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When attempting to understand the role of disorder in condensed-matte r physics, one faces severe experimental
and theoretical difficulties and many questions are still open. Two of the most challenging ones, which have been
debated for decades, concern the effect of disorder on supercon ductivity and quantum magnetism. Recent progress
in ultracold atomic gases paves the way towards realization of ver satile quantum simulators which will be useful
to solve these questions. In addition, ultracold gases offer origi nal situations and viewpoints, which open new
perspectives to the field of disordered systems.

P
hase coherence and interference effects underlie many
basic phenomena in mesoscopic physics, for instance
electronic conduction1, magnetism2, superfluidity and

superconductivity3, or the propagation of light and sound waves in
inhomogeneous media4. Both also play central roles in high-precision
devices such as interferometers, accelerometers and gyroscopes. In
this respect, an important issue concerns the effects of disorder, i.e. of
small random impurities, which cannot be completely avoided in real-
life systems. A priori, one may expect that weak disorder slightly
affects most physical systems and that averaging over the disorder
smoothens possible effects. One may also expect that, in quantum
systems, the spatial extension of wavefunctions leads to even weaker
effects, via a kind of self-averaging. In fact, these naive ideas turn
out to be wrong. Disorder often leads to subtle situations inwhich
strong effects survive averaging over the disorder4, in particular in the
quantum world. One of the most celebrated examples is Anderson
localization5 (AL). It is now understood that AL results from interfer-
ence of the many paths associated to coherent multiple scattering from
random impurities, yielding wavefunctions with exponentially decay-
ing tails and absence of diffusion6. This strongly contrasts with the
Drude-Boltzmann theory of classical transport, which predicts that in-
coherent scattering induces diffusion1.

Anderson localization was first introduced for non-interacting
quantum particles to explain the absence of electronic conduction in
certain dirty solids5, but remained elusive for matterwaves. It was re-
alized later that it is actually ubiquitous in wave physics4, paving the
way for the first observations of AL, using classical waves, e.g. light in
diffusive media7,8 and photonic crystals9,10, microwaves11 and sound
waves12. In condensed-matter physics, AL is now considered a fun-
damental phenomenon underlying certain metal-insulator transitions,
but complete theory of disordered solids should incorporate Coulomb
interaction, the underlying crystal structure, interaction with phonons,
and magnetic effects. Unfortunately, understanding the physics of even
the simplest models including all ingredients poses severedifficulties
and many issues are still unsolved or even controversial. The most
challenging ones concern the interplay of disorder and inter-particle
interactions, and spin-exchange couplings.

Surprisingly enough, atomic physics offers new approaches to
these issues. The field of ultracold atoms has been developing rapidly
in the past decades, making it possible to produce, probe andma-
nipulate Bose13,14 and Fermi15,16 gases with unprecedented versatil-
ity, tunability and measurement possibilities (Box 1). Control in
these systems is now such that ultracold atoms can realize quan-
tum simulators17,18, i.e. platforms to investigate various fundamental
models19–22. Landmark results have already been obtained, e.g. ob-
servation of Mott insulators23–25, Tonks-Girardeau26,27, Berezinskii-
Kosterlitz-Thouless28 physics, and magnetic-like exchange29,30. In-
vestigation of Bose-Einstein condensates (BECs) in disordered
potentials31,32 has also emerged in a quest for direct signatures of AL
of matter-waves. Joint theoretical33–36 and experimental efforts37–43

made it possible and two groups succeeded recently in observing one-

dimensional AL44,45.

Prima facie, the discovery of this ‘Holy Grail’ might mean the
end of a quest. On the contrary, it is just a beginning as the two ex-
periments of refs. 44, 45 open unprecedented paths to pursuemany
outstanding challenges in the field of disordered systems. Direct ex-
tensions include studies of metal-insulator transitions in dimensions
larger than one, and of the effect of weak interactions on localiza-
tion, for which many questions are debated. For stronger interactions,
single-particle localization is usually destroyed, but new concepts such
as many-body Anderson localization46–48 and Bose glass49–52 provide
original paradigms, which renew our understanding of theseissues.
Experiments on ultracold atoms with controlled disorder and con-
trolled interactions can also be extended to other systems where dis-
order plays important roles. For instance, combining spin exchange
implementation29,30 and disorder opens the route towards random
field-induced order53–55 and spin glasses56–59. These few examples il-
lustrate all the promises of an emerging field, i.e. quantum gases in
controlled disorder. In this paper, we review theoretical and exper-
imental progress in this area and discuss perspectives thatare now
within our grasp.

The nature of Anderson localization
Localization, as introduced by P.W. Anderson in 1958, is strictly
speaking a single-particle effect5. Consider the wavefunctionψ(r ) of
a free particle of massm and energyE, in a d-dimensional quenched
disordered potentialV(r ), which is solution of the Schrödinger equa-
tion

Eψ(r ) = −~
2∇2

2m
ψ(r ) + V(r )ψ(r ). (1)

While in free space,ψ(r ) is an extended plane wave, it can be shown
rigorously60,61 that, in the presence of disorder, any solution with arbi-
trary E is exponentially localized in 1D, i.e. ln(|ψ(z)|) ∼ |z|/Lloc, with
localization lengthLloc(E) ∝ lB, wherelB is the transport (Boltzmann)
mean-free path. EventhoughLloc often increases withE, it is striking
that interference effects of multiply scattered waves is strong enough
to profoundly affect ψ(z), even for very high energies. In 2D, the
situation is similar62, but interference effects are weaker, andLloc ∝
lB exp(πklB/2) wherek =

√
2mE/~ would be the particle wavevector

in free space. HenceLloc increases exponentially fork > 1/lB, induc-
ing a crossover from extended to localized states in finite-size systems.
The situation differs dramatically in 3D where a proper phase tran-
sition occurs at the so-called mobility edgekmob: While low-energy
states withk < kmob are exponentially localized, those withk > kmob

are extended. The exact features of the mobility edge are unknown,
but approximately captured by the Ioffe-Regel criterion63, which ba-
sically states that localization requires the coherence volume contain
several scattering processes. In other words, coherence must survive
on longer distances than the memory of the initial particle direction,
thus yieldingkmob ∼ 1/lB.
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Direct observation of Anderson localization of matter-
waves
Observing AL of matter-waves requires several challengingcondi-
tions. First, one must use weak-enough disorder so that interference
effects at the origin of AL dominate over classical trapping in po-
tential minima. Second, one must eliminate all perturbations such
as time-dependent fluctuations of the medium, or inter-particle inter-
actions. Finally, one must demonstrate exponential localization, not
only suppression of transport as it can also arise from classical trap-
ping. While these conditions are very demanding in condensed-matter
physics, they can be accurately fulfilled with ultracold atoms, using
i) controlled disorder, ii) negligible interactions, iii)strong isolation
from the environment, and iv) direct imaging of atomic density pro-
files. This way, direct signatures of AL of non-interacting matter-
waves were reported in refs. 44, 45. As we shall see, these twoex-
periments are complementary rather than similar because they signifi-
cantly differ as regards both observation scheme and class of disorder.

In ref. 44, a weakly interacting BEC is created in a trap, which is
abruptly switched off at timet = 0. Then, the condensate expands in
a guide and in the presence of disorder (Fig. 1a), created with opti-
cal speckle (Box 2). This physics is captured by the Gross-Pitaevskii
equation

ı~
∂ψ

∂t
= −~

2∇2

2m
ψ + V(r )ψ + g|ψ|2ψ, (2)

which corresponds to Box 1 Hamiltonian (1) in meanfield regime. The
dynamics of the BEC can be understood in a two-stage scheme35,36.
First, it is dominated by interactions and the BEC expands, creat-
ing a coherent wavefunction with a stationary momentum distribution,
D(k) ∝ 1 − (kξ)2, whereξ = ~/

√

4mµ is the initial healing length,
which measures the initial interaction strength13. Second, once the
expansion has strongly lowered the atomic density|ψ(z)|2, the inter-
action term vanishes and we are left with a superposition of (almost)
non-interacting wavesψk, the population of each isD(k). Then each
ψk eventually localizes by interacting with the disordered potential,
so that ln(|ψk(z)|) ∼ |z|/Lloc(k), and the total BEC density reduces
to35,36 nBEC(z) ≃

∫

dk D(k)〈|ψk(z)|2〉. Direct imaging of the localized
matter-wave reveals exponentially decaying tails44, with a localization
length equal to that of a non-interacting particle withk = 1/ξ (Inset of
Fig. 1a). Hence, this experiment corresponds to a ‘transport scheme’,
which probes AL of non-interacting particles with a wavevector con-
trolled by the initial interaction, viaξ.

In contrast, the experiment of ref. 45 uses to a ‘static scheme’.
The interactions are switched off already in the trap via Feshbach res-
onances, so that the gas is created in a superposition of a few(typically
1 to 3) low-energy, single-particle eigenstates. They are subsequently
imagedin situ, revealing exponentially decaying tails (Fig. 1b). It is
worth noting that ref. 45 uses a 1D quasi-periodic, incommensurate
lattice (Box 2), thus realizing the celebrated Aubry-Andr´e model64,65

Ĥ = −
∑

〈 j,l〉
J
(

â†j âl + h.c.
)

+
∑

j

∆ cos(2πβ j + φ) â†j â j (3)

i.e. Box 1 Eq. (2) withU = 0, V j = ∆ cos(2πβ j + φ), andβ an irra-
tional number. Differently from the case of truly disordered potentials,
there is a metal-insulator transition (mobility edge) in 1D, which is
theoretically expected at∆/J = 2.

These works open new horizons to further deepen our knowl-
edge of AL in various directions. In 1D, although all states are
localized, subtle effects arise in correlated disorder, for instance in
speckle potentials35. To lowest order in the disorder amplitude,VR =
√

〈V(z)2〉, the Lyapunov exponent,γ(k) = 1/Lloc(k), can be calculated
analytically66 and one findsγ(k) ∝ 〈V(2k)V(−2k)〉/k2, enlightening
the role of coherent second-order back-scattering,+k → − k → + k,
in the localization process. Since the power spectrum of speckle po-
tentials has a cut-off kC, such thatC2(2k) = 〈V(2k)V(−2k)〉 = 0 for
k > kC (Box 2), one finds an abrupt change (effective mobility edge)
in thek-dependence ofγ for weak disorder67,68: While γ(k) ∼ V2

R for
k < kC, higher-order scattering processes dominate fork > kC and
γ(k) ∼ V4

R.
In dimensions higher than one, the self-consistent theory of

localization69 allows one to calculateLloc and exhibits a mobility edge

Figure 1 | Experimental observation of Anderson localization of mat-
terwaves with Bose-Einstein condensates. a) Experiments o f Institut
d’Optique (coutesy of V. Josse and P. Bouyer): An interacting BEC expands
in a tight 1D guide (in red) in the presence of a speckle potential (in blue).
The expansion stops in less than 500ms and the density profile of the con-
densate is directly imaged (shown in orange-green; from the data of ref. 44).
The column density, plotted in semi-logarithmic scale in the inset, shows a
clear exponential decay characteristic of Anderson localization. The localiza-
tion length Lloc, extracted by fitting an exponential exp(−2|z|/Lloc) to the exper-
imental profiles44, shows a good agreement with theoretical calculations35,36.
b) Experiments of LENS (adapted from ref. 45 with permission of the au-
thors): A non-interacting BEC is created in a combination of a harmonic trap
and a 1D bichromatic lattice. The plot shows the exponent α of a fit of a
function exp(−|(x − x0)/l|α) to the tails of the condensate at equilibrium in the
combined potential, versus the ratio of the disorder strength (∆) to the site-to-
site tunnelling rate (J). The onset of localization corresponds to the crossover
to α → 1 for ∆/J > 9. The inset shows a plot of the density profile of the
condensate together with the fit for ∆/J = 15.

in 3D. It is however known that it is not fully exact. Therefore, a ma-
jor challenge for disordered, ultracold atoms is to extend the works of
refs. 44, 45 to two70,71 and three72 dimensions. Definitely, observing
the 3D mobility edge would be a landmark result, which may stim-
ulate further theoretical developments and drive new approaches by
providing precise measurements of the mobility edgekmob and the cor-
responding critical exponents, which are unknown.

Interactions versus Anderson localization
Another outstanding challenge is to understand how interactions affect
localization, a question that has proved puzzling from the earliest times
of AL 73, and which is still debated. Common belief is that even weak
interactions destoy localization. Different approaches however provide
apparently contradicting answers in different transport schemes. For
instance, recent numerical calculations74,75 suggest that for expand-
ing BECs, repulsive interactions destroy AL beyond a given thresh-
old. Conversely, other recent results76 predict that localization should
persist even in the presence of interactions. Finally, in transmission
experiments (which amount to throw a mono-kinetic wavepacket to a
disordered region and measure transmission), perturbative calculations
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Box 1 | Ultracold quantum gases.

Creating and manipulating ultracold gases
Ultracold quantum gases are dilute atomic systems that are cooled down to temperatures of the order of a few tens of nano-Kelvins and
confined in immaterial traps using combinations of magneticand optic fields14,16. Owing to strong dilution, the prominent inter-particle
interactions are two-body interactions while many-body interactions can often be ignored. At ultra-low temperatures, s-wave scattering
dominates and the interaction is accurately described by a contact pseudo-potential13,15. In the general case of mixtures of atoms in
different species (or different internal states), the physics is thus governed by the Hamiltonian

Ĥ =
∑

σ

∫

dr Ψ̂†σ(r )

[

−~
2∇2

2mσ

+ Vσ(r )

]

Ψ̂σ(r ) +
∑

σ,σ′

gσ,σ′

2

∫

dr Ψ̂†σ(r )Ψ̂†
σ′ (r )Ψ̂σ′ (r )Ψ̂σ(r ) (1)

whereΨ̂σ andmσ are the field operator and the mass of an atom of speciesσ. The first integral in Box 1 Eq. (1) represents the single-
particle Hamiltonian where the potentialVσ(r ) is controlled by the configuration of the magnetic and/or optic fields (Box 1 Fig 1a). In
most cases, it is nearly a harmonic trap14,16 (Vσ(x, y, z) =

∑

ζ∈{x,y,z} mσω
2
σ,ζζ

2/2), the anisotropy of which can be adjusted in experiments.
For instance, making it strongly anisotropic offers the possibility to produce one-106,107 or two-28 dimensional gases. Another useful
possibility is to create a guide for the atoms using a strongly focused laser beam108. The second integral in Box 1 Eq. (1) represents
the interaction operator wheregσ,σ′ is the coupling constant for interacting atoms of same or different species (gσ,σ′ > 0 andgσ,σ′ < 0
correspond to repulsive and attractive interactions, respectively). Interestingly, the value and the sign ofgσ,σ′ can be controlled in quantum
gases using Feshbach resonances22.

Optical lattices
Considering different limits of Hamiltonian (1) allows one to design variousmodels initially introduced in the context of condensed-matter
physics, but here in a controlled way. One important exampleis that of optical lattices, which are produced from the interference pattern
of several laser beams20–22. The matter-light interaction creates a periodic potential whose geometry and amplitude are determined by the
laser configuration and intensity. Both can be controlled inexperiments. For instance, using pairs of counter-propagating laser beams
(Box 1 Fig 1b), the lattice potential readsV latt

σ (x, y, z) = V0
σ

∑

ζ∈{x,y,z} cos(2kLζ), whereV0
σ is the lattice depth andkL the laser wavevector.

In deep lattices, the atoms get trapped at the periodically-arranged minima of the lattice potential (so-called lattice sites). They can jump
from site to site via quantum tunnelling (with a rateJ), and two atoms interact only in the same site (with an energyU). This physics is
governed by the Hubbard Hamiltonian, i.e. the discrete version of Hamiltonian (1):

Ĥ = −
∑

σ,〈 j,l〉
Jσ
(

â†
σ, jâσ,l + h.c.

)

+
∑

σ, j

Vσ, j â†
σ, j âσ, j +

1
2

∑

σ,σ′ , j

Uσ,σ′ â†
σ, jâ

†
σ′ , jâσ′, jâσ, j (2)

where the sum over〈 j, l〉 covers all sitesj and their nearest-neighbour sitesl, andâσ, j is the annihilation operator of an atom in sitej.
Hence, ultracold atoms (bosons or fermions) in optical lattices mimic the Hubbard model, which is widely considered in condensed-
matter physics, for instance to capture the essential physics of electrons in solids. However, in contrast to condensed-matter systems,
Hamiltonian (2) can be shown to be exact in the limit of deep lattices, low temperature and low interactions19. The parametersJσ, Vσ, j

andUσ,σ′, j in Box 1 Eq. (2) can be calculatedab initio from the potentialVσ(r ) → Vσ(r ) + V latt
σ (r ) and the coupling constantgσ,σ′ in

Box 1 Eq. (1) and are thus controllable in experiments.

Box 1 Figure 1 | Confining ultracold atoms in magnetic and optic traps. a) Harmonic trapping and laser waveguide(coutesy of
V. Josse and P. Bouyer). Magnetic coils create a nearly harmonic trapping potential at the bottom of which a degenerate quantum gas,
surrounded by a cloud of thermal atoms, is formed. A focused laser beam which creates an almost one-dimensional waveguide is also
represented.b) Optical lattice. The interference pattern of pairs of counter-propagating laser beams form a periodic potential (represented
here in two dimensions). The atoms are trapped in the latticesites, but they can tunnel from site to site with a tunnellingrateJ and interact
when placed in the same site with an energyU.

and numerical results indicate that repulsive interactions decrease the
localization length before completely destroying localization77. Since
a non-linear term is naturally present in BECs (see last termof Eq. (2)),
and can be controlled via Feshbach resonances45, transport experi-

ments with interacting condensates are particularly promising to ad-
dress this question.

A different approach to the interplay of interactions and local-
ization consists in considering a Bose gas at equilibrium ina d-
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Figure 2 | Effect of interactions in disordered Bose and Fermi gases.
The gas is described using the single-particle (non-interacting) states |χν〉. In
the presence of disorder, these states, which are localized and distributed
around in a given volume, are represented by the spheres (in red when they
are populated). Bose gas: For non-interacting bosons (top, central panel),
the ground state, |χ0〉, only is populated. Then, attractive interactions (top,
left panel) tend to contract this state, thus favoring localization. Conversely,
repulsive interactions (top, right panel) work against localization by populating
more and more |χν〉 states. Fermi gas: In the absence of interactions, a gas of
N fermions populates the N lowest-energy |χν〉 states (bottom, central panel).
Then, each state tends to extend under the action of attractive interactions
as for maximizing the overlap between different populated |χν〉 states (bottom,
left panel). Conversely, for repulsive interactions, they tend to minimize their
mutual overlap, then favoring localization (bottom, right panel).

dimensional box of volumeΩ in the presence of interactions and dis-
order (Fig. 2). For vanishing interactions and zero temperature, all
bosons populate the single-particle ground state,|χ0〉. Very weak at-
tractive interactions are expected to favor localization by contracting
the Bose gas, but also induce instabilities for moderate interactions,
pretty much like for trapped BECs13. Conversely, weak to moder-
ate repulsive interactions do not affect much the stability, but work
against localization, by populating an increasing number of single-
particle states,|χν〉. Weak interactions populate significantly only the
lowest-energy states. Since they are strongly bound in rare, low-energy
modulations of the potential, their mutual overlap is small. The gas
then forms a Fock state,|Ψ〉 ∝ ∏ν(b

†
ν)Nν |0〉, whereb†ν is the creation

operator in state|χν〉. The populationNν of each is determined by the
competition between single-particle energyǫν and interaction within
each state|χν〉. This results in the characteristic equation of state78,
Ng =

∫ µ
dǫ DΩ(ǫ)(µ− ǫ)P(ǫ), whereDΩ(ǫ) is the density of states and

Pν = 1/
∫

dr |χν(r )|4 is the participation volume of|χν〉. This state is
an insulator with finite compressibility,κ = ∂N/∂µ, and can thus be
refered to as a Bose glass49,50. It attains particularly interesting fea-
tures in disordered potentials bounded below (i.e. whenV(r ) & Vmin

everywhere), for which Lifshits has shown79 that the relevant single-
particle states are determined by large-scale modulationsof the po-
tential. Since they are exponentially far apart, the density of state
is exponentially small,DΩ(ǫ) ∼ exp [−c(ǫ − Vmin)−d/2]. As one can
see, the equation of state is determined by both the density of state
DΩ(ǫ) and the localization viaP(ǫ) in the Lifshits tail, which leads us
to name this state the Lifshits-Anderson glass78. In the opposite limit
of strong interactions, there are very many populated|χν〉, which thus
overlap, and the above description breaks down. In turn, thegas forms
an extended, connected (quasi-)BEC of densityn(r ) = [µ − V(r )]/g,
which is well described in meanfield approach80. This state is a su-
perfluid. Finally, the intermediate region interpolates between the
Lifshits-Anderson glass and the BEC regime. Then, the Bose gas sep-
arates in fragmented, forming a compressible insulator (Bose glass).
The characteristic features of the fragments can then be estimated in
the meanfield framework81.

The above description is consistent with the idea that even weak
interactions destroy single-particle localization. In order to gain fur-
ther insight, it is worth noting that in interacting systems, the rele-

vant states are not the single-particle eigenstates, but are of collective
nature. For interacting BECs, they are Bogolyubov quasi-particles13.
One then finds that, although the ground state is extended, the Bo-
golyubov quasiparticles are localized47,48,82. Their localization prop-
erties however differ from those of Schrödinger particles, owing to
a strong screening of disorder48. In 1D, the Lyapunov exponent of
a Bogolyubov quasiparticle readsΓ(k) = [S(k)]2γ(k), whereγ(k) is
the single-particle Lyapunov exponent andS(k) = 2(kξ)2/(1+ 2(kξ)2)
is the screening function. One thus finds that in the phonon regime
(k ≪ 1/ξ), the screening is strong andΓ(k)≪ γ(k). Conversely, in the
free-particle regime (k ≫ 1/ξ), the screening vanishes andΓ(k) ≃ γ(k).
Hence, surprisingly, localization can survive in the presence of strong
mean-field interactions. This poses new challenges to ultracold atoms:
Not only direct observation of many-body AL, but also possible conse-
quences on quantum coherence, sound-wave propagation or thermal-
ization process.

Fermi systems and ‘dirty’ superconductors
Consider now a Fermi gas, and focus again on the ground state prop-
erties (Fig. 2). In the absence of interactions, the gas ofN fermions
populates theN lowest single-particle states. For low density, short-
range interactions do not play a significant role as the populated states
are spatially separated. However, for large-enough density, they do
overlap. Then, for repulsive interactions, each populatedstate tends to
contract to minimize its overlap with other populated states, thus favor-
ing localization. Conversely, for attractive interactions, the populated
states tend to extend to maximize their overlap, thus favoring delocal-
ization. Hence strikingly, interactions have opposite consequences for
fermions and bosons.

Perhaps even more fascinating is the possibility to study ‘dirty’
Fermi liquids. Experiments with two-component Fermi gases(e.g.
6Li or 40K), with interactions controlled by Feshbach resonances,
have already significantly advanced our understanding of the so-called
BEC-BCS crossover15,16. On the attractive side of the resonance and
for weak interactions, the Fermi superfluid is well described by the
Bardeen-Schrieffer-Cooper (BCS) theory and formation of spatially
extended Cooper pairs consisting of two fermions of opposite spins
and momenta. On the repulsive side, pairs of fermions form bosonic
molecules, which undergo Bose-Einstein condensation. Although dis-
order should not significantly affect pairing, BCS superfluidity and
BEC superfluidity are expected to react differently to disorder83,84. The
famous Anderson theorem85 indicates that disorder should not affect
very much the BCS superfluid owing to the long-range and overlap-
ping nature of the Cooper pairs. Conversely, disorder should seriously
affect the molecular BEC, enhancing phase fluctuations.

Strongly-correlated gases in disordered lattices
Strong interactions are also very important in various disordered sys-
tems, e.g. superfluids in porous media or ‘dirty’ superconductors.
Metal-insulator transitions attain a particularly interesting, but not
fully understood character in lattice systems. In this respect, the Bose-
Hubbard model,

Ĥ = −
∑

〈 j,l〉
J
(

â†j âl + h.c.
)

+
∑

j

V j â†j â j +
1
2

∑

j

U â†j â
†
j â jâ j (4)

is central in condensed-matter physics50–52 for it forms a tractable
model, which captures the elementary physics of strongly interacting
systems. Hamiltonian (4) describes bosons, in a lattice with inhomo-
geneous on-site energiesV j, which can tunnel between the sites, with
rateJ, and interact when placed in the same site, with interactionen-
ergy U. Interestingly, this model contains the most fundamental two
phenomena underlying metal-insulator transitions. They correspond
to the Anderson transition5,6 in the absence of interactions (U = 0) as
discussed above, and to the Mott transition86 in the absence of disor-
der (V = 0). In systems dominated by repulsive interactions, density
fluctuations, which are energetically costy, are suppressed, and a Mott
insulator (MI) state,|ΨMI 〉 ∝

∏

j (â†j )
n|0〉, is formed. Then, the number

of bosons per site,n = [µ/U + 1], where [.] represents the integer part,
is determined and phase coherence between the lattice sitesvanishes.
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Box 2 | Creating controlled disordered potentials.

In atomic gases, disorder can be created in a controlled way.For instance, the so-called speckle potentials are formed as follows109.
A coherent laser beam is diffracted through a ground-glass plate and focused by a converging lens (Box 2 Fig. 1a). The ground-glass
plate transmits the laser light without altering the intensity, but imprinting a random phase profile on the emerging light. Then, the
complex electric fieldE(r ) on the focal plane results from the coherent superpositionof many waves with equally-distributed random
phases, and is thus a Gaussian random process. In such a lightfield, atoms with a resonance slightly detuned with respect to the laser
light experience a disordered potentialV(r ) which, up to a shift introduced to ensure that the statistical average〈V〉 of V(r ) vanishes, is
proportional to the light intensity,V(r ) ∝ ±(|E(r )|2 − 〈|E|2〉), an example of which in shown in Box 2 Fig. 1b. Hence, the lawsof optics
allows us to precisely determine all statistical properties of speckle potentials. First, although the electric fieldE(r ) is a complex Gaussian
random process, the disordered potentialV(r ) is not Gaussian itself, and its single-point probability distribution is a truncated, exponential
decaying function,P (V(r )) = e−1|VR|−1 exp(−V(r )/VR)Θ (V(r )/VR + 1), where

√

〈V2〉 = |VR| is the disorder amplitude andΘ is the
Heaviside function. Both modulus and sign ofVR can be controlled experimentally31: The modulus is proportional to the incident laser
intensity while the sign is determined by the detuning of thelaser relative to the atomic resonance (VR is positive for ‘blue-detuned’ laser
light31,38,41,44, and negative for ‘red-detuned’ laser light37,39,42). Second, the two-point correlation function of the disordered potential,
C2(r ) = 〈V(r )V(0)〉, is determined by the overall shape of the ground-glass plate but not by the details of its asperities109. It is thus also
controllable experimentally31. There is however a fundamental constraint: Since speckle potentials result from interference between light
waves of wavelengthλL coming from a finite-size aperture of angular width 2α (Box 2 Fig. 1a) they do not contain Fourier components
beyond a value 2kC, wherekC = (2π/λL) sin(α). In other words,C2(2k) = 0 for |k | > kC.

Speckle potentials can be used directly to investigate the transport of matter-waves in disordered potentials37–40. They can also be
superimposed to deep optical lattices88. In the latter case, the physics is described by Box 1 Hamiltonian (2) withVσ, j a random variable
whose statistical properties are determined by those of thespeckle potential. In particular,Vσ, j is non-symmetric and correlated from site
to site. Yet another possibility to create disorder in deep optical lattices is to superimpose a shallow optical latticewith an incommensurate
period40,43,45,87. In this case,Vσ, j = ∆ cos(2πβ j + φ), where∆ andφ are determined by the amplitude and the phase of the second lattice
andβ = k2/k1 is the (irrational) ratio of the wavevectors of the two lattices. Although the quantityVσ, j is deterministic, it mimics disorder
in finite-size systems33,34,89,90. In contrast to speckle potentials, these bichromatic lattices form a pseudo-random potential, which is
bounded (|Vσ, j | . ∆) and symmetrically distributed.

Box 2 Figure 1 | Optical speckle potentials. a)Optical configuration.b) Two-dimensional representation of a speckle potential.

MIs are insulating, incompressible, and gapped as the first excitation
corresponds to transfer one atom from a given site to another, which
costs the finite energyU. At the other extreme, when tunneling dom-

inates, the bosons form a superfluid state,|ΨSF〉 ∝
(

∑

j â†j
)N
|0〉, with

normal density fluctuations and perfect coherence between the lattice
sites. This state is gapless and compressible.

In the presence of disorder, a glassy phase is formed, which in-
terpolates between Lifshits-Anderson glass for weak interactions, to
Bose glass for strong interactions50. The latter can be represented
as |ΨBG〉 ∝

∏

j (â†j )
n j |0〉 with n j = [(µ − V j)/U + 1]. This phase is

thus insulating but compressible and gapless since the ground state
is quasi-degenerated, like in many other glassy systems50–52. With
the possibility of realizing experimentally systems exactly described
by Hubbard models (Box1), ultracold atoms in optical lattices offer
also here unprecedented opportunities to investigate thisphysics in de-
tail, and to directly observe the Bose glass, which has not been pos-
sible in any system so far. Two experimental groups have madethe
first steps in this direction87,88. The experiment of ref. 87 applied a
bichromatic, incommensurate lattice to 1D Mott insulators. Increas-
ing disorder, a broadening of Mott resonances was observed,suggest-
ing vanishing of the gap and transition to an insulating state with a
flat density of excitations. Intensive theoretical studieshave been de-

voted to understand these results, using quantum Monte-Carlo89 and
Density Matrix Renormalization Group90 techniques. The results of
ref. 89 suggest that, in the conditions of ref. 87, one shouldexpect
a complex phase diagram with competing regions of gapped, incom-
pressible band-insulator, and compressible Bose glass phases. Clearly,
novel and more precise detection schemes are needed to characterize
this kind of physics, such as direct measurements of compressibility51

or condensate fraction in superfluid, or coexisting superfluid and MI
phases. The latter has been approached experimentally in ref. 88,
where disorder-induced suppression of the condensate fraction in a lat-
tice with super-imposed speckle was observed.

One can also investigate the corresponding Fermi counterparts
with ultracold atoms. These systems are particularly interesting as
they would mimic superconductors, even better than bosons.In this
respect, an outstanding challenge is definitely to understand high-TC

superconductors, and possibly important effects of disorder in these
systems. Consider the two-component (σ ∈ {↑, ↓}) Fermi-Hubbard
Hamiltonian

Ĥ = −
∑

σ,〈 j,l〉
Jσ
(

â†
σ, jâσ,l + h.c.

)

+
∑

σ, j

Vσ, j â†
σ, jâσ, j (5)

+
∑

j

U â†↑, jâ
†
↓, jâ↓, jâ↑, j
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For weak interactions, we have a Fermi liquid similar to thatdiscussed
above. For strong interactions and low temperature,T . U, the Fermi
gas enters a MI state, pretty much like for bosons, but with a single
(n = 1) fermion per site (either↑ or ↓). Evidence of vanishing double
occupancy and incompressibility have been reported recently in Fermi
MIs24,25. Then, in the presence of disorder, various phases could be
searched for, such as Fermi glasses. At even lower temperatures, spin
exchange starts to play a role, and a transition from paramagnetic to
antiferromagnetic insulator phases is predicted forTN ∼ 4J2/U in non-
disordered systems91. Interestingly, the interplay of interactions and
disorder might lead to appearance of novel ‘metallic’ phases between
the Fermi glass and the MI. Hence, dynamical mean-field theory92 at
half-filling predicts that disorder tends to stabilize paramagnetic and
antiferromagnetic metallic phases for weak interactions.For strong
interactions however, only the paramagnetic Anderson-Mott insulator
(for strong disorder) and antiferromagnetic insulator (for weak disor-
der) phases survive.

Simulating disordered spin systems
In condensed-matter physics, other important paradigm models where
disorder induces subtle effects are spin systems, described by the
Hamiltonian

Ĥ = −
∑

〈 j,l〉

(

Jx
j,l Ŝ x

j · Ŝ x
l + Jyj,l Ŝ y

j · Ŝ
y

l + Jz
j,l Ŝ z

j · Ŝ
z
l

)

−
∑

j

h j · Ŝj, (6)

with either random spin exchange,J j,l, or random magnetic field,h j.
Ultracold gases can also simulate this class of systems, although not as
straightforwardly as for Hubbard models. Consider a two-component
(Bose-Bose or Fermi-Bose) ultracold gas in an optical lattice, as de-
scribed by Box 1 Hamiltonian (2). In the strongly-correlated regime,
the couplings between the particles can be understood as exchange-
mediated interactions between composite (bosonic or fermionic) par-
ticles. One can then map Box 1 Hamiltonian (2) onto Hamiltonian (6)
with fictitious spins encoded in combinations of the annihilation and
creation operators of the composite particles:Ŝ j,x = (Â j + Â†j)/2,

Ŝ j,y = (Â j − Â†j)/2i, and Ŝ j,z = 1/2 − Â†Â, which indeed have com-
mutation relations of spins2, and complicated but analytical functional
dependence ofJ j,l andh j on the parameters of Box 1 Hamiltonian (2).
In the presence of disorder, these parameters are random54,59 and one
can reach various limiting cases corresponding to Fermi glass, quan-
tum spin glass and quantum percolation58.

Particularly promising is the possibility of simulating spin
glasses58 (Fig. 3), for which only the exchange term,J j,l, is randomly
distributed. The phase diagram of (even classical) spin glasses, which
is not known yet, is an outstanding challenge in condensed-matter
physics. The nature of spin glasses is still debated and there exist
competing theories: The Parisi replica symmetry breaking56 and the
Nelson-Huse droplet model57. Ultracold atoms might contribute to the
resolution of this issue, not only on the classical level butalso on the
quantum level since they offer original ways of performing quenched
averages. Importantly with a view towards testing the replica theory,
overlap between two spin configurations between two (or more) repli-
cas can be measured directly by preparing a pair of 2D lattices with the
same realization of disorder93. Quenched averages for systems with bi-
nary disorder can also be simulated by replacing the classical disorder
variables by quantum 1/2-spins, and preparing them in a superposition
state94.

Yet another fascinating possibility is to simulate variousrandom
field-induced order (RFIO) phenomena in systems with continuous
symmetry, such as BECs or XY-spin models withU(1) symmetry, or
Heisenberg models withS U(2) symmetry54,55. A prototype model95,
is the 2D-XY version of Hamiltonian (6) with fixed exchangeJ j,l

but random fieldh j. In the absence of disorder, symmetry leads to
strong fluctuations, which suppress long-range order, according to the
Mermin-Wagner-Hohenberg theorem. Disorder distributed in a sym-
metric way suppresses ordering even more. Surprisingly however, dis-
order that breaks symmetry might actually favor ordering. This model
can be implemented within Bose-Bose mixtures54,55 where random
uniaxial h j can be implemented using two internal states of the same

Figure 3 | The spin glass problem. An assembly of spins located at the
nodes of a cubic lattice interacts according to Hamiltonian (6) where the ex-
change term J j,l only is randomly distributed, and can be either ferromag-
netic (blue bonds) or anti-ferromagnetic (red bonds). The ground state of the
system corresponds to the spin configuration that minimizes the total energy.
The inherent complexity of spin glasses results from frustration which appears
when the topography of ferromagnetic and anti-ferromagnetic bonds make im-
possible to fulfil the local constraints all together. In some plaquetes of four
sites, local minimization is easy, for instance when all bonds are ferromagnetic
(left disk) or anti-ferromagnetic (central disk). In some others, it leads to frus-
tration, for instance for odd numbers of ferromagnetic and anti-ferromagnetic
bonds (right disk). In the latter case, at least one spin is frustrated, that is its
spin orientation is not unique. Hence, frustration is at the origin of a manifold of
metastable states which corresponds to configurations with similar energies.

atom, coupled via a random Raman field,~Ω(r )Ψ1(r )†Ψ2(r ) + h.c.
In order to break the continuous symmetry, one uses a Raman cou-
pling with constant phase, but random strength. In lattice systems,
RFIO shows up but is limited by finite-size effects, even in very large
systems54. In this respect, ultracold atoms offer an alternative and fruit-
ful route. Indeed, RFIO turns out to be particularly efficient in two (or
multi-) component BECs in meanfield regime, where the energyfunc-
tional reads∆E ≃ dr n[(~2/4m)(∇θ)2+~Ω(r ) cos(θ)], with n the atomic
density andθ(r ) = θ1(r ) − θ2(r ), the phase difference between the two
BECs. This is the continuous counterpart of the 2D-XY model.Then,
RFIO manifests itself as a fixedθ(r ) = ± π/2, and thus allows to con-
trol the relative phase between the components55. This is a striking
example where ultracold atoms can be used not only to simulate clas-
sic models, but also offer new and fruitful viewpoints to fundamental
issues.

Further directions
As the reader has probably noticed, we both are very enthusiastic
about the future development of the field of disordered quantum gases,
and probably would like that any interesting direction can be pursued.
Limited size of the present review has not allowed us to discuss them
all, but let us briefly mention another.

Two-component (Bose-Bose or Bose-Fermi) mixtures offer an al-
ternative method to create disorder in optical lattices, namely by
quenching one component in random sites, so as to form a background
of randomly-distributed impurities94,96. Theoretical analysis using
Gutzwiller method confirms the appearance of incompressible MI and
partially compressible Bose glass phases97. The idea of freezing the
motion of the second species to form random impurities (i.e.classical
disorder) can be generalized to freezing of any quantum state98. In this
case the system does not involve any classical disorder, butneverthe-
less localization occurs owing to quantum fluctuations in the frozen
state of the second species.

One can even relax the freezing condition and consider say two
bosonic species, one of which tunnels much slower than the other,
forming a quasi-static disorder. In a large region of parameters (for re-
pulsive inter-species forces), the ground state corresponds to full phase
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segregation. In practice it is marked by a large number of metastable
states in which microscopic phase separation occurs, reminiscent of
emulsions in immiscible fluids99. Such quantum emulsions are pre-
dicted to have very similar properties to the Bose glass phase, i.e.
compressibility and absence of superfluidity. Such quasi-static or even
time-dependent disorder effects have been suggested to underlie the
quite large shift of the SF-MI transition in Bose-Fermi100,101and Bose-
Bose102 mixtures. This issue was quite controversial and the most re-
cent work suggests that, while indeed the fermions tend to localize the
bosons for attractive boson-fermion interactions, higherBloch bands
play a significant role103–105.
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phase transition from a superfluid to a Mott insulator in a gasof ultracold atoms.
Nature 415, 39-44 (2002).
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