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We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We

show that the spectrum displays both localized and extended states, which coexist at intermediate

energies. In the region of coexistence, we find that the extended states result from confinement by the

trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of

the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These

results are relevant to disordered quantum gases and we propose a realistic scheme to observe the

coexistence of localized and extended states in these systems.
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Disorder underlies many fields in physics, such as elec-
tronics, superfluid helium and optics [1–3]. It poses chal-
lenging questions, regarding quantum transport [4] and the
interplay of disorder and interactions [5]. In this respect,
ultracold gases offer exceptionally well controlled simu-
lators for condensed-matter physics [6] and are particularly
promising for disordered systems [7]. They recently al-
lowed for the direct observation of one-dimensional (1D)
Anderson localization of matter waves [8–11]. It should be
noticed, however, that ultracold gases do not only mimic
standard models of condensed-matter physics, but also
raise new issues which require special analysis in its own
right. For instance, they are most often confined in spatial
traps, which has significant consequences. On the one
hand, retrieving information about bulk properties requires
specific algorithms [12]. On the other hand, trapping in-
duces novel effects, such as the existence of Bose-Einstein
condensates in low dimensions [13], and suppression of
quantum tunneling in periodic lattices [14].

Consider Anderson localization [15]. In homogeneous
disorder, linear waves can localize owing to coherent mul-
tiple scattering, with properties depending on the system
dimension and the disorder strength [1]. A paradigm of
Anderson localization is that localized and extended states
generally do not coexist in energy. This relies on Mott’s
reductio ad absurdum [1]: Should there exist a localized
state and an extended state with infinitely close energies for
a given configuration of disorder, an infinitesimal change
of the configuration would hybridize them, forming two
extended states. Hence, for a given energy, almost all states
should be either localized or extended. Exceptions only
appear for specific models of disorder with strong local
symmetries [16]. Then, a question arises: Can inhomoge-
neous trapping modify this picture so that localized and
extended states coexist in energy?

In this Letter, we study localization in a disordered poten-
tial combinedwith an inhomogeneous trap. The central result
of this work is the coexistence, at intermediate energies, of

two classes of eigenstates. The first class corresponds to
states which spread over the full (energy-dependent) classi-
cally allowed region of the bare trap, and which we thus
call ‘‘extended.’’ The second class corresponds to states of
widthmuch smaller than the trap size, which are localized by
the disorder, and which we thus call ‘‘localized.’’ We give
numerical evidence of the coexistence of extended and lo-
calized states for different kinds of traps.We show that while
the extended states are confined by the trap and weakly
affected by the disorder, the localized states correspond
to eigenstates of the disordered potential, which are only
affected by the trap via an inhomogeneous energy shift.
Finally, we propose an experimentally feasible scheme using
energy-selective time-of-flight techniques to observe this
coexistence with ultracold Fermi gases.
Let us consider a d-dimensional gas of noninteracting

particles of mass m, confined into a spatial trap VTðrÞ
and subjected to a homogeneous disordered potential
VðrÞ of zero average, amplitude VR and correlation length
�R. Hereafter, we use ‘‘red-detuned’’ speckle potentials
(VR < 0), which are relevant to quantum gases [7,17].
For the trap, we take VTðrÞ ¼ ð@2=2ma2Þjr=aj�, being a
the trap length scale. For instance, � ¼ 1 and a ¼ L=2
for a homogeneous box of length L, while � ¼ 2 and

a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
for a harmonic trap of angular frequency !.

We numerically compute the eigenstates jc ni and eigene-
nergies En of the Hamiltonian

Ĥ ¼ �@
2r2=2mþ VðrÞ þ VTðrÞ: (1)

The eigenstates are characterized by their center of mass,

rn � hc njr̂jc ni, and spatial extension (rms size), �rn �
ðhc njr̂2jc ni � r2nÞ1=2. The quantity �rn quantifies local-
ization: the smaller, the more localized.
Numerical results for the 1D (d ¼ 1) case are reported in

Fig. 1. In infinite, homogeneous disorder (� ¼ 1, L ¼ 1),
all states jc ni are localized, uniformly distributed in
space, and, for most models of disorder, their extension
�zn increases with the energy [18]. As Figs. 1(a) and 1(f)
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show, using a finite flat box (L <1) only induces a trivial
finite-size effect: For low-enough energy E, we find
�zn � L and the states are not significantly affected by
the finite size of the box. For larger energies, however,
boundary effects come into the picture. The states are
centered close to the box center and their extension

saturates to the value obtained for a plane wave (�z0 ¼
L=2

ffiffiffi
3

p
). A central outcome of these results is that the curve

giving �zn versus E displays a single branch. In particular,
there is no energy window where localized and extended
states coexist. This holds independently of the finite box
size and is in agreement with Mott’s argument [1].

For inhomogeneous traps (�<1), we find a com-
pletely different behavior. The curves giving �zn and zn
versus E now display two clearly separated branches [see
Figs. 1(b)–1(e) and 1(g)–1(j)]. For low energy, the states
are strongly localized and, for E> 0, they are roughly
uniformly distributed in a region bounded by the
(energy-dependent) classical turning points, zclðEÞ, defined
as the solutions of VTðzclÞ ¼ E. For higher energy, the
extension of the states corresponding to the upper branch
in Figs. 1(b)–1(e) grows and eventually saturates to that of
the eigenstates of the nondisordered trap, �z0ðEÞ. The
centers of mass of these states approach the trap center
and form the horizontal branch in Figs. 1(g)–1(j). This
branch corresponds to extended states. It is easily inter-
preted in terms of finite-size effects, similarly as for a finite
flat box. The lower branch in Figs. 1(b)–1(e) is more sur-
prising. It identifies strongly localized states of relatively
large energy. It has no equivalent in the flat box and cannot
be interpreted as a finite-size effect. The corresponding
states are located close to the classical turning points
zclðEÞ and form the outer branches in Figs. 1(g)–1(j). As
Fig. 1 shows, this holds for all inhomogeneous traps. When

the trap power � increases, the branch of extended states
gets denser at the expense of that of localized states, and
completely vanishes for � ¼ 1 (homogeneous box).
The coexistence of localized and extended states in the

same energy window for disordered traps is confirmed on
more quantitative grounds in the last row of Fig. 1. It shows
the full density of states (solid black line), as well as the
density of localized (�<, solid red line) and extended (�>,
dashed blue line) states [19]. The different nature of the
localized and extended states is even more striking when
one studies the wave functions. Let us focus for instance on
the harmonic trap (� ¼ 2) and on a narrow slice of the
spectrum around E� 4jVRj, where �<=� ’ 14% of the
states are localized [20]. Figure 2(a) shows the spatial
density jc nðzÞj2 of all states found for a single realization
of the disorder. We can clearly distinguish localized (thick
red lines) and extended (thin blue lines) states, which
shows that they coexist in the same energy window for
each realization of the disorder. The localized states are
very narrow and present no nodes (e.g., states A and E) or
a few nodes (e.g., states C and H). They may be identified
as bound states of the local deep wells of the disordered
potential, similarly as the lowest-energy states creating the
Lifshits tail in bare disorder [18]. To confirm this, let us
decompose the eigenstates jc ni of the disordered trap onto
the basis of the eigenstates j�pi of the bare disordered

potential [i.e., Hamiltonian (1) with VT � 0], associated to
the eigenenergies �p. For a localized state jc ni, we find

jh�pjc nij2 � 1 for a single state j�pi such that �0p ’ En,

where �0p ¼ �p þ h�pjVTðzÞj�pi is the eigenenergy of

j�pi shifted by the trapping potential [see Fig. 2(b)].

Conversely, the same decomposition for an extended state
shows a broad distribution of amplitude much smaller than
unity. A localized state jc ni of the disordered trap thus

FIG. 1 (color online). Extension (a)–(e), center of mass (f)–(j) and density of states (DOS) (k)–(o) of the eigenstates versus energy in
various kinds of 1D disordered traps. The plots result from accumulation of numerical data over 5000 realizations of a red-detuned
speckle potential with m�2

RjVRj=@2 ¼ 0:256. The first column refers to a flat box of length L ¼ 500�R. The curved line in (a)
corresponds to an infinite system [28] and the horizontal line is �z0 ¼ L=2

ffiffiffi
3

p
. The other columns refer to inhomogeneous traps with

a ¼ 12:5�R and various trap powers �. The solid lines correspond to the nondisordered case, i.e., �z0 in panels (b)–(e) and�zclðEÞ in
panels (g)–(j). The last row shows the full DOS �ðEÞ (solid black line), as well as the DOS restricted to localized (�<, solid red line)
and extended (�>, dashed blue line) states [19]. The dot-dashed green lines are the nondisordered limits.
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corresponds to a strongly localized state j�pi in the

bare disorder, which is affected by the trap by just the
energy shift h�pjVTðzÞj�pi. We generally find that j�pj �
h�pjVTðzÞj�pi ’ hc njVTðzÞjc ni, and, due to the reduced

spatial extension of jc ni, we get En ’ VTðznÞ [21]. This
explains that the localized states are located close to the
classical turning points, as observed in Figs. 1 and 2(a).

Let us now decompose the states jc ni of the disordered
trap onto the basis of the eigenstates jc 0

pi of the bare trap
[i.e., Hamiltonian (1) with V ¼ 0], associated to the eige-
nenergy E0

p. For a localized state, the distribution is broad.

Conversely, for an extended state, the distribution is sharp
and peaks at E0

p ’ En to a value equal to a fraction of unity

[see Fig. 2(c)]. An extended state may thus be seen as
reminiscent of an eigenstate of the bare trap, which is
weakly affected by the disorder. Still, the main peak in
Fig. 2(c) is smaller than unity. Only for significantly higher
energy, the state jc ni results from weak perturbation of
jc 0

ni, and jhc 0
pjc nij2 displays a main peak of the order of

unity as predicted by standard perturbation theory.
Our results can now be easily interpreted. In bare disor-

der, the typical size �z of the localized states increases

faster than the classically allowed region zcl / E1=� pro-
vided by the trap. For low energy,�z � zcl so that the states
are strongly localized by the disorder and weakly affected
by the trap. For higher energy, however, the disorder would
localize the states on a scale exceeding zcl. The states are
then bounded by the trap and the effect of disorder becomes

small. This forms the branch of extended states in both the
disordered box and traps. In addition, some strongly local-
ized states with very low energy in the bare disorder and
located around point zn are shifted by the trap to approxi-
mately the energy VTðznÞ. This forms the branch of local-
ized states only in disordered traps (�<1) since, in the
box, a state cannot be placed at intermediate energy due to
the infinitely sharp edges. Quantitatively, since the localized
states in the bare disorder are uniformly distributed in space,
the density of localized states can be estimated to roughly

scale as �< / ð1=�Þ � E1=��1, which is consistent with the
disappearance of the branch of localized states when �
grows and with its vanishing for � ¼ 1 (see Fig. 1). Still,
it is striking that localized and extended states can coexist
in the same energy window. The disordered potential
combined with a smooth trap permits localized states to sit
slightly outside the classically allowed region occupied by
extended states [see Fig. 2(a)]. Then, the Mott argument
does not apply here because the spatial segregation can be
strong enough to suppress hybridization for an infinitesimal
change of the disorder configuration.
Let us now discuss a possible scheme to observe the

coexistence of localized and extended states in a disordered
trap. Consider an ideal gas of ultracold fermions prepared in
a given internal state, at temperature T and chemical poten-
tial �. A class of energies jEn � Ej & � [see Fig. 3(a)]
deep in the Fermi sea (i.e., with �� E � kBT) can be
selected by applying a spin-changing radio-frequency (rf)
field of frequency � ¼ E=h and duration �� h=� (with h
the Planck constant) [14,22,23]. The rf field transfers the
corresponding atoms to an internal state insensitive to the
disordered trap. The transferred atoms expand freely, which
provides their momentum distribution:

D E;�ðkÞ ’
X

jEn�Ej&�

jĉ nðkÞj2; (2)

FIG. 2 (color online). Eigenstates for a single realization of a
1D disordered harmonic trap. (a) Non-normalized spatial den-
sities, jc nðzÞj2, vertically displaced to their eigenenergy En.
Thick red lines correspond to localized states, and thin blue
lines to extended states [19]. Note that extended and localized
states may occupy almost-degenerate energy levels (e.g., H and
I). The states C and D are projected: (b) over the eigenstates of
the bare disordered potential, j�pi, and (c) over those of the bare
harmonic trap, jc 0

pi. The parameters are as in Fig. 1.

FIG. 3 (color online). Scheme to observe the coexistence of
localized and extended states in disordered traps (solid red line).
(a) Atoms occupying the eigenstates of energy E�� (shaded
region) are transferred to a different internal state via rf coupling.
The corresponding momentum distribution is then measured by
TOF. (b) Correlation function CE;�ðkÞ (black solid line) and

momentum distribution DE;�ðkÞ (dashed green line, arbitrary

units), for � ¼ 2@!. Inset: CE;�ðkÞ of all states (solid black line),
and separating localized (dashed red line) and extended (dotted
blue line) states [19], for � ¼ 0:01@!. Here E ¼ 4jVRj and the
other parameters are as in Fig. 1.
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where ĉ nðkÞ is the Fourier transform of c nðzÞ [time-of-
flight (TOF) technique]. In the coexistence region, DE;�ðkÞ
has two significantly different contributions: For localized

states, jĉ nðkÞj2 is centered around k ’ 0 with tails of width

�kn � �z�1
n . Conversely, for extended states, jĉ nðkÞj2 is

peaked at k ’ ffiffiffiffiffiffiffiffiffiffi
2mE

p
=@ with long tails towards small mo-

menta. We however found that averaging over realizations
of the disorder blurs the central peak associated to the

localized states in DE;�ðkÞ. In turn, the quantity CE;�ðkÞ �
DE;�ðkÞ �DE;�ð0Þ=DE;�ð0Þ2 displays two distinct peaks

for a rf pulse of realistic durations [see Fig. 3(b)]. The
central one is more pronounced for narrower pulses.
Selecting either the localized states or the extended states
[19] confirms that the central peak corresponds to the local-
ized states and the side peak to the extended states [see Inset
of Fig. 3(b)].

Finally, we have performed similar calculations as above
in a 2D harmonic trap. Figure 4(a) shows the centers of
mass rn of the eigenstates with En ’ 4jVRj, the color scale
giving �rn. Figure 4(b) shows a density plot of �rn versus
jrnj for the same data. Again, the eigenstates clearly sepa-
rate into two classes: Some states are extended (large �rn)
and centered nearby the trap center (small jrnj). The other
states are strongly localized (small �rn) and located

nearby the line of classical turning points (jrnj ’ rclðEÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=m!2

p
). Hence, the two classes of states can coexist

at intermediate energies also in 2D disordered traps.
In conclusion, we have shown that, in a disordered

inhomogeneous trap, localized and extended states can
coexist in a given energy window. The localized states
correspond to eigenstates of the disordered potential which
are only affected by the trap via an inhomogeneous energy
shift. Conversely, the extended states spread over the clas-
sically allowed region of the trap and are weakly affected
by the disorder. This effect is directly relevant to present-
day experiments with disordered quantum gases, which are
most often created in harmonic traps [11,24–27]. We have

proposed a realistic scheme to observe it in these systems.
In the future, it would be interesting to extend our results to
higher dimensions and to other kinds of inhomogeneous
disordered systems.
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