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Atomic Fermi-Bose Mixtures in Inhomogeneous and Random Lattices: From Fermi Glass
to Quantum Spin Glass and Quantum Percolation
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We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random
optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature
physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous
but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass,
and quantum percolation regimes involving bare and/or composite fermions in random lattices.
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Fermi-Bose (FB) mixtures attract considerable interest
in the physics of ultracold atomic and molecular gases,
comparable with the interest in molecular Bose-Einstein
condensation [1], or Bardeen-Cooper-Schrieffer transi-
tion [2] in ultracold Fermi mixtures. The reason for
interest in FB systems is threefold. First, they are very
fundamental systems without direct analogues in con-
densed matter. Second, these systems can be efficiently
cooled using sympathetic cooling down to very low tem-
peratures (tens of nK) [3–6]. Finally, their physics is
extremely rich and not yet fully understood.

FB mixtures have been intensively studied in traps [7],
but the experimental observation of the superfluid to
Mott-insulator (MI) transition in bosonic gases [14], pre-
dicted in Ref. [15], has triggered the interest in the
physics of FB mixtures in optical lattices [16]. Under
appropriate conditions such mixtures are described by
the Fermi-Bose Hubbard model (FBH) [17]. A particu-
larly appealing feature of the FBH model is the possibil-
ity to produce novel quantum phases [18], fermion-boson
induced superfluidity [19], and composite fermions,
which for attractive (repulsive) interactions between fer-
mions and bosons, are formed by a fermion and bosons
(bosonic holes) as shown in [20] (see also [21,22]).

FB mixtures in the limit of strong atom-atom interac-
tions (strong coupling regime) show a very rich variety of
quantum phases in periodic optical lattices [21]. They
include the mentioned composite fermions, and range
from a normal Fermi liquid, a density wave, a superfluid
liquid, to an insulator with fermionic domains. The phase
diagram of the system has been determined in Ref. [23]
by means of mean-field theory [24]. These studies have
been generalized recently to inhomogeneous lattices [25]
to include the effects of the lattice and of a possible trap
potential. So far, only the case of strong interactions and
vanishing hopping has been considered.

In the present Letter we study the low temperature
physics of FB mixtures in optical lattices with local and
random inhomogeneities in the strong interactions limit
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but including tunneling as a perturbation. We show that
interactions and tunneling may be controlled at the local
level in inhomogeneous lattices [26]. This control gives
access to a wide variety of regimes and we derive the
corresponding effective Hamiltonians. We then show how
to achieve Fermi glass, fermionic spin-glass, and quan-
tum percolation regimes involving bare and/or composite
fermions in random lattices.

We consider a sample of ultracold bosonic and (polar-
ized) fermionic atoms (e.g., 7Li-6Li or 87Rb-40K) trapped
in an optical lattice. At low temperature, the atoms oc-
cupy only the lowest energy band and it is convenient to
work in the corresponding Wannier basis [15]. Note that a
fermion number NF strictly smaller than the number of
lattice sites N is required here. The Hamiltonian of the
system reads [17,27]:
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where bj, fj are the bosonic and fermionic annihilation
operators, ni � byi bi and mi � fyi fi. The FBH model
describes: (i) nearest neighbor (nn) boson (fermion) hop-
ping, with an associated negative energy, �JB ( � JF); (ii)
on-site repulsive boson-boson interactions with an energy
V; (iii) on-site boson-fermion interactions with an energy
U, which is positive (negative) for repulsive (attractive)
interactions, (iv) and, finally, interactions with the optical
potential, with energies �B

i and �F
i . In the following, we

consider only the case JB � JF � J and the regime of
strong interactions (V;U 	 J).

In a periodic optical lattice, �B;F
i is simply the (bosons

or fermions) chemical potential and is independent of the
site i. It is, however, possible to add a laser field indepen-
dent of the lattice to modify the depths of the optical
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FIG. 1. Nearest neighbor couplings Kij as a function of �ij.
Solid line: Coupling in case I, with �I � 0:93. Dashed line:
Same expression with �I � 1:07. Dash-dotted line: Coupling
in case II with �II � 0:03.
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potential wells in a site-dependent way [28]. In this case,
the local potential depth has to be added to �B;F

i , which
may now be inhomogeneous. If the added field is periodic
and if the spatial period is commensurate with the lattice
period, �B;F

i is periodic; if the spatial periods are incom-
mensurate, �B;F

i is quasiperiodic. One can also add a
random speckle field, so that �B;F

i is random. Experi-
mental techniques offer full possibilities to control such
periodic, quasiperiodic, or disordered �B;F

i [29]. Note,
that the additional inhomogeneous potential might, but
does not have to, act equally on both atomic species. Here,
we study the case �F

i � 0; �B
i � �iV.

In Ref. [21] we have used the method of degenerate
second order perturbation theory to derive an effective
Hamiltonian by projecting the wave function onto the
multiply degenerate ground state of the system in the
absence of tunneling. This can be extended to the present
situation, where there are very many states with similar
energies. It is thus reasonable to project the wave function
on the manifold of ‘‘ground states.’’ These states are local
minima of energy, since at least some of hopping acts
increase their energy by V or jUj.

Let us consider first J � 0, and the case 0 � �i < 1. In
the absence of a fermion one expects one boson per site,
i.e., ni � 1 [30]. We shall consider here only the case of
repulsive interactions, i.e., � � U=V > 0.

It is useful to divide the sites into (i) A sites, for which
�i � � � 0, and fermions do not push bosons out, and
(ii) B sites, for which�i � �< 0, and the fermion pushes
the boson out forming a composite fermion-bosonic hole.
Energetically, the second situation is favorable, so for a
given set of NA of A sites, and NB � N � NA of B sites,
the fermions will first occupy the B sites until NF � NB,
and then they will start to occupy the A sites. We con-
struct the corresponding projector operators P, Q � 1�
P, which depend on NA and NF. The operator P describes
the projection onto the manifold of quasidegenerated
states in which the fermions occupy the B sites stripped
of bosons and some A sites only if NF � NB. In this case
there is a boson in any A site and ifNF <NB there is also a
boson in theB sites which do not contain fermions.We use
second order time dependent perturbation theory [32],
and project the Schrödinger equation, i �h@tj �t�i � �H0 �
H1�j �t�i; onto the manifold of states spanning P. The
‘‘zeroth-order’’ part H0 contains the atomic interactions
and terms proportional to the chemical potential and
commutes with P. H1 represents the tunneling terms.
The effective equation for j Pi � Pj i reads then
i �h@tj P�t�i � Heffj P�t�i, where

houtjHeff jini � houtjH0jini � houtjPH1Pjini
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The effective Hamiltonian Heff has the form
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where Fi is the (composite) fermionic annihilation op-
erator, and Mi � Fy

i Fi. The hopping amplitudes dij and
the nn couplings Kij [which might be repulsive (>0) or
attractive (<0)] are of the order of J2=V. The couplings
depend on �, ~�i, ~�j, and J, and have to be determined
carefully for different cases, as discussed below. Note,
however, that the hopping i! j, or back causes the energy
change ���ij � �i ��j� in units of V, i.e., is highly
nonresonant and inefficient for �ij ’ 1; it first leads to
jump rates of order O�J4=V3�. Additionally, composite
fermions may feel the local energy ~�i.

I. All sites are of type B.—In this case we have a gas of
composites flowing within the MI with one boson per site.
The couplings are
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The chemical potential ~�i=V ’ �i up to corrections of
order O�J2=V�. The hopping amplitudes dij are for this
case always positive, although may vary quite signifi-
cantly with disorder, especially when �ij ’ �. As shown
in Fig. 1, for �> 1, Kij � 0 and we deal with attractive
(although random) interactions. For �< 1, but close to 1,
Kij might take positive or negative values for �ij small or
�ij ’ �. In this case the qualitative character of inter-
actions is controlled by inhomogeneity.

The physics of the system depends on the relation
between �i’s and �. For small inhomogeneities, we may
neglect the contributions of �ij to dij ’ d and Kij ’ K,
and keep only the leading disorder contribution in ~�i.
Note, that the latter contribution is relevant in 1D and 2D
leading to Anderson localization of single particles [33].
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When K � d one will have a Fermi glass phase, i.e.,
Anderson localized (and many-body corrected) single
particle states will be occupied according to the Fermi-
Dirac rules [34]. For repulsive interactions and K 	 d,
the ground state will be a Mott insulator for large enough
filling factors. In particular, for filling factor 1=2 a check-
erboard phase is expected. For intermediate values of
K=d delocalized metallic phases with enhanced persis-
tent currents are possible [35]. Similarly, for attractive
interactions (K < 0) and jKj< d one expects competition
between pairing of fermions and disorder; for jKj 	 d,
the fermions will form a domain insulator.

Another interesting limit is when j�ijj ’ � ’ 1. The
tunneling becomes then nonresonant and negligible,
while the couplings Kij fluctuate strongly. We end up
with the (fermionic) Ising spin glass model [36] described
by the Edwards-Anderson model [37]:

HE-A �
1

4

X
hiji

Kijsisj �
X
i

~�isi=2; (6)

with si � 2Mi � 1 � �1. The above Hamiltonian is well
approximated by a random one with Gaussian and inde-
pendent distributions for Kij=4 and ~�i=2 with mean 0
(H), and variances K (h), respectively. In this limit the
system may be used to study various open questions of
spin-glass physics, concerning the nature of ordering
(Parisi’s [37] versus ‘‘droplet’’ picture [38]), broken sym-
metry and dynamics in classical (in the absence of hop-
ping) and quantum (with small, but nevertheless present
hopping) spin glasses [24,39]. The predictions of Parisi’s
mean field theory for the model (6) can be obtained by
replacing the model by the corresponding Sherrington-
Kirkpatrick model, and employing the standard method
of replica trick [37]. The calculations differ from the
standard ones in that the constraint of fixed mean number
of fermions is applied, and one deals simultaneously with
random couplings and ‘‘magnetic fields’’ ~�i. Following
the de Almeida and Thouless (AT) approach [40], we
obtain the AT surface separating the stable paramagnetic
state from the ‘‘true’’ spin-glass state, characterized by
replica symmetry breaking, and ultrametrically arranged
ground states. The paramagnetic state is stable for
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where q � hhtanh2��x
��������������������
K2q� h2

p
�H�=kBT�iix, the con-

straint is m � hhtanh��x
��������������������
K2q� h2

p
�H�=kBT�iix, with

m � 2NF=N � 1 and hh:iix denotes averaging over nor-
mally distributed random variable x which represents
disorder within the replica method [37]. Note, that ac-
cording to the predictions of the alternative ‘‘droplet’’
model [38], applied to (6), no AT surface is expected.

II. All sites are of type A.—In this case �< 1, and we
have a gas of bare fermions flowing over the MI with one
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boson per site. The coefficients are
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and ~�i ’ 0 up to corrections of order O�J2=V�. The
couplings Kij are positive, and for � ’ 0, Kij ’ O��2�,
and both the repulsive interactions, and disorder are very
weak, leading to a Fermi liquid behavior at low T. For
finite �, and �ij ’ 1� �, however, the fluctuations of Kij
might be quite large. Note, that for � ’ 1, this will occur
even for small disorder. Assuming for simplicity that Kij
take either very large, or zero value, we see that the
physics of bond percolation [41] will play a role. The
bonds will form a ‘‘weak’’ and ‘‘strong’’ clusters, each
of which may be percolating. The fermions will hope
freely in the ‘‘weak’’ cluster; only one fermion per bond
will be allowed in the ‘‘strong’’ cluster.

III. Both NA and NB of order N=2.—In this case the
physics of site percolation [41] will be relevant. If NF �
NB the composite fermions will move within a cluster of
B sites.WhenNB is above the classical percolation thresh-
old, this cluster will be percolating. The expressions
Eqs. (4) and (5) will still be valid, except that they will
connect only the B sites.

The physics of the system will be similar as in case I,
but it will occur now on the percolating cluster. For small
disorder, and K � d the system will be a Fermi glass in
which the interplay between the Anderson localization of
single particles due to fluctuations of �i and quantum
percolation effects (randomness of the B-sites cluster)
will occur. For repulsive interactions and K 	 d, the
ground state will be a Mott insulator on the cluster for
large filling factors. It is an open question whether the
delocalized metallic phases with enhanced persistent
current of the kind discussed in Ref. [35] might exist in
this case. Similarly, it is an open question whether for
attractive interactions (K < 0) and jKj< d pairing of
(perhaps localized) fermions will take place. If jKj 	
d, we expect the fermions to form a domain insulator on
the cluster.

In the ‘‘spin-glass’’ limit �ij ’ � ’ 1, we deal with the
Edwards-Anderson spin glass on the cluster. Such systems
are of interest in condensed matter physics [42], and
again questions connected to the nature of spin-glass
ordering may be studied in this case.

When NF >NB, all B sites will be filled, and the
physics will occur on the cluster of A sites. For � ’ 0,
we shall deal with a gas with very weak repulsive inter-
actions, and no significant disorder on the random cluster.
This is an ideal test ground to study quantum percolation
at low T. For finite �, and �ij ’ 1� �, the interplay
040401-3
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between the fluctuating repulsive Kij’s and quantum per-
colation might be studied.

Summarizing, we have studied atomic Fermi-Bose
mixtures in optical lattices in the strong interaction limit,
and in the presence of an inhomogeneous, or random on-
site potential. We have derived the effective Hamiltonian
describing the low temperature physics of the system, and
shown that an inhomogeneous potential may be effi-
ciently used to control the nature and strength of (boson
mediated) interactions in the system. Using a random
potential, one is able to control the system in such a
way that its physics corresponds to a whole variety of
quantum disordered systems: Fermi glass, fermionic
spin-glass, and quantum percolation systems.
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