)|2[V(z)+ g|ψ(z)|2/2]. Using equation (7),

we easily find that

ε =
2µ

5

[
1−

15

8

(
VR

µ

)2
]
. (15)

The disordered potential perturbs the energy per particle only at second-order inVR/µ, and, for
VR � µ, we haveε ∝ µ. From this we expect that the typical wavelength3 of the fluctuations in
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Figure 5. (a) Time-evolution of the rms-size of the BEC wavefunction evolving
in a periodic potential for several amplitudesVR and for λ= 0.11LTF. The
theoretical prediction corresponding to equation (10) in free space is also shown
(black dotted line). The inset shows the velocity of the expansion of the BEC
together with the theoretical estimate (17). (b) Density profiles of the BEC in the
harmonic trap and after an expansion time in the periodic potential oft = 40/ω
for VR = 0.2µ.

the tails would be of the order of the healing length in the initial condensate, so that3/2π ∼ ξin.
This is confirmed by the properties of the momentum distribution of the BEC which show two
sharp peaks located aroundp ' ±h̄/ξin.

3.3. Expansion of a condensate in a periodic potential

Up to this point, our analysis has shown how the competition between inter-atomic interactions
and disorder (in the center of the BEC) or between kinetic energy and disorder (in the tails of the
BEC) can strongly suppress the coherent transport of an interacting matterwave in a disordered
potential. A natural extension of our analysis is to compare these findings to the situation in
a periodic potential with similar characteristics (see appendixA). In the case of a periodic
potential, no suppression of transport is expected as no large peak can provide a sharp stopping
of the expansion, and obviously, no ‘à la Anderson’ localization should occur.

Numerical results for the expansion of the BEC in the periodic potential described in
appendixA.3 are shown in figure5(a). The difference with the case of a disordered potential (see
figure1) is striking: as expected, the BEC now expands linearly with time with an asymptotic
expansion rate that decreases when the amplitudeVR of the periodic potential increases. A
detailed analysis shows, however, that the transport of the BEC in a periodic potential and in a
disordered potential share some properties for the parameters used in this section, as we discuss
below.

Again, important information is contained in the density profiles such as the ones plotted
in figure 5(b) (to be compared to figure2 which corresponds to the disordered case). Initially
(ωt = 0), the density profile follows the modulations of the periodic potential modulated by the
parabolic envelope associated to the harmonic trapping [74]. During the initial expansion stage,
the density in the center decreases slowly and follows adiabatically a Thomas–Fermi shape
with a slowly decreasing instantaneous chemical potentialµ̄. Then, the evolution of the center
stops when the chemical potentialµ̄ exactly matches the potential depth, i.e. when the BEC
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fragments. This is similar to the disordered case. However, in the case of a periodic potential, it
is a deterministic process which appears when

nc ' min

{
√

2

(
VR

g

)
,

11µ

12g

}
. (16)

As shown in figure6, this formula provides a very good value of the average density in the center
of the BEC trapped in the periodic potential. Remarkably, equation (16) shows thatnc does not
depend on the lattice spacingλ as confirmed by the numerical results shown in figure6. This is
different from the case of a blue-detuned speckle potential (VR > 0) wherenc has been shown
to depend explicitly on the correlation length of the disordered potential (see equation (14) and
figure4).

During the subsequent evolution, a part of the BEC is thus trapped in the center while the
tails still expand as shown in figure5. Let us focus now onto the tails of the BEC. To do so,
let us first write the BEC wavefunctionψ = ψc +ψw, whereψc andψw account for the center
(|z|< LTF) and for the tails (|z|> LTF), respectively. As the supports ofψc andψw are spatially
separated, we have1z2

=
∫

dz z2
|ψc|

2 +
∫

dz z2
|ψw|

2. The center gets trapped after a transient
time so that

∫
dz z2

|ψc|
2 tends to a constant,1z2

0, at large times. In contrast, the tails expand so
that their density decreases. After a typical time 1/ω, a substantial part of the interaction energy
is converted into kinetic energy and the interaction term can be neglected for the subsequent
dynamics. We also neglect the periodic potential which has a small amplitude compared to
the typical energy per particle in the tails. Now, in free space,1z2

w =
1
N

∫
dz z2

|ψw|
2
'

2Ew
Nm t2 at

large times whereEw is the total (kinetic) energy in the tails of the BEC. Due to the conservation
of the total energy during the expansion, we haveNε = Ec + Ew whereε is the energy per
particle given by equation (15), and the energy in the center of the BEC,Ec = V2

R LTF/g, is
easily computed from the Thomas–Fermi profile in the center of the BEC (see equation (13)).

We finally find that Ew/N '
2µ
5

[
1−

15
4

(
VR
µ

)2
]

so that1z2
'1z2

0 + v2
zt2 at times larger
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than 1/ω with

vz '

√
2

5
ωLTF

[
1−

15

4

(
VR

µ

)2
]1/2

. (17)

In the absence of disorder (VR = 0), equation (17) is consistent with the scaling theory
(equation (10)) for which 1z(t)= b(t)LTF/

√
5. In the presence of disorder, it provides a

reasonable agreement with the numerical findings as shown in the inset of figure5(a). We
attribute the discrepancy at the largest values ofVR to the main two approximations that have
been used. Firstly, a strict separation between the tails and the center atz = LTF has been
used to computeEw and we have thus neglected the small intermediate region. Secondly, the
interaction of the atoms with the periodic potential is expected to increase the inertia of the
expanding gas and this should contribute to slightly lower the expansion velocity compared to
the prediction (17).

4. Weak disorder: onset of AL in the expansion of a condensate

In section3, we have shown that in the experimental conditions of [45, 46, 48], AL effects
are blurred in an expanding, interacting BEC owing (i) to important repulsive interactions
in the center of the BEC and (ii) to strong reflections from single barriers of the disordered
potential in the tails of the BEC. Both effects are related to the presence of large modulations
of the disordered potential. It thus appears necessary to work in a parameter range where
the probability of single large modulations of the disorder is negligible in order to observe
unambiguous AL of an expanding BEC.

In this section, we work within the regime of weak disorder (a precise definition is given
below, see equation (21)). Following the theory of [25], we show that in this situation, AL of an
interacting BEC can be observed under appropriate conditions that we identify precisely [25].
We consider both cases of an impurity model of disorder and of a speckle potential. In particular,
for a speckle potential, we show that the long-range correlations induce a 1Deffective mobility
edge, i.e. strong exponential localization is obtained only forξin > σR.

4.1. General model of AL of an expanding BEC

4.1.1. Expansion of a BEC.Let us examine again the expansion of the BEC in the disordered
potential (see section3.1). For weak disorder, the initial interaction energy strongly exceeds the
potential energy associated with the disorder so that the first stage of expansion of the BEC
is hardly affected by the disorder. For instance, the numerical results of figure1 for VR = 0.5
and 0.1µ confirm this assertion for durations of expansion up to aboutt ' 10/ω. Within this
time window, the momentum distribution of the expanding BEC can thus be approximated to
that of a BEC expanding in free space (see equation (8)). Calculating the Fourier transform of
the scaling solution for interacting BECs expanding in free space,ψ(z, t), using the stationary
phase approximation (valid fort � h̄/µ ), we find the momentum distribution

D(k, t)'
3Nξin/4

√
1− 1/b(t)

×

[
1−

(
kξin

√
1− 1/b(t)

)2
]

×2

[
1−

(
kξin

√
1− 1/b(t)

)2
]
, (18)
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BEC at large times (t > 1/ω). (b) Lyapunov exponent of single-particles of
energyE as a function of the momentumk =

√
2mE/h̄ .

where2 is the Heaviside step function. Sinceb(t)'
√

2ωt , the momentum distribution reaches
a steady-state at timest � 1/ω:

D(k)'
3Nξin

4
×

[
1− (kξin)

2
]
×2

[
1− (kξin)

2
]
. (19)

An important feature of the momentum distribution (19) is that it has a high-momentum cut-off
atkc = 1/ξin (see figure7(a)).

For t � 1/ω, almost all the initial interaction energy is converted into kinetic energy.
Neglecting the effect of disorder at this stage, this property can be obtained from the scaling
solution (8) [90, 91]. We find that the interaction energy isEint(t)' Eint(0)/b(t). Then using
the property of conservation of the total energy during the expansion, we find that the ratio
of the kinetic energy to the interaction energy isEkin(t)/Eint(t)' b(t)− 1 which is much
larger than unity fort � 1/ω. It follows from this analysis that for times typically larger than
1/ω, the expanding BEC is a coherent superposition of almost non-interacting plane waves of
momentumk:

ψ(z, t)=

∫
dk

√
2π
ψ̂(k, t)eikz, (20)

the momentum distributionD(k)= |ψ̂(k, t)|2 being stationary and determined by the
interaction-driven first expansion stage [25].

4.1.2. AL of quantum single particles in a correlated disordered potential.Therefore, the
interaction of eachk-wave with the disordered potential can be treated independently. According
to the Anderson theory [8], the k-waves will exponentially localize as a result of multiple
scattering from the modulations of the disordered potential. In other words, each component eikz

in equation (20) will become a localized functionφk(z), characterized by an exponential decay
at large distances: ln|φk(z)| ' −γ (k)|z|, whereγ (k)= 1/L loc(k) is the so-called Lyapunov
exponent, andL loc(k) is the localization length. The Lyapunov exponent can be calculated
analytically in a correlated disordered potential using the phase formalism approach [94] (see
also appendixB). At the lowest order of the Born expansion, which is valid provided that
γ (k)� k, i.e. for

VRσR �
h̄2k

m
(kσR)

1/2, (21)
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we find the Lyapunov exponent

γ (k)'

√
2π

8σR

(
VR

E

)2

(kσR)
2ĉ(2kσR), (22)

where E = h̄2k2/2m, and ĉ(κ)=
∫

du
√

2π
c(u)eiκu is the Fourier transform of the reduced

correlation functionc(u) (see appendixA). A plot of the Lyapunov exponents versus the
momentumk is shown in figure7(b) for a speckle potential and for a Gaussian impurity model.

Deviations from a pure exponential decay ofφk turn out to be important here. They can be
obtained using diagrammatic methods [95, 96], and one finds an integral formula for the average
density of eachk-wave:

〈|φk(z)|
2
〉 =

π2γ (k)

2

∫
∞

0
du u sinh(πu)

(
1 +u2

1 + cosh(πu)

)2

× exp{−2(1 +u2)γ (k)|z|}, (23)

where γ (k) is given by equation (22). Notice that at large distances (|z| � 1/γ (k)),
equation (23) reduces to

〈|φk(z)|
2
〉 '

(
π7/2

64
√

2γ (k)

)
×

exp{−2γ (k)|z|}

|z|3/2
, (24)

so that the exponential decay of the density of the localized single-particle states is corrected by
an algebraic decay 1/|z|3/2.

4.1.3. AL of the BEC.In the regime of weak disorder defined by condition (21), the AL
transforms each plane wave eikz which appears in the superposition (20) into the localized
wave φz(z)= r (z)sin [θ(z)], where θ(z)' kz and r (z) is a slowly decaying envelope (see
appendixB). Therefore, the Fourier transform ofφk(z) is peaked aroundk. It follows that
the interaction of thek-wave with the disordered potential only weakly affects the momentum
distribution of the BEC. Hence, once each independentk-wave is localized, the density of the
BEC is given by the equation

n0(z)'

〈∣∣∣∣∫ dk
√

2π
ψ̂(k, t)φk(z)

∣∣∣∣2
〉
, (25)

with |ψ̂(k, t)|2 ' D(k). Assuming that the phases of the functionsφk(z), which are determined
by the local properties of the disordered potential and by the evolution time, are random,
uncorrelated functions for different momenta, i.e.〈φ

∗

k′(z)φk(z)〉 ' 2πδ(k − k′), the density of
the BEC reduces to

n0(z)' 2
∫

∞

0
dkD(k)〈|φk(z)|

2
〉, (26)

where we have used the propertiesD(k)= D(−k) and〈|φk(z)|2〉 = 〈|φ−k(z)|2〉. This formula is
transparent and contains the main ingredients of the AL of an interacting BEC in a disordered
potential. In a first stage, the interactions drive the expansion of the BEC and determine the
momentum distributionD(k). In a second stage, the interactions vanish and the BEC is formed
of a superposition of plane waves of energiesE = h̄2k2/2m. Then eachk-wave localizes with its
own localization lengthL loc(k)= 1/γ (k). We will show in the next paragraphs that the precise
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localization properties of the BEC which are determined by the integral (26), strongly depend on
the correlation function of the disordered potential. This is reminiscent of the strong dependence
of the single-particle Lyapunov exponentγ (k) on the correlation function.

4.2. AL of an expanding BEC in an impurity model of disorder

Let us consider the case of the impurity model of disorder described in the appendixA.2. It
is made of a series of Gaussian peaks of widthw and amplitudeV0, all identical and spread
randomly along thez-axis. This potential is generic and in the limitw→ 0 with V0w fixed,
we recover the widely usedδ-correlated (i.e. un-correlated) disorder made of a random series
of δ peaks used in a number of theoretical investigation of disordered systems [94]. This
Gaussian impurity model of disorder can also be implemented using the so-called impurity
atom technique with ultracold atomic gases [56, 57]. In this case, the Fourier transform of the
reduced correlation function reads

ĉ(κ)=
√
π/2 exp(−κ2/4) (27)

and the amplitude and correlation length areVR =
√
w

d V0 and σR = 2w, respectively (see
appendixA.2). Inserting equation (27) into (22), we find

γ (k)=
πm2V2

RσR

2h̄4k2
exp[−(kσR)

2] (28)

which is plotted in figure7(b) (blue, dotted line).
Using equations (19), (23), (26) and (28), we now calculate the density profile of the

localized BEC. Since the density profilen0(z) is the sum overk of the functions〈|φk(z)|2〉 which
decay exponentially with a rate 2γ (k), the long-tail behavior ofn0(z) is mainly determined by
thek-components with the smallestγ (k), i.e. those withk close to the high-momentum cut-off
kc = 1/ξin. Therefore, integrating in equation (26) we limit ourselves to the leading order terms
in Taylor series forD(k) andγ (k) atk close tokc. We find

n0(z)∝
exp{−2γeff|z|}

|z|7/2
, (29)

where γeff = γ (k = 1/ξin). (30)

This means that the AL of an expanding, interacting BEC occurs, provided that the
disordered potential is weak enough. In the case of a Gaussian impurity model of disorder,
the density profile shows an exponential decay with the effective Lyapunov exponent equal to
the one of a single particle of momentumk = kc = 1/ξin (see equation (30)), i.e.

γeff =
π/32

ξin

(
VR

µ

)2

(σR/ξin)exp[−(σR/ξin)
2]. (31)

These are clear characteristics of AL of the BEC which can be observed in experiments on
ultracold atoms using direct imaging techniques.
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4.3. AL of an expanding BEC in a speckle potential

Let us examine now the case of a speckle potential (see appendixA.1) for which, in 1D, the
Fourier transform of the reduced correlation (A.4) function reads

ĉ(κ)=
√
π/2(1− κ/2)2(1− κ/2), (32)

where2 is the Heaviside step function. The case of a speckle potential is particularly interesting
for two reasons. Firstly, it corresponds to the model of disorder used in almost all present
experiments with disordered BECs [44]–[46], [48, 79, 80]. Secondly, we will see that speckle
potentials offer much richer situations than the impurity model discussed above due to peculiar
long-range correlations [25].

One important feature of the speckle potential is the fact that the Fourier transform (32)
of the correlation function has a finite support. After equation (22), it results that the Lyapunov
exponent vanishes fork> 1/σR, i.e. that strong AL occurs for non-interactingk-waves only for
k< 1/σR [25]. In other words, there is a 1D mobility edge at 1/σR in the Born approximation.
Strictly speaking, higher orders in the Born expansion may provide a non-vanishing Lyapunov
exponent fork> 1/σR. However, we have shown using direct numerical calculations that the
localization length (inverse Lyapunov exponent) fork> 1/σR strongly exceeds typical sizes of
ultracold atomic samples, so that we can considerk = 1/σR as aneffective mobility edgein our
problem [25].

It follows that a part of the expanding BEC (i.e. its Fourier components withk> 1/σR)
expands to infinity while all the Fourier components withk< 1/σR localize exponentially with
thek-dependent Lyapunov exponent

γ (k)=
πm2V2

RσR

2h̄4k2
(1− kσR)2(1− kσR), (33)

found by inserting equation (32) into (22). Equation (33) is plotted in figure7(b) (solid, red line)
and show that for a 1D speckle potential, the high-momentum cut-offkc = min{1/ξin,1/σR} in
the integral formula (26) for the BEC density is twofold. The cut-offk = 1/ξin is related to the
momentum distribution of the expanding BEC and is due to the initial atom–atom interactions,
while the cut-offk = 1/σR is related to the correlation function of the 1D speckle potential and
is due to the peculiar finite range correlations of the disordered potential. Now, two very different
situations must be distinguished [25].

For ξin > σR, the high-momentum cut-offkc is provided by the momentum distribution.
In this case, all non-interacting functions〈|φk(z)|2〉 are exponentially localized with a finite
Lyapunov exponent,γ (k)> γ (1/ξin) > 0. This situation is then similar to the case of the
Gaussian impurity model and, integrating equation (26), we find

n0(z)∝
exp{−2γeff|z|}

|z|7/2
, (34)

where γeff = γ (k = 1/ξin). (35)

Finally, the BEC density profile is exponentially localized with the effective Lyapunov exponent

γeff =
π/32

ξin

(
VR

µ

)2

(σR/ξin)(1− σR/ξin)2(1− σR/ξin). (36)
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Figure 8. Upper panel: density profile of the localized BEC in a speckle potential
at t = 150/ω. Shown are the numerical data (black points), the fit of the result
from equations (19), (23) and (26) (red solid line), and the fit of the asymptotic
formulae (34) and (35) (blue dotted line). Inset: time evolution of the rms size
of the BEC. The parameters areVR = 0.1µ, ξin = 0.01LTF and σR = 0.78ξin.
Lower panel: (a) Lyapunov exponentγeff in units of 1/LTF for the localized BEC
in a speckle potential, in the regimeξin > σR. The solid line isγ (1/ξin) from
equation (36). (b) Exponent of the power-law decay of the localized BEC in the
regimeξin < σR. The parameters are indicated in the figure.

Forξin < σR, the situation is completely different. In this case, the cut-offkc is provided by
the correlation function, and sinceγ (k = 1/σR)= 0, the relevant Lyapunov exponents (γ (k) for
all k< 1/σR) do not have a finite lower bound. Then, integrating equation (26), we find that the
BEC density profile is not exponentially localized but rather shows analgebraicdecay [25]:

n0(z)∝
1

|z|2
. (37)

We now present numerical results performed within the Gross–Pitaevskii approximation
for the expansion of a BEC in a speckle potential [25]. The inset of figure8 (upper panel) shows
that the expansion is strongly suppressed and for long times, the BEC density profile is localized
as shown in figure8 (upper panel). Let us discuss now the behavior of the tails.

For ξin > σR, the density profile obtained numerically is found to be exponentially
localized. In addition, fitting the functionn0(z)∝ exp{−2γeff|z|}/|z|7/2 to the numerical results
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with the amplitude andγeff as fitting parameters, we find that the results forγeff are in excellent
agreement with the prediction (36) as shown in figure8(a) (lower panel).

For ξin < σR, we find that the density profile decays algebraically. We fit the function
n0(z)∝ 1/|z|βeff with the amplitude andβeff as fitting parameters, and we find thatβeff ' 2 in
agreement with the prediction (37) as shown in figure8(b) (lower panel).

5. Conclusion and perspectives

In summary, we have theoretically investigated the localization of an expanding 1D BEC with
repulsive atom–atom interactions characterized by the initial healing lengthξin in a disordered
potential of finite correlation lengthσR. We have restricted our study to the regime where the
initial interactions of the trapped BEC dominate over the kinetic energy and the disorder, a
situation relevant to almost all current experiments with disordered BECs [44]–[48], [79, 80].
When the BEC is released from the trapping potential while keeping the disordered potential
on, we find a strong suppression of the expansion, similar to earlier experimental observations
[45, 46, 48]. We have shown that this localization effect has completely different causes
depending on the strength of the disorder.

5.1. Strong disorder

The case of strong disorder corresponds to the situation where several modulations of the
disordered potential individually are strong-enough to induce an almost total reflection of
noninteracting particles of energy equal to the typical expansion energy per particle of the
BEC. In particular, this case is relevant to the experiments of [45, 46, 48] and to the numerics
of [45, 93, 97]. In this case, the localization results from adisorder-induced trapping[45], whose
scenario involves two processes: (i) the fragmentation of the core of the BEC on one hand and
(ii) classical total reflections from single large modulations of the disordered potential on the
other hand. In the core of the BEC, the interactions remain important during the initial expansion
stage. The BEC is in a quasi-static Thomas–Fermi regime with an effective chemical potential
which first slowly decreases during the expansion. When the BEC fragments, the expansion of
the core of the BEC stops. In the tails of the BEC, the interactions are negligible and the particles
undergo multiple scattering from the modulations of the disordered potential but the expansion
is ultimately stopped by single large modulations. Hence, in the case of strong disorder, the
localization is not related to AL.

5.2. Weak disorder

In the case of weak-enough disorder, the probability of modulations of the disordered potential
such that the reflection of a particle of typical energyµ approaches unity is negligible, and
AL can show up in an expanding BEC. The scenario is then as follows [25]. In a first stage,
the interaction energy dominates over both the kinetic energy and the disorder, and drives
the initial expansion of the BEC. After a typical time of 1/ω whereω is the frequency
of the initial trapping potential, the interaction energy vanishes and the momentum distribution
of the expanding BEC becomes stationary. At this stage, the interactions can be neglected and
the BEC wavefunction is a superposition of (almost) non-interacting waves of momentumk.
Eachk-wave Anderson localizes with its ownk-dependent localization lengthL loc(k). The
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density profile of the localized BEC is thus the superposition of the localizedk-waves and
strongly depends on the correlation function of the disordered potential.

The case of speckle potentials is particularly interesting as the Fourier transform of their
correlation function has a finite support. It follows that the localization of the expanding BEC
is exponential only forξin > σR (in the lowest order of the Born expansion, see section4). In
the opposite situation (ξin < σR), the density profile of the BEC decays algebraically as 1/|z|2.
Therefore, for speckle potentials, there is aneffective mobility edgeat ξin = σR for the AL of an
expanding, interacting BEC [25].

5.3. Perspectives

Our results suggest that the 1D AL can be observed in an interacting BEC (initially in the
Thomas–Fermi regime) expanding in a disordered potential in experiments similar to those
reported in [45, 46, 48]. We stress that special attention should be paid to using weak-enough
disorder to allow the dilution of the BEC during the first expansion stage and to avoid strong
reflections from large modulations of the disordered potential. In addition, we have shown
that the correlation function of the disordered potential plays a crucial role for the localization
properties of the BEC.

However, a couple of challenges have to be taken up to observe AL in current experiments
with expanding BECs. Indeed, in addition to being able to produce long-enough expansions
and to measure very small densities, it appears that both disorder and interactions have to be
carefully controlled.

In this respect, using disordered potentials created by optical speckle patterns is particularly
promising. On one hand, from a practical point of view, the correlation functions of speckle
potentials are very well controlled and can be designed almost at will. This allows for a direct
comparison between experimental observations and theoretical predictions. On the other hand,
for a 1D speckle potential, the Fourier transform of the correlation function has a cut-off
at k = 1/2σR which induces aneffective mobility edgeat k = 1/σR for single-particles and,
correspondingly, atξin = σR for an expanding, interacting BEC. The presence of this effective
mobility edge gives rise to two qualitatively different regimes, which might be observed in
experiments, namelyexponential localizationfor ξin > σR and algebraic decayof the BEC
density profile forξin < σR.

Equation (36) shows that for a speckle potential, the stronger localization is obtained for
ξin = 3σR/2 and for this value,L loc increases withσR. It is thus more favorable to work with
the shortest correlation length of the disordered potential. To date, correlation lengths about
σR ' 0.3µm have been produced experimentally [48].

The first experiments on the expansion of a BEC in a speckle potential [45, 46, 48] were
operated atξin ∼ σR/10. In order to reach the regime of AL, it is crucial to lower the interaction
energy of the initial condensate in order to increase the healing lengthξin. One can either use a
Feshbach resonance to directly control the atom–atom interaction strength or lower the density
by lowering the number of atoms and/or the radial confinement of the magnetic guide used
in [45, 46, 48]. In the latter case, the dynamics of the expanding BEC in the radial direction
can play a role. As the radial confinement is kept during the expansion of the BEC, we expect
the radial dynamics to be slow compared to the longitudinal expansion. As a result, the radial
profile of the BEC would follow adiabatically the local 1D (longitudinal) density, reducing
the dynamics to a quasi-1D problem. However, a part of the potential and interaction energies
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associated to the smooth radial confinement will be converted into longitudinal kinetic energy
during the expansion. If the BEC is initially in the 3D Thomas–Fermi regime (µ� h̄ω⊥ ), the
effective de Broglie wavelength of the 1D expansion can be expected to beλdB ' 0.85ξin to be
compared toξin in the pure 1D case studied here. Hence, for elongated BECs, we do not expect
strong differences compared to the 1D situation we have studied in the present work. A more
detailed discussion would require further investigation which is beyond the scope of this paper.

We expect that this work will pave the way for the experimental observation of those
non-trivial 1D localization properties. This work could also be extended to higher dimensions
(namely 2D and 3D geometries) [98, 99] where similar scenarios can be expected but where
localization properties would be significantly different.
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Appendix A. Random and periodic potentials

In this appendix, we give a couple of details about the inhomogeneous potentialsV(z) to which
the atoms are subjected (see section2.1) i.e. a disordered speckle potential, a Gaussian impurity
model of disorder and a periodic potential. We plot in figureA.1 typical realizations of these
potentials.

Generally, we write the potentialV(z) as

V(z)= VRv(z/σR) (A.1)

and the spatial auto-correlation functionC(z)= 〈V(z′ + z)V(z′)〉 − 〈V〉
2, as

C(z)= V2
Rc(z/σR), (A.2)

whereVR is the typical amplitude of potential,σR is the typical space scale (correlation length
in the case of disordered potentials) andv(u) is a given function characteristic of the model
of inhomogeneous potential. In this work, we assume that〈v(z)〉 = 0 where〈.〉 represents
averaging over realizations of disordered potentials or spatial averaging.

A.1. Speckle disordered potential

The main model of disorder we consider is the speckle potential, as it is the one used in many
experimental studies of disordered BECs [44]–[46], [48, 79, 80]. In brief a speckle pattern is
formed by diffraction of a laser beam through a rough plate. The intensity of the speckle pattern
is proportional to the intensity of the incident laser and the correlation function is determined by
the transmission of the diffusive plate [59, 60] (see [48] for practical realizations in the context
of disordered BECs). A disordered potential (e.g. a speckle potential) is characterized by its
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Figure A.1. Typical realizations of the potentialsV(z) considered in this work.
(a) Speckle and periodic potentials: the solid line (red online) shows a typical
realization of a disordered speckle potential withσR ' 1.39× 10−2LTF and
the dotted line (blue online) shows the periodic potential withλ= 10−1LTF.
(b) Gaussian impurity model of disorder withw = 2× 10−2LTF.

statistical properties, mainly the single-point intensity distribution and the two-point correlation
function.

Within the scaling defined above (see equations (A.1) and (A.2)), a speckle potential is
represented by a random functionv(u) whose single-point statistical distribution is a decaying
exponential

P[v(u)] = exp[−{v(u)+ 1}], for v(u)>−1 (A.3)

and P[v(u)] = 0, otherwise.

The laser intensity pattern creates an inhomogeneous light shift for the atoms (see figureA.1(a)).
For a laser which is blue-detuned compared to the atomic resonance line, we haveVR > 0 and
for red detuningVR < 0 [100].

For the numerical calculations presented in the paper, we numerically generate a 1D
speckle pattern using a method similar to the one described in [49, 101] in 1D and corresponding
to the following reduced correlation function:

c(u)= sinc(u)2. (A.4)

Another useful characteristics of the speckle potential in the case of blue detuning
(VR > 0) is the average number of peaks with an intensity larger than a given valueV within
a given region of lengthLTF (see section3.2). Elaborate methods to compute a number
of characteristics of speckle potentials can be found in [59, 60]. Here, we use a simple
approximation which suits our purpose. From the probability distribution (A.3), we easily find
that the probability density that the local disordered potential is larger than a given valueV
is P(V)= exp[− (V + VR)/VR]. Now, the density of peaks (local maxima of the disordered
potential) is 1/d whered ∝ σR is the typical distance between two peaks. Therefore, typically,
the number of peaksNpeakswithin a region of lengthLTF with intensity larger thanV scales as
LTF
d exp

(
−

V+VR
VR

)
. However, this rough estimate does not take into account the interplay between

the local intensity distribution and the finite correlation length of the disordered potential. In the
simulated speckle potentials, we find that the typical number of peaks with intensity larger than
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and comparison to equation (A.5).

V in a LTF-long region can be approximated by

Npeaks(V)' α

(
LTF

σR

)
exp

[
−β

V + VR

VR

]
, (A.5)

with α ' 0.30 andβ ' 0.75, with very good accuracy as shown in figureA.2.

A.2. Impurity model of disorder

A model of disorder which is very popular in theoretical studies of quantum disordered system
is the impurity model [94]:

V(z)= V0

∑
j

g(z− Z j ), (A.6)

where g is a real-valued function peaked atz = 0, of width w and such that 06 g(z)6 1.
The locations of the impuritiesZ j are random and their average distance is denotedd. The
disordered potential is then formed of a series of impurities, all identical but randomly displaced
along thez-axis (see figureA.1(b)). Here, we consider Gaussian-shaped impurities:

g(z)= exp(−z2/2w2). (A.7)

This potential can be realized using ultracold atoms (of another species than the BEC) trapped
in the Wannier states of the fundamental Bloch band of an optical lattice [56, 57, 102].

From equation (A.6), we find that the statistical average of the potential (A.6) is

〈V〉 =
V0

d

∫
dx g(x)=

√
2πV0

(w
d

)
(A.8)

and the correlation function is

C(z)=
V2

0

d

∫
dx g(x)g(x + z)= V2

Rc(z/σR), (A.9)

with c(u)=
√
π exp(−x2), VR =

√
w

d V0 andσR = 2w.
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A.3. Periodic potential

For periodic potentials (see figureA.1(a)), we use

V(z)=
√

2VR cos(2πz/λ) (A.10)

corresponding to the mean value〈V〉 = 0 and the standard deviation1V = |VR|. Such potentials
are currently realized using interference patterns of laser beams in geometries with tunable
lattice spacings [38, 103].

Appendix B. Phase formalism for the calculation of Lyapunov exponents in
1D disordered potentials with finite-range correlations

In this section, we outline the phase formalism method used to calculate the Lyapunov exponent
(inverse localization length) of a non-interacting particle of energyE = h̄2k2/2m in a 1D
disordered potential with finite-range correlations [94]. The idea consists in calculating the
propagation of the particle using a perturbation on thephaseof the wavefunctionψ(z). Notice
that the perturbation isnot on the wavefunction itself.

The starting point is the Schrödinger equation

Eψ(z)=
−h̄2

2m

d2

dz2
ψ(z)+ V(z)ψ(z). (B.1)

Without any loss of generality, we can write the wavefunction and its spatial derivative in the
form

ψ(z)= r (z) sin[θ(z)], (B.2)

ψ ′(z)= kr(z) cos[θ(z)], (B.3)

wherer (z) andθ(z) represent the amplitude and the phase ofψ(z), respectively. Substituting
equations (B.2) and (B.3) into equation (B.1), we find the coupled equations

θ ′(z)= k −
2mV(z)

h̄2k
sin2[θ(z)], (B.4)

ln[r (z)/r (0)] =

∫ z

0
dz′

mV(z′)

h̄2k
sin[2θ(z′)]. (B.5)

Notice that the amplituder (z) is not involved in equation (B.4). It follows that for weak disorder
(see condition (B.9)), it can be solved easily in the lowest order of a perturbation series of the
phaseθ(z). We writeθ(z)= θ0 + kz+ δθ(z) and we find

θ(z)' θ0 + kz−

∫ z

0
dz′

2mV(z′)

h̄2k
sin2[θ0 + kz′] (B.6)

in the Born approximation (lower order). Finally, substituting equation (B.6) into (B.5), we find,
in the limit |z| → ∞

ln[r (z)/r (0)] = +γ (k)|z|, (B.7)
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where γ (k)=
m

4h̄2E

∫ +∞

−∞
dz C(z) cos(2kz), where C(z) is the correlation function of the

disordered potential (see equation (A.2)) or equivalently

γ (k)'

√
2π

8σR

(
VR

E

)2

(kσR)
2ĉ(2kσR), (B.8)

is the Lyapunov exponent.
Notice that the solution (B.7) corresponds to an exponentialincreaseof the envelope of the

wavefunctionψ(z). In general, the solution of the Schrödinger equation in a disordered potential
is the sum of an exponentially increasing function and of an exponentially decaying function.
In a finite system, boundary conditions fix the coefficients and one finds true localized states
(i.e. wavefunctions with an exponentially decaying envelop for bothz → +∞ andz → −∞).
In a time-dependent propagation scheme, the conservation of probability also imposes that the
coefficient of the exponentially increasing function vanishes. In the present calculation, since
we do not impose boundary conditions, only the exponentially increasing function remains at
infinite distance.

In spite of this unimportant limitation, this technique provides a very useful analytic
formula for the Lyapunov exponent, valid for any weak 1D disordered potential, possibly with
finite-range correlations. An important point is that the phase formalism technique [94] clarifies
the AL effect in 1D disordered potentials. Hence, on small distances (say of the order ofσR),
the interaction of the wavefunction with the disordered potential induces a small perturbation
of the phaseθ(z) (see equation (B.4)), but hardly affect the amplituder (z). Nevertheless, the
coupling between the phase and the amplitude (see equation (B.5)) is crucial and induces
at large distances (say of the order ofL loc = 1/γ ) an exponential envelope, characteristic
of AL. Finally, the non-interacting localized state of energyE is essentially a plane wave
of wavenumberk =

√
2mE/h̄2 modulated by an exponential envelope. This makes clear the

condition of application of the phase formalism approach which requiresγ (k)� k in order
for the phase to be only weakly perturbed. It follows for equation (B.8) that this condition
reduces to

VRσR �
h̄2k

m
(kσR)

1/2, (B.9)

whereVR is the amplitude andσR is the correlation length of the disordered potential.
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