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Abstract
We study the elastic scattering time ts of ultracold atoms propagating in optical disordered potentials
in the strong scattering regime, going beyond the recent work of Richard et al (2019 Phys. Rev. Lett. 122
100403). There, we identified the crossover between theweak and the strong scattering regimes by
comparing directmeasurements and numerical simulations to thefirst order Born approximation.
Herewe focus specifically on the strong scattering regime, where thefirst order Born approximation is
not valid anymore and the scattering time is strongly influenced by the nature of the disorder. To
interpret our observations, we connect the scattering time ts to the profiles of the spectral functions
that we estimate using higher order Born perturbation theory or self-consistent Born approximation.
The comparison reveals that self-consistentmethods arewell suited to describe ts for Gaussian-
distributed disorder, but fails for laser speckle disorder. For the latter, we show that the peculiar
profiles of the spectral functions, asmeasured independently inVolchkov et al (2018 Phys. Rev. Lett.
120 060404), must be taken into account. Altogether our study characterizes the validity range of usual
theoreticalmethods to predict the elastic scattering time ofmatter waves, which is essential for future
close comparison between theory and experiments, for instance regarding the ongoing studies on
Anderson localization.

1. Introduction

Ultracold atoms propagating in disordered potentials offer controllable platforms to study a large variety of
quantum transport phenomena [1, 2], from the celebrated Anderson localization at the single particle level
[3–6], to the study of superfluid to insulator transitions [7–9] or the concept ofmany-body localization [10–12]
for interacting atoms.One of themajor interest of these systems is the ability to confront directly experiments
and theory for awide range of parameters. In this context, the precise knowledge of the elastic scattering time ts,
which corresponds to themean time between two scattering events, is essential. This fundamental time scale is
indeed at the heart of our basic understanding of wave propagation in disorderedmedia, and it is used by
theoreticians as an elementary building block in order to elaborate quantitative descriptions of these complex
systems [13–23].

However, while the elastic scattering time can be predictedwith a rather good confidence in theweak
scattering regime using perturbative approaches,much less is known in the strong scattering regime [24–27].
One enters this regime, which is the one of interest for Anderson localization, when themean free path becomes
smaller than the (de Broglie)wavelength, i.e. when passing thewell-known Ioffe–Regel like criterion ~kl 1s
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(k: wave number, t=l vs s: mean free path, v being the group velocity). Despite a large amount of work, either
with electronic waves [28–31] or classical waves [32–42], a complete description of ts relying on a close
comparison between theory and experiments is still lacking.

In a recent paper [43], wemade an important step into that direction. There, the elastic scattering time of
ultracold atoms in laser speckle disordered potential was directlymeasured over a very broad range of
experimental parameters, and found to be in excellent agreementwith numerical simulations. By comparing the
deviations of ts tofirst order Born calculations [22, 23], we have identified the crossover between theweak and
the strong scattering regime, revealing that its location is strongly influenced by the disorder statistics. This was
done by using both attractive or repulsive laser speckle disordered potentials, whose amplitude probability
distributions follow exponential laws, and by complementing our study by a numerical investigation of a
Gaussian-distributed randompotential, as usually considered in condensedmatter [24, 25].

Here we focus on the description of themean scattering time in the strong scattering regime, where the first
order Born approximation is not valid anymore. To do so, we relate ourmeasurements of ts to thewidth of the
spectral functions. These functions give the energy-momentum relation for one particle excitation [44]. They
are estimated for our specific system via two different approaches: either by extending the perturbative Born
expansion to higher order terms [14, 25, 45] or by the use of the self consistent Born approximation (SCBA)
[16, 17].While wefind that the perturbative approach allows us to extend the quantitative prediction of ts only
in a limited range, a first important result is the striking agreement obtained between the SCBApredictions and
themean scattering time for theGaussian-distributed disorder case. However thismethod cannot copewith the
specific statistics of the laser speckle potentials, for which large deviations are observed. To get further insight, we
show in a second step that these deviations can be traced to the peculiar behavior of the spectral functions for
such disordered potentials [46, 47]. Indeed, we recover full consistency between ourmeasurements of ts and the
width of the spectral functionswhen considering the real profiles that have beenmeasured independently using
an radio-frequency spectroscopicmethod, see [48].

Themanuscript is organized as follows. In section 2, we review themeasurements of the elastic scattering
time and the comparisonwith the 1st order Born approximation as presented in Richard et al [43]. Section 3
provides the adequate framework, based on the direct connection between time properties and spectral
functions, to further describe elastic scattering time beyond the first order Born approximation. Finally, we link
in section 4 our observations of elastic scattering timewith experimentally obtained profiles of the spectral
functions, both for attractive and repulsive laser speckle disorders.

2. Elastic scattering time along the crossover fromweak to strong scattering

Using ultracold atoms propagating in optical disordered potentials, we experimentally and numerically
determined in [43] the scattering time ts of amatter wave launched in a disordered potential ( )V r with awell-
definedmomentum k i. By exploring a broad range ofmicroscopic parameters, we collected an extensive set of
data thatwe use all along this study as a support to explore the behavior of ts in the strong scattering regime. This
section reviews themain results of [43], especially the comparisonwith thefirst order Born predictions,
providing all the details relevant to the remainder of this work.

2.1. Lifetime of excitation in disorder: thefirst order Born approximation
In theweak scattering regime, the propagation of awave can be described as a succession of independent
scattering events that are separated on average by a time ts, and betweenwhich thewave freely propagates. This
approximation is known as the first order Born approximation, since it can be obtained by restricting the Born
pertubative series to its first order (see section 3 formore details) [24, 25]. In this simple picture, each event
results in a transfer from the initialmomentum state ñ∣k i toward a continuumoffinalmomentum states ¢ñ∣k ,
with ¢ =∣ ∣ ∣ ∣k k i , seefigure 1(a). The elastic scattering time ts can be then interpreted as the lifetime of the initial
state ñ∣k i , this time being inversely proportional to the transfer rate to the continuum. The population ˜ ( )n ti of
ñ∣k i is thus expected to decay exponentially with time t, with a characteristic time ts:

= t-˜ ( ) ˜ ( ) ( )n t n 0 e . 1i i
t s

The scattering time ts canbe calculatedusingFermi golden rule.The coupling rate á ¢ñ∣ ∣ ∣ ∣Vk ki
2 (whererefers

to disorder averaging) to each state ¢ñ∣k is givenby the spatial frequencydistributionof thedisorder - ¢˜( )C k ki .Here,
C̃ refers to the Fourier transformof the two-point correlation function d dD = + D( ) ( ) ( )C V Vr r r r , with
d = -( ) ( ) ( )V V Vr r r thefluctuations of thedisorderedpotential. It leads to an estimate of the elastic scattering
time in theBornapproximation
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where  = k m2k
2 2 is the free-state energy, withm the atomicmass and  p= h 2 the reduced Plank

constant. Hence t s
Born depends only on the spatial correlations of the potential given byC(Δr). Since its

amplitude is proportional to ∣ ∣VR
2, with ∣ ∣VR the rms value of the disorder potential, an important feature of (2) is

the simple ∣ ∣V1 R
2 scaling. As a direct consequence, the Born prediction t s

Born is not sensitive to the specific form
of the amplitude probability distribution P(V ).

2.2.Measurements of the elastic scattering time
As discussed in [43], we experimentallymeasure ts bymonitoring the decay of the population in the initial
momentum state ñ∣k i given by(1). The experimental setup relies on an ultracold, non-interacting Bose–Einstein
condensate of 87Rb that expands in a quasi-2D laser speckle field [49, 50].We prepare the atomswith an initial
momentum k i along the y direction, the norm ki ranging from1 to m -20 m 1, by pulsing an externalmagnetic
gradient for a tunable duration. The laser wavelength for the speckle can be either red- or blue-detunedwith
respect to the atomic transition, yielding attractive or repulsive disordered potentials (see figure 1(a)). They
exhibit inverted amplitude probability distributions that follow the asymmetrical exponential laws

= Q- -( ) ∣ ∣ · ( )P V V V Ve V V
sp R

1
R

R , withΘ the step function.While the averaged amplitude is given byVR

(negative for attractive and positive for repulsive laser speckle), the disorder strength is characterized by the rms
disorder amplitude ∣ ∣VR . It can be tuned from =∣ ∣V h 39 HzR to 3.88 kHz by varying the laser power and
detuning. The laser speckle is shine on the atoms along the x axis, resulting in a very elongated speckle pattern in
this direction. This yields to a quasi-2D disorder geometry in the -( )y z plane, whose transverse two-point
correlation functionC(Δr) is found to have aGaussian shape of sizeσ=0.50(1)μm (1/e radius), see
supplementalmaterial of [43].

To extract ts, we record themomentumdistribution n(k, t) at different time t by performing fluorescence
imaging after a long time-of-flight (see figure 1(b)). The overallmomentum resolution is mD = -k 0.2 m 1,
limited by thefinite temperature of the initial state and imaging resolution. From those images wemonitor the
decay of the population in the initialmomentum state ˜ ( )n ti (see figure 1(c)) [43]. For weak scattering, we
observe an exponential decay over typically two orders ofmagnitude, whichwefit with(1) to extract the value of
ts. Although the exponential decay is not expected to persist beyond the Born approximation (see e.g. [27]), at
strong scatteringwe do not observe significant deviations from such a decaywithin the experimental error bars
(see inset infigure 1(c)). The extraction procedure is thus kept the same over thewhole range of parameters.

The experimentallymeasured ts are plotted infigure 2 for both attractive (left panel) and repulsive (middle
panel) laser speckle disorder. The broad range of parameters ki andVR we explore allows us to observe variations
of ts overmore than three orders ofmagnitude.We compare themeasurements with numerical simulations,
performed by propagating in time awave packet of initialmomentum k i in a purely 2Ddisordered potential
(solid lines). The agreement is in general very good and confirms the excellent control over the experimental

Figure 1.Elastic scattering time andBorn approximation. (a) Illustration of a scattering event in the Born approximation. An initial
momentum state ñ∣k i is scattered by the potential towards amomentum state ¢ñ∣k after amean time ts. The repulsive potential, shown
in blue, is generated by a laser blue-detuned from an atomic transition. An attractive potential can be generatedwith a red-detuned
laser (see inset). (b)Measuredmomentumdistribution ( )n tk, , for s= -k 1.62i

1 and =∣ ∣V h 72 HzR . At time t=0we see the initial
momentumdistribution of the state ñ∣k i . After a time evolution t=27ms, thewave has been partially scattered, resulting in a reduced
peak at =k k i on top of a ring of radius =k ki . The height of the peak, normalized by its value at t=0, gives the population of the
initial state ˜ ( )n ti . (c)Evolutionwith time t of the population ˜ ( )n ti (dots) for s= -k 1.62i

1 and =V h 72 HzR (inset:
=V h 1.30 kHzR ). The solid line is an exponential fit fromwhichwe extract ts.
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parameters. It also highlights the quasi-2Dnature of our geometry. For simplicity, we thus only compare in the
following ourmeasurements to purely 2D theoretical predictions7.

Numerically, we have also explored disordered potential withGaussian amplitude probability distribution
p= - -( ) ( ) ( )P V V2 eg

V V
R

1 22
R
2
(right panel infigure 2). The two-point correlation functionC(Δr) is chosen to

have aGaussian shape of sizeσ, i.e. to be the same as for the laser speckle [43]. It is indeed of primordial interest
to further explore the role of disorder statistics, in particular becauseGaussian-distributed disorder is themodel
usually considered in condensedmatter [24, 25]. Such potential could be also implemented in our experiment
using spatial lightmodulators(see e.g. [12]).

2.3. Comparison to Born prediction
Wecompare the experimental and numerical data to the prediction of thefirst order Born approximation t s

Born

given by(2) (dashed lines infigure 2). As alreadymentioned, the prediction is identical for the three types of
disorder since they have the same two-point correlation functionC(Δr). Note thatwhen changing the disorder
strength ∣ ∣VR , the curves in the vertical logarithmic scale are simply shifted down according to the
scaling t µ ∣ ∣V1s

Born
R

2.
As expected, the agreement is very good for all three types of disorder inweak scattering regime k l 1i s ,

corresponding to low disorder strength ∣ ∣VR and large initialmomentum ki. For increasing scattering strength,
distinct behaviors are observed betweenGaussian-distributed and laser speckle disorders. ForGaussian-
distributed disorder, the good agreement persists up to ~k l 1i s (indicated by the limit of the shadded area in
figure 2). It validates the latter as an accurate criterion to estimate the position of the crossover betweenweak and
strong scattering regimes [43]. For laser speckle disorders, however, the Born approximation fails atmuch lower
scattering strength. A quantitative analysis of the deviations performed inRichard et al shows that the position of
the crossover is shifted up to ~k l 40i s [43]. In addition, we note substantial differences between attractive and
repulsive laser speckle disorder. The latter, commonly used in the experimental studies of Anderson localization
[3, 5, 6], leads tomuch larger deviations from the Born prediction in the strong scattering regime.

The emergence of differences between the three types of potential indicates the break downof the first order
Born approximation, revealing that the elastic scattering time becomes sensitive to higher-order correlation
functions [25]. To push further theoretical investigation of the elastic scattering time, we develop the connection
between time evolution of the system and spectral properties, which requires introducing the concept of spectral
functions [44].

3. Scattering time and spectral functions ofmatterwaves in disordered potentials

The spectral function ( )A k, i gives the probability distribution for an excitation ofmomentum k i to have a
certain energy  , thereby generalizing the concept of dispersion relation. It is for instance used to describe
quasi-particles inmany-body physics [44, 51–56] or in disordered systems [14, 16, 17, 46–48]. Of particular

Figure 2.Experimental and numerical determination of ts. Experimentalmeasurements (dots) and numerical simulations (solid
lines) of ts as a function of the initialmomentum ki for different values of the disorder strength ∣ ∣VR , in the cases of attractive disorder
(left panel), repulsive disorder (central panel) orGaussian disorder (right panel). Thefirst order Born approximation(2) appears in
dashed lines, while the second order Born approximation is shown in dotted lines (only for the threefirst disorder strengths). The
initialmomenta are shown in units of the characteristic frequency s-1 of the disorder. The shaded area indicates the strong scattering
regime <k l 1i s .

7
As detailed in the supplementalmaterial of [43], no significant deviationswere found between 3D and 2D calculations for our

configuration.
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interest for the latter is thewidth of the spectral function, which is related to the time scale of the scattering
processes.

In order to get a intuitive understanding of this fundamental link, it is worth to consider once again theweak
disorder picture. In the absence of disorder, an excitation of well-definedmomentum ñ∣k i is an eigenstate of the
Hamiltonianwith infinite lifetime: it has a well-defined energy and the spectral function is aDirac distribution
centered on the kinetic energy ki

.When propagating into aweak disordered potential, the excitation ñ∣k i is no

longer an eigenstate: it acquires afinite lifetime t s
Born, given by the Fermi golden rule (2), which translates in

energy space into a Lorentzian spectral function ( )A k, i offinite width ÿ/t s
Born. This link between energy

width and time scale remains formally relevant even for strong scattering regimes. Provided that the spectral
function has no apparent substructures8, it is indeed always possible to define a characteristic time

 t = D ( )3s
sf

based on the full-width at half-maximum (FWHM) D of ( )A k, i , regardless of its exact profile. In the
following, our approach consists in confronting different theoretical estimates of this timescale to the scattering
time ts that we extracted from the decay of time evolution (see section 2).

To do so, wefirst present (section 3.1) some basic features of the spectral functions andwe discuss the
expected profiles associated to the various scattering regimes.We then investigate how relevant are perturbative
treatments (sections 3.2 and 3.3) and self-consistent Born theory (section 3.4) in describing, within this
framework, the scattering time ts beyond theweak scattering regime.

3.1. Generalities about spectral functions
For disordered systems, the spectral function is generally defined from the averagedGreen function G as

 
p

= -( ) [ ¯ ( )] ( )A Gk k,
1

Im , . 4i i

The calculation of the spectral functions is thus directly related to the one of ¯ ( )G k, i andwe briefly review
below themain steps of the derivation.

In the absence of disorder, the system is characterized by the freeGreen function
  = - + + -( ) ( )G ik, 0i k0

1
i

, and the spectral function is indeed aDirac functionwith infinitely small width.
When taking into account the presence of a disordered potential, the averagedGreen function Ḡ cannot be easily
determined. In a general way, the effect of the disordered potential on Ḡ is encoded into a complex self-energyΣ,
defined by the relation

   = - - - S -¯ ( ) ( ( )) ( )G Vk k, , , 5i k i
1

i

wherewe have explicitly isolated the energy shiftV associated to themean energy of the potential, such thatΣ is
only associated to the disorder fluctuations [17]. Determining the self energy is a complex task and it is in general
not possible to have an exact expression. Various theoretical approaches render possible its estimate in certain
regimes, such as perturbative treatments using a Born expansion [14, 45], self-consistent approximations
[16, 17] or semi-classical considerations [46, 47].

Without going further on the derivation of the self-energy (see below for the perturbative treatment and the
self-consistent approach), it is nevertheless possible to gain some physical insight on the expected profiles of the
spectral function in the different regimes of scattering. Indeed, equations (4) and (5) allow us to express the
spectral function as




   p
= -

S
- - - S + S

( ) [ ( )]
( [ ( )]) ( [ ( )])

( )A
V

k
k

k k
,

1 Im ,

Re , Im ,
. 6i

i

k i i
2 2

i

When the scattering strength is weak, one can show that the self-energy is almost constant around the energy ki

and ( )A k, i can be approximated by a Lorentzian function (seefigure 3(a)) [14, 22]. Aswewill see insection 3.2,
this case corresponds to the Born regime. In amore general case, the energy dependence of the self-energymust
be considered and the spectral function exhibits a different profile (see figure 3(b)) that depends on the details of
the disordered potential.

When approaching infinitely large disorder strength ∣ ∣VR , the so-called ‘classical disorder regime’9 , it is again
possible to predict the profile of the spectral function. Since quantum effects become negligible, the energy
distribution converges towards the amplitude probability distribution P(V ) of the potential shifted by the
kinetic energy ki

, i.e.   -( ) ( )A Pk, i ki
(see figure 3(c) for the specific case of a repulsive laser speckle

8
In the case ofmultiple substructures, the scattering processes are characterized by various timescales, as seen in section 4 for repulsive laser

speckle disorder.
9
This regime refers to the limiting case =s s

∣ ∣V E
mR

2

2 , with Eσ the correlation energy associated to the spatial correlationσ (see, e.g. [57]
and references therein). For our parameters, one has ~sE h 460 Hz.
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disorder) [46, 47]. In that case, the FWHM D of the spectral function is always proportional to ∣ ∣VR , with a
factor that depends on the specific profile of P(V ), yielding the limit t µ ∣ ∣V1s

sf,cl
R at large disorder.We

therefore expect the scattering time ts to be larger than the Born prediction (t µ ∣ ∣V1s
Born

R
2)when approaching

the classical disorder regime, in accordance with the observations infigure 2.

3.2. Perturbation theory:first order Born approximation
To quantitatively estimate the self-energy, a standardmethod is to decompose it as an infinite sumof terms
known as the Born series

S = S + S + ( ), 71 2

each termSn involving n+1 occurrences of the disordered potential, as for instance d dS = VG V1 0 or
d d dS = VG VG V2 0 0 . Formally each term yields a contribution that corresponds to specific scattering processes,

which can be illustrated using the so-called ‘irreducible diagrams’ [24, 25]. For instance thefirst termS1only
describes independent scattering events, while interference between successive scattering events is taken into
account starting from the next term. Giving a detailed description of each term is beyond the scope of this paper,
andwe refer for instance to [14] for a pedagogical derivation.

As a first step, we consider in this section the first order termof the Born series(7). This approximation,
known as thefirst order Born approximation, yields d dS S = VG V1 0 . This expression can bewritten in
terms of the convolution product of the two-point correlation function ˜( )C kdis and the freeGreen function as

 
 åS = * = - ¢
- +¢ ¢

+
( ) ˜( ) ( ) ˜( ) ( )C G C

i
k k k k k, ,

1

0
. 8i i i i

kk
1 0

An important feature ofS1 is that it varies slowly around the energy ki
, such that  S S( ) ( )k k, ,i k i1 1 i

(see
e.g. [14, 22]). As shown infigure 3(a), it results in that weak disorder case in a quasi Lorentzian profile




  p
D

- ¢ + D
( )

( )
( )A k,

1 2

4
. 9i

k
2 2

i

This function is centered around the energy   ¢ + + S [ ( )]V kRe ,k k k i1i i i
and has a FWHM

 D - S [ ( )]k2 Im ,k i1 i
. The real part of the self-energy can then be directly interpreted as a light-shift induced

by the disorder, while the imaginary part is responsible for the finite lifetime  t = Ds
sf , with

   åt p d= - S = - ¢ -
¢

¢[ ( )] ˜( ) ( ) ( )Ck k k2 Im , 2 . 10k i i k k
k

s
sf

1 i i

As announced before, we recover the prediction(2) of t s
Born based on the Fermi golden rule. It is expected

since the first order termS1 is obtained by considering that the successive scattering events are independent
from each other, neglecting all possible interference between them [24, 25]. It provides then a clear physical
picture of the Ioffe–Regel like criterion ~kl 1s : when themean free path t=l vs s ismuch larger than the de
Broglie wavelength ( kl 1s ), the phase accumulated between two successive scattering events is randomand
the interference is washed out.

Figure 3. Illustration of the profiles of the spectral function in different regimes in the case of repulsive laser speckle disorder. (a) In the
Born regime,A is a Lorentzian functionwith FWHM D = - S[ ]2 Im , inversely proportional to the scattering time t s

sf . (b) In the
intermediate regime, no general predictions can be done about the profile of the spectral functions, but an effective scattering time t s

sf

can be defined from the FWHM D . (c) In the classical limit of strong disorder strength,A approaches the probability distribution of
the potential P(V ). The effective scattering time t s

sf converges towards the classical limit t s
sf,cl.
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3.3. Second order Born approximation
The comparison between ourmeasurements and the first order Born approximation has been extensively
discussed in section 2. To go beyond, we calculate now the correction to the self-energy at the second order of
perturbationS2, fromwhichwe deduce the correction to thewidth of the spectral function- S[ ]2 Im 2 . Since it
involves third-order cumulants of the potential ( )V r , this term vanishes forGaussian-distributed disorder due
to the symmetry of its probability distribution P(V ).

In contrast, it is relevant for laser speckle disorder, being of opposite signs for attractive ( <V 0R
3 ) or

repulsive ( >V 0R
3 ) potential. The calculation in the current case of 2D laser speckle potential is detailed in

appendix A. The results are shown infigure 2 (dotted lines), only for the three lowest disorder strengths for
clarity. For attractive disorder, the correction- S[ ]2 Im 2 is positive, of same sign as the first order term
- S[ ]2 Im 1 , leading to a reduction of the estimated scattering time. For the lowest disorder strength

=∣ ∣V h 39 HzR , it yields closer prediction to the numerics than the first order Born approximation t s
Born

(dashed lines). However, the corrected scattering time remains always smaller than t s
Born, while the observed ts

lies below t s
Born at low ∣ ∣VR but above at high ∣ ∣VR . Very rapidly, second order prediction deviates as well and

higher order correctionsmust be included.
For repulsive disorder, the second order correction- S[ ]2 Im 2 is negative and thus of opposite sign to the

first order term- S[ ]2 Im 1 , yielding larger prediction for the scattering time. At very lowdisorder strength
=∣ ∣V h 39 HzR , it is also in very good agreementwithmeasurements of ts. However, already for relatively small

disorder strength, the second order correction becomes comparable to the first order term, leading to the
annulation of S[ ]Im and a diverging prediction for ts. To restore the convergence, higher ordersmust be
included aswell.

In summary, the second order Born approximation expands the range of validity of themodel only to the
limited regime of low initialmomenta ki and lowdisorder strength ∣ ∣VR . Qualitatively, it is expected since only
first and second order terms, which scale respectively as ∣ ∣VR

2 and ∣ ∣VR
3, cannot reproduce the expected

t µ ∣ ∣V1s
sf,cl

R scalingwhen approaching the strong scattering regime. Increasing the predictability rangewould
then demand to extend the Born series tomany orders. However, it is an asymptotic series that is known to
diverge (see, e.g. [14]). There is thus an intrinsic limitation for the perturbative approach to describe ts far
beyond theweak scattering regime.

3.4. Self-consistent Born approximation
Rather than developing a perturbative treatment, the self-energy and thus the spectral function can be estimated
using a self-consistent approach. In thefirst order Born approximation, the initialmomentum state ñ∣k i is
coupled to the free states ¢ñ∣k (see figure 1(a)). Instead, the self-consistent Born approximation (SCBA) considers
couplings to states dressed by the disorder. In order to account for the energy shift and the lifetime of those
states, the self-energy is calculated by replacing the freeGreen functionG0 in(8)with the averagedGreen
function Ḡ, leading to the systemof equations

 S = *( ) ˜( ) ¯ ( ) ( )C Gk k k, , , 11i i iscba scba

   = - - - S -¯ ( ) ( ( )) ( )G Vk k, , 12i k iscba scba
1

i

thatmust be solved self-consistently.
It is known that SCBA cannot predict the exact formof the spectral function, since, by construction, it takes

only into account the two-point correlation function of the disorderC, regardless of the amplitude probability
distribution P(V ) [46, 58]. Nonetheless, it is an open questionwhether SCBAprovides a good estimate of the
width of spectral function, and therefore can predict ts better than the Born approximation. To address this
question, we compute the spectral functionAscba in the SCBA, fromwhichwe deduce the FWHM D scba and its
corresponding scattering time  t = Ds

scba
scba.We perform the calculation for a disorder with aGaussian-

shaped correlation function, as considered so far, to allow for comparison of t s
scba with the extracted scattering

time ts.
We solve(11) and (12) by iteration, up to reaching convergence (see appendix B). From the solutionSscba,

we compute the spectral function using(6). Figure 4(a) shows examples of such spectral functions, at fixed ki
and for different disorder strength ∣ ∣VR . At low disorder strength (top left), the spectral function almost coincides
with a Lorentzian function of FWHM  t ts

scba
s
Born, reproducing the expected result of the Born

approximation, see(9). For intermediate (top right) and strong (bottom left) disorder strength, the spectral
function is broadened and its profile deviates largely from a Lorentzian distribution. In the classical limit of
infinite disorder strength (bottom right), it approaches an asymptotic function Ascba

cl corresponding to a semi-
circle of radius V2 R centered around the energy  + Vki

[46]. This profile sets an analytical limit for the

scattering time t = -( )V2 3s
scba,cl

R
1.
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To benchmark themethod, we compare infigure 4(b) the resulting time t s
scba (dashed–dotted lines) to the

numerically estimated ts in the case of Gaussian-distributed disorder (solid lines).Wefind that SCBAprovides
an excellent estimate of the scattering time over thewhole range of parameters, even in the strong scattering
regime <k l 1i s (shaded area). It is particularly remarkable considering that SCBAdoes not reproduce spectral
function in the classical limit, as illustrated infigure 4(a) by comparing Ascba

cl with the actual limit Pg (bottom
right, dashed line). Nonetheless, the FWHMsof those two distributions are roughly similar, justifying the good
agreement observed between t s

scba and ts. This is also confirmed by analytical calculation of the FWHMs,which

indicates that they only differ by a close-to-unity factor ( )3 2 ln 2 1.5.
In this section, we have compared the scattering times, as extracted from the exponential decay of the initial

momentumdistribution, to thewidths of the spectral functions computed by differentmethods.We found that,
as expected, the first order Born approximation gives a good estimate for low disorder. Considering the second
order term of the Born series accounts for deviations but only on a limited range of parameters. In contrast, for
Gaussian disorder, the SCBA yields fair estimates for ts while not reproducing correctly the complete spectral
function.

However, since the SCBAprediction depends only on the two-point correlation function, it cannot be
sufficient to describe the behavior of ts for arbitrary probability distribution of disordered potentials [46]. This is
especially the case for laser speckle disorders that are further discussed in next section.

4. Elastic scattering time and real spectral functions for laser speckle disorders

We investigate here the limitations of the SCBA in describing ts for both attractive and repulsive laser speckle
potentials. A full understanding requires to explore in detail the features of the real spectral functions, which can
in those cases exhibit complicated profiles.We perform such an analysis on the basis of the spectral functions
measured in [48] in the specific case of ki=0.We show that the differences reported between attractive and
repulsive laser speckle disorder are at the root of the distinct behaviors that we observe on the scattering time ts.

4.1. Limitations of SCBAprediction for laser speckle disorder
Infigure 5(a)we compare the SCBAprediction t s

scba to the experimental determination of ts for attractive laser
speckle disorder. Already at low initialmomentum ki and lowdisorder strength ∣ ∣VR , SCBAdoes not perform
better than thefirst order Born approximation. Since it only contains even powers of the fluctuations of the
disorder, it does not include the second order correctionsmodeled byS2 and is thus less reliable than second
order perturbation theory.

Figure 4. Scattering time in the self-consistent Born approximation: comparison to ts for Gaussian-distributed disorder. (a)Spectral
functions computedwith SCBA at s= -k 0.93i

1 for disorder strength =∣ ∣V 39 HzR (top left), =∣ ∣V 459 HzR (top right) and
=∣ ∣V 3.88 kHzR (bottom left). The vertical dashed lines indicates the kinetic energy ki. At infinite disorder strength (bottom right), it

approaches the asymptotic function   p= - - --( ) ( ) ( ( ) )A V V Vk, 2 4i kscba
cl

R
2 1

R
2 2 1 2

i (brown solid line), that corresponds to a
half circle. Besides, the infinite disorder limit for the true spectral function has aGaussian shape (green dashed line) that reflects the
amplitude probability distribution Pg(V ) (Gaussian-distributed disorder): it has a different profile than the limit Ascba

cl butwith a
similar FWHM. (b)Comparison between numerical simulations of ts (solid lines) and SCBApredictions t s

scba (dashed–dotted lines)
for Gaussian-distributed disorder. The agreement is remarkable over thewhole range of parameters. The square dots refer to the
parameters used to plot the spectral functions in (a).
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For intermediate disorder strength ∣ ∣VR , SCBA yields apparently closer predictions to the experimental data
than the 1st order Born approximation, but it deviates againwhen approaching the classical limit of strong
disorder strength ∣ ∣VR . Although both ts and t s

scba scale as ∣ ∣V1 R in this regime, a quantitativemismatch is
observed that can be attributed to the singular profile of the amplitude probability distribution ( )P Vsp of the

attractive laser specklefield. Indeed, the latter ismuchmore peaked than Ascba
cl , resulting in a substantially

smaller FWHMand thus larger elastic scattering time. Based on these asymptotic profiles, we calculate a ratio
between t s

sf,cl and t s
scba,cl of 5, which is consistent with the value of 3.2(5) that wemeasure at the lowest ki.

The case of repulsive laser speckle disorder is shown infigure 6(a). At low initialmomentum ki, low disorder
strength ∣ ∣VR , deviations of similarmagnitude compared to an attractive laser speckle are observed, originating
from the same absence of odd order correction terms For increasing disorder strength ∣ ∣VR , however, deviations
becomemuchmore pronounced, reachingmore than 1 order ofmagnitude at the largest disorder strength. This
cannot be simply justified by the profile of the amplitude probability distribution and therefore requires deeper
analysis of the profile of the spectral functions.

4.2. Comparisonwithmeasured spectral functions
To further investigate the different behaviors of ts, a comparison to the real spectral functions is needed.
Experimentally, spectral functions ofmatter-waves in laser speckle disorder have beenmeasured in the specific
case ki=0 and for a large set of disorder strength ∣ ∣V hR ranging from60 Hz to 4 kHz [48]. Three examples are
shown infigure 5(b) in the case of attractive speckle potential. At weak disorder strength =∣ ∣V h 60 HzR (top
panel), the spectral function exhibits an approximately Lorentzian profile, consistent with the Born
interpretation. The profile changes at intermediate disorder strength (central panel) to approach for strong
disorder the classical limit ( )P Vsp (green dashed line in the bottompanel), although deviations due to quantum
corrections still persist around  ~ 0 [48]. For thosemeasured spectral functions, we extract the FWHMfrom a
fit andwe deduce the elastic scattering time t s

sf in the limit ki=0 as a function of ∣ ∣VR (appendix C). The results,
plotted infigure 5(a) (circle dots) for the same values of ∣ ∣VR than considered so far. They are in good agreement
with the lowmomentum limit of ts, especially at strong disorder. This shows that ourmeasurements of ts are
fully consistent with the specific profiles of the spectral functions for the attractive laser speckle case.

For repulsive laser speckle, the spectral functions at ki=0 are plotted infigure 6(b). Since negative energies
are strictly forbidden in repulsive potential (depicted by the gray area), the profiles are intrinsically different in
comparison to the previous case. At weak disorder strength, spectral functions still followLorentzian-like profile
typical of the Born regime. In the strong disorder regime, they exhibit a narrow resonance peak on top of the
broad distribution that would have been expected from the classical limitPsp (green dashed line). The presence

Figure 5. SCBA and real spectral functions for attractive laser speckle disorder. (a)The experimentalmeasurements of ts (diamonds)
substantially deviate frompredictions computedwith SCBA (dashed–dotted lines, same than infigure 4). On the contrary, they are
fully consistent with the values t s

sf extracted frommeasured spectral functions in the extreme limit ki=0. For better visibility, the
numerical simulations are not shown. (b)Experimentallymeasured (dots) and simulated (lines) spectral functions extracted from
[48], for ki=0 and various disorder amplitudes VR .Wefit themwith the convolution of an exponential and a Lorentzian
distributions, andwe extract t s

sf from the obtained FWHM. For the strongest disorder amplitude = -V 4008 kHzR , the green dashed
line indicates the distribution ( )P Vsp .
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of this peak is related to an accumulation of bound states around the averaged ground state harmonic oscillator
energy [46–48].

As a consequence of this double structure, the time evolution is expected to show two different timescales: a
short one associated to the broad part of the spectral function and a long one associated to the narrowpeak.
Experimentally, themeasured time evolution is dominated by the slowest decay. The characteristic timewe have
extractedwhenmeasuring ts is thus related to the long timescale, and should be compared to the FWHMof the
narrowpeak. To perform the comparison, wefit the spectral functions by an heuristic function accounting for
the bimodal structure (see appendix C), andwe extract t s

sf from the FWHMof the peaked function. As shown
infigure 6(a), it agrees once again verywell with the lowmomentum limit of ts.

In conclusion, analyzing the profiles of the real spectral functions allows us to interpret the observed
differences in the scattering time ts between attractive and repulsive laser speckle disorder. The striking
agreement between time domain and energy domainmeasurements validates ourmethod to extract ts in a
broad range of scattering regimes. It also highlights the key issue here, which is tofind theoreticalmodels that
reproduce the specific features of the spectral functions [46, 47].

5. Summary and outlook

Wehave investigated in this paper the behavior of the elastic scattering time ts of ultracold atoms in disordered
potentials in the strong scattering regime. Afirst important result is the remarkable agreement between the
observed behavior of ts and predictions based on the SCBA, in the case of Gaussian-distributed disordered
potentials. However, thismethod, which inherently does not take into account the specific formof the disorder
amplitude distribution, is not accurate for laser speckle disorder. Instead, we have shown that the calculation of
the second order term in the Born series, which is sensitive to the distribution skewness, is able to explain the
differences reported between the attractive and the repulsive speckle disorders when entering the strong
scattering regime. The validity of this pertubative approach is nevertheless limited to a narrow range of
parameters. As a secondmain result, we show that one has then to rely on the real shape of the spectral functions,
asmeasured in [48], in order to interpret our data.

Altogether, our study clarifies the validity range of common theoreticalmethods to predict the elastic
scattering time ofmatter waves in disordered potential. It highlights the need for developing adequate
formalisms in order to copewith the full statistics of the disorder, especially in the case of laser speckle disorder
that are commonly usedwith ultracold atoms. Beside semiclassical approaches, dedicated to the asymptotic
classical regime [46, 47], or the coherent potential approximation [58–60], a very interesting follow upwould be
to confront ourmeasurements to the recent theoretical framework of the hidden landscape [61, 62]. Such

Figure 6. SCBA and real spectral functions for repulsive laser speckle disorder. (a)The experimentalmeasurements of ts (diamonds)
strongly deviate fromSCBApredictions (dashed–dotted lines), while they are fully consistent with the values t s

sf extracted from
measured spectral functions in the extreme limit ki=0. (b)Experimentallymeasured (dots) and simulated (lines) spectral functions
extracted from [48], for ki=0 and various disorder amplitude VR .Wefit themwith an heuristic function, whichmodels the bimodal
structure, in order to extract t s

sf . The gray area indicates the forbidden negative energies. For the strongest disorder amplitude
=V 4008 kHzR , the green dashed line indicates the distribution ( )P Vsp .
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development of quantitative predictions is essential for the understanding of complex transport phenomena,
such as the Anderson localizationwhere discrepancies remain between experiments, numerics and available
theories (see e.g. [63]).
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AppendixA. Second order Born approximation for laser speckle disorder

We showhere how to calculate the second order correction d d dS = VG VG V2 0 0 of the Born expansion. It
involves the three-point correlation function d d dD D = + D + D¢ ¢( ) ( ) ( ) ( )C V V Vr r r r r r r,3 , which is strictly
null forGaussian-distributed disorder and equals to

D D = s¢ - D +D ¢ + D -D ¢( ) ( )[ ( ) ] ( )/C Vr r, 2 e A.1rr r r
3 R

3 22 2 2 2

for a 2D laser speckle disordered potential.
The operatorS2 is diagonal in the ñ∣k basis, withmatrix elements S = á S ñ( ) ∣ ∣k k k, i i i2 2 given by

    åS = - ¢ - 
¢ 

¢ ( ) ˜ ( ) ( ) ( ) ( )C G Gk k k k k, , , , , A.2i i i k k
k k

2
,

3 0 0

where ¢˜ ( )C k k,3 dis dis is the Fourier transformof the three-point correlation function(A.1).When taking the
imaginary part of(A.2), we obtain



       

å
p

d d

S =-

- - + - -

s

¢ 

- - ¢ + ¢-  + -

¢  ¢ 

[ ( )]

[ ( ) ( ) ( ) ( )] ( )

[( ) ( ) ( ) ]V
kIm ,

8

3
e

p.v. p.v. , A.3

i

k k k k

k k

k k k k k k
2

3
R
3

,

6i i
2 2 2 2

where p.v.refers to theCauchy principal value. The two terms revealed by(A.3) are related to the two possible
third-order processes, corresponding either to a single scattering event for thewavefunction and two scattering
events for the conjugatedwavefunction, or to the other way around.

The second order Born correction isfinally obtained by numerically calculating(A.3) at the energy  = ki
.

Appendix B. Calculation of the self-energy in the SCBA

Wepresent in this section themain stages in the calculation of the self-energy S ( )k, iscba in the self-consistent
Born approximation. The procedure is detailed for a given set of disorder strength ∣ ∣VR and initialmomentum
k i, the overall process being repeated for all the sets of parameters we have explored.

Atfirst we define an energy range  [ ],min max relevant for the calculation of the spectral function. It is
chosen to be centered on the kinetic energy ki

, with awidth large enough to ensure that the spectral function
area is close to unity. For each energy  of this interval, the self-consistent equations are then solved. To do so,
we calculate in parallel the self-energy S ( )k,scba for all themomenta k whose kinetic energies are contained in
the range  [ ],min max .We proceed by iteration, initializing the solutionwith the first order Born solution
S = S( )

scba
0

1. Using(11) and(12), the self-energyS +( )n
scba

1 after +n 1 iteration steps is given by


  ò p

S =
¢

- ¢
- - S ¢

+

¢
( ) ˜( )

( )
( )( )

( )Ck
k

k k
k

,
d

4

1

,
. B.1n

k
nscba

1
2

2
scba

The iteration loop is pursued until the convergence criterion

 
ò p

S - S

S
<

+

+
-( ) ( )

( )
( )

( ) ( )

( )
k k k

k

d

4

, ,

,
10 B.2

n n

n

2

2
scba

1
scba

scba
1

3

is reached.
Once the self-energy is known for each energy  , the spectral function can be computed using(6). Its

normalization is verified tomake sure the energy interval was correctly chosen.
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AppendixC. Extracting thewidths of real spectral functions

Wepresent here the procedure to extract thewidths D of the spectral functions experimentallymeasured in
[48], in order to estimate the scattering time t s

sf . Since the spectral functions are noticeably different between
attractive and repulsive laser speckle potential, we distinguish the two cases on the following.

For attractive laser speckle disorder, we use asfit function the convolution of a Lorentzian distribution Lwith
an exponential distributionR:

     d d= * ¢( ) ( ) ( ) ( )A L R, , , . C.1cfit
att

The Lorentzian distribution

  


  
d

p
d

d
=

- +
( )

( )
( )L , ,

1 2

4
C.2c

c
2 2

has a central energy c and a FWHM d . The exponential distribution is defined as

 


  d
d

d¢ =
¢

Q ¢d- ¢( )
∣ ∣

( ) ( )R ,
1

e , C.3

such that it converges towards the amplitude distribution of the attractive disorder Psp when its width d ¢
approaches <V 0R .

At low disorder strength ∣ ∣VR , thewidth d ¢ goes to 0 and Afit
att approaches a Lorentzian profile, as

experimentally observed (see top panel infigure 5(b)). At high disorder strength, d ¢ goes toVR for  d ¢( )R , to
converge towards the classical limitPsp (green dashed line infigure 5(b)). The convolutionwith L guarantees that
thefit function is smoothed around  = 0, with d corresponding almost to the energy regionwhere quantum
effects are relevant. In between these two extreme cases, Afit

att reproduces well all the profiles of themeasured
spectral functions.

For each disorder strength ∣ ∣VR for which the spectral function has beenmeasured, we extract the FWHM
D of Afit

att andwe deduce the scattering time  t = Ds
sf . The value of t s

sf for any disorder strength is then
deduced by interpolation.

The case of repulsive disorder ismore complicated. The profiles of the spectral functions are bimodal,made
of a narrowpeak at low energy on top of a broad energy distribution.Wefit those profiles by the sumof a
convoluted distribution L∗R accounting for the broad part of the spectrum, and aGaussian distributionG
accounting for the narrowpeak. It yields for the fit function

        a d d a d= * ¢ + -( ) ( ) ( ) ( ) ( ) ( )A L R G, , , 1 , , , C.4c cfit
rep

withα the relative weight of the first contribution. TheGaussian distribution is defined as

d
p d

= d-
-⎛

⎝⎜
⎞
⎠⎟( ) ( )G E E E

E
, ,

1
e , C.5c

E E
E

c
2

where the central energy c and the full width d are chosen to be the same as the ones of L. It results in total in
only onemore free parameter-α-compared to the case of attractive disorder. Since the bimodal profile aremore
pronounced in the numerical simulations,α is extracted on the numerical data and kept fixedwhen fitting the
experimental data.

At low ∣ ∣VR , the spectral function is dominated by a narrowpeak that isfitted byG, while L∗R accounts for
the small, broad background.When increasing ∣ ∣VR , the peak amplitude decreases and the spectral function
approaches closer to its classical limit. At high ∣ ∣VR , the broad part of the spectrum resembles the one of the
attractive case, whose features are captured by L∗R, while the narrowpeak resulting from the accumulation of
bound levels isfitted byG. Overall, the fit function(C.4) shows remarkable agreementwith themeasured
spectral functions at any disorder strength. Sincewe are experimentally sensitive to the longer timescale when
measuring ts, the relevant energy scale D is given by thewidth of the narrower structure d .

Similarly to the attractive laser speckle case, the value of t s
sf for any disorder strength is extracted by

interpolation of thosemeasurements.
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