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Localization of Bogoliubov quasiparticles in interacting Bose gases with correlated disorder
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We study the Anderson localization of Bogoliubov quasiparticles (elementary many-body excitations) in a
weakly interacting Bose gas of chemical potential μ subjected to a disordered potential V . We introduce a general
mapping (valid for weak inhomogeneous potentials in any dimension) of the Bogoliubov–de Gennes equations
onto a single-particle Schrödinger-like equation with an effective potential. For disordered potentials, the
Schrödinger-like equation accounts for the scattering and localization properties of the Bogoliubov quasiparticles.
We derive analytically the localization lengths for correlated disordered potentials in the one-dimensional
geometry. Our approach relies on a perturbative expansion in V/μ, which we develop up to third order, and we
discuss the impact of the various perturbation orders. Our predictions are shown to be in very good agreement with
direct numerical calculations. We identify different localization regimes: For low energy, the effective disordered
potential exhibits a strong screening by the quasicondensate density background, and localization is suppressed.
For high-energy excitations, the effective disordered potential reduces to the bare disordered potential, and the
localization properties of quasiparticles are the same as for free particles. The maximum of localization is found
at intermediate energy when the quasicondensate healing length is of the order of the disorder correlation length.
Possible extensions of our work to higher dimensions are also discussed.
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I. INTRODUCTION

Disorder in ultracold quantum gases is attracting a growing
interest due to unprecedented possibilities of controlling
disorder and atom-atom interactions for bosons, fermions,
or mixtures of atomic species created in one-, two-, or
three-dimensional traps [1–4]. So far much attention has
been devoted to studies of the disorder-induced damping
of motion in Bose [5–10] and Fermi [11] gases, classical
localization [12–20], spatial diffusion [19–25], and Anderson
localization in regimes where interactions can be neglected
[18,21,24,26–39]. The effects of disorder in interacting
quantum systems have also been studied in a variety of
contexts, such as transport in weakly interacting Bose-Einstein
condensates [40–48], interacting Bose gases at equilibrium
[26,49–72], strongly interacting Fermi gases [73–76], and
coupled two-component gases [77–83].

The interplay of disorder and interactions in quantum sys-
tems is an issue of fundamental importance to understand the
behaviors of superfluid 4He in porous media [84–88], dirty su-
perconductors [89–93], and ultracold gases in optical disorder
[55,66–68,70]. Although a number of questions are open, in
particular regarding the fate of Anderson localization, general
behaviors can be found in various situations. For instance,
weak repulsive interactions in a Bose gas at zero temperature
in a disordered potential generally lead to delocalization
[53,60,63,94]: In the absence of interactions, all bosons con-
dense into the single-particle ground state, which is localized
[95]. This kind of N -body Fock state is highly unstable in
an infinite system where an infinity of spatially-separated
single-particle states coexist at arbitrarily close energies [96].
Then, for weak repulsive interactions, the Bose gas fragments
into a number of low-energy, localized single-particle states,
so as to minimize the interaction energy [53,60,63]. The Bose
gas forms a gapless compressible insulating phase, known

as the Bose glass [94,97–103]. For increasing mean-field
interactions, the fragments merge and form a single extended
condensate, which restores superfluidity [53,60,63,104–108].
Finally, in the strongly interacting regime, repulsive in-
teractions can finally destroy again superfluidity, forming
Tonks-Girardeau gases in 1D [99,109–111] or disordered Mott
insulators in lattice gases [100–102].

The above results lead to the conclusion that, at zero
temperature where only the ground state plays a role, repulsive
interactions destroy Anderson localization in Bose gases
for moderate interaction strengths that are compatible with
the mean-field approach [53,94,104]. At nonzero tempera-
ture however, important properties, such as the correlation
functions, phase coherence, and long-range order [105,112],
are determined by the excitations of the Bose gas, which
are populated thermally. It is thus of prime importance to
determine how disorder affects the behavior of the latter.
These excitations of the many-body system are of collective
nature. They can be viewed as quasiparticles, scattering on the
disordered potential. In contrast to the mean-field background,
which is extended, the Bogoliubov quasiparticles of a weakly
interacting Bose gas can be localized in the presence of a
disordered potential [51,54,58,71,72].

In this paper, following the approach of Ref. [54], we
present a detailed theory of the Anderson localization of
Bogoliubov quasiparticles in weakly interacting Bose gases
subjected to correlated disordered potentials. On the one hand,
this approach applies to any kind of weak disordered potentials
with short- or long-range correlations and offers a unified
theory valid all along the crossover from the phonon regime to
the free particle regime. On the other hand, it permits a straight-
forward interpretation of the effect of repulsive interactions in
terms of a screening of the disorder by the density background.
In Sec. II, the grand-canonical Hamiltonian of the interacting
many-body system is expanded up to second order in phase and
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density fluctuations. The reduced Hamiltonian is quadratic and
can be diagonalized by following the standard Bogoliubov-
Popov approach. The excitations are the solutions of the
Bogoliubov–de Gennes equations, which consist in a set of two
coupled differential equations of order two. In Sec. III, we then
introduce a general mapping, valid for weak inhomogeneous
potentials in any dimension, of the Bogoliubov–de Gennes
equations onto a single-particle Schrödinger-like equation
with a screened potential. For disordered potentials, the
effective Schrödinger-like equation describes the scattering
and localization properties of the Bogoliubov quasiparticles.
In Sec. IV, we apply this approach to study the Anderson
localization of Bogoliubov quasiparticles in one-dimensional
disorder. We derive analytical formulas for the localization
length of the Bogoliubov quasiparticles up to third order in
perturbation theory and compare our predictions to direct nu-
merical calculations. Our results exhibit different localization
regimes: For low energy, the effective disordered potential
accounts for a strong screening by the quasicondensate density
background and Anderson localization is suppressed. For
high energy excitations, the screening is small; the effective
disordered potential reduces to the bare disordered potential
and the localization properties of quasiparticles are the same
as for free particles. The maximum of localization is found at
intermediate energy when the quasicondensate healing length
is of the order of the disorder correlation length. Finally,
in Sec. V, we summarize our results and discuss possible
extensions of our work, in particular toward higher dimensions.

II. ELEMENTARY (BOGOLIUBOV) EXCITATIONS IN A
BOSE GAS WITH WEAK DENSITY FLUCTUATIONS

We consider a d-dimensional, ultracold, dilute gas of
bosons with weak repulsive interactions, in a potential V (r).
The system is described by the grand-canonical Hamiltonian

K̂ = Ĥ − μN̂

=
∫

dr
{

h̄2

2m
[(∇θ̂ )2n̂ + (∇√

n̂)2]

+V (r)n̂ + g

2
n̂2 − μn̂

}
, (1)

where the short-range atom-atom interactions are modeled by a
contact potential with coupling constant g > 0, m is the atomic
mass, n̂ and θ̂ are the density and phase operators, which satisfy
the commutation relation [n̂(r),θ̂ (r′)] = iδ(r − r′) [113], and
μ is the chemical potential. In the full form (1), solving K̂

for eigenstates is difficult in general. Yet, for small density
fluctuations around nc = 〈n̂〉 (i.e., for |δn̂| � nc, where |δn̂|
is the typical value of δn̂ = n̂ − nc in the state of the system)
and for small phase gradient (h̄2|∇ θ̂ |2/2m � μ), the operator
K̂ can be expanded around the classical field nc, ∇ θ̂ = 0,
following the Bogoliubov-Popov approach [114–119].1 In

1The definition of a phase operator requires special care. A suitable
definition can be found in Ref. [118], where a lattice model is
used for a rigorous formulation of the Bogoliubov-Popov theory
for quasicondensates. The equations derived in this lattice model
coincide with the continuous formulation of Eqs. (2), (5), and (6)

the zeroth-order expansion the ground-state density profile is
found by minimizing the grand-canonical energy functional
associated with the Hamiltonian (1) with respect to the
variation of nc(r). This yields the Gross-Pitaevskii equation
(GPE) [

− h̄2

2m
∇2 + V (r) + gnc(r) − μ

] √
nc(r) = 0. (2)

Then, retaining only the leading terms in the expansion
of the density fluctuations δn̂ and phase gradients ∇ θ̂ , the
Hamiltonian (1) is cast into the form K̂ = E0 + ∑

ν εν b̂†ν b̂ν ,
where b̂†ν and b̂ν are the bosonic creation and annihilation
operators of an excitation [Bogoliubov quasiparticle (BQP)]
of energy εν .2 The phase and density operators are expanded
as

θ̂(r) = −i

2
√

nc(r)

∑
ν

[f +
ν (r) b̂ν − H.c.], (3)

δn̂(r) =
√

nc(r)
∑

ν

[f −
ν (r) b̂ν + H.c.], (4)

where the Bogoliubov wave functions f ±
ν (r) are solutions of

the Bogoliubov–de Gennes equations (BdGEs) [122][
− h̄2

2m
∇2 + V (r) + gnc(r) − μ

]
f +

ν (r) = ενf
−
ν (r), (5)[

− h̄2

2m
∇2 + V (r) + 3gnc(r) − μ

]
f −

ν (r) = ενf
+
ν (r) (6)

with the normalization∫
dr[f +

ν (r)f −
ν ′

∗(r) + f −
ν (r)f +

ν ′
∗(r)] = 2δν,ν ′ . (7)

Equations (3) and (4) reveal the simple physical meaning
of the functions f +

ν (r) and f −
ν (r). Up to the factor

√
nc(r),

they describe the spatial dependence of the phase and density
fluctuations associated with the BQPs, respectively. Notice
that, as first pointed out by Popov [116,117], the above
derivation of the BdGEs in the phase-density representation
provides an extension of the usual Bogoliubov–de Gennes
theory. In the latter, the starting point consists in applying the
usual Bogoliubov shift to the field operator, �̂ = √

nc + δ�̂,
and expanding K̂ up to quadratic terms in the fluctuation δ�̂

[114,115,122]. This approach assumes weak phase and density
fluctuations around a unique classical field

√
nc which breaks

the U (1) phase symmetry of the Hamiltonian. On the contrary,
the phase-density picture used in this work does not rely on this
assumption. In particular, it provides a satisfactory description

upon replacement of the coupling constant g by an effective coupling
constant that depends on the lattice spacing l, and converges to g in
the limit l → 0 in 1D [118,119].

2We discard in the canonical form of K̂ and in Eqs. (3) and (4)
the contribution of the P̂ and Q̂ operators which arise in Bogoliubov
approaches without particle number conservation [120,121], as these
operators play no role in the elementary excitations of the Bose
gas and vanish in number-conserving approaches. Note also that the
orthogonal projection of the Bogoliubov modes, as used in conserving
approaches [118,121], does not alter the results presented here.
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of the mean-field ground state nc(r) and the excitations of Bose
gases in the quasicondensate regime [123,124].

Within the above formalism, Eqs. (2), (5), and (6) form a
closed set which describes noninteracting, bosonic quasiparti-
cles. Interactions between these quasiparticles only arise with
higher-order terms in the expansion of K̂ , which we neglect
here. Therefore, to study the low-temperature properties of the
Bose gas in the external potential V (r), we are left with the
sole modes defined by the GPE (2) and BdGEs (5) and (6).
Still, the set of equations (2), (5), and (6) remains difficult
to solve in general, as the GPE (2) is nonlinear, and the two
coupled second-order BdGEs (5) and (6) themselves amount
to a differential problem of order four. In the following, we
develop a perturbative approach, valid in the limit of a weak
potential V (r), which enables us to solve Eqs. (2), (5), and (6)
rigorously, and to interpret the underlying physics in simple
terms.

III. A SCHRÖDINGER-LIKE EQUATION FOR
BOGOLIUBOV EXCITATIONS IN WEAK POTENTIALS

From now on, we assume that V (r) is a weak external
potential with a vanishing average (V = 0),3 and a typical
amplitude VR,4 such that V 2

R = V 2. While a less stringent
weakness criterion can be derived (see below and Ref. [104]),
|VR| � μ is a sufficient assumption to start with. Note that,
although we will focus on the case of a disordered potential
in the following, the perturbative approach introduced here
is general, and V need not be a disordered potential. In any
case, we write the autocorrelation function of V , C2(r′ − r) =
V (r)V (r′), in the dimensionless form

C2(r) = V 2
Rc2(r/σR), (8)

where σR is a characteristic length scale of V , which will
be precisely defined below when needed. In the following
paragraphs, we solve the GPE (2) for the ground-state density
nc (Sec. III A), and we use the result to reduce the BdGEs (5)
and (6) to a single Schrödinger-like equation (Secs. III B and
III C).

A. The (quasi-)BEC density background

In the regime where the repulsive interactions are strong
enough (while remaining compatible with the mean-field
regime), i.e., when the healing length

ξ = h̄√
4mμ

(9)

is much smaller than the size of the system L, the density
profile nc is homogeneous in the absence of an external
potential, and remains extended (delocalized) for a weak

3When V is a disordered potential, we assume spatial homogeneity,
so that the spatial average of V coincides with its statistical average
[96]. For non-disordered potentials, V denotes the spatial average
of V .

4The sign of VR becomes relevant in the description of disordered
potentials with asymmetric single-point probability distribution (see,
e.g., Ref. [1]).

potential V , owing to the nonlinear term in the GPE (2)
[53,94,104]. It then proves useful to write the mean-field
density term in the form

nc(r) = μ + 	 − Ṽ (r)

g
, (10)

where

Ṽ (r) = gnc − gnc(r) (11)

contains the inhomogeneous part such that Ṽ = 0, and

	 = gnc − μ (12)

represents the mean deviation from the mean-field equation
of state μ = gnc that holds in the homogeneous case (V =
0). The quantities Ṽ and 	 both vanish for V = 0, and are
expected to remain small for a weak external potential V and
repulsive interactions that are strong enough. We then write
the perturbation expansions of these quantities in increasing
powers of VR/μ:

Ṽ (r) = Ṽ (1)(r) + Ṽ (2)(r) + · · · , (13)

	 = 	(1) + 	(2) + · · · . (14)

The various terms can be calculated by generalizing the
approach of Ref. [104] beyond the first order. Details of these
calculations are presented in Appendix A (see also Ref. [72]).
Below, we only discuss the main results.

1. First correction to the mean-field equation of state

The first-order term 	(1) in the deviation 	 vanishes [104].
The leading term is thus provided by 	(2), which depends
explicitly on the potential V and on the healing length ξ

through [see Eq. (A16) in Appendix A]:

	(2) = V 2
Rσd

R

2(2π )d/2μ

∫
dq

(|q|ξ )2

[1 + (|q|ξ )2]2
ĉ2(qσR), (15)

where ĉ2 is the Fourier transform5 of the reduced autocorrela-
tion function c2 defined in Eq. (8). As ĉ2 is a positive function
by virtue of the Wiener-Khinchin theorem, we always have
	(2) > 0, i.e., μ < gnc in the presence of an external potential
(see also Ref. [94]). In Fig. 1, Eq. (15) is compared to exact
numerical calculations of 	 for a disordered potential and a
monochromatic lattice potential, with various values of the
ratio σR/ξ , in a 1D geometry. As expected, the agreement is
good for values of VR/μ as low as in Fig. 1. We checked that the
small discrepancy between 	(2) and 	 in the disordered case
is due to contributions of the order of V 3

R , which are absent
in a monochromatic lattice. This validates the perturbative
approach.

5Throughout the paper, the Fourier transform is defined as f (q) =
(2π )−d/2

∫
drf (r)e−iq·r. The notation f̂ is used for the Fourier

transform of functions f with dimensionless arguments.
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FIG. 1. (Color online) Comparison of the leading-order cor-
rection 	(2) to the mean-field equation of state with numerical
computations of 	 for a 1D speckle potential with a reduced
autocorrelation function c2(u) = sin(u)2/u2 as used in experiments
[12,15,29] and for a 1D periodic lattice V (z) = VR

√
2 cos(z/σR).

Here VR = 0.1μ.

Let us examine some limiting cases. In the Thomas-Fermi
limit, ξ � σR, we find

	(2) 
 V 2
R

2(2π )d/2μ

(
ξ

σR

)2 ∫
dκ |κ |2ĉ2(κ), (16)

so that 	(2)/μ ∝ (VR/μ)2(ξ/σR)2 � (VR/μ)2. The opposite
limit, ξ � σR, corresponds in principle to the white-noise
limit which is obtained by letting the ratio σR/ξ vanish
while keeping the product V 2

Rσd
R constant. Then, the Fourier

transform of the reduced autocorrelation function may be
approximated by a constant, ĉ2(κ) 
 ĉ2(0). In fact, we find
that the white-noise limit of expression (15) is correctly defined
only in 1D, for which we obtain

	(2) 

√

πV 2
RσR

4
√

2μξ
ĉ2(0), (17)

so that 	(2)/μ ∝ (VR/μ)2(σR/ξ ) � (VR/μ)2. In dimension
higher than one, this limit cannot be defined because the
integrand dq (|q|ξ )2/[1 + (|q|ξ )2]2 scales as qd−3dq for high
momenta (q � ξ−1). The integral in Eq. (15) would thus
be plagued by an ultraviolet divergence for d � 2 and a
constant ĉ2(κ) = ĉ2(0). In other words, for d � 2, the quantity
	(2) depends crucially on the precise form of the reduced
autocorrelation function c2.

2. Inhomogeneous part of the (quasi-)BEC density

In contrast to the mean deviation 	, the leading contribution
to the inhomogeneous part of the density profile is provided
by the first-order term, which reads

Ṽ (1)(r) =
∫

dr′Gξ (r − r′)V (r′), (18)

where Gξ is the Green function associated with the differ-
ential operator −ξ 2∇2 + 1 (see Ref. [104] and Eq. (A15) in
Appendix A). In Fourier space we have

Gξ (q) = (2π )−d/2

1 + (|q|ξ )2
, (19)

so that

Ṽ (1)(q) = V (q)

1 + (|q|ξ )2
. (20)

The healing length ξ clearly appears as a threshold length scale
in the response of the density nc(r) to the external potential
V (r). Indeed, we have Ṽ (1)(q) 
 V (q) for |q| � ξ−1, whereas
Ṽ (1)(q) � V (q) for |q| � ξ−1. In other words, the potential
Ṽ (1)(r) follows the spatial modulations of V (r) while evening
out the high-frequency components. It also follows from the
Parseval-Plancherel theorem that |Ṽ (1)

R | � |VR|, where |Ṽ (1)
R | is

the standard deviation of Ṽ (1) and the sign of Ṽ
(1)

R is chosen to
be the same as that of VR. The potential Ṽ (1)(r) is thus termed
a smoothed potential [104].

If V (r) is a homogeneous disordered potential, that is, a
disordered potential whose statistical properties do not depend
on the position r [96], then so is Ṽ (1)(r). If V (r) is a periodic
potential, Ṽ (1)(r) is also periodic with the same period, but a
smoothed Bloch amplitude in each periodic cell, and simply
rescaled Fourier components, as shown in Fig. 2. In either case,
Eq. (10) implies that, if V (r) is a homogeneous potential,
the density profile nc is extended [53,104]. Note also that
the first-order term Ṽ (1) is indeed a small perturbation of
the homogeneous density profile whenever |Ṽ (1)

R | � μ, which
loosens the initial weakness criterion |VR| � μ.
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FIG. 2. (Color online) Comparison of the first-order smoothing
solution [Eq. (10) with 	 = 0 and Ṽ = Ṽ (1)] and exact numerical
computations of the density profile in the cases of (a,c) a 1D speckle
potential with reduced autocorrelation function c(u) = sin(u)2/u2

and correlation length σR = ξ and of (b,d) a 1D bichromatic peri-
odic potential. The periodic potential reads V (z) = VR[cos(k0z) +
cos(k0z/7)] with k0ξ = 1. In both cases, VR = 0.1μ. (a,b) The
analytical expression gnc − Ṽ (1)(z) (broad gray line) is hardly
distinguishable from gnc(z) as obtained numerically (red solid line).
The average density gnc (black dashed line) and the Thomas-Fermi
limit gnc − V (z) (green dotted line) are shown as references. (c,d)
Corresponding power spectra of the modulations of gnc(z) (red solid
line/red dots), Ṽ (1)(z) (broad gray line/black crosses), and V (z) (green
dotted line/green circles). The gray dashed line in (d) is a plot of
1/[1 + (qξ )2]2.

013612-4



LOCALIZATION OF BOGOLIUBOV QUASIPARTICLES IN . . . PHYSICAL REVIEW A 84, 013612 (2011)

The smoothing solution (10) at first order (	 = 0 and
Ṽ = Ṽ (1)) is compared to exact numerical computations of
the density profile in Fig. 2, both for a disordered and
a bichromatic periodic potential, in coordinate and Fourier
spaces. For the sake of clarity, the power spectra for the
disordered potential [Fig. 2(c)] have been smoothed by a
running average of width 0.1 in qξ units. The agreement
between the first-order smoothing solution and the numerical
results is good, especially when compared to the Thomas-
Fermi limit [for which Ṽ (1)(z) = V (z)]. For the bichromatic
periodic potential, the appearance of red dots around qξ = ±1
in Fig. 2(d) results from the admixture of the two components
of the bichromatic lattice potential due to the nonlinearity of
the GPE, as described by the first nonlinear correction Ṽ (2)

(see Appendix A). The other higher-order components, which
are several orders of magnitude smaller, are not shown.

B. Bogoliubov–de Gennes equations in the decoupling basis

With the BEC background solution nc(r) at hand, we can
now solve the BdGEs (5) and (6). Using Eq. (10), these
equations can be cast into

[
− h̄2

2m
∇2 + V + 	 − Ṽ

]
f +

ν = ενf
−
ν , (21)[

− h̄2

2m
∇2 + 2μ + V + 3	 − 3Ṽ

]
f −

ν = ενf
+
ν , (22)

where 	, V (r), and Ṽ (r) are small compared to μ. As nc(r)
is the ground-state solution of the GPE (2), the (quasi-),
condensate is dynamically stable (see, e.g., Refs. [125,126]),
and we need only consider real-valued, strictly positive
eigenvalues of the BdGEs. Now, given such an eigenvalue
εν , we are interested in the properties of the corresponding
mode {f +

ν (r),f −
ν (r)}. Following the approach developed in

Ref. [54], we take advantage of the structure of the eigenmodes
before perturbation by a weak potential and introduce an alter-
native representation of the BQPs in terms of the components
{g+

ν (r),g−
ν (r)}, where the functions g± and f ± are related by

the linear transformation

g±
ν (r) = ±ρ±1/2

ν f +
ν (r) + ρ∓1/2

ν f −
ν (r), (23)

with

ρν = μ

εν

+
√

1 +
(

μ

εν

)2

. (24)

Expression (24) defines ρν as a function of the eigenvalue
εν which does not depend on the details of the specific mode
under consideration. The linear transformation (23), derived in
Appendix B, is chosen is such a way that the coupling between
g+

ν (r) and g−
ν (r) vanishes in the homogeneous case V = 0. As

such, it offers a convenient starting point for a perturbation
expansion in the case of weak potentials, as shown below.

In the basis of the g±
ν (r) functions, the BdGEs take the exact

form [see Eqs. (B13) and (B14) in Appendix B]:

h̄2k2
ν

2m
g+

ν = − h̄2

2m
∇2g+

ν − 2ρν

1 + ρ2
ν

(Ṽ − 	)g−
ν

+
[
V − 3 + ρ2

ν

1 + ρ2
ν

(Ṽ − 	)

]
g+

ν , (25)

−h̄2β2
ν

2m
g−

ν = − h̄2

2m
∇2g−

ν − 2ρν

1 + ρ2
ν

(Ṽ − 	)g+
ν

+
[
V − 1 + 3ρ2

ν

1 + ρ2
ν

(Ṽ − 	)

]
g−

ν , (26)

where

h̄2k2
ν

2m
=

√
μ2 + ε2

ν − μ, (27)

h̄2β2
ν

2m
=

√
μ2 + ε2

ν + μ. (28)

Both k and β are real-valued functions of the energy ε.
As a consequence, the associated g+

ν and g−
ν functions

are essentially of the oscillating and the evanescent type,
respectively, owing to the signs of the left-hand side (l.h.s.)
terms in Eqs. (25) and (26). This is consistent with the limit
of a vanishing external potential (V = 0, and thus Ṽ = 0,
	 = 0), where the equations for g+

ν and g−
ν are decoupled.

It the latter case, the quantity k can be identified with the
wave number |k| of an oscillating, plane-wave BQP mode of
energy εk , and Eq. (27) is equivalent to the usual Bogoliubov
dispersion relation

εk =
√

h̄2k2

2m

(
h̄2k2

2m
+ 2μ

)
. (29)

The β coefficients, on the other hand, characterize a subset of
solutions to the BdGEs that are forbidden when V = 0, as the
boundary conditions imposed on the system (e.g., periodic
or homogeneous Dirichlet boundary conditions) preclude
monotonously growing or decreasing BQP components.

C. Effective Schrödinger equation

While the g−
ν function vanishes identically in the absence

of an external potential, this is no longer true when V couples
g−

ν to g+
ν via Eqs. (25) and (26). For a weak external potential,

however, all the terms introduced by g−
ν in Eq. (25) are at least

of second order in VR [see Eq. (B16) and the discussion below],
so that we can neglect the second term on the right-hand side
(r.h.s.) of Eq. (25). Besides, the terms proportional to 	 in
Eqs. (25) and (26) are at least of second order in the disorder
amplitude VR (see Sec. III A1), and can also be neglected in a
first-order approach. We are thus left with the following closed
equation for g+

ν , which is valid to first order in VR:

− h̄2

2m
∇2g+

ν (r) + Vkν
(r)g+(r) 
 h̄2k2

ν

2m
g+

ν (r), (30)

where

Vkν
(r) = V (r) − 3 + ρ2

ν

1 + ρ2
ν

Ṽ (1)(r). (31)
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FIG. 3. (Color online) Plot of the screened potential Vk(z) for
the same 1D speckle potential (σR = ξ , VR/μ = 0.1) as in Fig. 2(a),
with ε/μ = 0.1 (i.e., kξ 
 0.05) and ε/μ = 10 (i.e., kξ 
 2). The
bare potential V (z) and the smoothed potential Ṽ (z) are shown for
comparison.

Equation (30) is formally equivalent to a Schrödinger equation
for a bare particle of energy h̄2k2

ν/2m in an effective potential
Vkν

(r).6 The potential Vkν
(r) differs from both the bare

potential V (r) and the smoothed potential Ṽ (r) and explicitly
depends on the BQP energy εν via the parameter ρν . These
features are illustrated in Fig. 3 where we plot a given
realization of a 1D speckle potential V (z), together with the
corresponding smoothed potential Ṽ (z) and effective potential
Vkν

(hereafter named screened potential on grounds explained
below), for two values of the BQP energy.

For further convenience, the dependence of the effective
potential on the BQP energy εν is expressed by the subscript
kν , with the understanding that kν is defined by Eq. (27).
Combining Eqs. (24) and (27), we find

ρν =
√

1 + 1

(kνξ )2
, (32)

and hence

Vkν
(r) = V (r) − 1 + 4(kνξ )2

1 + 2(kνξ )2
Ṽ (1)(r). (33)

To gain more insight into the properties of Vkν
(r), let us turn

to Fourier space where, by virtue of Eq. (20), the effective
potential reads

Vkν
(q) = V (q)

[
1 − 1 + 4(kνξ )2

1 + 2(kνξ )2

1

1 + (|q|ξ )2

]
. (34)

Upon inspection, this expression shows that we have
|Vkν

(q)| � |V (q)| for any Fourier component q and any BQP
energy εν . Note also that, by construction of Ṽ (1), the potential
Vkν

has a vanishing average. Hence, keeping in mind that Vkν

results from the competition of the bare potential V and the

6Note that the effective energy h̄2k2
ν/2m appearing in the

Schrödinger-like equation (30) differs from the actual energy εν of
the BQP under consideration, as shown by Eq. (27).

BEC background nc in the BdGEs, we term Vkν
a screened

potential. The screening thus affects all Fourier components
of the external potential in any dimension.

Once Eq. (30) has been solved (possibly self-consistently)
for g+

ν , the function g−
ν can be computed from g+

ν . Indeed,
since h̄2β2

ν /2m > μ [see Eq. (28)] and for |VR| � μ, the last
term in the r.h.s. of Eq. (26) can be neglected, and we find

g−
ν (r) 
 2m

h̄2β2
ν

2ρν

1 + ρ2
ν

∫
dr′G1/β(r − r′)Ṽ (1)(r′)g+

ν (r′), (35)

where G1/β(q) = (2π)−d/2

1+(|q/β|)2 is the Green function associated

with the differential operator −(1/β)2∇2 + 1, written in
Fourier space.

For analytical purposes, the g±
ν functions hence usefully

replace the physically meaningful quantities f ±
ν , which can

readily be recovered by inverting transformation (23). In
particular, as far as asymptotic localization properties in
disordered potentials are concerned, Eq. (35) tells us that the
typical amplitude of g−

ν evolves parallel to the amplitude of g+
ν

on intermediate to long length scales, if Ṽ is homogeneous. In
this respect, the benefit of the mapping of the exact BdGEs onto
Eqs. (30) and (31) is that we can apply standard techniques for
bare Schrödinger particles in weak disordered potentials, in
any dimension, as long as these are consistent with the lowest-
order approximation used to derive the effective equation (30).
Yet, BQPs differ substantially from usual bare particles in their
scattering and localization properties, because of the peculiar
features of the screened potential Vkν

(r).

IV. LOCALIZATION OF BOGOLIUBOV QUASIPARTICLES
IN ONE DIMENSION

The formalism developed in Sec. III is valid for any
weak potential. It is particularly fruitful when applied to
disordered potentials as known theories developed for single
(noninteracting) particles can be directly applied to the
effective Schrödinger-like equation (30). In this section, we
focus on the one-dimensional geometry using the so-called
phase formalism [96], which allows for an exact perturbative
calculation of the Lyapunov exponent (inverse localization
length). This procedure can be straightforwardly extended
to higher dimensions, applying appropriate single-particle
theories to Eq. (30), for instance the self-consistent theory
of localization [127,128].

A. Phase formalism in the Born approximation

In 1D, the Lyapunov exponent γk of a bare particle of
energy Ek in a disordered potential V (z) is simply related
to the backscattering amplitude of the particle from the
inhomogeneities of V . For a weak disorder, the Lyapunov
exponent can be extracted from a perturbation expansion
γk = γ

(2)
k + γ

(3)
k + · · · in powers of the disorder amplitude

VR. For γk � k, this approach yields the following result in
the lowest-order (Born) approximation [96]:

γ
(2)
k =

√
2π

8k2

(
2m

h̄2

)2

C2(2k), (36)
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FIG. 4. (Color online) Screening function S. The dashed lines
show the asymptotic behaviors in the phonon regime [S(kξ ) 

2(kξ )2 for kξ � 1 or, equivalently, ε � μ] and free-particle regime
[S(kξ ) 
 1 for kξ � 1 or, equivalently, ε � μ].

where C2(q) is the Fourier transform of C2(z), evaluated at
q = 2k. In this formulation, V (z) has a vanishing average,
and k, explicitly defined as k = √

2mEk/h̄, stands for the
typical wave vector of the particle under consideration. As
such, the parameter k, rather than the related energy Ek , is
the meaningful quantity in the interference effect that causes
Anderson localization. Applying this result to the Schrödinger-
like equation (30), we derive the Lyapunov exponent �k of a
BQP in the Born approximation �k 
 �

(2)
k :

�
(2)
k =

√
2π

8k2

(
2m

h̄2

)2

C2,k(2k), (37)

where C2,k(q) is the Fourier transform of the two-point corre-
lator C2,k(z) = Vk(z′)Vk(z′ + z), and k depends on the energy
ε through Eq. (27) as we are now dealing with BQPs. From
the Wiener-Khinchin theorem, we have C2,k(q) ∝ |Vk(q)|2, so
that, according to Eq. (31), the relevant Fourier component of
Vk for the calculation of �

(2)
k is

Vk(2k) = V (2k) − 1 + 4(kξ )2

1 + 2(kξ )2
Ṽ (1)(2k). (38)

Then, inserting Eq. (20) into Eq. (38), we obtain

Vk(2k) = S(kξ )V (2k), (39)

where

S(kξ ) = 2(kξ )2

1 + 2(kξ )2
. (40)

Finally, Eq. (37) can be rewritten as

�
(2)
k = [S(kξ )]2γ

(2)
k , (41)

where

γ
(2)
k =

√
2π

32

(
VR

μ

)2
σR

k2ξ 4
ĉ2(2kσR). (42)

Equation (41), together with Eqs. (27), (40), and (42),
completely determines the Lyapunov exponent of a BQP of
energy ε in a weak, correlated, 1D disordered potential.

Remarkably, Eq. (41) shows that the Lyapunov exponent
of a BQP can be simply related to that of a bare Schrödinger
particle with the same average wave vector k [54]. The effects
of interactions, in particular, are entirely absorbed in the term
S(kξ ) defined in Eq. (40), which we call screening function
on the basis of the analysis presented in Sec. IV B below.
This function is shown in Fig. 4 and displays two regimes
which can be traced back to the nature of the elementary
excitations of the interacting Bose gas in the absence of
disorder. In the homogeneous case (V = 0), the elementary
(BQP) excitations of the Bose gas undergo a crossover from
a regime of pair excitations with linear dispersion relation for
ε � μ, εk 
 h̄ck with c = √

μ/m the speed of sound [phonon
regime (PH)], to a regime of single-particle excitations with a
quadratic dispersion relation εk 
 Ek = (h̄2/2m)k2 for ε � μ

[free-particle regime (FP)]. Hence, while the localization of
single particles merely results from the competition of their
kinetic energy with the disorder amplitude and correlation
[33], the localization of BQPs also crucially depends on
interaction-induced particle correlations.

B. Localization regimes

Summarizing the results of the previous section, we find
that the Lyapunov exponent of BQPs in weak 1D disordered
potentials is given by the expression

�
(2)
k =

√
2π

8

(
VR

μ

)2
k2σR

[1 + 2(kξ )2]2
ĉ2(2kσR), (43)

obtained by combining Eqs. (40), (41), and (42). In this expres-
sion, the quadratic dependence on the potential amplitude VR is
characteristic of the Born approximation. The scaled Lyapunov
exponent (μ/VR)2�

(2)
k ξ depends only on the two parameters kξ

and σR/ξ . Expression (43) nevertheless contains contributions
of three distinct physical origins, which appear more clearly
in Eqs. (41) and (42): i) a 1/k2 term which is representative of
the kinetic energy of a bare particle, ii) the squared screening
function S(kξ )2 which accounts for particle interactions, and
iii) the spectral density of disorder V 2

RσRĉ2(2kσR) at the wave
vector 2k. The role of these various contributions is discussed
below.

1. Screening in the phonon regime

The interplay of the first two contributions is best un-
derstood by studying the case of a white-noise potential,
which is obtained in the limit σR → 0, |VR| → ∞, with
V 2

RσR = const. In this limit, the spectral density ĉ2 uniformly
approaches a flat distribution with an amplitude of the order
of one. Then, in the free-particle regime ε � μ (i.e., kξ � 1),
we have S(kξ ) 
 1 and �

(2)
k ∼ 1/k2 ∼ 1/ε. In other words,

BQPs localize exactly like bare Schrödinger particles in this
regime, as expected. In the phonon regime, on the contrary,
the kinetic term is dominated by the S(kξ )2 factor, which
is approximately quartic in k (or ε). We then get the scaling
�

(2)
k ∼ k2 ∼ ε2 [51,54], which is consistent with known results

on the localization of acoustic phonons in 1D [129–132].
Interestingly, Eq. (41) combines the two limiting models

in a unified picture, and provides a physical interpretation for
the decreasing localization of phonon modes with decreasing
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energy. The function S(kξ ) reflects the competition of the bare
external potential V and the interaction of the BQPs with the
quasi-BEC density background gnc, which appears here as Ṽ .
In particular, the strong decay of S(kξ ) in the phonon regime
can be interpreted as an increasing screening of the external
potential by the static quasi-BEC background, which adapts to
the long-wavelength modulations of the disordered potential
(see Sec. III A 2).

2. Correlated disordered potentials

To analyze the role of the correlation length σR in
Eq. (43), we consider optical speckle potentials, which are
now widely used with ultracold atoms for their tunability and
truly random properties, as a model of correlated disorder
[5,6,9,12,13,15,19,29,66,67,133]. In the simplest case where
the speckle pattern is obtained at the back focal plane of a lens
with rectangular aperture and uniform illumination (see, e.g.,
Ref. [15]), the reduced autocorrelation function reads

c2(u) = sin(u)2/u2, (44)

where u = z/σR. The corresponding Fourier spectrum is

ĉ2(kσR) =
√

π

2

(
1 − kσR

2

)
�

(
1 − kσR

2

)
, (45)

where � is the Heaviside step function. Then, Eq. (43) reads

�
(2)
k = π

8

(
VR

μ

)2
k2σR(1 − kσR)

[1 + 2(kξ )2]2
�(1 − kσR), (46)

which is shown in Fig. 5. Such disorder correlations introduce
several features, which we discuss below.

Effective mobility edge. Equation (46) shows that the
Lyapunov exponent in the Born approximation, �

(2)
k , vanishes

identically for kσR > 1 (see also Figs. 5 and 6). This feature

FIG. 5. (Color online) Contour plot of the Lyapunov exponent of
BQPs in a speckle potential, as given by Eq. (46). Beyond kσR = 1
(black dashed line), the Lyapunov exponent vanishes completely in
the Born approximation, due to the finite support of the speckle
power spectrum. The green solid line represents the wave vector of
maximum localization for each ratio σR/ξ .
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FIG. 6. (Color online) Lyapunov exponent of BQPs in 1D speckle
potentials with the statistical properties described in Sec. IV B 2,
with VR/μ = 0.05, and for a) σR = 3.7 ξ , b) σR = √

3/2 ξ , and c)
σR = 0.4 ξ . The thick solid lines correspond to the Born term �

(2)
k

given by Eq. (46). The thick purple dashed lines correspond to the
next-order expansion �k 
 �

(2)
k + �

(3)
k (see Sec. IV E). The term �

(3)
k

scales as V 3
R , and results from the addition of three contributions:

�
(3)
Vk ,Vn

(green dash-dotted), �
(3)
Vk ,V− (red dashed), and �

(3)
Vk ,Vk ,Vk

(blue
dotted). The dots are the numerical data obtained with the procedure
described in Sec. IV D.

originates from the special correlation properties of speckle
potentials, the power spectrum of which has a high-momentum
cutoff [see Eq. (45)], i.e., contains no 2k component able
to backscatter a wave traveling with wave vector k > 1/σR

according to the elastic process +k → −k at the level of
the Born approximation [18,27]. The Born approximation
consists in truncating the perturbation series in powers of VR
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used to derive Lyapunov exponents after the leading order,
proportional to V 2

R . In agreement with the understanding of
localization in 1D, whereby single particles are localized (i.e.,
γk > 0) at all energies under fairly general assumptions [95],
higher-order terms in the perturbation expansions of γk and
�k are expected to carry contributions which do not all
vanish identically for kσR > 1. However, the larger power
dependence on the small parameter VR/μ makes these terms
negligible in the limit of weak disorder. In this limit, the
Lyapunov exponents thus experience a sharp crossover and
drop by orders of magnitude when k is varied through the value
1/σR. Such a crossover characterizes an effective mobility edge
which strongly affects localization properties in finite-size
systems. As a matter of fact, the third-order contribution to
�k , proportional to V 3

R , can be shown to vanish abruptly for
momenta above the same cutoff at 1/σR (see Sec. IV E), so that
corrections to Eq. (46) beyond that cutoff scale as V 4

R at least.7

This behavior is specific to potentials with cutoffs in their
Fourier-transformed correlation functions [27,32,33,134,135].

Localization maxima. In the white-noise limit, the BQPs
localize best for kξ = 1/

√
2 (i.e., ε = √

3μ), that is, in the
crossover region between the phonon and the free-particle
regime [51]. This behavior results from the competition of bare
kinetic energy and mean-field interactions via the screening
effect, as discussed above. With correlations, however, the
detailed statistical properties of the disorder play a role as well,
and the wave vector of maximum localization kmax decreases
with increasing correlation length σR. More generally, it can
be checked from Eq. (43) that for any correlated disorder with
monotonously decreasing power spectrum akin to model (45),
the wave vector of maximum localization is shifted to lower
values than the corresponding white-noise value. The locus
of kmax as a function of the correlation and healing lengths is
plotted in green solid line in Fig. 5. For each σR/ξ ratio, we
indeed find a unique maximum kmax with

kmax 
 1√
2 ξ

(
1 − σR/ξ

2
√

2

)
, σR � ξ, (47)

kmax 
 2

3 σR
, σR � ξ. (48)

These asymptotic expressions show that kmax is controlled
by the longest length scale in the problem. Finally, we find
an absolute maximum at fixed ξ for σR = √

3/2 ξ and kξ =
1/

√
6, which yields a localization length

Lmax(ξ ) = �−1
max(ξ ) = 512

√
6

9π

(
μ

VR

)2

ξ. (49)

Current experiments with ultracold atoms implement dis-
ordered potentials with correlation lengths of the order of

7For a complete discussion in the framework of the pure Schrödinger
particles in speckle potentials, see, for instance, Refs. [32,33].

σR 
 0.25 μm [19,29,66,67], which yields Lmax 
 230 μm
for VR = 0.2μ. Since this value can be of the order of or even
smaller than the system size, we conclude that localization
of BQPs in ultracold Bose gases is relevant for present-day
experiments.

C. Validity of the leading-order result

Before turning to some numerical tests, let us review the
conditions of validity of the results discussed above. The
Born approximation for BQPs, which yields �k 
 �

(2)
k =

[S(kξ )]2γ
(2)
k , requires (i) the first-order smoothing solution

[Eq. (10) with Ṽ replaced by Ṽ (1) as given by Eq. (18)],
(ii) the first-order decoupling of the g+ and g− modes that
leads to Eq. (30), and (iii) the Born approximation γk 
 γ

(2)
k to

be valid. The weak disorder condition |ṼR| � μ alone ensures
(i) and (ii). Note that this criterion of weak disorder appears
less stringent on the amplitude VR of the bare potential, since
smoothing reduces the amplitude of Ṽ with respect to V .
The regime of validity of the Lyapunov exponent derived for
Schrödinger particles in a weak-disorder expansion is in itself a
subtle issue, as the successive terms in the perturbation series
all depend on the disorder amplitude and the energy of the
particle. The resulting asymptotic series is well-behaved in the
high-energy limit. A precise inspection of the low-energy limit,
where the terms of the series blow up, is necessary to exhibit
a rigorous criterion for the validity of a truncated perturbation
expansion (see, e.g., Ref. [136]). For single particles, γk � k is
usually retained [96]. In physical terms, the localization length
should exceed the typical wavelength of the particle. This sets
a VR-dependent lower bound on the single-particle energies
for which the perturbative result is meaningful. Translating
the above criterion to BQPs (�k � k), we obtain

|VR|
μ

√
σR

ξ

√
ĉ2(2kσR) � (kξ )3/2 + 1

2(kξ )1/2
. (50)

This condition of validity resembles the corresponding one
for Schrödinger particles: (|VR|/μ)

√
(σR/ξ )

√
ĉ2(2kσR) �

(kξ )3/2. As expected, the two coincide in the FP regime
(k � 1/ξ ). However, they differ significantly in the PH
regime (k � 1/ξ ). Indeed, for free particles, perturbation
theory always breaks down at low energy (i.e., for k → 0).
Conversely, for BQPs in the PH regime, the strong screening
of the disordered potential leads to a completely different con-
dition: (|VR|/μ)

√
(σR/ξ )

√
ĉ2(2kσR) � 1/(kξ )1/2. The latter is

always valid at low energy, with the assumption that ĉ2(2kσR)
is of the order of unity at most. We thus find that the validity
condition (50) is easily satisfied on the whole spectrum by a
potential that is weak enough, i.e., for (|VR|/μ)

√
(σR/ξ ) � 1.

D. Numerical calculations

In order to test the accuracy of our perturbative approach,
we performed numerical calculations of the Lyapunov expo-
nent of BQPs in a 1D speckle potential, for various ratios
σR/ξ . The first step consisted in determining the ground-state
solution nc of the GPE (2), using a propagation scheme in
imaginary time. As a precise determination of nc(z) is required
for a correct calculation of the low-energy eigenmodes of the
BdGEs (5) and (6), we compared the result of this procedure
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with the smoothing expansion including up to ten perturbation
orders (see Appendix A). The values of 	 computed with
the two methods for σR = √

3/2 ξ agreed within a relative
difference δ	/	 of 0.3% for VR = 0.05μ, while the r.m.s. dif-
ference of the computed density profiles typically amounted to
a few 10−4VR/g. Homogeneous Dirichlet boundary conditions
were imposed in the calculations, i.e., both the density profile
nc and the BQP components f + and f − were constrained to
vanish at the system boundaries.8 We used system sizes of the
order of a few 105 healing lengths, so that the corrections to
the equation of state μ = gnc solely due to kinetic terms at
the boundaries of the system were negligible,9 in particular
as compared to the corrections introduced by the disordered
potential, described in Sec. III A 1.

In a second step, the profile nc(z) obtained as described
above was included into the exact BdGEs (5) and (6), and the
Bogoliubov modes were computed by solving the associated
discretized eigenvalue problem. Eigenvalues and eigenvectors
of the resulting large, non-Hermitian band matrices were
obtained for a limited set of target energies using standard
ARPACK routines.10 The Lyapunov exponent �k was then
obtained by computing estimators of

− lim
z→∞

ln[r(z)/r(z0)]

|z − z0| , (51)

where r =
√

(g+)2 + (∂zg+/k)2 defines the envelope of g+
(see, e.g., Refs. [33,96]), and the abscissa z0 refers to the
localization center of each eigenstate. In order to obtain
accurate estimates of the average value of the logarithm of
r(z) at infinity for a wide range of σR/ξ and kξ parameters, the
numerical calculations were carried out in a large box of size
L = 3.2 × 105ξ (i.e., 105 − 106σR), and disorder averaging
was performed over 200 randomly generated 1D speckle
patterns. We checked that, as expected, using r(z) = |g+(z)|
in expression (51) produces the same results but requires
more extensive disorder averaging, owing to the divergence
of ln |g+(z)/g+(z0)| at the nodes of g+. We also found that
replacing g+ by one of the functions f +, f − or g− in the
expression of r leaves our numerical estimates of the Lyapunov
exponent (51) unchanged, within a relative difference of less
than 5% for all the parameters in this study.

On the whole spectral range which spans the phonon and
free-particle regimes, the numerical data (filled points) shown
in Fig. 6 are in excellent qualitative and fair quantitative
agreement with the analytic prediction of Eq. (46) (thick
solid lines), which corresponds to second-order perturbation

8Periodic boundary conditions were found to complicate the
analysis of the asymptotic localization properties of BQP modes,
due to the periodic regrowths of the localized states in space.

9In a 1D box of length L, the relative correction to the equation
of state associated with the Dirichlet boundary conditions scales as√

2EL/gnc 
 2ξ/L for gnc/EL � 1, where EL = h̄2/2mL2.
10This approach was preferred over other traditional methods for

boundary-value problems, such as shooting algorithms [137], since
the propagation of initial data by a differential operator ξ∂z diverges
exponentially on the length scale of a few healing lengths due to the
coupling into evanescent modes in the case of Bogoliubov excitations
(see Appendix B).

theory. The choice of the value of VR/μ was motivated
by experimental relevance and, as aforesaid, by numerical
tractability for an entire set of σR/ξ and kξ parameters.

Still, for this intermediate value of VR/μ, we find slight
deviations between the numerical data and Eq. (46). As
discussed in Sec. IV E, this small difference can be attributed
mostly to third-order terms which contribute to the exact
Lyapunov exponent �k . Hence, the observed deviations are
expected to be negligible for lower values of VR/μ. We
also find that, even if these deviations cannot be completely
neglected for VR 
 0.05μ, they do not change the qualitative
behavior of �k . Finally, note that for comparable parameters
the deviations appear smaller in the data of Ref. [54] compared
to those of the present work. The present results are actually
more accurate as only a lowest-order smoothing expansion
was used to compute the density nc in Ref. [54].

E. Beyond the Born approximation

While the screened potential Vk of Eq. (30) and the
Lyapunov exponent �

(2)
k of Eq. (41) accurately account for

the scattering and localization properties of BQPs in the limit
of weak potentials, going beyond the leading-order (Born)
approximation used to derive them is interesting in several
respects. First, it should allow us to address the question
of localization beyond cutoffs in the Lyapunov exponent
�

(2)
k such as the one arising in speckle potentials at wave

number 1/σR, described in Sec. IV B 2. Second, studying the
localization properties of BQPs for stronger disorder or weaker
interactions is of particular importance, since with increasing
VR/μ ratio the interacting Bose gas moves away from the
deep superfluid (quasi-)BEC regime and into the weakly
interacting fragmented Bose-glass phase [53,98,99,105,112].
While recent studies [58,105,112] have shown that the low-
energy scaling of the inverse participation length of BQPs
(which characterizes their short-range localization properties)
is modified through the phase transition, the impact of strong
disorder on the long-range localization properties of BQPs
remains an open issue.

We now briefly address the localization properties of the
Bogoliubov quasiparticles beyond the Born approximation by
an inspection of the next-order terms of the weak-disorder
expansion. While details of the derivation can be found in
Appendix C, here we just outline the approach. The starting
point is again the set of BdGEs (25) and (26) in the decoupling
basis g±. Retaining terms up to second order in the potential
amplitude VR, we find a new approximate Schrödinger-like
equation for g+:

h̄2k2

2m
g+ 
 − h̄2

2m
∇2g+ + [Vk(r) + Vn(r) + V−(r)]g+, (52)

where Vk is the screened potential of Eq. (30), proportional
to VR. The two additional terms Vn and V− scale as V 2

R , and
account for the second-order modulations of the density profile
nc and for the coupling of g+ and g−, respectively. Their
expressions are given in Eqs. (C3) and (C4). Although Eq. (52)
is valid a priori only in the regime k � min(1/σR,1/ξ )
(see Appendix C), we found it to provide a rather good
approximation over a wider range of parameters (see Fig. 6
and below). On the basis of the Schrödinger-like equation (52),

013612-10



LOCALIZATION OF BOGOLIUBOV QUASIPARTICLES IN . . . PHYSICAL REVIEW A 84, 013612 (2011)

we calculate the third-order contributions to the Lyapunov
exponent following the approach of Ref. [33]. We find

�
(3)
k = �

(3)
Vk ,Vn

+ �
(3)
Vk ,V− + �

(3)
Vk ,Vk ,Vk

, (53)

where �
(3)
Vk ,Vn

(respectively, �
(3)
Vk,V− ) stems from the cross-

correlator of Vk with Vn (respectively, V−), and the last term
involves the three-point autocorrelation function of Vk [see
Eqs. (C9) to (C11)]. These various contributions are plotted
in Fig. 6 for a speckle potential and various σR/ξ ratios. We
find an excellent agreement between the numerical data and
the analytical result �(2)

k + �
(3)
k . For the smallest value of σR/ξ

however, the third order term �
(3)
k does not fully account for

the small difference between the Born approximation �
(2)
k and

the numerical data [see Fig. 6(c)]. This may be due to the fact
that the criterion k � 1/ξ is not met or to contributions of
higher order in �k . Let us now discuss the properties of the
terms appearing in Eq. (53).

Note first that the third-order contributions scale as V 3
R .

They are thus nonzero only for potentials which do not possess
symmetric statistics under the transformation V → −V . This
holds for speckle potentials as used in experiments with
ultracold atoms [33].

A generic feature of the contributions to �
(3)
k is that they

are all of the form

�
(3)
i ∝

∫
dqFi(q)ĉ3(q,2kσR), (54)

where i is an index labeling any of the terms in Eq. (53),
Fi is some function, and ĉ3(q,q ′) is the Fourier transform of
the reduced three-point autocorrelation function of the bare
potential V . Thus, we find that if ĉ3 has a compact support,
�

(3)
k vanishes over an extended part of the spectrum, as in

the single-particle case [32,33]. In particular, in the case of
speckle potentials, one finds a high-momentum cutoff that is
identical to the cutoff in ĉ2, whereby �

(3)
k vanishes identically

for k > 1/σR, just as �
(2)
k does. This result is consistent with

the argument that no odd power of VR can provide the leading-
order term in a given part of the spectrum, since the Lyapunov
exponent is a non-negative quantity [33]. Note that this feature
emerges from the analysis of the terms in Eq. (53) although
the region k ≈ 1/σR a priori lies outside the regime of validity
of Eq. (52).

Figure 6 shows that the magnitude of �
(3)
Vk ,V− , which

originates from the coupling of g+ and g−, is small compared
to the other terms in �

(3)
k . This further legitimizes the use

of the g± basis and suggests that the difference between the
analytical and the numerical results in Fig. 6(c) are likely to be
due to higher-order terms rather than the violation of criterion
k � ξ . We also note that, remarkably, the contributions �

(3)
Vk ,Vn

and �
(3)
Vk ,Vk ,Vk

tend to constant values at zero energy which turn
out to be opposite and thus cancel out in the calculation of
�

(3)
k . This cancellation between two terms that seem to have

different origins in the perturbation expansion is certainly not
accidental, and must be due to the g± representation chosen
to set it up. Finally, an inspection of the low-energy limit
of expression (53) in the case of the above speckle potential

yields the scaling �
(3)
k ∼ k2 ∼ E2, a feature which is likely to

be generic for disordered potentials with ĉ3(0,0) �= 0.

V. CONCLUSION

In this work, we presented a general approach, valid in
any dimension, to describe a weakly interacting Bose gas
of chemical potential μ subjected to a weak inhomogeneous
potential V (r). This approach relies on a two-step perturbative
expansion of the Gross-Pitaevskii equation (GPE) and the
Bogoliubov–de Gennes equations (BdGE), which govern
the (quasi)condensate background and elementary excitations
(Bogoliubov quasiparticles) of the Bose gas, respectively. In
the first step, we calculate the mean-field density profile using a
perturbative expansion of the GPE in V/μ. In the second step,
the result is incorporated into the BdGEs. Turning to an adapted
basis for the Bogoliubov wave functions, we then show that the
BdGEs can be approximately mapped onto a Schrödinger-like
equation, with an effective potential Vk which depends on
the bare potential V , the condensate density background, and
the quasiparticle wave vector k.

Our approach is well suited to study the effects of disorder
in interacting Bose gases and, in particular, to examine
the Anderson localization of Bogoliubov quasiparticles. On
the one hand, it applies to any kind of weak, correlated
disordered potentials. We stress that it is not limited to i)
Gaussian disorder, ii) (uncorrelated) white-noise potentials,
or iii) models of non-overlapping impurities. In particular, it
applies to speckle potentials as used in many experiments with
ultracold atoms. On the other hand, the only small parameter
of the perturbative expansion is the ratio of the disorder
amplitude VR over the chemical potential μ. Our approach
differs in this respect from standard approximations used in
various other works: (i) the approximation of the BdGEs
by hydrodynamical equations, which confine the theory to
excitations of typical wavelength λ � ξ , where ξ is the healing
length of the condensate [51,125], (ii) the Thomas-Fermi
approximation of the background density profile, which is
valid only under the assumption ξ � σR, where σR is the
typical (minimal) length scale on which the external potential
varies [51], (iii) the white-noise approximation which requires
at least σR � λ [51,138]. Conversely, the approach developed
here holds for any ordering of the length scales ξ , σR, and λ.

Although our approach can be used to describe the scatter-
ing and localization properties of Bogoliubov quasiparticles
in any dimension, we focused in this work on the one-
dimensional case, which leads to the strongest localization
effects [54]. In the low-energy limit and at the leading and
next-leading orders in the disorder amplitude, we found
a quadratic scaling of the Lyapunov exponent with the
quasiparticle energy, �k ∼ ε2 ∝ k2. This finding is consistent
with known results on the localization of phonons [129–132]
and studies in the white-noise limit [51]. The effective potential
Vk derived in our approach provides a physical interpretation
of this suppression of localization in the low-energy phonon
regime (kξ � 1) in terms of an efficient screening of the
long-wavelength modulations of the external potential by the
background density of the Bose gas. In the free-particle regime
(kξ � 1), the Lyapunov exponent asymptotically approaches
the exponent of a bare Schrödinger particle, �k 
 γk . For
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uncorrelated potentials, the Lyapunov exponent of Bogoliubov
quasiparticles thus falls off as �k ∼ 1/ε ∝ 1/k2 in the high-
energy limit. For correlated disorder, the high-energy decay
of the Lyapunov exponent strongly depends on the large k

behavior of the disorder power spectrum, �k ∼ C2(2k)/k2.
If C2(2k) has a finite support as for speckle potentials for
instance [18,27,33], effective mobility edges arise as for bare
particles [32,33,134,135].

Most importantly, our approach covers the crossover
between the phonon and free particle regimes. We find that
localization (�k) is maximum at a given energy ε. For
uncorrelated potentials, this maximum lies around E 
 μ (i.e.,
kξ 
 1), at the crossover between the phonon and free-particle
regimes [51,54]. For correlated potentials, the strength of
localization is also determined by the detailed power spectrum
of the potential and the energy of strongest localization
depends on both the quasicondensate healing length ξ and
the disorder correlation length σR.

Finally, let us discuss some possible extensions of our
work. On the experimental side, the observation of localized
Bogoliubov excitations appears as a challenge. It would be
interesting to search for evidence of localization in the broad-
ening of the dynamic structure factor, as measured in Bragg
spectroscopy experiments [139–141]. Such broadenings have
been measured to characterize coherence lengths of a couple
hundred micrometers in elongated quasicondensates [141].
We infer therefrom that Bragg spectroscopy should allow
the measurement of localization lengths of the same order of
magnitude. On the theoretical side, the localization properties
of Bogoliubov quasiparticles in two and three dimensions
are expected to exhibit an even richer phenomenology. In
particular, as pointed out previously [72,142], the screening
of disorder by interactions is expected to lead to the possible
occurrence of two mobility edges in three dimensions. In such
a scenario, a first delocalization transition would occur at high
energy, as for bare particles, and a second one would occur
at low energies, as the effect of disorder is suppressed in the
limit of vanishing quasiparticle energy [131]. The localized
states would then reside around kξ 
 1. Below a critical
amount of disorder however, no quasiparticle states should
be localized at all. As the screened potential derived here
accurately describes scattering in higher dimensions as well,
it may offer a simple avenue for the description of such a
phenomenology.
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APPENDIX A: PERTURBATION SERIES OF THE
SMOOTHING SOLUTION

In this appendix, we calculate explicitly the leading terms
of the modulations Ṽ (r) = gnc − gnc(r) of the mean-field
interaction term gnc(r) and the deviation 	 = gnc − μ from
the homogeneous equation of state. We consider the limit of
a weak external potential V and strong interactions which is
relevant to our study (see Sec. III A). Working along the lines
of Ref. [104], the weakness of V suggests an expansion of the
square root of the density in powers of VR/μ, which we write
as √

nc(r) =
√

μ

g
[φ(0)(r) + φ(1)(r) + φ(2)(r) + · · · ], (A1)

where φ(0)(r) = 1 is the solution in the absence of disorder
[143] and the functions φ(n)(r) are real valued. We thus have

nc(r) = μ

g

∑
i,j

φ(i)(r)φ(j )(r) (A2)

and the quantities of interest at any order in the expansion
series are readily obtained by collecting the terms at the
corresponding order:

	(0) = 0, (A3)

	(n) = μ
∑

0�i,j�n

i+j=n

φ(i)φ(j ), for n � 1, (A4)

and

Ṽ (0)(r) = 0, (A5)

Ṽ (n)(r) = 	(n) − μ
∑

0�i,j�n

i+j=n

φ(i)(r)φ(j )(r), for n � 1.

(A6)

The functions φ(n)(r) are determined by inserting the perturba-
tion series (A1) into the GPE (2), which is equivalently written
as [

−2ξ 2∇2 − 1 + V (r)

μ
+ gnc(r)

μ

] √
nc(r) = 0, (A7)

and by collecting the terms of order n. The explicit calculation
of φ(n) becomes increasingly tedious as the number of terms
involved grows like n2. Yet, the above perturbation hierarchy
produces a simple recursion formula which can be used in
analytical or numerical calculations. Following the procedure
outlined above, for all n � 1, we obtain

φ(n) = −1

2
Gξ ∗

[
V

μ
φ(n−1) +

∑
i+j+k=n

0�i,j,k�n−1

φ(i)φ(j )φ(k)

]
, (A8)

where Gξ (r) is the Green function associated with the operator
−ξ 2∇2 + 1, which is best written in Fourier space as

Gξ (q) = (2π )−d/2

1 + (|q|ξ )2
, (A9)

and the convolution product is defined as

(f ∗ g)(r) =
∫

dr′ f (r − r′)g(r′). (A10)

013612-12



LOCALIZATION OF BOGOLIUBOV QUASIPARTICLES IN . . . PHYSICAL REVIEW A 84, 013612 (2011)

Applying the recursive procedure up to second order, we
find

φ(0) = 1, (A11)

φ(1) = − 1

2μ
Gξ ∗ V, (A12)

φ(2) = 1

4μ2
Gξ ∗

[
V (Gξ ∗ V ) − 3

2
(Gξ ∗ V )2

]
. (A13)

Then, using Eqs. (A4) and (A6), we find

	(1) = 0, (A14)

Ṽ (1) = Gξ ∗ V =
∫

dr′ Gξ (r − r′)V (r′), (A15)

and

	(2) = 1

4μ

{
Gξ ∗ [2V (Gξ ∗ V ) − 3(Gξ ∗ V )2] + (Gξ ∗ V )2

}
= V 2

Rσd
R

2(2π )d/2μ

∫
dq

(|q|ξ )2

[1 + (|q|ξ )2]2
ĉ2(qσR), (A16)

Ṽ (2) = 	(2) − 1

4μ
{Gξ ∗ [2V (Gξ ∗ V ) − 3(Gξ ∗ V )2]

+ (Gξ ∗ V )2}. (A17)

Finally, let us make two comments on the above perturbative
solution of the GPE. First, for the perturbation expansion
be valid, the mean-field density profile nc must be weakly
perturbed around the homogeneous value μ/g. While the
original small parameter is VR/μ, Eq. (A8) shows that∣∣Ṽ (1)

R

∣∣ � μ (A18)

with

Ṽ
(1)

R = sgn(VR)

√
Ṽ (1)2 (A19)

is a somewhat looser criterion for the successive terms of
the expansion to be small. The rms amplitude |Ṽ (1)

R | [see
Eq. (A19)] can be calculated explicitly from Eq. (A15):

∣∣Ṽ (1)
R

∣∣ =
√

V 2
Rσd

R

(2π )d/2

∫
dq

ĉ2(qσR)

[1 + (|q|ξ )2]2
. (A20)

Second, Eq. (A8) can be used to show by induction that,
whenever the potential V is extended, then so are all the
perturbation orders φ(n) and Ṽ (n). In the disordered case,
these simple considerations show how localization can be
destroyed in a regime of weak interactions compatible with
the mean-field approach.

APPENDIX B: DECOUPLING BASIS FOR
BOGOLIUBOV–DE GENNES EQUATIONS IN WEAK

POTENTIALS

In this appendix, we motivate the introduction of the
functions g+ and g− (see Sec. III B) to solve the BdGEs (5) and
(6), and justify the use of the Schrödinger-like equation (30)
for weak potentials. Throughout the paper, we assume that
the system lies in a box whose dimensions eventually tend
to infinity to emulate the continuum limit, and we impose
periodic or homogeneous Dirichlet boundary conditions on the

functions f + and f −. In the latter case, the density nc and the
BQP components f + and f − vanish at the system boundaries.
However, in the limit ξ/L → 0, where L is the system size, and
the absence of an external potential, the system can be regarded
as homogeneous. Together with these boundary conditions,
the BdGEs form the differential problem to be solved. The
system of coupled equations (21) and (22) can be rewritten as
a differential problem in matrix form:

ξ 2∇2F (r) = Hε(r)F (r), (B1)

where

F (r) =
(

f +(r)
f −(r)

)
, (B2)

and Hε(r) = H (0)
ε + W (r) is a real-valued symmetric matrix,

which depends on the energy ε and the position r, with11

H (0)
ε =

(
0 −ε/2μ

−ε/2μ 1

)
, (B3)

W (r) = 1

2μ

(
V + 	 − Ṽ 0

0 V + 3	 − 3Ṽ

)
, (B4)

where the position dependence of V and Ṽ was dropped for
conciseness. The two differential equations on f + and f −
associated with Eq. (B1) are strongly coupled via the off-
diagonal terms in H (0)

ε . Since W is small (at most of first
order in VR), it is worth working in the basis that diagonalizes
H (0)

ε . Indeed, although the change of basis may introduce off-
diagonal (coupling) terms in W , these terms will remain small.
We will then show that this approach is suitable for the setup
of a perturbation expansion.

1. Bogoliubov–de Gennes equations in the decoupling basis

In the absence of an external potential (V = 0), the matrix
W vanishes identically. Then, the matrix Hε = H (0)

ε has two
eigenvalues,

1 −
√

1 + (ε/μ)2

2
≡ −k2ξ 2, (B5)

1 +
√

1 + (ε/μ)2

2
≡ +β2ξ 2, (B6)

associated to the eigenvectors

Fk ∝
( √

ρ

+1/
√

ρ

)
and Fβ ∝

(−1/
√

ρ√
ρ

)
, (B7)

respectively, where

ρ = μ

ε
+

√
1 +

(
μ

ε

)2

. (B8)

For simplicity, let us restrict our discussion to the 1D
case.12 Since Eq. (B1) is of second order, each eigen-subspace

11In an equivalent formulation, Hε can be regarded as an operator
acting on two-vectors of functions f + and f −. The position
representation of Eq. (B1) is adopted here for simplicity.
12The conclusions are naturally extended in higher dimensions.
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corresponds to two possible solutions of the BdGEs. First,
the solutions corresponding to +β2ξ 2 are e±βzFβ , which
either grow or decrease exponentially. These modes are the
evanescent modes discussed below Eq. (28), which thus appear
naturally in this formulation. Since no solution of Eq. (B1) in
the subspace spanned by these eigenvectors can satisfy the
boundary conditions on both boundaries, these modes are
forbidden in the case of vanishing V . Second, the solutions
corresponding to −k2ξ 2 are e±ikzFk , which are oscillating
(plane wave) modes. Since solutions of Eq. (B1) that satisfy
the boundary conditions can be built with linear combinations
of these eigenvectors, these modes are allowed for V = 0.
They correspond to the well-known physical solutions of the
BdGEs (5) and (6).

The procedure above allowed us to decouple the BdGEs
in homogeneous space. Let us introduce now the external
potential V (r). Rewriting Eq. (B1) in the eigenbasis of H (0)

ε ,
we find

ξ 2∇2G(r) = H ′
ε(r)G(r), (B9)

where G(r) = P −1F (r), and

P −1 =
( +√

ρ +1/
√

ρ

−1/
√

ρ +√
ρ

)
(B10)

is the inverse of the transformation matrix from the F basis to
the G basis. The term H ′

ε = H ′
ε

(0) + W ′, which is the analog
of Hε in the G basis, contains a homogeneous part

H ′
ε

(0) =
(−k2ξ 2 0

0 β2ξ 2

)
, (B11)

and a potential-dependent part

W ′(r) = P −1W (r)P

= 1

2μ

(
V − 3+ρ2

1+ρ2 (Ṽ − 	) − 2ρ

1+ρ2 (Ṽ − 	)

V − 2ρ

1+ρ2 (Ṽ − 	) − 1+3ρ2

1+ρ2 (Ṽ − 	)

)
.

(B12)

Note that the BQP energy ε is here embedded in the
dependence of k, β, and ρ on ε [see Eqs. (B5), (B6), and (B8)].

For the sake of clarity, let us write explicitly the two coupled
equations associated to Eq. (B9) in terms of the components
g± of G(r) = (g+(r),g−(r))T:

h̄2k2

2m
g+ = − h̄2

2m
∇2g+ − 2ρ

1 + ρ2
(Ṽ − 	)g−

+
[
V − 3 + ρ2

1 + ρ2
(Ṽ − 	)

]
g+, (B13)

−h̄2β2

2m
g− = − h̄2

2m
∇2g− − 2ρ

1 + ρ2
(Ṽ − 	)g+

+
[
V − 1 + 3ρ2

1 + ρ2
(Ṽ − 	)

]
g−, (B14)

where

g±
ν (r) = ±ρ±1/2

ν f +
ν (r) + ρ∓1/2

ν f −
ν (r). (B15)

These equations are equivalent to the BdGEs, without any
approximation. The benefit of the transformation we have used
is that, for a weak external potential, the terms appearing in

W ′ are all small. In particular, the terms coupling g+ and g−
in Eqs. (B13) and (B14) are at most of the order of V [as
|ṼR| 
 |Ṽ (1)

R | � |VR| and 2ρ/(1 + ρ2) � 1]. The G basis thus
offers a suitable starting point, which takes into account the full
structure of the BdGEs, and which allows for a perturbative
approach in the regime of weak disorder.

2. Leading-order terms: Mapping the Bogoliubov–de Gennes
equations onto a Schrödinger-like equation

Let us now develop the perturbation expansion of the
BdGEs in the G basis. Since Eqs. (B13) and (B14) are
weakly coupled, we can resort to the following self-consistent
approach. Assuming that g− is vanishingly small compared to
g+ for small VR, we neglect the third term on the right-hand
side of Eq. (B14). Then, solving for g− and retaining only the
leading-order term in VR, we obtain13

g−(r) 
 2m

h̄2β2

2ρ

1 + ρ2

∫
dr′G1/β (r − r′)Ṽ (1)(r′)g+(r′),

(B16)

where G1/β(q) = (2π)−d/2

1+(|q|/β)2 is the Green function associated

with the differential operator −(1/β)2∇2 + 1, written in
Fourier space. The positive smoothing function G1/β satisfies∫

dr′G1/β (r′) = 1, and decays on the length scale 1/β, which
is smaller than the healing length ξ and than 1/k, i.e., the
typical length scale over which g+ varies (see Fig. 7). Thus,
owing to the fact that 2m/(h̄2β2) < 1/μ and 2ρ/(1 + ρ2) < 1,
we can safely write

|g−(r)| <
1

μ

∫
dr′G1/β(r − r′)|Ṽ (1)(r′)||g+(r′)|. (B17)

Then, in terms of orders of magnitude,

|g−| <∼
|Ṽ (1)

R |
μ

|g+|
∫

dr′G1/β (r − r′)

<∼
|Ṽ (1)

R |
μ

|g+| � |g+|, (B18)

which is consistent with our initial assumption, i.e., g− is small
compared to g+. In Fig. 7 we show numerical results which
corroborate expression (B16) and the fact that g− is a term of
order Ṽ

(1)
R /μ at most to g+.

From the upper bound (B18), we infer that the second
term on the right-hand side of Eq. (B13) is of the order of
(Ṽ 2

R/μ)|g+| at most, while the third term contains terms scaling
as |VRg+|. Hence, we neglect the former contribution, and
obtain a closed equation for g+ which is valid up to first order
in VR/μ:

− h̄2

2m
∇2g+ + Vk(r)g+ 
 h̄2k2

2m
g+, (B19)

where

Vk(r) = V (r) − 3 + ρ2

1 + ρ2
Ṽ (1)(r). (B20)

13Note that 	 is of second order in VR (see Sec. III A or
Appendix A).
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FIG. 7. (Color online) BQP mode in the g± basis. This eigen-
mode was computed at energy ε 
 1.1μ for a speckle potential with
VR = 0.05μ and σR/ξ = √

3/2. The mode is displayed here over a
few healing lengths, while the size of the box used for the calculation
is L = 3.2 × 105ξ . The g+ and g− components obtained numerically
are given by the black dashed line and the blue solid line, respectively.
The thick red line represents the convolution formula (B16), and the
green dotted line the somewhat cruder approximation (C1) to g−.
Note that the g+ component has been rescaled by VR/μ in this figure
for better comparison with the various representations of g−. With
the above parameters, Ṽ

(1)
R 
 0.6 VR.

These are the expressions reproduced in Eqs. (30) and (31),
which form the basis of our approach to calculate the BQP
modes in leading-order perturbation theory. The advantage of
the g± representation is that, at this level of approximation,
the coupled equations (21) and (22) reduce to a simple closed
equation for g+, the solution of which also determines g− via
Eq. (B16).

APPENDIX C: LYAPUNOV EXPONENT OF BOGOLIUBOV
QUASIPARTICLES BEYOND THE BORN

APPROXIMATION

In this appendix, the perturbation expansion of the Lya-
punov exponent of BQPs is extended one order beyond the
leading-order (Born) approximation, so as to include terms
scaling as V 3

R . To this aim, we consider explicitly the terms in
Eq. (B13) that are of second order in VR.

The third term on the right-hand side of Eq. (B13) contains
both an inhomogeneous term Ṽ (2) and an offset 	(2) that are
proportional to V 2

R , and for which explicit expressions are
given in Appendix A. Elements of order V 2

R are also introduced
into Eq. (B13) by the cross-term Ṽ g−, where g− may be
replaced by expression (B16). If g+ varies on a length scale
larger than that of the other quantities in the integrand of
Eq. (B16), we can use the approximation

g−(r) 
 2m

h̄2β2

2ρ

1 + ρ2
g+(r)

∫
dr′G1/β(r − r′)Ṽ (r′). (C1)

While Eq. (C1) is justified for k � min(1/σR,1/ξ ), we found
that it is actually a good approximation on a broader range of
parameters (see Sec. IV E). For instance, this approximation
shows good agreement with direct numerical results for g− for

the parameters of Fig. 7. Hence, we get a new closed equation
for g+, which now comprises all the terms up to order V 2

R and
is legitimate in the low-energy limit:

h̄2k2

2m
g+ 
 − h̄2

2m
∇2g+ + [Vk(r) + Vn(r) + V−(r)]g+, (C2)

where Vk is the screened potential (B20), and the terms Vn and
V− are potentials proportional to V 2

R :

Vn(r) = −3 + ρ2

1 + ρ2
[Ṽ (2)(r) − 	(2)], (C3)

V−(r) = − 8mρ2

h̄2β2(1 + ρ2)2

∫
dr′G1/β(r − r′)Ṽ (1)(r)Ṽ (1)(r′).

(C4)

The potential term Vn follows from a second-order expansion
of the ground-state density profile, and V− originates from
the coupling between g+ and g−. Both Vn and V− have a
nonvanishing average. These nonvanishing averages suggest
an evaluation of the correlation functions at a wave vector off
the energy shell (29) in the fourth-order Lyapunov exponent
�(4). However, these averages play no role in the correlation
functions contributing to �

(3)
k (see below), and can thus be

disregarded at this level of approximation.
For Schrödinger particles of energy E = h̄2k2/2m in a 1D

disordered potential V , the leading orders of the weak-disorder
expansion of the Lyapunov exponent read [33]

γ
(2)
k = 1

4k2

(
2m

h̄2

)2 ∫ 0

−∞
dzC2(z) cos(2kz), (C5)

with C2(z) = V (0)V (z) and

γ
(3)
k = − 1

4k3

(
2m

h̄2

)3

P
∫

dq
C3(q,2k) + C3(−q, − 2k)

2q

= − 1

4k3

(
2m

h̄2

)3 ∫ 0

−∞
dz

∫ z

−∞
dz′C3(z,z′) sin(2kz′),

(C6)

where P denotes a Cauchy principal value, C3(z,z′) =
V (0)V (z)V (z′) is the three-point correlation function and
C3(q,q ′) is its Fourier transform. Replacing V in these
formulas by the sum of the potential terms appearing in
Eq. (C2) and collecting the different terms according to their
order in VR, up to V 3

R , we find

�k 
 �
(2)
Vk ,Vk

+ �
(3)
Vk ,Vn

+ �
(3)
Vk ,V− + �

(3)
Vk ,Vk ,Vk

, (C7)

where

�
(2)
Vk ,Vk

= 1

4k2

(
2m

h̄2

)2 ∫ 0

−∞
dzVk(0)Vk(z) cos(2kz) (C8)

corresponds to result (37), obtained in the Born approximation,
and the remaining terms are the three contributions to the
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third-order Lyapunov exponent of BQPs:

�
(3)
Vk,Vn

= 1

4k2

(
2m

h̄2

)2 ∫ 0

−∞
dz[Vk(0)Vn(z)

+Vn(0)Vk(z)] cos(2kz), (C9)

�
(3)
Vk ,V− = 1

4k2

(
2m

h̄2

)2 ∫ 0

−∞
dz[Vk(0)V−(z)

+V−(0)Vk(z)] cos(2kz), (C10)

�
(3)
Vk,Vk ,Vk

= − 1

4k3

(
2m

h̄2

)3 ∫ 0

−∞
dz

×
∫ z

−∞
dz′Vk(0)Vk(z)Vk(z′) sin(2kz′). (C11)

Note that, since Vk = 0, the nonvanishing mean values of Vn

and V− play no role in the various contributions to �(3), and
can subtracted from Vn and V− in Eqs. (C9) and (C11). As the
expressions of contributions (C9) to (C11) in Fourier space
are quite involved, we do not reproduce them here. We refer
to Fig. 6 and to Sec. IV E, which provide a discussion of the
behavior of these terms.
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