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Localization of a matter wave packet in a disordered potential
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We theoretically study the Anderson localization of a matter wave packet in a one-dimensional disordered
potential. We develop an analytical model which includes the initial phase-space density of the matter wave
and the spectral broadening induced by the disorder. Our approach predicts a behavior of the localized density
profile significantly more complex than a simple exponential decay. These results are confirmed by large-scale
and long-time numerical calculations. They shed new light on recent experiments with ultracold atoms and may
impact their analysis.
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The field of Anderson localization (AL) is attracting
considerable attention and produced landmark results in the
recent years [1]. In this respect, quantum gases stimulate
intensive experimental and theoretical research. On one hand,
they offer unprecedented control of their parameters, and novel
measurement tools [2], which, for instance, paved the way to
the direct observation of one-dimensional (1D) AL of matter
waves [3,4]. On the other hand, they sustain original effects,
which requires special analysis in its own right [5–7].

In weak disorder, AL is due to the interference of waves
multiply scattered from random defects, which results in the
absence of diffusion and spatially localized wave functions [8].
The paradigmatic signature of AL is obtained from the average
logarithm of the transmission of a wave of energy E through a
disordered region. In 1D, it is a self-averaging quantity char-
acterized by the exponential decay ln |ψE(z)|2 � −2γ (E)|z|,
with γ (E) the Lyapunov exponent (inverse localization length)
[9]. The localization of a wave packet is a more complicated
issue as it is determined by the superposition of many energy
components. Since the latter cannot be separated from each
other, the relevant quantity is rather the average of the localized
density profile, n(z) = |ψ(z)|2, which is not self-averaging [9].
Moreover, each energy component localizes exponentially
with its own localization length, and the superposition of
all their contributions can lead to nonexponentially decaying
density profiles [5,10].

Localization of wave packets is, for instance, relevant
to experiments where a Bose-Einstein condensate (BEC)
propagates in a disordered potential [3]. The situation is
modeled by the following scenario [5,11]: A non-disordered,
interacting BEC (with initial healing length ξin) is first released
from a trap. It expands in free space and its initial interaction
energy is converted into kinetic energy. At a given time ti ,
a speckle potential (with correlation length σR) is switched
on and the interactions off. This creates a wave packet
with a broad energy distribution. The energy components
are then independent and eventually localize exponentially
in the disordered potential, which results in the localization
of the matter wave. For ξin > σR, recent experiments report an
exponential decay of the density profile, in fair agreement with
the prediction of the above scenario [3,12]. The data, however,
suggest deviations from exponential decay in the wings, the
origin of which remains to be elucidated.

Here, we revisit the theoretical model for AL of matter wave
packets in 1D disorder. Beyond previous models, our approach
allows us to include (i) the phase-space density of the matter
wave at time ti and (ii) the spectral broadening induced by the
disorder. We show that these ingredients significantly affect
the predicted density profile of the localized matter wave at
both short and long distances. It predicts a complex behavior
of the density profile, which significantly deviate from pure
exponential decay. Our results are confirmed by large-scale and
long-time numerical calculations. They shed new light on the
AL of matter wave packets, in particular, on the experiments
of Refs. [3,12].

We consider a 1D matter wave subjected to a harmonic
trap and a disordered potential, with repulsive short-range
interactions. In the weakly interacting regime (i.e., for large
enough 1D density, n � mg/h̄2, where m is the atomic mass
and g is the coupling parameter), its dynamics is governed by
the Gross-Pitaevskii equation,

ih̄∂tψ = [− (h̄2/2m)∂2
z + Vho(z) + V (z) + g|ψ |2 − µ

]
ψ,

(1)
where µ is the chemical potential, the wave function is
normalized to the total number of atoms (

∫
dz|ψ |2 = N ),

Vho(z) = mω2z2/2 is the trapping potential, and V (z) is the
disordered potential. The latter is assumed to be stationary
with a null ensemble average, V = 0. It is characterized by
the correlation function C(z) = V (z′)V (z′ + z). Hereafter, the
quantities VR and σR denote the amplitude and correlation
length of the disorder (see below for precise definitions).
We define the healing length of the trapped BEC by ξin ≡
h̄/

√
4mµ. In the following, we study the average density

profile: n(z,t) = Tr[ρ̂(t)n̂(z)], with ρ̂, the one-body density
matrix and n̂(z) = δ(z − ẑ), the spatial density operator.

Following the scenario of Refs. [5,11], an interacting
BEC is first produced in the harmonic trap and in the
absence of disorder. For interactions strong enough that
n � h̄ω/g [Thomas-Fermi (TF) regime], the phase is uniform
and the density profile is a truncated inverted parabola,
n0(z) = (µ/g)[1 − (z/LTF)2]⊕, where LTF =

√
2µ/mω2 and

[f (z)]⊕ = f (z) for f (z) > 0 and 0 otherwise. Then, an
expanding matter wave is produced by switching off the trap
(Vho → 0) at time t = 0. We assume that, in the first expansion
stage (0 � t � ti), the disordered potential is still off, so that
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the density matrix at time ti is a pure state: ρ̂(ti) = |ψi〉〈ψi |,
where ψi(z) = eiθi (z)√ni(z) is determined by the integration
of Eq. (1) with V ≡ 0. The solution reads [13]

ni(z) = n0[z/b(ti)]/b(ti) and θi(z) = mz2ḃ(ti)/2h̄b(ti),
(2)

where the scaling parameter is the unique solution of√
b(t)[b(t) − 1] + ln[

√
b(t) + √

b(t) − 1] = √
2ωt [14]. For

t � 1/ω, we have b(t) � √
2ωt + (1/2)[1 − ln(4

√
2ωt)].

The second expansion stage (t > ti) starts when the disorder
is suddenly switched on and the interactions off (V 
≡ 0 and
g → 0). Then, Eq. (1) reduces to the linear Schrödinger
equation of Hamiltonian Ĥ = −h̄2∂2

z /2m + V (z) with the
initial state given by Eq. (2) at time ti . Turning to the
Heisenberg picture with initial time ti , we get

n(z,t) = Tr[ρ̂(ti)n̂(z,t − ti)]. (3)

We now treat the initial state of the second expansion
stage semiclassically and apply the substitution ρ̂(ti) →∫

dz dE δ(z − ẑ)N (E)−1fi(z,E)δ(E − Ĥ ), where N (E) is
the density of states per unit length associated to the Hamilto-
nian Ĥ above and fi(z,E) represents the probability density
to find an atom at position z with energy E [15]. An inspection
of Eq. (2) legitimizes the semiclassical approximation: The
initial state is characterized by the velocity field vi(z) ≡
(h̄/m)∂zθi = zḃ(ti)/b(ti), associated to the local de Broglie
wavelength λdB(z) ≡ h̄/mvi(z) ∼ h̄ti/mz for ti � 1/ω, and
we find λdB(z) � ni/|∂zni |, except in a small region of width
�z ∼ ξin near the edges of the BEC. For ti � 1/ω, we can
then use the phase-space distribution Wi(z,p) � ni(z)δ[p −
mvi(z)], i.e.,

Wi(z,p) � Di(p)δ(z − [b(ti)/mḃ(ti)]p), (4)

where Di(p) = (3N/4pm(ti))[1 − (p/pm(ti))2]⊕ is the
momentum distribution, with pm(ti) ≡ (h̄/ξin)[ḃ(ti)/

√
2ω]

[16]. Averaging over the disorder, we can then write fi(z,E) �∫
dp Wi(z,p)A(p,E), where A(p,E) = −Im〈p|G(E)|p〉/π

is the spectral function, which represents the probability
density that a particle in the state of momentum p, |p〉, has
energy E in the disorder. Here, G(E) = [E − Ĥ + i0+]−1

is the retarded Green operator associated to Hamiltonian Ĥ

at energy E [10]. In order to evaluate the BEC density, we
finally insert these formulas into the right-hand side term of
Eq. (3) [17], which yields

n(z,t) =
∫

dzi dE

∫
dp Wi(zi,p)A(p,E)P (z − zi,t − ti |E)

(5)

with P (z−zi,τ |E) ≡ N (E)−1 Tr[δ(E−Ĥ )n̂(z,τ )δ(zi −ẑ)].
The quantity P (z − zi,t − ti |E) is interpreted as the proba-
bility of quantum diffusion, that is, the probability density to
find in z at time t , a particle of energy E that was located in zi

at time ti [18].
Equation (5) allows us to determine the density profile

of the matter wave packet. Our approach goes beyond that
of Ref. [5]. It allows us to take into account (i) the initial
position distribution and (ii) the spectral broadening A(p,E)
of a particle of momentum p in the disordered potential [19].
We will show below that both play a significant role in the
localization process.

In order to calculate the average spectral function, we
solve the Dyson equation, G = G0 + G0�G, where G0(E) =
[E − p̂2/2m + i0+]−1 is the free Green operator and �(E) =
�′(E) + i�′′(E) is the self-energy, both in the retarded form.
For V 2

R � E3/2E
1/2
c , where Ec ≡ h̄2/2mσ 2

R [i.e., γ (E) �
pE/h̄], we find [20]

A(p,E) = (−1/π ) �′′(E,p)

[E − p2/2m − �′(E,p)]2 + �′′(E,p)2
(6)

with �(E,p) � 〈p|V G0(E)V |p〉. Performing the integration,
we get the explicit formula

�′′(E,p) � −(m/2h̄pE){C̃(pE − p) + C̃(pE + p)}, (7)

where C̃(p) ≡ ∫
dzC(z) exp(−ipz/h̄) is the Fourier transform

of the correlation function, and pE ≡ √
2mE is the momentum

associated to energy E in free space. The real part of the
self-energy, �′(E,p) = P

∫
dq

2πh̄

C̃(q−p)
E−q2/2m

with P the Cauchy
principal value, turns out to be negligible and we disregard
it in the remainder of this work.

In order to calculate the probability of quantum diffu-
sion, we rely on the diagrammatic method developed in
Refs. [18,21]. In the weak disorder limit [γ (E) � σ−1

R ,pE/h̄],
it provides the infinite-time limit [22]

P∞(z|E) = π2γ (E)

8

∫ ∞

0
du u sinh(πu)

[
1 + u2

1 + cosh(πu)

]2

×exp{−(1 + u2)γ (E)|z|/2} (8)

with the Lyapunov exponent

γ (E) � (
m2/2h̄2p2

E

)
C̃(2pE). (9)

We now compare the predictions of our analytical model
to the results of numerical calculations. In order to integrate
Eq. (1), we use a Crank-Nicolson algorithm, with space step
�z = 0.1σR and time step �t = 0.05h̄/Ec, in a box with
Dirichlet boundary conditions [23]. The disorder is a 1D
speckle potential, which can be written in the form V (z) =
VR × {v(z) − v}, where v(z) � 0 represents the speckle inten-
sity pattern and the sign of VR depends on the detuning of the
laser light with respect to the atomic resonance: VR > 0 for
blue detuning, and VR < 0 for red detuning [24,25]. We use
parameters close to those of Ref. [3] and both blue and red
detunings (VR = ±0.0325Ec). In both cases, the correlation
function in Fourier space reads

C̃(p) = πV 2
RσR[1 − |p|σR/2h̄]⊕. (10)

Our numerical calculations differ from those of Ref. [5] in that
we use significantly larger boxes and longer times. Moreover,
we consider here exactly the above scenario where the disorder
is switched on and the interactions off at a time ti � 1/ω, while
in the numerics of Ref. [5], both disorder and interactions were
on during the whole expansion. Due to the cutoffs of C̃(p)
at p = ±2h̄/σR, the quantities γ (E) and P∞(z|E) vanish for
E > Ec and it is useful to distinguish two cases for the analysis
of the density profiles.

Case 2µ < Ec (i.e., ξin > σR). The left panel of Fig. 1 shows
the time evolution of the density profile in semilogarithmic
scale for ξin > σR. For t < ti ≡ 10/ω [Fig. 1(a1)], the matter
wave expands in free space, with the shape of a truncated
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FIG. 1. (Color online) Time evolution of the
density profile of a matter wave expanding in
1D speckle potentials for 2µ < Ec (left panel)
and 2µ > Ec (right panel). Shown are the run-
ning averages, ñ(z) = ∫ +l/2

−l/2
dx

l
n(z+x) with l =

100σR, of numerical data, for blue- and red-
detuned speckle potentials (three realizations
each) [23]. Here, we use ω = 2 × 10−2µ/h̄

and VR = ±0.0325Ec. Left panel [(a1)–(a3)]:
semilogarithmic scale for ξin = 1.5σR (2µ �
0.44Ec). The solid black line shows a fit of
the full Eq. (5) and the dotted black line to
Eq. (5) with A(p,E) → δ(E−p2/2m), both with
a multiplying factor as the only fitting parameter.
The dashed green line is a fit of ln[n(z)] = A −
2γ (2µ)|z|, with A as the fitting parameter. Right
panel [(b1)–(b3)]: log-log scale for ξin = 0.83σR

(2µ � 1.44Ec). The solid black line shows the
full Eq. (5) and the dashed green line is a fit
of n(z) = A/|z|β with A and β as the fitting
parameters.

inverted parabola of increasing size, according to Eq. (2).
When the disorder is switched on and the interactions off,
the matter wave continues expanding and develops long wings
[Fig. 1(a2)]. In the long-time limit [Fig. 1(a3)], the density
profile converges to a stationary shape, hence demonstrating
AL. The localized density profile is in fair agreement with
the theoretical prediction based on Eq. (5), using Eqs. (4),
(6), and (8) for the correlation function (10), with a global
multiplying factor as the only fitting parameter [see the solid
black line in Fig. 1(a3)]. This holds over the full space, except
very close to the center. There, for the chosen parameters,
Eq. (5) predicts a nonphysical dip due to the overestimation
of the Lyapunov exponents and the spectral broadenings at
low energies in the lowest-order perturbation theory used to
derive Eqs. (6) and (8). This dip affects the balance between the
center and the wings in the normalization of the wave function,
which justifies the multiplying factor to correctly fit the wings.
These results validate the localization model of the matter
wave.

Let us now discuss the density profile in more detail, and
accordingly, examine the impact of the various terms in Eq. (5).
For |z| <∼ b(ti)LTF, the stationary density profile is mainly
determined by particles originating from the BEC at time ti
that propagate over very short distances in the disordered
potential. Using the full phase-space distribution Wi(z,p) is
then necessary to account for the central feature of the density
profile. For |z| >∼ b(ti)LTF only, we can neglect the initial
density distribution and rely on the approximation Wi(z,p) →
D(p)δ(z) in Eq. (5). For b(ti)LTF <∼ |z| <∼ 1/2γ (2µ), we find
that the density profile shows an essentially exponential
decay of rate approximately equal to 2γ (2µ) [see the dashed
green line in Fig. 1(a3)]. This is consistent with experi-
mental observations [3]. For longer distances, however, the
logarithmic derivative of the density continuously decreases
in modulus. Neglecting the spectral broadening induced by
the disorder [5,11], A(p,E) → δ(E−p2/2m), we are able
to reproduce the numerical results over about five decades

[see the dotted black line in Fig. 1(a3)]. This approximation
cuts all components with E > 2µ and predicts a long-distance
exponential decay of rate γ (2µ)/2 [5,22]. This behavior can be
understood on the basis of the probability of quantum diffusion
(8), which continuously interpolates from d ln P∞(z|E)/dz �
−2γ (E) for |z| � 1/2γ (E) to d ln P∞(z|E)/dz � −γ (E)/2
for |z| � 2/γ (E) [21]. For |z| � 2/γ (2µ), the numerics
show significant deviation from exponential decay, owing to
the Lorentzian-like form of the spectral function (6) which
populates components with E > 2µ. Then, taking into account
the full spectral function, Eq. (5) fits the numerics well [see
the solid black line in Fig. 1(a3)]. Finally, note that our model
relies on the Born approximation which is not sufficient to
account for components with E > Ec [6]. To do so, it would
be necessary to include arbitrary high-order terms at arbitrary
large distances. It, however, appears irrelevant in the space
window used for the numerics.

Case 2µ > Ec (i.e., ξin < σR). The right panel of Fig. 1
shows the counterpart of the left panel for ξin < σR and in
log-log scale. In this regime too, the complete model of
Eq. (5) reproduces well the numerical results over the full
space (except very close to the center), with a multiplying
factor as the only fitting parameter [see the solid black line in
Fig. 1(b3)]. In 1D speckle potentials, the correlation function
provides a high-momentum cutoff which strongly suppresses
backscattering of matter waves with momentum p > h̄/σR

[5,6]. For E > Ec, the Lyapunov exponent, calculated in
the Born approximation then vanishes [see Eq. (9)], and
the determination of P∞(z|E) would require an extension
of the formalism of Refs. [18,21] by at least two orders
in perturbation theory. Using the results of Refs. [6] based
on the phase-formalism approach, we estimate that, for our
parameters, the Lyapunov exponent drops by about two orders
of magnitude around E � Ec and we neglect localization of
waves with E > Ec. Since Ec < 2µ, the spectral broadening
has little importance here and we can safely rely on the
approximation A(p,E) → δ(E−p2/2m). The above model
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then predicts algebraic localization, n(z) ∝ 1/|z|2 [5]. Fitting
an algebraic function, A/|z|β with A and β as fitting pa-
rameters, to the numerical data of three different realizations
of blue- and red-detuned speckle potentials in the intervals
[−30, − 10] and [+10, + 30] independently, we find β �
1.91 ± 0.22. This is in fair agreement with the analytical
prediction (within the error bars) and was observed in Ref. [3].

In summary, we have developed a theoretical model for the
AL of a matter wave packet with initial healing length ξin in a
1D speckle potential with correlation length σR. It extends pre-
vious approaches by including (i) the initial phase-space den-
sity of the matter wave and (ii) the spectral broadening induced
by the disorder. We have shown that these ingredients affect
the localized density profiles, which significantly deviate from
a pure exponential decay. For 2µ < Ec, we found that n(z)
essentially shows an exponential decay of rate 2γ (2µ) at short
distance, in accordance with experimental observations [3].
For larger distance, n(z) crosses over to an exponential decay
of rate γ (2µ)/2 and then deviates from exponential decay due
to the disorder-induced spectral broadening. This may explain
the very large distance behavior of experimental data [3,12].
For 2µ > Ec, we found algebraic localization, n(z) ∝ 1/|z|2,
as observed in Ref. [3].

In the future, it would be interesting to extend the present
approach toward two directions. First, our analysis relies on the
calculation of the probability of quantum diffusion, P∞(z|E),
to lowest order, which is valid only below the effective
mobility edge at E = Ec [6]. Extending the diagrammatic

method of Refs. [18,21] to higher orders would allow one
to incorporate the components of energy E > Ec. In addition,
it may explain the slight difference in the localized density
profiles found for blue- and red-detuned speckle potentials
[see Fig. 1(a3)]. Second, although ultracold atoms allow for an
exact realization of the above scenario using time-dependent
control of optical disorder and of interactions via Feshbach
resonance techniques, recent experiments have followed a
slightly different scheme where the BEC is created already
in the presence of the disorder and the interactions are not
switched off [3,12]. Extending our model to this case would
require one to include (i) the effect of the disorder at t <∼
1/ω, which can significantly modify the relevant phase-space
density Wi(z,p) and (ii) the effect of interactions in the
probability of quantum diffusion P∞(z|E). Whether and how
interactions destroy localization in this scheme is still a very
debated subject [26].
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lande, Georgy Shlyapnikov, and Randy Hulet for stimulating
discussions. This research was supported by the European
Research Council (FP7/2007-2013 Grant Agreement No.
256294), Agence Nationale de la Recherche (ANR-08-blan-
0016-01), Ministère de l’Enseignement Supérieur et de la
Recherche, Triangle de la Physique, and Institut Francilien de
Recherche sur les Atomes Froids (IFRAF). We acknowledge
GMPCS high performance computing facilities of the LUMAT
federation.

[1] A. Lagendijk et al., Phys. Today 62(8), 24 (2009); A. Aspect
and M. Inguscio, ibid. 62(8), 30 (2009).

[2] L. Sanchez-Palencia and M. Lewenstein, Nature Phys. 6, 87
(2010); L. Fallani et al., Adv. At. Mol. Opt. Phys. 56, 119
(2008).

[3] J. Billy et al., Nature (London) 453, 891 (2008).
[4] G. Roati et al., Nature (London) 453, 895 (2008).
[5] L. Sanchez-Palencia et al., Phys. Rev. Lett. 98, 210401 (2007);

New J. Phys. 10, 045019 (2008).
[6] E. Gurevich and O. Kenneth, Phys. Rev. A 79, 063617 (2009);

P. Lugan et al., ibid. 80, 023605 (2009).
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