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We study Anderson localization of ultracold atoms in weak one-dimensional speckle potentials using per-
turbation theory beyond Born approximation. We show the existence of a series of sharp crossovers �effective
mobility edges� between energy regions where localization lengths differ by orders of magnitude. We also
point out that the correction to the Born term explicitly depends on the sign of the potential. Our results are in
agreement with numerical calculations in a regime relevant for experiments. Finally, we analyze our findings
in the light of a diagrammatic approach.
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I. INTRODUCTION

Anderson localization �AL� of single electron wave func-
tions �1�, first proposed to understand certain metal-insulator
transitions, is now considered an ubiquitous phenomenon,
which can happen for any kind of waves propagating in a
medium with random impurities �2,3�. It can be understood
as a coherent interference effect of waves multiply scattered
from random defects, yielding localized waves with expo-
nential profile and resulting in complete suppression of the
usual diffusive transport associated with incoherent wave
scattering �4�. So far, AL has been reported for light waves in
diffusive media �5,6� and photonic crystals �7,8�, sound
waves �9�, or microwaves �10�. Ultracold atoms have al-
lowed studies of AL in momentum space �11,12� and re-
cently direct observation of localized atomic matter waves
�13,14�.

In one-dimensional �1D� systems, all states are localized,
and the localization length is simply proportional to the
transport mean-free path �15�. However, this strong property
should not hide that long-range correlations can induce
subtle effects in 1D models of disorder, in particular those
whose power spectrum has a finite support �16,17�. Ex-
amples are random potentials resulting from laser speckle
and used in experiments with ultracold atoms �13,18,19�. In-
deed, by construction �20�, speckles have no Fourier compo-
nent beyond a certain value 2kc, and the Born approximation
predicts no backscattering and no localization for atoms with
momentum �k��kc. This defines an effective mobility edge
at k=kc �17�, clear evidence of which has been reported �13�.

Beyond this analysis—relevant for systems of moderate
size �13,17�—study of AL in correlated potentials beyond the
effective mobility edge requires more elaborated approaches.
In Ref. �21�, disorder with symmetric probability distribution
was studied, and examples were exhibited, for which expo-
nential localization occurs even for k�kc although with a
much longer localization length than for k�kc. It was also
concluded that for Gaussian disorder, there is a second effec-
tive mobility edge at 2kc, while for non-Gaussian disorder, it
is generally not so. These results do not apply to speckle
potentials whose probability distribution is asymmetric.
Moreover, although speckle potentials are not Gaussian, they
derive from the squared modulus of a Gaussian field, and as
we will show, the conclusions of Ref. �21� must be re-
examined. Hence, considering speckle potentials presents a
twofold interest. First, they form an original class of non-
Gaussian disorder which can inherit properties of an under-
lying Gaussian process. Second, they are easily implemented
in experiments with ultracold atoms where the localization
length can be directly measured �13�.

In this work, we study AL in speckle potentials beyond
the Born approximation using perturbation theory �22�, nu-
merical calculations, and diagrammatic methods. We find
that there exist several effective mobility edges at kc

�p�= pkc
with integer p, such that AL in the successive intervals
kc

�p−1��k�kc
�p� results from scattering processes of increas-

ing order. Effective mobility edges are thus characterized by
sharp crossovers in the k dependence of the Lyapunov expo-
nent �see Fig. 1�. We prove this for the first two effective
mobility edges by calculating the three lowest-order terms
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and give general arguments for any p. In addition, we discuss
the effect of odd terms that appear in the Born series due to
the asymmetric probability distribution of speckle potentials.

II. SPECKLE POTENTIALS

Let us first recall the main properties of speckle poten-
tials. Optical speckle is obtained by transmission of a laser
beam through a medium with a random phase profile, such as
a ground glass plate �20�. The resulting complex electric field
E is a sum of independent random variables and forms a
Gaussian process. In such a light field, atoms experience a
random potential proportional to the intensity �E�2. Defining
the zero of energies so that �V�=0, the random potential is
thus

V�z� = VR��a�z/�R��2 − ��a�z/�R��2�� , �1�

where the quantities a�u� are complex Gaussian variables
proportional to the electric field E and �R and VR feature
characteristic length and strength scales of the random po-
tential �the precise definition of VR and �R may depend on
the model of disorder; see below�. In contrast, V�z� is not a
Gaussian variable and its probability distribution is a decay-
ing exponential, i.e., asymmetric. The sign of VR is thus rel-
evant and can be either positive or negative for “blue”- and
“red”-detuned laser light, respectively. However, the random
potential V�z� inherits properties of the underlying Gaussian
field a�u�. For instance, all potential correlators cn are com-
pletely determined by the field correlator ca�u�= �a�0��a�u��
via

�a1
�
¯ ap

�a1 ¯ ap� = �
�

�a1
�a��1�� ¯ �ap

�a��p�� , �2�

where ap�=a�zp� /�R� and � describes the p! permutations of
	1, . . . , p
. Hence, c2�u�= �ca�u��2 and defining a�u� so that
��a�u��2�=1, we have ��V�z�2�= �VR�. Also, since speckle re-
sults from interference between light waves of wavelength
�L coming from a finite-size aperture of angular width 2�,

the Fourier transform of the field correlator has no compo-
nent beyond kc=2	 sin � /�L, and ca has always a finite sup-
port:

ĉa�q� = 0 for �q� � kc�R � 1. �3�

As a consequence, the Fourier transform of the potential cor-
relator also has a finite support: ĉ2�q�=0 for �q��2.

III. PHASE FORMALISM

Consider now a particle of energy E in a 1D random
potential V�z� with zero statistical average �V�z� need not be
a speckle potential here�. The particle wave function 
 can
be written in phase-amplitude representation


�z� = r�z�sin���z��; �z
 = kr�z�cos���z�� , �4�

which proves convenient to capture the asymptotic decay of
the wave function �here k=�2mE /�2 is the particle wave
vector in the absence of disorder�. It is easily checked that
the Schrödinger equation is then equivalent to the coupled
equations

�z��z� = k	1 − �V�z�/E�sin2���z��
 , �5�

ln�r�z�/r�0�� = k

0

z

dz��V�z��/2E�sin�2��z��� . �6�

Since Eq. �5� is a closed equation for the phase �, it is
straightforward to develop the perturbation series of � in
increasing powers of V. Reintroducing the solutions at dif-
ferent orders into Eq. �6� yields the corresponding series for
the amplitude r�z� and the Lyapunov exponent:

��k� = lim
�z�→


�ln�r�z���
�z�

= �
n�2

��n��k� . �7�

The nth-order term ��n� is thus expressed as a function of the
n-point correlator Cn�z1 , . . . ,zn−1�= �V�0�V�z1�¯V�zn−1�� of
the random potential, which we write Cn�z1 , . . . ,zn−1�
=VR

n cn�z1 /�R, . . . ,zn−1 /�R�. Up order n=4, we find

��n� = �R
−1� �R

k�R
�n

fn�k�R� , �8�

where �R=2m�R
2 VR /�2 and

f2��� = +
1

4



−


0

duc2�u�cos�2�u� , �9�

f3��� = −
1

4



−


0

du

−


u

dvc3�u,v�sin�2�v� , �10�

f4��� = −
1

8



−


0

du

−


u

dv

−


v

dwc4�u,v,w�	2 cos�2�w�

+ cos�2��v + w − u��
 . �11�

Note that the compact form �11� is valid provided that oscil-
lating terms, which may appear from terms in c4 that can be
factorized as c2 correlators, are appropriately regularized at
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FIG. 1. �Color online� Lyapunov exponent � calculated two or-
ders beyond the Born approximation for particles in 1D speckle
potentials created with a square diffusive plate versus the particle
momentum �k and the strength of disorder �R=2m�R

2 VR /�2 �VR

and �R are the amplitude and correlation length of the disorder�.
The solid blue lines correspond to �R=0.1 and �R=0.02.
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infinity. Note also that in Eq. �8�, the coefficients ��R /k�R�n

diverge for k→0, while the exact ��k� remains finite for any
�R �23�. This signals a well-known breakdown of the pertur-
bative approach. Conversely, the perturbative expansion is
valid when ��k��k �for k→0�, i.e., when the localization
length exceeds the particle wavelength, a physically satisfac-
tory criterion.

IV. ONE-DIMENSIONAL ANDERSON LOCALIZATION
IN SPECKLE POTENTIALS

A. Analytic results

Let us now examine the consequences of the peculiar
properties of speckle potentials in the light of the above per-
turbative approach. For clarity, we restrict ourselves to 1D
speckle potentials created by square diffusive plates as in
Refs. �13,18� for which ca�u�=sin�u� /u and ĉa�q����1
− �q��, where � is the Heaviside step function �24�. Using
Eqs. �9� and �10�, we find

f2��� =
	

8
��1 − ���1 − �� , �12�

f3��� = −
	

4
��1 − ����1 − ��ln�1 − �� + � ln���� . �13�

The functions f2 and f3 are simple and vanish for ��1
�see Fig. 2�. This property is responsible for the existence of
the first effective mobility edge at k=kc �17�, such that
��k��R���R /k�R�2 for k��R

−1 while ��k��R=O��R /k�R�4

for k��R
−1. The fact that f3 vanishes in the same interval

���1� as f2 exemplifies the general property that odd-n
terms cannot be leading terms in any range of k because ��k�
must be positive whatever the sign of VR. For ��1 however,
f3��� is not identically zero owing to the asymmetric prob-
ability distribution in speckle potentials. The term ��3� can
thus be either positive or negative depending on the sign of
VR �22�.

The function f4 is found similarly from Eq. �11�. While its
expression is quite complicated �see the Appendix�, its be-

havior is clear when plotted �see Fig. 2�. Let us emphasize
some of its important features. First, there is a discontinuity
of the derivative of f4 at �=1 /2. Second, we find a very
narrow logarithmic divergence, f4����−�	 /32�ln�1−�� at
�=1, which signals a singularity of the perturbative approach
�note that it does not appear in Fig. 1 due to finite resolution
of the plot�. Finally, the value �=2 corresponds to the
boundary of the support of f4, showing explicitly the exis-
tence of a second effective mobility edge at k=2�R

−1. Hence,
while ��k��R���R /k�R�4 for k�2�R

−1, we have ��k��R
=O��R /k�R�6 for k�2�R

−1, since f4��� as well as f5��� van-
ish for ��2.

B. Numerics

In order to test the validity of the perturbative approach
for experimentally relevant parameters, we have performed
numerical calculations using a transfer matrix approach. The
results are plotted in Fig. 3: �R=0.02 corresponds to VR /�
=2	�16 Hz in Fig. 3 of Ref. �13� and �R=0.1 to VR /�
=2	�80 Hz in Fig. 3 and to Fig. 4 of Ref. �13�. For �R
=0.02, the agreement between analytical and numerical re-
sults is excellent. The effective mobility edge at k=�R

−1 is
very clear: we find a sharp step for ��k� of about 2 orders of
magnitude. For �R=0.1, we find the same trend but with a
smoother and smaller step �about one order of magnitude�. In
this case, although the Born term for k��R

−1 and the fourth-
order term for k��R

−1 provide reasonable estimates �within a
factor of 2�, higher-order terms—which may depend on the
sign of VR—contribute significantly.

The contribution of the odd terms can be extracted by
taking �+−�−, where �� are the Lyapunov exponents ob-
tained for positive and negative disorder amplitude of same
modulus �VR�, respectively. As shown in the inset of Fig. 3,
the odd terms range from 30% to 70% of the Born term for
0.6�k�R�0.9 and �R=0.1 and are of the order of ��3� in
weak disorder and away from the divergence at k=�R

−1. This
shows that the first correction ��3� to the Born term can be
relevant in experiments.
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FIG. 2. �Color online� Functions fn for n=2, 3, and 4 for a
speckle potential created with a square diffusive plate �solid lines;
see Eqs. �12� and �13� and the Appendix� and comparison with
numerical calculations �points with error bars�. The inset is a mag-
nification of function f4 around �=2.
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FIG. 3. �Color online� Lyapunov exponent ��k� versus the par-
ticle momentum k as determined numerically �solid red lines� and
by perturbation theory up to order 4 �dashed blue lines� for a
speckle potential created with a square plate. The dotted green lines
are the Born term. Inset: comparison of odd and even contributions
in the Born series for �R=0.1.
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For completeness, we have calculated the fn��� as the
coefficients of fits in powers of �R /k�R using series of cal-
culations of ��k� at fixed k and various �R. As shown in Fig.
2, the agreement with the analytic formulas is excellent. In
particular, the numerics reproduce the predicted kink at �
=1 /2. The logarithmic singularity around �=1 being very
narrow, we did not attempt to study it.

V. DIAGRAMMATIC ANALYSIS

Let us finally complete our analysis using diagrammatic
methods, which allow us to exhibit momentum exchange in
scattering processes as compact graphics and thus to identify
effective mobility edges in a quite general way. In 1D, the
localization length can be calculated from the backscattering
probability of ����2� using quantum transport theory. The ir-
reducible diagrams of elementary scattering processes in
speckle potentials have been identified in Ref. �25�.

To lowest order in �R �Born approximation�, the average
intensity of a plane wave with wave vector k backscattered
by the random potential is described by

U2�k� = ¬
•

•

q + k q − k

k k

k k

⊗

⊗

2k

k k

k k

.

�14�

The upper part of the diagram represents � �particle� and the
lower part its conjugate �� �hole�. The dotted line

=�Rĉa�q�•
q

• represents the field correlator; simple
closed loops over field correlations can be written as a po-
tential correlation � ¯ ¯ ¯ � . Backscattering requires dia-
gram �14� to channel a momentum 2k, entering at the par-
ticle, down along the potential correlations to the hole.
Therefore, the diagram vanishes for k�R�1.

At order �R
3 , the only possible contribution is

U3�k� = c.c.

• •

•

p

q + k q − k

k k

k k

+

�15�

The straight black line stands for the particle propagator
�Ek−Ep+ i0�−1 at intermediate momentum p. Diagram �15�
features two vertical field correlation lines, just as diagram
�14�, and thus vanishes at the same threshold k=�R

−1. Evalu-
ating two-loop diagram �15�, we recover precisely contribu-
tion �13�.

Many diagrams contribute to order �R
4 . First there are the

usual backscattering contributions with pure intensity corre-
lations �Figs. 4�a�–4�c��. Both Figs. 4�a� and 4�c� have a
single vertical intensity correlation and vanish for k��R

−1. In
contrast, the crossed diagram �Fig. 4�b�� has two vertical
intensity correlation lines and can thus accommodate mo-
menta up to k=2�R

−1. Performing the integration, we find that
this diagram reproduces those contributions to f4��� for �
� �1,2� that contain factorized correlators �see the Appen-
dix�. Second, there are nine more diagrams, all with nonfac-
torizable field correlations �25�. A single one has not two, but

four vertical field correlation lines, shown in Fig. 4�d�, and
contributes for k�R� �1,2�. Carrying out the three-loop in-
tegration, we recover exactly the nonfactorizable contribu-
tions to f4��� for �� �1,2�.

VI. CONCLUSION

We have developed perturbative and diagrammatic ap-
proaches beyond the Born approximation, suitable to study
1D AL in correlated disorder with possibly asymmetric prob-
ability distribution. In speckle potentials, the k dependence
of the Lyapunov exponent exhibits sharp crossovers �effec-
tive mobility edges� separating regions where AL is due to
scattering processes of increasing order. We have shown it
explicitly for k=�R

−1 and k=2�R
−1, and we infer that there is a

series of effective mobility edges at k= p�R
−1 with integer p

since, generically, diagrams with 2p field correlations or p
intensity correlations can contribute up to k= p�R

−1. This is
because, although speckles are not Gaussian, they derive
from a Gaussian field. Finally, exact numerics support our
analysis for experimentally relevant parameters and indicate
the necessity to use higher-order terms in the Born series
even for k��R

−1. Hence, important features that we have
pointed out, such as odd terms in the Born series for k
��R

−1 and exponential localization for k��R
−1, should be ob-

servable experimentally.

ACKNOWLEDGMENTS

Stimulating discussions with P. Bouyer, V. Josse, T. Gi-
amarchi, and B. van Tiggelen are acknowledged. This re-
search was supported by the French Centre National de la
Recherche Scientifique �CNRS�, Agence Nationale de la Re-
cherche �ANR�, Ministère de l’Education Nationale, de la
Recherche et de la Technologie �MENRT�, Triangle de la
Physique, and Institut Francilien de Recherche sur les
Atomes Froids �IFRAF�.

APPENDIX

Here, we give the explicit formula of the function f4���
for a speckle potential created by a square diffusive plate,
such that the fourth-order term in the Born expansion of the
Lyapunov exponent � reads

��4� = �R
−1� �R

k�R
�4

f4�k�R� .

The function f4��� is the sum of three terms with different
supports:

a)

⊗ ⊗ ⊗

⊗ b)

⊗ ⊗

⊗⊗ c) ⊗ ⊗ ⊗

⊗

d)

• •

••

FIG. 4. Relevant fourth-order backscattering contributions. Con-
trary to the case of uncorrelated potentials �26,27�, the sum of dia-
grams �a�–�c� does not give zero for speckle potentials; only dia-
grams �b� and �d� contribute for k�R� �1,2�.
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f4��� = f4
�0,1/2���� + f4

�0,1���� + f4
�1,2���� ,

where f4
��,����� lives on the interval �� �� ,�� and

f4
�0,1/2���� = −

	3

16
�1 − 2�� ,

f4
�0,1���� =

	

16
�4 − 6� −

10	2

3
�1 − 2�� − �4 − 2��ln��� − � 5

�
− 3��ln�1 − �� + � 1

�
+ ��ln�1 + �� − �4 − 8��ln2���

+ 22�1 − ��ln2�1 − �� + �18 + 14��ln2�1 + �� − 16�1 − ��ln�1 − ��ln��� − 4�1 − ��ln�1 − ��ln�1 + ��

− 32�1 + ��ln���ln�1 + �� − 24�1 + ��Li2��� + 32�1 + ��Li2� �

1 + �
� − 8�Li2� 2�

1 + �
� − 8�1 − 2��Li2�2 −

1

�
�� ,

f4
�1,2���� =

	

32
�− 2 + �1 +

	2

3
�� + 4�Li2�1 − �� − � 2

�
− 2 + ��ln�� − 1� − 2�� − 1� − ln2�� − 1� + 4� ln�� − 1�ln���� ,

where Li2�z�=�z
0dt ln�1− t� / t=�k=1


 zk /k2 is the dilogarithm function.
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