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Abstract – We theoretically study the dipole oscillations of an ideal Fermi gas in a disordered
trap. We show that even weak disorder induces strong damping of the oscillations and we identify a
metal-insulator crossover. For very weak disorder, we show that damping results from a dephasing
effect related to weak random perturbations of the energy spectrum. For increasing disorder, we
show that the Fermi gas crosses over to an insulating regime characterized by strong damping due
to the proliferation of localized states.

Copyright c© EPLA, 2009

Introduction. – Ultracold atoms in disordered poten-
tials are currently attracting considerable interest. They
offer unprecedented possibilities to revisit many open
questions on disordered quantum systems with accurate
experimental control of relevant parameters and origi-
nal measurement techniques. The spectacular progress
achieved in disordered Bose-Einstein condensates (BECs)
have recently lead to the first direct observation of Ander-
son localization of matter waves [1,2], showing remarkable
agreement with theoretical calculations [3,4]. A future
challenge to ultracold gases is the production of dis-
ordered Fermi systems. Even better than Bose gases, they
would mimic systems of direct relevance for condensed-
matter physics, such as dirty superconductors [5] and
granular metals [6]. Moreover, ultracold gases provide
original insights on transport phenomena without direct
counterparts in traditional condensed-matter physics. For
instance, ultracold atoms trapped in harmonic potentials
may undergo dipole oscillations —i.e. oscillations of the
center of mass (CM)— that can be observed for tens of
periods. Since dipole oscillations are undamped in pure
harmonic traps, irrespective to the nature of particles,
temperature and interactions [7], damping results from the
influence of external potentials only. Hence, dipole oscil-
lations have been used to characterize several properties
of quantum gases [8,9]. These include bosonic quantum
degeneracy [10], inhibition of transport of Bose gases
in one-dimensional (1D) optical lattices [11], fermionic
band insulators in periodic lattices [12,13], localization

(a)E-mail: lsp@institutoptique.fr

of spin-polarized fermions in disorder-free aperiodic
lattices [14], and interaction-controlled transport of
fermions in optical lattices [15], just to mention a few.
In this work, we study the dipole oscillations of a

spin-polarized Fermi gas in a harmonic trap combined
with a 1D disordered potential. Dipole oscillations are
induced by a sudden displacement of the trap center (see
fig. 1(a)), a technique which is routinely used in exper-
iments with ultracold atoms. We find strong damping
even for weak disorder, and identify a metal-insulator
crossover when the disorder is increased. We show that
for very weak disorder, damping results from dephasing
of different modes oscillating with frequencies randomly
shifted around the harmonic oscillator frequency. This
leads to weaklyn damped and almost centered oscillations
(see figs. 1(b) and (c)), which are accurately described
by perturbation theory. For increasing disorder, the Fermi
gas crosses over to a strongly insulating regime, charac-
terized by strongly damped oscillations with large offset
(see fig. 1(d)). This insulating regime is due to the
proliferation of single-particle localized states. So far,
dipole oscillations in the presence of disorder have been
studied only in BECs [16,17]. In this case, damping is
due to dissipation induced by repulsive interactions [17], a
process completely different from the one we identify here
for non-interacting Fermi gases.

Framework. – We consider a Fermi gas at thermal
equilibrium with temperature T in a 3D axially symmetric
harmonic trap of frequencies ωz in the longitudinal direc-
tion z and ω⊥ in the radial directions x, y (the aspect
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Fig. 1: (Colour on-line) Dipole oscillations of a 3D elongated
(λ= 8) disordered Fermi gas. a) The oscillations are excited by
shifting the trap from z = d to z = 0 at time t= 0. The disorder
is also switched on at t= 0. b)–d) Dipole oscillations, averaged
over 25 realizations of the disorder, for a speckle potential
with correlation length σR = 0.08 lz and various amplitudes
VR. The solid black lines are exact numerical calculations
of ZCM(t) (eqs. (4), (5)), the dashed red lines are obtained
from perturbation theory (eqs. (1), (7), (8)). Horizontal dotted
lines are eq. (5). Here, we have used d= 5 lz, T = 0 and
µ= 200 �ωz (see footnote

1).

ratio is λ= ω⊥/ωz). The trap is initially centered
at (x, y, z) = (0, 0, d). Because of the Pauli exclusion
principle, the fermions populate the single-particle

eigenstates of the displaced trap, Φ
(d)
nx,ny,nz (x, y, z) =

φnx,ny (x, y)ϕ
(d)
nz (z), according to the Fermi-Dirac distri-

bution. Here, |φnx,ny 〉 is the eigenfunction of the
radial harmonic trap associated with the eigenenergy

�ω⊥(nx+ny +1). The function ϕ
(d)
n (z)≡ϕn(z− d) with

ϕn(z) = (n!2
nlz
√
π)−1/2 exp (−z2/2l2z)Hn(z/lz) is the

eigenfunction of the 1D longitudinal harmonic poten-
tial associated with eigenenergy εn = �ωz(n+1/2),
where Hn(z) is the Hermite polynomial of index n and
lz =
√
�/mωz the oscillator length in the z-direction.

At time t= 0, the trap center is abruptly shifted to
z = 0 and a 1D homogeneous disordered potential,
V (z) = VRv(z/σR), with average 〈V 〉= 0, amplitude
VR and correlation length σR, is switched on (see
fig. 1(a)). In the absence of disorder, this process
induces undamped dipole oscillations of the CM along z,
ZCM(t) = d cos(ωzt) [7]. In the presence of disorder, we
write the CM motion, averaged over different realizations
of the disorder, as

ZCM(t) =Zosc(t)+Z∞, (1)

where Zosc(t)∼ Γ(t)cos(ωzt) is the oscillating part with
Γ(t) an envelope function giving the damping of the

1The numerics have been carried out for typical parameters
of 40K experiments [12]: λ= 8, lz = 3.25µm so that µ= 200 �ωz
corresponds to N ≈ 20000 atoms. For the speckle potential, we have
used σR = 0.26µm as in the experiments of ref. [1].

oscillations and Z∞ is the oscillation offset. In the remain-
der of the manuscript, we evaluate the quantities Γ(t) and
Z∞ and identify their physical origin.
Using the density-matrix formalism, the CM motion

reads ZCM(t) =Tr[ẑe
−iĤt/� ρ̂eff e+iĤt/�], where

Ĥ=− �
2

2m

d2

dz2
+
1

2
mω2zz

2+V (z) (2)

is the single-particle Hamiltonian along the z-axis, and
ρ̂eff is an effective density matrix. The expression of ρ̂eff
is obtained by tracing out the radial degrees of freedom,
which is possible because the 3D Hamiltonian is spatially
separable and unchanged in the x, y directions at t= 0.
We find

ρ̂eff =
∑
n

fneff(T, µ, λ)

N
|ϕ(d)n 〉〈ϕ(d)n |, (3)

where the effective Fermi distribution, fneff(T, µ, λ) =∑+∞
n⊥=0

n⊥+1
e[�ωz(n+λn⊥)−µ]/kBT+1 , includes the occupation

numbers of the radial-trap levels2 andN =
∑
n f
n
eff(T, µ, λ)

is the total number of Fermions. In a 3D elongated Fermi
gas (λ= ω⊥/ωz > 1), the 1D limit is achieved when the
population of the transverse excitation modes can be
neglected. This occurs for �ω⊥−µ� kBT when µ> 0
and µ� kBT (degenerate limit) or for �ω⊥� kBT when
µ< 0 and |µ| � kBT (classical limit).
To evaluate explicitly ZCM(t), we use the eigenfunctions

{|ψn〉, n∈N} and the associated eigenenergies {En} of
Hamiltonian Ĥ. The ZCM(t) can be decomposed as in
eq. (1) with

Zosc(t) =
∑

n,p;En �=Ep
e−i(En−Ep)t/� ρn,peff 〈ψp|ẑ|ψn〉, (4)

and
Z∞ =

∑
n,p;En=Ep

ρn,peff 〈ψp|ẑ|ψn〉, (5)

where the matrix elements ρn,peff ≡ 〈ψn|ρ̂eff |ψp〉 include all
the dependency on the parameters of the initial Fermi
gas (T, µ, λ) and the trap displacement d. The disordered
potential affects the energy spectrum (i.e. both En and
|ψn〉) of the harmonic oscillator, which, from eq. (4),
appears to have a twofold effect on Zosc(t). First, it induces
random, incommensurate, energy shifts which dephase the
different oscillating components of the sum in eq. (4).
As we will see, this is the main contribution to the
damping effect for sufficiently weak disorder. Second, it
induces random modifications to the harmonic oscillator
eigenfunctions, which affect the terms 〈ψp|ẑ|ψn〉 and
ρn,peff . According to eq. (5), these modifications are also
responsible for the existence of an oscillation offset, Z∞.
Equations (4) and (5) are the basis of both our analyt-

ical and numerical calculations. In the numerics, we use a

2Here, the zero-point energy, �ωz(1/2+λ), has been included
into the definition of the chemical potential µ.
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speckle potential similar to that used in many experiments
on disordered quantum gases [1,18], for which the auto-
correlation function reads C(∆z) = 〈V (z+∆z)V (z)〉=
V 2Rc(∆z/σR) with c(u) = (sinu/u)

2. Figures 1(b–d) show
dipole oscillations of a 3D elongated (λ= 8) Fermi gas
at zero temperature for various amplitudes VR (see
footnote 1). These results show increasing damping for
increasing disorder, as expected. More precisely, we find
a crossover from weak-damping (metal-like) regime for
very weak disorder (see figs. 1(b,c)) to strong-damping
(insulator-like) regime characterized by a significant offset
for stronger disorder (see fig. 1(d)). As we will show,
weak damping results from disorder-induced weak pertur-
bations of the energy spectrum, while strong damping
signals strong localization of the Fermi gas.

Weak-damping regime. – We first evaluate analyt-
ically Zosc from eq. (4). We take into account first-order
disorder-induced shifts to the harmonic oscillator eigen-
energies and approximate the eigenfunctions |ψn〉 with the
harmonic oscillator ones |ϕ(0)n 〉. Note that, as we will show,
the offset Z∞ requires second-order perturbation calcu-
lations. For consistency in eq. (1), one should in prin-
ciple use also second-order perturbation for calculating
the envelope Zosc(t). However, it leads to small correc-
tions in Zosc(t) so we disregard them. We have checked
numerically that perturbation of the eigenfunctions has
a negligible contribution to the damping, at least until
almost complete dephasing has occurred. Then, eq. (4)

is significantly simplified since 〈ψp|ẑ|ψn〉 � 〈ϕ(0)p |ẑ|ϕ(0)n 〉=
lz√
2
(
√
n+1δp,n+1+

√
nδp,n−1). Using first-order perturba-

tion theory on the eigenenergies En only, we find

Zosc(t) = lz
∑
n�0

√
2(n+1)F

(d)
n,n+1 cos (ωzt+ δVnt/�) , (6)

where δVn ≡ 〈ϕ(0)n+1|V (z)|ϕ(0)n+1〉− 〈ϕ(0)n |V (z)|ϕ(0)n 〉 and

F
(d)
n,p ≡ 〈ϕ(0)n |ρ̂eff |ϕ(0)p 〉. For different realizations of the
disordered potential, δVn is a random quantity with
〈δVn〉= 0 and 〈δV 2n 〉= V 2R σRlz Rn(σR/lz), where

Rn

(
σR

lz

)
=

∫
dκ√
π
c̃

(√
2
σR

lz
κ

)
e−κ

2 [
L0n+1(κ

2)−L0n(κ2)
]2

is related to the Fourier transform of the reduced correla-
tion function of the disorder, c̃(q) =

∫
du√
2π
c(u)e−iqu, and

Lαn(x) are Laguerre polynomials [19]. When averaging
eq. (6) over realizations of the disorder, we use a Gaussian
distribution in the variable δVn with mean square fluc-
tuation 〈δV 2n 〉 (see footnote 3). We then find Zosc(t)�
dΓ(t)cos(ωzt), where

Γ(t)=
lz

d

∑
n�0

√
2(n+1)F

(d)
n,n+1 exp

[
−V

2
Rt
2

2�2
σR

lz
Rn

(
σR

lz

)]
.

(7)

3We have checked numerically that this approximation is very
accurate. However, complete justification of this property is beyond
the scope of the present paper.

The envelope function Γ(t) is non-universal in the sense
that its general shape does not depend only on the disor-
der (i.e. on VR, σR and the model of disorder, v) but
also on the initial density matrix, i.e. on temperature
(T ), number of fermions (or equivalently, chemical poten-
tial µ), trap geometry (λ) and initial trap displacement
(d). For instance, Γ(t) is in general neither an expo-
nential nor a Gaussian function4. To compare eq. (7)
with numerical data, we introduce the damping time τ ,
defined by the equation Γ(τ) = 1/2. Although τ depends
on both disorder and initial state of the Fermi gas, one
can obtain some universal properties from the fact that
the contribution of disorder (which appears only in the
coefficient of the exponential function in eq. (7)) is sepa-

rated from that of the initial state (in the quantities F
(d)
n,n+1

only). In particular, we find τ ∝ �/|VR| for any model of
disorder and initial density matrix. Numerical results for
1D and 3D Fermi gases at zero temperature shown in fig. 2
confirm this prediction. The behavior of τ vs. the corre-
lation length σR is more complicated. In the white-noise
limit, σR
 lz/

√
nF, where nF = µ/ �ωz is the longitudinal

Fermi level, there are many disorder peaks within the typi-
cal wavelength lz/

√
nF of the Fermi gas. The disordered

potential felt by the wavefunctions |ϕ(0)n 〉 with n� nF
almost averages out. When σR increases, the eigenfunc-
tions are more sensitive to the disorder so that we expect
that τ decreases. This behavior is confirmed by eq. (7):
in the white-noise limit the functions Rn are independent
of σR so that τ ∝

√
lz/σR. The coupling of the Fermi gas

to the disorder is maximum when σR ∼ lz/√nF (see foot-
note 5). Beyond, we thus expect that τ increases. In the
limit of large correlation length, σR� lz

√
2nF, the typical

size of the disorder peaks exceed the size of the Fermi gas.
Hence, the disordered potential induces only an energy
shift which is approximately equal for all the eigenstates
below the Fermi energy, and we recover harmonic oscilla-
tions (i.e. τ →∞). This is again confirmed by eq. (7): since
the width of c̃ is unity we find Rn(σR/lz)∝ (lz/σR)5 and
τ ∝ (σR/lz)2. These features explain the non-monotonous
behavior of τ vs. σR obtained in the inset of fig. 2.
In contrast to damping, the oscillation offset results

only from perturbation on the eigenfunctions |ψn〉 (see

4A Gaussian envelope can be obtained in the particular
case of a 1D Fermi gas at T = 0 in the small d limit.
To first-order perturbation in the displacement d, we have

|ϕ(d)n 〉 � |ϕ(0)n 〉+ d√
2lz
(
√
n+1|ϕ(0)n+1〉−

√
n|ϕ(0)n−1〉) and Fn,n+1 =

d√
2lz

√
n+1
N
(fneff(T, µ, λ)− fn+1eff (T, µ, λ)). In 1D and at T = 0, we

have N = nF+1 and Fn,n+1 =
d
lz

1√
2(nF+1)

δn,nF , where nF is

the Fermi level. In this case only, oscillations are undamped for
each realization of the disorder with a frequency shift δVnF .
Then, damping results from averaging over disorder and Γ(t) =

exp

[
−V 2Rt2
2�2

σR
lz
RnF

(
σR
lz

)]
is a simple Gaussian. Note, however,

that this limiting case is valid only for very small displacement,
i.e. d� lz/

√
nF.

5Analogous non-monotonic behavior can be found when evaluat-
ing the parameter δVn as a function of σR.
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Fig. 2: (Colour on-line) Damping time, τ , vs. VR in 1D and 3D
(λ= 8) Fermi gases, both for µ= 200 �ωz and σR = 0.08 lz. The
inset is τ as a function of σR for the 3D gas. The lines are the
predictions of eq. (7) and the points are results of numerical
simulations. The dashed line in the inset is the white-noise
limit. The parameters are d= 5 lz and T = 0.

eq. (5))6. Since the average of the disorder vanishes
everywhere, 〈V (z)〉= 0, first-order perturbation is not
sufficient to calculate the offset. We thus evaluate eq. (5)
up to second order, and find

Z∞ =
(
VR

�ωz

)2
σR
∑
n,m
n>m

√
8
m!

n!

F
(d)
n,m

n−m In,m

(
σR

lz

)
, (8)

with

In,m

(
σR

lz

)
=

∫
dκ√
π
c̃

(√
2
σR

lz
κ

)
(iκ)n−m+1Ln−mm (κ2)

×e−κ2 [L1n(κ2)−L1m(κ2)+L1m−1(κ2)−L1n−1(κ2)] .
As for damping, the behavior of the offset as a function of
VR is simple: we find Z∞ ∝ (VR/ �ωz)2 for any initial state
of the Fermi gas and trap displacement. This is confirmed,
for small enough values of VR, by the results of numerical
calculations plotted in fig. 3. Again, the dependence of
Z∞ vs. σR is non-monotonous, as shown in the inset of
fig. 3. In the white-noise limit, σR
 lz/

√
nF, we find that

Z∞ ∝ σR, while for large correlation length, σR� lz
√
2nF,

we have Z∞ ∝ l5z/σ4R.
Let us comment on two important properties. First,

we find that strong damping occurs even for very weak
disorder. For instance, VR = 5�ωz (equal to 0.025µ in
figs. 3 and 4) corresponds to τ � 2π/ωz, meaning that
damping occurs typically on few oscillations (see fig. 1(c)).
Second, we find that, for the same chemical potential,
the effect of disorder is weaker in 1D than in 3D (the
damping time τ is larger and the offset Z∞ smaller).

6Equation (5) shows that the offset is mainly determined by
components with n= p. In fact, there may be additional contribu-
tions due to degeneracies in the spectrum (i.e. contributions with
n �= p but En =Ep). This case is very unlikely in fully disordered
potentials so we neglect such contributions. Degeneracy-induced
offset is instead relevant for symmetric optical lattices [12,13].
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Fig. 3: (Colour on-line) Oscillation offset, Z∞, vs. VR (same
parameters as in fig. 2). The points are results of numerical
simulations and the lines are eq. (8). The inset is Z∞ as a
function of σR for the 3D gas. The dashed line is the white-
noise approximation.

This can be understood intuitively from the properties
of the effective Fermi distribution fneff(T, µ, λ). Indeed, for
stronger radial trapping (i.e. for increasing λ or in 1D
compared to 3D) and fixed Fermi energy, the population of
low-energy states, which are more affected by the disorder,
decreases. Similarly, we have found that finite temperature
increases the damping time τ and decreases the offset Z∞
although the effect is quite weak. For instance, we find
that a temperature T = 0.5TF, where TF is the Fermi
temperature, leads to a small correction of about 10%,
without affecting the general behavior of τ and Z∞ vs.
the parameters.
Note also that the assumptions at the basis of our

perturbation approach are justified, a posteriori, by
the excellent agreement between numerical calculations
(points with error bars) and perturbation theory (lines)
in figs. 2 and 3. This is even more striking in figs. 1(b,c)
where we plot the dipole oscillations as obtained inde-
pendently i) from exact numerical calculations (based on
eqs. (4), (5); solid black lines) and ii) from the prediction
of eqs. (1), (7), (8) (dashed red lines). They are hardly
distinguished in figs. 1(b,c), indicating that perturbation
theory is indeed very accurate as long as oscillations
are visible (i.e. for VR � 5�ωz for the parameters of
figs. 1–3).

Strong-damping regime and localization. – In
the strong-damping regime (i.e. for VR � 10�ωz for the
parameters of figs. 1–3), dipole oscillations are largely
suppressed (see fig. 1(d)) and it is difficult to define
an envelope function Γ(t). At the same time, the offset
becomes significant (see fig. 3) and tends to Z∞ � d for
very large VR (see footnote

7). This behavior signals
the crossover to a strongly insulating regime which can
be related to the onset of single-particle localization.
Indeed, as shown by eq. (5), the oscillation offset Z∞
7For the numerical calculation of this section we consider the

condition of optimal coupling between the Fermi gas and the
disordered potential, σR ∼ lz/√nF .
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Fig. 4: (Colour on-line) Localization in a disordered trap. Vertical lines centred in zn and of length given by the participation
length Pn are plotted at energy En. The color scale is given by the weight ρ

n,n
eff : it goes from zero (white regions) to one (dark

regions). For clarity, the background (BG) is in light blue color. The horizontal dashed lines indicate the spatial region covered
by the initial Fermi gas, i.e. d− lz√2nF � z � d+ lz√2nF. The different figures refer to different values of VR and the same
realization of speckle disorder. The solid blue line in (a) shows the participation length P

(0)
n of harmonic oscillator eigenfunctions

in the absence of disorder (VR = 0).

is the sum of the average position of each eigenfunction
in the disordered trap, zn ≡ 〈ψn|ẑ|ψn〉, weighted by the
corresponding population, ρn,neff (see footnote

6). Extended
states —which are centered around the trap minimum
(zn � 0)— do not contribute to Z∞. Conversely, localized
states which are spread at random positions in the trap,
zn 
= 0, may contribute to Z∞, depending on their relative
population ρn,neff .
The two important features that determine the oscilla-

tion offset are thus the localization properties of the eigen-
functions in the presence of the harmonic trap, and their
populations, which are governed by the initial, displaced
Fermi gas. In order to interpret the dipole motion in the
strong-damping regime, we now discuss these features.
The eigenfunctions |ψn〉 are obtained by numerical
diagonalization of Hamiltonian Ĥ and characterized by
two quantities: i) the localization center, zn, and ii) the
participation length, Pn = 1/

∫
dz|ψn(z)|4, which gives the

typical extension (width) of the quantum states8. Their
populations ρn,neff are obtained by projecting the initial
state of the Fermi gas on the eigenfunctions |ψn〉. Figure 4
shows all these features for a 1D Fermi gas at T = 0,
with µ= 200�ω and initially centred at d= 5lz. For each
eigenenergy En, we plot a vertical line of length Pn,
centred at position zn, and weighted by ρ

n,n
eff (color scale).

The different figs. 4(a)–(f) correspond to the same realiza-
tion of a speckle potential but different values of VR. As

8For normalized states, i.e.
∫
dz|ψn(z)|2 = 1, small participation

lengths correspond to strongly localized states.

can be anticipated, in the weak-damping regime, we find
that the eigenfunctions are not localized (see fig. 4(a)).
The values of Pn are close to the participation length
P 0n calculated for the harmonic trap without disorder
(solid blue line). The corresponding zn slightly fluctuate
around the trap center, so that Z∞
 d. Increasing the
amplitude VR of the disordered potential (see figs. 4(b)
and (c)), most of the populated states remain extended
but become more and more perturbed. In the crossover
regime (figs. 4(d) and (e)), strongly localized states,
randomly distributed in the trap, appear at low energies.
The states with lowest energy, which are more sensitive
to the disorder and thus more strongly localized, are
populated when they lie in the spatial region covered by
the initial Fermi gas (delimited by the horizontal dashed
lines in fig. 4). These states, being spatially separated
from each other, do not contribute significantly to the
sum that determines the oscillation (see eq. (4)). In
contrast, they do contribute to the offset (see eq. (5))
since they are mostly located on the side of the initial
gas. The populated states with higher energy are not
localized and extend beyond the spatial region covered
by the initial Fermi gas. They can thus contribute to
the oscillation, but not significantly to the offset since
their average center is close the trap center. Finally, for
very large amplitudes VR of the disorder (fig. 4(f)), the
Fermi gas enters the strong-damping regime. In this case,
most of the populated states are strongly localized and
located in the region covered by the initial Fermi gas,
with energies about up to the chemical potential. Note

30009-p5
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that the upper part of figs. 4(e) and (f), above the dashed
line, shows states which are strongly localized but not
populated since they lie outside the initial Fermi gas.
Some extended states with energy above the chemical
potential can also, appear but with very small population.
The CM of the Fermi gas is thus frozen at Zoff � d. This
explains qualitatively the behavior observed in fig. 3.
As we have shown, localization is a crucial ingredi-

ent for the metal-insulator crossover investigated here.
Although localization is mainly due to the disordered
potential, it is clear that the harmonic trap significantly
affects the localized states. For instance, by virtue of
finite-size effects, the lowest-energy states are localized
near the trap center (see figs. 4). Moreover, the expo-
nential decay of localized states, which is the most strik-
ing signature of Anderson localization [1,2], is strongly
suppressed since the harmonic potential dominates at
large distances. More surprisingly, our numerical data
show that localized and extended states can coexist in
the same region of the spectrum at intermediate energies
(see, for instance, figs. 4(d) and (e)), an effect due to the
trapping potential. In the future, it will thus be inter-
esting to study single-particle localization in disordered
traps. On one hand, it differs qualitatively form localiza-
tion in homogeneous disorder, and, on the other hand, it
is directly relevant to experiments on disordered quantum
gases.

Conclusions. – Dipole oscillations are an important
tool for studying the dynamical properties of ultracold
gases [8–17]. We have shown that dipole oscillations of
trapped, disordered Fermi gases reveal a metal-insulator
crossover for increasing disorder. Weak disorder induces
weak damping associated to weak perturbations of the
energy spectrum. Stronger disorder leads to strong damp-
ing characterized by a large oscillation offset, which signals
the onset of localization. We have related the insulating
property of the Fermi gas to localization of energy eigen-
functions in the disordered trap. We have provided analyt-
ical predictions in the weak-damping regime and numer-
ical results in the strong-damping regime using experi-
mentally realistic parameters for both 1D and 3D gases.
Our predictions can thus be readily tested experimentally
with ultracold Fermi gases, in speckle potentials or other
models of disorder. Our results can be easily extended
to finite-temperature Fermi gases, but we have actually
found weak differences compared to the zero-temperature
case.
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