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We study the horizontal expansion of vertically confined ultracold atoms in the presence of disorder.

Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum

states. The disordered potential is created by an optical speckle at an angle of 30� with respect to the

horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane.

We observe diffusion leading to non-Gaussian density profiles. Diffusion coefficients, extracted from the

experimental results, show anisotropy and strong energy dependence, in agreement with numerical

calculations.
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Transport in most materials is determined by the com-
plex interplay of many ingredients, for instance the struc-
ture and thermal fluctuations of the substrate [1], the
interparticle interactions, which can induce superconduc-
tivity [2] or metal-insulator transitions [3], and disorder
[4]. Disorder is relevant to many condensed-matter systems
and strongly affects transport via scattering. Its primary
effect is thus diffusion, an effect underlying the Drude
theory of conductivity [1], as well as the self-consistent
theory of Anderson localization [5]. Disorder is of special
interest in dimension two (2D), which is the marginal
dimension for return probability in Brownian motion and
for Anderson localization [6]. Moreover, intriguing effects,
which are not fully understood, occur in 2D, such as the
metal-insulator transitions in high-mobility Si MOSFETs
[7,8], GaAs heterostructures [9,10], and thin metal-alloy
films [11].

Ultracold atomic gases are good candidates to study
classical or quantum disordered systems (see
Refs. [12,13], and references therein). They offer unique
versatility as one can control the amount and type of
disorder, the interaction strength or the confinement ge-
ometry. In 1D, Anderson localization [14,15] and
interaction-induced delocalization [16] have been ob-
served. In 3D, the competition between interaction and
disorder has been investigated in disordered optical lattices
[17,18]. Diffusion was reported for speckle-induced 3D
optical molasses in the dissipative regime [19]. So far,
less work has been devoted to 2D.

In this Letter, we study diffusion of ultracold atoms in an
effectively anisotropic disordered potential without dissi-
pation. The geometry is planar as the atoms are confined
vertically to a size of about 1 �m in a dipole trap and
horizontally free to move over a millimeter. In the presence
of disorder, we observe expansion at a reduced speed and
anisotropic, non-Gaussian atomic density profiles. We
show that the dynamics is horizontally diffusive. Fitting a

diffusive model to the data, we extract the diffusion coef-
ficients and find that they are anisotropic and strongly
energy-dependent. Our results are consistent with numeri-
cal simulations assuming classical dynamics.
The experimental setup uses a vertically confining po-

tential and a speckle light field (see Fig. 1). Both are
created with 767 nm laser light [20], blue detuned from
the resonance at 780 nm for 87Rb atoms in their ground
state. They thus induce a repulsive potential. The vertical
confinement is realized between the two lobes of a verti-
cally focused Hermite-Gauss TEM01-like mode, prepared
with a holographic 0� � phase plate [21,22]. The mea-
sured vertical trapping frequency is !=2� ¼ 680 Hz with
a 22 �m separation between the two intensity maxima, a
total power of 150 mW, and an horizontal waist radius at
1=e2 of 1.1 mm.

FIG. 1 (color online). Experimental setup (see details in text).
Atoms are detected from the top by fluorescence imaging on an
Andor electron multiplying charge coupled device (EM-CCD).
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The speckle light field is produced by a beam passing
through a diffusive plate [23,24] and focused on the atoms.
The high numerical aperture (a 75 mm diameter aperture at
a distance of 150 mm from the atoms) allows us to achieve
an approximately Gaussian correlation function with trans-
verse correlation length �y ¼ 0:8 �m (half-width at

1=
ffiffiffi
e

p
). The longitudinal correlation length (in the direction

of propagation) is deduced to be �long � 9 �m [24]. As

the speckle beam is at 30� from the horizontal expansion
plane, the correlation length �x along x is 2�y ¼ 1:6 �m.

With a power of 66 mW and a Gaussian waist radius of
1.1 mm, at the center of the beam, the standard deviation of
the disordered repulsive potential (equal to its average
value) is �V � kB � 53ð8Þ nK � ð2�@Þ � 1:1ð2Þ kHz
(where kB is the Boltzmann constant and 2�@ the Planck
constant).

The experiment proceeds as follows. An ultracold atom
sample is produced by an all-optical runaway evaporation
in a crossed dipole trap at 1565 nm, as described in
Ref. [25]. The atom cloud is first transferred in 5 ms in a
trap combining simultaneously the initial crossed dipole
trap and the vertically confining beam. The crossed trap is
then further ramped down in 200 ms in order to reduce the
confinement and thus also the temperature to kBT � kB �
200ð20Þ nK � ð2�@Þ � 4:2ð4Þ kHz, slightly above the
condensation threshold. Finally, the speckle field is ramped
up in 4 ms, and 1 ms later a thermal cloud of N ¼ 1:5�
105 atoms is released in the horizontal plane by suddenly
turning off the crossed dipole trap. After a chosen 2D
expansion time, the vertical confinement and the speckle
potential are switched off. After 0.1 ms, the atomic column
density is measured from the top through fluorescence
imaging.

A typical image for an expansion time of 50 ms in the
disordered potential is presented in Fig. 2(a). The corre-
sponding integrated density along y (respectively x) is
plotted in Fig. 2(b) [respectively 2(c)]. We observe a sharp
anisotropic structure elongated along x around the initial
position, surrounded by a broader isotropic cloud similar to
what is observed in the absence of disorder. The sharp
anisotropic structure corresponds to low energy atoms,
whose expansion has been slowed down by the disorder,
whereas the broad cloud corresponds to atoms which ex-
pand almost ballistically at this time scale. For an expan-
sion time of 200 ms [see Figs. 2(b) and 2(c)], the
contribution of the ballistic atoms is negligible with respect
to the lowest energy atoms. The cloud profiles are then
found to be non-Gaussian with long tails in both directions.
Similar profiles have been theoretically predicted for
energy-dependent diffusive behavior in the expansion of
Bose-Einstein condensates [26].

We first study the behavior of the peak column density
nð0; 0; tÞ as a function of time. It should scale as 1=t in a
diffusive regime, and as 1=t2 for a ballistic expansion.
Figure 3 shows a log-log plot of the measured peak density
as a function of time. For times below 15 ms, the cloud is

smaller than the pixel size and therefore our measurement
does not reflect nð0; 0; tÞ. Between 15 and 200 ms, we
observe a linear behavior with a slope �2:0�0:2

þ0:3 without

disorder, whereas with disorder, we find a linear behavior
with a slope �1:0�0:1

þ0:3. The uncertainties come from the

dispersion of the slopes found for different data sets taken
in similar conditions. This measurement is consistent with
diffusive expansion of a significant part of the atoms in the
horizontal plane. After only 15 ms, the contribution of the

FIG. 2 (color online). Atomic column density after planar
expansion of an ultracold gas in an anisotropic speckle potential.
(a) Image after 50 ms of expansion. (b),(c) Integrated density
along the two major axes. The plain dots (open squares) corre-
spond to 50 ms (200 ms) of expansion.

FIG. 3 (color online). Evolution of the peak column density
nð0; 0; tÞ as a function of expansion time. Triangles: with dis-
order; circles: without disorder. The solid lines are fits with
algebraic time dependence between 15 and 200 ms. The fitted
slopes of the decay are �0:98 with disorder and �1:97 without
disorder.
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ballistically expanding atoms to the density at the origin
vanishes.

In order to understand our experimental findings in more
detail, we have performed numerical simulations. In the
experiment, kBT � 6@!, so that a few vertical harmonic
oscillator states are populated. The vertical size of the

atomic cloud, �z ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m!

p � 1 �m (where m is the
atom mass), is much smaller than �long and the speckle

potential can be considered invariant along its propagation
axis. Since it makes an angle � ¼ 30� with respect to the
expansion plane, it couples the vertical quantum states. To
account for these features in the numerics, we consider the
3D dynamics of classical particles in the external potential
Vðx; y; zÞ þm!2z2=2, with Vðx; y; zÞ ¼ Visoðx sin��
z cos�; yÞ where Visoðu; vÞ is a 2D isotropic speckle poten-
tial with correlation length �y. Using a classical particle

model is a reasonable approximation since kBT=@! � 6
and k�y � 5 where k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mkBT
p

=@. Note also that our

experiment is not in the weak scattering limit [27] as
ð �V=kBTÞ2ðk�yÞ2 � 1:6.

A characteristic time scale for the dynamics is the
Boltzmann time �B, i.e., the time after which the memory
of the direction is lost, which depends on the particle
energy. For long times (t � �B), scattering from the angled
speckle potential redistributes the kinetic and potential
energies in 3D, so that the dynamics in the horizontal plane
is expected to depend on the 3D particle energy E. We
hence calculate the spatial variances h�2ðE; tÞi as a function
of time, where � ¼ x, y and brackets indicate averaging
over disorder and over initial conditions corresponding to

the energy E. The evolution is described by h�2ðE; tÞi ’
2D�ðEÞt��ðEÞ. We identify three regimes characterized by

the value of ��ðEÞ. For E= �V & 2, we find a subdiffusive

dynamics, i.e., ��ðEÞ< 1, for experimentally relevant time

scales. In particular, for E= �V & 0:52, we find strictly
bounded trajectories, ��ðEÞ ¼ 0. This is consistent with

the percolation threshold expected for 2D speckle poten-
tials [28,29]. For E= �V * 2, numerical simulations yield a
diffusive dynamics, i.e., ��ðEÞ ’ 1. In this regime, the

diffusion coefficients D�ðEÞ are strongly anisotropic and

grow algebraically with the particle energy [Fig. 4(a)].
From a fit to the numerical calculations for our parameters,

we find DxðEÞ ¼ 2:4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V�2

y=m
q

ðE= �VÞ2:8 and DyðEÞ ¼
0:65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�V�2

y=m
q

ðE= �VÞ2:8 [30,31]. We have also done simula-

tions of a classical 2D diffusion in the same anisotropic
disorder. The various regimes found in the 3D simulations
with vertical confinement are also found in 2D simulations
at the same values of E= �V. In the diffusive regime, the
energy dependence of the diffusion coefficients remains
algebraic but with modified constants.

In the experiment, the observed expansion results
from the diffusion of atoms with a broad energy dis-
tribution, NðEÞ. It can be calculated assuming that, before
abrupt release in the horizontal plane, the gas is at thermal

equilibrium in the trap plus speckle potential. The corre-

sponding energy distribution NðEÞ / e�E=kBT
PE=@!

n¼0 ð1�
eðn@!�EÞ= �VÞ is plotted in Fig. 4(b) [32]. It is fully deter-
mined from the experimental parameters !, N, �V, and T.
Here, only 6% of the atoms are subdiffusive [E � 2 �V,
shaded regions in Fig. 4(b)]. Incorporating their contribu-
tion to the diffusive regime is thus a small error, and for
long expansion time, the column density can be approxi-
mated by

nðx; y; tÞ ’
Z 1

0
dENðEÞ 1

t

expð� x2

4DxðEÞt �
y2

4DyðEÞtÞ
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxðEÞDyðEÞ

q : (1)

We fit Eq. (1) (convolved with our imaging resolution
�15 �m) to the experimental 2D density distribution with
DxðEÞ ¼ D0

xðE=ERÞ� and DyðEÞ ¼ D0
yðE=ERÞ�, D0

x, D
0
y,

and � as fitting parameters, and the recoil energy ER ¼
kB � 180 nK as energy scale. As can be seen on Fig. 5, the
2D fit function reproduces the data both close to the central
peak and in the wings. We find D0

x ¼ 3:0ð1:5Þ �
10�7 m2 s�1, D0

y ¼ 8:7ð4:3Þ � 10�8 m2 ms�1, and � ¼
3:3ð3Þ. The uncertainties come from the uncertainties on
the measurements ofN, �V, and T used in NðEÞ and from an
observed systematic drift of the results as a function of the
expansion time [33]. Experimentally, the power-law expo-
nent is found to be � ¼ 3:3ð3Þ, to be compared with 2.8 in
the simulation. The observed ratio of the two diffusion
coefficients is 3.45(15) when it is 3.7 in the simulation.
These slight discrepancies can be due to the approxima-
tions made in order to derive Eq. (1). At E ¼ ER � kBT,
numerically, we find DxðERÞ ¼ 1:3ð0:6Þ � 10�7 m2 s�1

and DyðERÞ ¼ 3:5ð1:7Þ � 10�8 m2 s�1, where the uncer-

tainties come from the uncertainties on �V and �y. The

experimental values of the diffusion coefficients are thus
in quantitative agreement with the 3D classical simulation.
In conclusion, we have observed and studied 2D diffu-

sive expansion of ultracold atoms in a disordered potential.
As a result of the effective anisotropy of the speckle
potential, the diffusion is anisotropic. Fitting a diffusive
model to our density profiles, we are able to extract the

FIG. 4 (color online). (a) Diffusion coefficients along x (blue
circles) and y (red diamonds) as a function of energy in log-log
scale. Points are numerical results, lines are fits to power laws.
(b) Energy distribution for the experimental parameters. The
shaded regions correspond to subdiffusive regimes (see text).
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diffusion coefficients and find a strong dependence on the
atom energy, in quantitative agreement with a classical
simulation for our parameters.

Understanding the diffusion properties as a function of
energy (in particular out of the weak scattering regime) is a
necessary step towards the study of other disorder-induced
effects in two dimensions, starting with anomalous sub-
diffusion [34] and classical trapping under the percolation
threshold [28,29]. By cooling the gas further or by reduc-
ing the correlation length of the disorder, we expect quan-
tum corrections to the diffusion and Anderson localization
to show up at the sub-mm length scale of the experiment
[27]. Moreover, in a 2D degenerate gas, the influence of
disorder on the Berezinskii-Kosterlitz-Thouless transition
[35] is especially intriguing. Will the vortices be pinned by
disorder [36]?

We thank F. Moron and A. Villing for technical assis-
tance, M. Besbes and GMPCS high performance comput-
ing facilities of the LUMAT federation for numerical
support. This research was supported by CNRS, CNES as
part of the ICE project, Direction Générale de l’Armement,
ANR-08-blan-0016-01, IXSEA, EuroQuasar program of
the EU. LCFIO is member of IFRAF.

*Corresponding author.
thomas.bourdel@institutoptique.fr
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