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Abstract

We study the elastic scattering time 7; of ultracold atoms propagating in optical disordered potentials
in the strong scattering regime, going beyond the recent work of Richard et al (2019 Phys. Rev. Lett. 122
100403). There, we identified the crossover between the weak and the strong scattering regimes by
comparing direct measurements and numerical simulations to the first order Born approximation.
Here we focus specifically on the strong scattering regime, where the first order Born approximation is
not valid anymore and the scattering time is strongly influenced by the nature of the disorder. To
interpret our observations, we connect the scattering time 7; to the profiles of the spectral functions
that we estimate using higher order Born perturbation theory or self-consistent Born approximation.
The comparison reveals that self-consistent methods are well suited to describe 7, for Gaussian-
distributed disorder, but fails for laser speckle disorder. For the latter, we show that the peculiar
profiles of the spectral functions, as measured independently in Volchkov et al (2018 Phys. Rev. Lett.
120 060404), must be taken into account. Altogether our study characterizes the validity range of usual
theoretical methods to predict the elastic scattering time of matter waves, which is essential for future
close comparison between theory and experiments, for instance regarding the ongoing studies on
Anderson localization.

1. Introduction

Ultracold atoms propagating in disordered potentials offer controllable platforms to study a large variety of
quantum transport phenomena [1, 2], from the celebrated Anderson localization at the single particle level
[3—6], to the study of superfluid to insulator transitions [7—9] or the concept of many-body localization [10-12]
for interacting atoms. One of the major interest of these systems is the ability to confront directly experiments
and theory for a wide range of parameters. In this context, the precise knowledge of the elastic scattering time 7,
which corresponds to the mean time between two scattering events, is essential. This fundamental time scale is
indeed at the heart of our basic understanding of wave propagation in disordered media, and it is used by
theoreticians as an elementary building block in order to elaborate quantitative descriptions of these complex
systems [13-23].

However, while the elastic scattering time can be predicted with a rather good confidence in the weak
scattering regime using perturbative approaches, much less is known in the strong scattering regime [24-27].
One enters this regime, which is the one of interest for Anderson localization, when the mean free path becomes
smaller than the (de Broglie) wavelength, i.e. when passing the well-known loffe—Regel like criterion klg ~ 1
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(k: wave number, I, = v7;: mean free path, v being the group velocity). Despite a large amount of work, either
with electronic waves [28—31] or classical waves [32—42], a complete description of 7 relying on a close
comparison between theory and experiments is still lacking.

Inarecent paper [43], we made an important step into that direction. There, the elastic scattering time of
ultracold atoms in laser speckle disordered potential was directly measured over a very broad range of
experimental parameters, and found to be in excellent agreement with numerical simulations. By comparing the
deviations of 7 to first order Born calculations [22, 23], we have identified the crossover between the weak and
the strong scattering regime, revealing that its location is strongly influenced by the disorder statistics. This was
done by using both attractive or repulsive laser speckle disordered potentials, whose amplitude probability
distributions follow exponential laws, and by complementing our study by a numerical investigation of a
Gaussian-distributed random potential, as usually considered in condensed matter [24, 25].

Here we focus on the description of the mean scattering time in the strong scattering regime, where the first
order Born approximation is not valid anymore. To do so, we relate our measurements of 7; to the width of the
spectral functions. These functions give the energy-momentum relation for one particle excitation [44]. They
are estimated for our specific system via two different approaches: either by extending the perturbative Born
expansion to higher order terms [14, 25, 45] or by the use of the self consistent Born approximation (SCBA)

[16, 17]. While we find that the perturbative approach allows us to extend the quantitative prediction of 7; only
in alimited range, a first important result is the striking agreement obtained between the SCBA predictions and
the mean scattering time for the Gaussian-distributed disorder case. However this method cannot cope with the
specific statistics of the laser speckle potentials, for which large deviations are observed. To get further insight, we
show in a second step that these deviations can be traced to the peculiar behavior of the spectral functions for
such disordered potentials [46, 47]. Indeed, we recover full consistency between our measurements of 7, and the
width of the spectral functions when considering the real profiles that have been measured independently using
an radio-frequency spectroscopic method, see [48].

The manuscript is organized as follows. In section 2, we review the measurements of the elastic scattering
time and the comparison with the 1st order Born approximation as presented in Richard et al [43]. Section 3
provides the adequate framework, based on the direct connection between time properties and spectral
functions, to further describe elastic scattering time beyond the first order Born approximation. Finally, we link
in section 4 our observations of elastic scattering time with experimentally obtained profiles of the spectral
functions, both for attractive and repulsive laser speckle disorders.

2. Elastic scattering time along the crossover from weak to strong scattering

Using ultracold atoms propagating in optical disordered potentials, we experimentally and numerically
determined in [43] the scattering time 7; of a matter wave launched in a disordered potential V (r) with a well-
defined momentum k;. By exploring a broad range of microscopic parameters, we collected an extensive set of
data that we use all along this study as a support to explore the behavior of 7 in the strong scattering regime. This
section reviews the main results of [43], especially the comparison with the first order Born predictions,
providing all the details relevant to the remainder of this work.

2.1. Lifetime of excitation in disorder: the first order Born approximation

In the weak scattering regime, the propagation of a wave can be described as a succession of independent
scattering events that are separated on average by a time 7;, and between which the wave freely propagates. This
approximation is known as the first order Born approximation, since it can be obtained by restricting the Born
pertubative series to its first order (see section 3 for more details) [24, 25]. In this simple picture, each event
results in a transfer from the initial momentum state |k;) toward a continuum of final momentum states |k’),
with |k/| = |k;|, see figure 1(a). The elastic scattering time 7; can be then interpreted as the lifetime of the initial
state |k;), this time being inversely proportional to the transfer rate to the continuum. The population 7;(¢) of
|k;) is thus expected to decay exponentially with time #, with a characteristic time 7;:

ii(t) = #;(0)e /7. (D

The scattering time 7, can be calculated using Fermi golden rule. The coupling rate | (k;| V|k') |> (where ™ refers
to disorder averaging) to each state |k’) is given by the spatial frequency distribution of the disorder C(k; — k’). Here,
C refers to the Fourier transform of the two-point correlation function C(Ar) = 8V (r)8V (r + Ar), with
8V (r) = V(r) — V (r) thefluctuations of the disordered potential. It leads to an estimate of the elastic scattering
time in the Born approximation
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Figure 1. Elastic scattering time and Born approximation. (a) [llustration of a scattering event in the Born approximation. An initial
momentum state |k;) is scattered by the potential towards a momentum state |k’) after a mean time 7;. The repulsive potential, shown
in blue, is generated by a laser blue-detuned from an atomic transition. An attractive potential can be generated with a red-detuned
laser (see inset). (b) Measured momentum distribution n(k, t), for k; = 1.620'and |Vg|/h = 72 Hz. Attime t = 0 we see the initial
momentum distribution of the state |k;). After a time evolution t = 27 ms, the wave has been partially scattered, resulting in a reduced
peakat k = k; on top ofaring of radius k = k;. The height of the peak, normalized by its value at t = 0, gives the population of the
initial state 1;(t). (c) Evolution with time ¢ of the population 7;(¢) (dots) for k; = 1.620~'and Vi /h = 72 Hz (inset:

Vi /h = 1.30 kHz). The solid line is an exponential fit from which we extract 7.

TEom = Zﬂ-%; CN‘(kl - k,) 6(gkl - gk’)) (2)

where & = 7%k?/2m is the free-state energy, with m the atomic mass and /# = h/2m the reduced Plank
constant. Hence 72°™ depends only on the spatial correlations of the potential given by C(Ar). Since its
amplitude is proportional to | Vz|?, with | Vg | the rms value of the disorder potential, an important feature of (2) is
the simple 1/| Vg | scaling. As a direct consequence, the Born prediction 72°™ is not sensitive to the specific form
of the amplitude probability distribution P(V').

2.2.Measurements of the elastic scattering time

As discussed in [43], we experimentally measure 7, by monitoring the decay of the population in the initial
momentum state |k;) given by (1). The experimental setup relies on an ultracold, non-interacting Bose—Einstein
condensate of *’Rb that expands in a quasi-2D laser speckle field [49, 50]. We prepare the atoms with an initial
momentum k; along the y direction, the norm k; ranging from 1 to 20 m~!, by pulsing an external magnetic
gradient for a tunable duration. The laser wavelength for the speckle can be either red- or blue-detuned with
respect to the atomic transition, yielding attractive or repulsive disordered potentials (see figure 1(a)). They
exhibit inverted amplitude probability distributions that follow the asymmetrical exponential laws

By(V) = |RITle™"/ Y - ©(V /VR), with © the step function. While the averaged amplitude is given by Vi
(negative for attractive and positive for repulsive laser speckle), the disorder strength is characterized by the rms
disorder amplitude | Vg|. It can be tuned from | Vk|/h = 39 Hz to 3.88 kHz by varying the laser power and
detuning. The laser speckle is shine on the atoms along the x axis, resulting in a very elongated speckle pattern in
this direction. This yields to a quasi-2D disorder geometry in the (y — z) plane, whose transverse two-point
correlation function C(Ar) is found to have a Gaussian shape of size 0 = 0.50(1) pm (1/eradius), see
supplemental material of [43].

To extract 7, we record the momentum distribution n(k, ¢) at different time ¢ by performing fluorescence
imaging after a long time-of-flight (see figure 1(b)). The overall momentum resolution is Ak = 0.2 ym™1,
limited by the finite temperature of the initial state and imaging resolution. From those images we monitor the
decay of the population in the initial momentum state 7;(t) (see figure 1(c)) [43]. For weak scattering, we
observe an exponential decay over typically two orders of magnitude, which we fit with (1) to extract the value of
7. Although the exponential decay is not expected to persist beyond the Born approximation (see e.g. [27]), at
strong scattering we do not observe significant deviations from such a decay within the experimental error bars
(seeinset in figure 1(c)). The extraction procedure is thus kept the same over the whole range of parameters.

The experimentally measured 7; are plotted in figure 2 for both attractive (left panel) and repulsive (middle
panel) laser speckle disorder. The broad range of parameters k; and Vi we explore allows us to observe variations
of 7, over more than three orders of magnitude. We compare the measurements with numerical simulations,
performed by propagating in time a wave packet of initial momentum k; in a purely 2D disordered potential
(solid lines). The agreement is in general very good and confirms the excellent control over the experimental
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Figure 2. Experimental and numerical determination of 7;. Experimental measurements (dots) and numerical simulations (solid
lines) of 7, as a function of the initial momentum k; for different values of the disorder strength | Vz|, in the cases of attractive disorder
(left panel), repulsive disorder (central panel) or Gaussian disorder (right panel). The first order Born approximation (2) appearsin
dashed lines, while the second order Born approximation is shown in dotted lines (only for the three first disorder strengths). The
initial momenta are shown in units of the characteristic frequency o~! of the disorder. The shaded area indicates the strong scattering
regime k;I; < 1.

parameters. It also highlights the quasi-2D nature of our geometry. For simplicity, we thus only compare in the
following our measurements to purely 2D theoretical predictions’.

Numerically, we have also explored disordered potential with Gaussian amplitude probability distribution
(V)= (V27 Vi)~ le=VH/ W) (right panel in figure 2). The two-point correlation function C(Ar) is chosen to
have a Gaussian shape of size 0, i.e. to be the same as for the laser speckle [43]. Itis indeed of primordial interest
to further explore the role of disorder statistics, in particular because Gaussian-distributed disorder is the model
usually considered in condensed matter [24, 25]. Such potential could be also implemented in our experiment
using spatial light modulators (seee.g. [12]).

2.3. Comparison to Born prediction

We compare the experimental and numerical data to the prediction of the first order Born approximation 75°™
given by (2) (dashed lines in figure 2). As already mentioned, the prediction is identical for the three types of
disorder since they have the same two-point correlation function C(Ar). Note that when changing the disorder
strength | Vg|, the curves in the vertical logarithmic scale are simply shifted down according to the

scaling 75 o 1/|VR%

As expected, the agreement is very good for all three types of disorder in weak scattering regime k;I; > 1,
corresponding to low disorder strength | ;| and large initial momentum k;. For increasing scattering strength,
distinct behaviors are observed between Gaussian-distributed and laser speckle disorders. For Gaussian-
distributed disorder, the good agreement persists up to k;l; ~ 1 (indicated by the limit of the shadded area in
figure 2). It validates the latter as an accurate criterion to estimate the position of the crossover between weak and
strong scattering regimes [43]. For laser speckle disorders, however, the Born approximation fails at much lower
scattering strength. A quantitative analysis of the deviations performed in Richard et al shows that the position of
the crossover is shifted up to k;l; ~ 40 [43]. In addition, we note substantial differences between attractive and
repulsive laser speckle disorder. The latter, commonly used in the experimental studies of Anderson localization
[3, 5, 6], leads to much larger deviations from the Born prediction in the strong scattering regime.

The emergence of differences between the three types of potential indicates the break down of the first order
Born approximation, revealing that the elastic scattering time becomes sensitive to higher-order correlation
functions [25]. To push further theoretical investigation of the elastic scattering time, we develop the connection
between time evolution of the system and spectral properties, which requires introducing the concept of spectral
functions [44].

3. Scattering time and spectral functions of matter waves in disordered potentials

The spectral function A (&, k;) gives the probability distribution for an excitation of momentum k; to have a
certain energy &, thereby generalizing the concept of dispersion relation. It is for instance used to describe
quasi-particles in many-body physics [44, 51-56] or in disordered systems [14, 16, 17, 46—48]. Of particular

4 As detailed in the supplemental material of [43], no significant deviations were found between 3D and 2D calculations for our
configuration.
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interest for the latter is the width of the spectral function, which is related to the time scale of the scattering
processes.

In order to get a intuitive understanding of this fundamental link, it is worth to consider once again the weak
disorder picture. In the absence of disorder, an excitation of well-defined momentum |k;) is an eigenstate of the
Hamiltonian with infinite lifetime: it has a well-defined energy and the spectral function is a Dirac distribution
centered on the kinetic energy &;.. When propagating into a weak disordered potential, the excitation |k;) is no
longer an eigenstate: it acquires a finite lifetime 75°™, given by the Fermi golden rule (2), which translates in
energy space into a Lorentzian spectral function A (&, k;) of finite width 71/ 72°™. This link between energy
width and time scale remains formally relevant even for strong scattering regimes. Provided that the spectral
function has no apparent substructures®, it is indeed always possible to define a characteristic time

= /i/AE (3)

based on the full-width at half-maximum (FWHM) A€ of A (&, k;), regardless of its exact profile. In the
following, our approach consists in confronting different theoretical estimates of this timescale to the scattering
time 7, that we extracted from the decay of time evolution (see section 2).

To do so, we first present (section 3.1) some basic features of the spectral functions and we discuss the
expected profiles associated to the various scattering regimes. We then investigate how relevant are perturbative
treatments (sections 3.2 and 3.3) and self-consistent Born theory (section 3.4) in describing, within this
framework, the scattering time 7; beyond the weak scattering regime.

3.1. Generalities about spectral functions
For disordered systems, the spectral function is generally defined from the averaged Green function G as

A k) = —%Im[é(& k). @

The calculation of the spectral functions is thus directly related to the one of G (&, k;) and we briefly review
below the main steps of the derivation.

In the absence of disorder, the system is characterized by the free Green function
Go(&, ki) = (€ — &, + i07)", and the spectral function is indeed a Dirac function with infinitely small width.
When taking into account the presence of a disordered potential, the averaged Green function G cannot be easily
determined. In a general way, the effect of the disordered potential on G is encoded into a complex self-energy ¥,
defined by the relation

G(g) kl) = (g - gki - V - E(g) ki))il) (5)

where we have explicitly isolated the energy shift V associated to the mean energy of the potential, such that 3 is
only associated to the disorder fluctuations [17]. Determining the self energy is a complex task and it is in general
not possible to have an exact expression. Various theoretical approaches render possible its estimate in certain
regimes, such as perturbative treatments using a Born expansion [14, 45], self-consistent approximations

[16, 17] or semi-classical considerations [46, 47].

Without going further on the derivation of the self-energy (see below for the perturbative treatment and the
self-consistent approach), it is nevertheless possible to gain some physical insight on the expected profiles of the
spectral function in the different regimes of scattering. Indeed, equations (4) and (5) allow us to express the
spectral function as

1 Im[3(E, ky)]

A& k) =—— — .
(&1 (€= & — V = Re[Z(&, k)D)* + (Im[X(E, ky)])?

6)

When the scattering strength is weak, one can show that the self-energy is almost constant around the energy &,
and A (&, k;) canbe approximated by a Lorentzian function (see figure 3(a)) [14, 22]. As we will see in section 3.2,
this case corresponds to the Born regime. In a more general case, the energy dependence of the self-energy must
be considered and the spectral function exhibits a different profile (see figure 3(b)) that depends on the details of
the disordered potential.

When approaching infinitely large disorder strength | Vg |, the so-called ‘classical disorder regime’” , it is again
possible to predict the profile of the spectral function. Since quantum effects become negligible, the energy
distribution converges towards the amplitude probability distribution P(V') of the potential shifted by the
kinetic energy &, i.e. A(E, k;) = P(E€ — &) (see figure 3(c) for the specific case of a repulsive laser speckle

In the case of multiple substructures, the scattering processes are characterized by various timescales, as seen in section 4 for repulsive laser
speckle disorder.

P . e 2 . . . . . -
This regime refers to the limiting case | V| > E, = /l—z, with E,, the correlation energy associated to the spatial correlation o (see, e.g. [57]

and references therein). For our parameters, one has E::H/h ~ 460 Hz.
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Figure 3. [llustration of the profiles of the spectral function in different regimes in the case of repulsive laser speckle disorder. (a) In the
Born regime, A is a Lorentzian function with FWHM AE = —2 Im[X], inversely proportional to the scattering time 7. (b) In the

intermediate regime, no general predictions can be done about the profile of the spectral functions, but an effective scattering time 7
can be defined from the FWHM AE. (¢) In the classical limit of strong disorder strength, A approaches the probability distribution of

the potential P(V). The effective scattering time 73 converges towards the classical limit 7!,

f

disorder) [46, 47]. In that case, the FWHM AE of the spectral function is always proportional to | Vx|, with a
factor that depends on the specific profile of P(V), yielding the limit 755! o 1/|V4] atlarge disorder. We
therefore expect the scattering time 7 to be larger than the Born prediction (72°™ oc 1/|Vg|?) when approaching

the classical disorder regime, in accordance with the observations in figure 2.

3.2. Perturbation theory: first order Born approximation
To quantitatively estimate the self-energy, a standard method is to decompose it as an infinite sum of terms

known as the Born series

X=N+X+ (7)

each term ¥, involvingn + 1 occurrences of the disordered potential, as for instance £y = 6VG(6V or
3, = 0VGyoVGyoV . Formally each term yields a contribution that corresponds to specific scattering processes,
which can be illustrated using the so-called ‘irreducible diagrams’ [24, 25]. For instance the first term ¥; only
describes independent scattering events, while interference between successive scattering events is taken into
account starting from the next term. Giving a detailed description of each term is beyond the scope of this paper,
and we refer for instance to [14] for a pedagogical derivation.

As afirst step, we consider in this section the first order term of the Born series (7). This approximation,
known as the first order Born approximation, yields ¥ =~ 3; = 6VG6V . This expression can be written in
terms of the convolution product of the two-point correlation function C(k ;) and the free Green function as

~ ~ 1
31(E k) = Cky) * Go(& k) = Ck;, —K)———.
1€, ki) k) * Go(&, ki) ; ( )S—Ek/+i0+

(®
Animportant feature of ¥, is that it varies slowly around the energy &, such that ¥ (&, k;) = %,(&, k) (see
e.g.[14,22]). Asshown in figure 3(a), it results in that weak disorder case in a quasi Lorentzian profile

1 AE/2

Ag,kil’— . 9
R S LY ®

This function is centered around the energy £ ;c,- ~ & + V + Re[X (&, kj)]and hasa FWHM
AE ~ —21Im[3; (&, ky)]. The real part of the self-energy can then be directly interpreted as a light-shift induced

by the disorder, while the imaginary part is responsible for the finite lifetime 7% = / /A&, with

7 /7 = —2Im[(E, k)] = 21Y) Ol — KO (Ex, — &), (10)
k/

As announced before, we recover the prediction (2) of 72°™ based on the Fermi golden rule. It is expected
since the first order term 3, is obtained by considering that the successive scattering events are independent
from each other, neglecting all possible interference between them [24, 25]. It provides then a clear physical
picture of the Ioffe-Regel like criterion kI ~ 1: when the mean free path [, = v7; is much larger than the de
Broglie wavelength (kI > 1), the phase accumulated between two successive scattering events is random and
the interference is washed out.
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3.3.Second order Born approximation

The comparison between our measurements and the first order Born approximation has been extensively
discussed in section 2. To go beyond, we calculate now the correction to the self-energy at the second order of
perturbation ¥3,, from which we deduce the correction to the width of the spectral function —2 Im[3;]. Since it
involves third-order cuamulants of the potential V (r), this term vanishes for Gaussian-distributed disorder due
to the symmetry of its probability distribution P(V).

In contrast, it is relevant for laser speckle disorder, being of opposite signs for attractive (V3 < 0)or
repulsive (V3 > 0) potential. The calculation in the current case of 2D laser speckle potential is detailed in
appendix A. The results are shown in figure 2 (dotted lines), only for the three lowest disorder strengths for
clarity. For attractive disorder, the correction —2 Im[3},] is positive, of same sign as the first order term
—21Im[%,], leading to a reduction of the estimated scattering time. For the lowest disorder strength

|Vkl/h = 39 Hz, ityields closer prediction to the numerics than the first order Born approximation 75°™
(dashed lines). However, the corrected scattering time remains always smaller than T?"m, while the observed T

lies below 75°™ at low | Vg | but above at high | Vg|. Very rapidly, second order prediction deviates as well and

higher order corrections must be included.

For repulsive disorder, the second order correction —2 Im[X,] is negative and thus of opposite sign to the
first order term —2 Im[Y;], yielding larger prediction for the scattering time. At very low disorder strength
|[VRl/h = 39 Hz, itis also in very good agreement with measurements of 7,. However, already for relatively small
disorder strength, the second order correction becomes comparable to the first order term, leading to the
annulation of Im[>] and a diverging prediction for 7;. To restore the convergence, higher orders must be
included as well.

In summary, the second order Born approximation expands the range of validity of the model only to the
limited regime of low initial momenta k; and low disorder strength | ;. Qualitatively, it is expected since only
firstand second order terms, which scale respectively as | Vx> and | Vg ], cannot reproduce the expected
7554 o 1/|Vg| scaling when approaching the strong scattering regime. Increasing the predictability range would
then demand to extend the Born series to many orders. However, it is an asymptotic series that is known to
diverge (see, e.g. [14]). There is thus an intrinsic limitation for the perturbative approach to describe 7 far
beyond the weak scattering regime.

3.4. Self-consistent Born approximation

Rather than developing a perturbative treatment, the self-energy and thus the spectral function can be estimated
using a self-consistent approach. In the first order Born approximation, the initial momentum state |k;) is
coupled to the free states [k’) (see figure 1(a)). Instead, the self-consistent Born approximation (SCBA) considers
couplings to states dressed by the disorder. In order to account for the energy shift and the lifetime of those
states, the self-energy is calculated by replacing the free Green function Gy in (8) with the averaged Green
function G, leading to the system of equations

Zscba(g: kl) = C(kl) * Gscba(ga ki): (1D

Gscba(gy kz) = (8 - gk,- - V - Escba(ga ki))_l (12)

that must be solved self-consistently.

Itis known that SCBA cannot predict the exact form of the spectral function, since, by construction, it takes
only into account the two-point correlation function of the disorder C, regardless of the amplitude probability
distribution P(V') [46, 58]. Nonetheless, it is an open question whether SCBA provides a good estimate of the
width of spectral function, and therefore can predict 7; better than the Born approximation. To address this
question, we compute the spectral function A,,, in the SCBA, from which we deduce the FWHM A&y, and its

corresponding scattering time T:Cba = /1 /A&pa.- We perform the calculation for a disorder with a Gaussian-
shaped correlation function, as considered so far, to allow for comparison of 7'§Cba with the extracted scattering
time 7.

Wesolve (11)and (12) by iteration, up to reaching convergence (see appendix B). From the solution Y,
we compute the spectral function using (6). Figure 4(a) shows examples of such spectral functions, at fixed k;
and for different disorder strength | V;|. Atlow disorder strength (top left), the spectral function almost coincides
with a Lorentzian function of FWHM 7 /75% ~ 7 /75°™ reproducing the expected result of the Born
approximation, see (9). For intermediate (top right) and strong (bottom left) disorder strength, the spectral
function is broadened and its profile deviates largely from a Lorentzian distribution. In the classical limit of
infinite disorder strength (bottom right), it approaches an asymptotic function AZ, corresponding to a semi-

circle of radius 2 Vi centered around the energy &, + V [46]. This profile sets an analytical limit for the
scattering time 7% = (24/3 V)L,
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Figure 4. Scattering time in the self-consistent Born approximation: comparison to 7; for Gaussian-distributed disorder. (a) Spectral
functions computed with SCBA at k; = 0.930 ! for disorder strength | V| = 39 Hz (top left), | Vi| = 459 Hz (top right) and

|Ve| = 3.88 kHz (bottom left). The vertical dashed lines indicates the kinetic energy &;. Atinfinite disorder strength (bottom right), it
approaches the asymptotic function A%, (&, kj) = QrVe) 14V — (€ — Ex — V)HL/2 (brown solid line), that corresponds to a
half circle. Besides, the infinite disorder limit for the true spectral function has a Gaussian shape (green dashed line) that reflects the
amplitude probability distribution Py(V') (Gaussian-distributed disorder): it has a different profile than the limit AZ, butwitha
similar FWHM. (b) Comparison between numerical simulations of 7 (solid lines) and SCBA predictions ng’"’ (dashed—dotted lines)
for Gaussian-distributed disorder. The agreement is remarkable over the whole range of parameters. The square dots refer to the
parameters used to plot the spectral functions in (a).

To benchmark the method, we compare in figure 4(b) the resulting time TZCba (dashed—dotted lines) to the
numerically estimated 7, in the case of Gaussian-distributed disorder (solid lines). We find that SCBA provides
an excellent estimate of the scattering time over the whole range of parameters, even in the strong scattering
regime k;I; < 1(shaded area). It is particularly remarkable considering that SCBA does not reproduce spectral
function in the classical limit, as illustrated in figure 4(a) by comparing A, | with the actual limit E; (bottom
right, dashed line). Nonetheless, the FWHMs of those two distributions are roughly similar, justifying the good
agreement observed between 75 and 7. This is also confirmed by analytical calculation of the FWHMs, which
indicates that they only differ by a close-to-unity factor /3/(21n2) ~ 1.5.

In this section, we have compared the scattering times, as extracted from the exponential decay of the initial
momentum distribution, to the widths of the spectral functions computed by different methods. We found that,
as expected, the first order Born approximation gives a good estimate for low disorder. Considering the second
order term of the Born series accounts for deviations but only on a limited range of parameters. In contrast, for
Gaussian disorder, the SCBA yields fair estimates for 7, while not reproducing correctly the complete spectral
function.

However, since the SCBA prediction depends only on the two-point correlation function, it cannot be
sufficient to describe the behavior of 7; for arbitrary probability distribution of disordered potentials [46]. This is
especially the case for laser speckle disorders that are further discussed in next section.

4. Elastic scattering time and real spectral functions for laser speckle disorders

We investigate here the limitations of the SCBA in describing 7 for both attractive and repulsive laser speckle
potentials. A full understanding requires to explore in detail the features of the real spectral functions, which can
in those cases exhibit complicated profiles. We perform such an analysis on the basis of the spectral functions
measured in [48] in the specific case of k; = 0. We show that the differences reported between attractive and
repulsive laser speckle disorder are at the root of the distinct behaviors that we observe on the scattering time ;.

4.1. Limitations of SCBA prediction for laser speckle disorder

In figure 5(a) we compare the SCBA prediction 75 to the experimental determination of 7 for attractive laser
speckle disorder. Already at low initial momentum k; and low disorder strength | V;|, SCBA does not perform
better than the first order Born approximation. Since it only contains even powers of the fluctuations of the
disorder, it does not include the second order corrections modeled by 32, and is thus less reliable than second

order perturbation theory.
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Figure 5. SCBA and real spectral functions for attractive laser speckle disorder. (a) The experimental measurements of 7y (diamonds)
substantially deviate from predictions computed with SCBA (dashed—dotted lines, same than in figure 4). On the contrary, they are
fully consistent with the values 73 extracted from measured spectral functions in the extreme limit k; = 0. For better visibility, the
numerical simulations are not shown. (b) Experimentally measured (dots) and simulated (lines) spectral functions extracted from
[48], for k; = 0 and various disorder amplitudes Vi. We fit them with the convolution of an exponential and a Lorentzian
distributions, and we extract 7 from the obtained FWHM. For the strongest disorder amplitude Vg = —4008 kHz, the green dashed
line indicates the distribution B, (V).

For intermediate disorder strength | Vi|, SCBA yields apparently closer predictions to the experimental data
than the 1st order Born approximation, but it deviates again when approaching the classical limit of strong
disorder strength | Vg|. Although both 7, and 75 scale as 1/| Vg | in this regime, a quantitative mismatch is
observed that can be attributed to the singular profile of the amplitude probability distribution R, (V') of the
attractive laser speckle field. Indeed, the latter is much more peaked than A¢} , resulting in a substantially
smaller FWHM and thus larger elastic scattering time. Based on these asymptotic profiles, we calculate a ratio
between T:f’d and T§°ba’d of 5, which is consistent with the value of 3.2(5) that we measure at the lowest k;.

The case of repulsive laser speckle disorder is shown in figure 6(a). Atlow initial momentum k;, low disorder
strength | Vg|, deviations of similar magnitude compared to an attractive laser speckle are observed, originating
from the same absence of odd order correction terms For increasing disorder strength | Vi|, however, deviations
become much more pronounced, reaching more than 1 order of magnitude at the largest disorder strength. This
cannot be simply justified by the profile of the amplitude probability distribution and therefore requires deeper
analysis of the profile of the spectral functions.

4.2. Comparison with measured spectral functions

To further investigate the different behaviors of 7, a comparison to the real spectral functions is needed.
Experimentally, spectral functions of matter-waves in laser speckle disorder have been measured in the specific
case k; = 0and for alarge set of disorder strength | Vi|/h ranging from 60 Hz to 4 kHz [48]. Three examples are
shown in figure 5(b) in the case of attractive speckle potential. At weak disorder strength |Vz|/h = 60 Hz (top
panel), the spectral function exhibits an approximately Lorentzian profile, consistent with the Born
interpretation. The profile changes at intermediate disorder strength (central panel) to approach for strong
disorder the classical limit B, (V') (green dashed line in the bottom panel), although deviations due to quantum
corrections still persist around £ ~ 0 [48]. For those measured spectral functions, we extract the FWHM from a
fitand we deduce the elastic scattering time 7 in the limit k; = 0 as a function of | Vg| (appendix C). The results,
plotted in figure 5(a) (circle dots) for the same values of | V;| than considered so far. They are in good agreement
with the low momentum limit of 7, especially at strong disorder. This shows that our measurements of 7y are
fully consistent with the specific profiles of the spectral functions for the attractive laser speckle case.

For repulsive laser speckle, the spectral functions at k; = 0 are plotted in figure 6(b). Since negative energies
are strictly forbidden in repulsive potential (depicted by the gray area), the profiles are intrinsically different in
comparison to the previous case. At weak disorder strength, spectral functions still follow Lorentzian-like profile
typical of the Born regime. In the strong disorder regime, they exhibit a narrow resonance peak on top of the
broad distribution that would have been expected from the classical limit Py, (green dashed line). The presence
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Figure 6. SCBA and real spectral functions for repulsive laser speckle disorder. (a) The experimental measurements of 7; (diamonds)
strongly deviate from SCBA predictions (dashed—dotted lines), while they are fully consistent with the values 7% extracted from
measured spectral functions in the extreme limit k; = 0. (b) Experimentally measured (dots) and simulated (lines) spectral functions
extracted from [48], for k; = 0 and various disorder amplitude V. We fit them with an heuristic function, which models the bimodal
structure, in order to extract Tzf. The gray area indicates the forbidden negative energies. For the strongest disorder amplitude
Wk = 4008 kHz, the green dashed line indicates the distribution B, (V).

of this peak is related to an accumulation of bound states around the averaged ground state harmonic oscillator
energy [46—48].

As a consequence of this double structure, the time evolution is expected to show two different timescales: a
short one associated to the broad part of the spectral function and a long one associated to the narrow peak.
Experimentally, the measured time evolution is dominated by the slowest decay. The characteristic time we have
extracted when measuring 7; is thus related to the long timescale, and should be compared to the FWHM of the
narrow peak. To perform the comparison, we fit the spectral functions by an heuristic function accounting for
the bimodal structure (see appendix C), and we extract 7% from the FWHM of the peaked function. As shown
in figure 6(a), it agrees once again very well with the low momentum limit of .

In conclusion, analyzing the profiles of the real spectral functions allows us to interpret the observed
differences in the scattering time 7; between attractive and repulsive laser speckle disorder. The striking
agreement between time domain and energy domain measurements validates our method to extract 7yina
broad range of scattering regimes. It also highlights the key issue here, which is to find theoretical models that
reproduce the specific features of the spectral functions [46, 47].

5. Summary and outlook

We have investigated in this paper the behavior of the elastic scattering time 7; of ultracold atoms in disordered
potentials in the strong scattering regime. A first important result is the remarkable agreement between the
observed behavior of 7; and predictions based on the SCBA, in the case of Gaussian-distributed disordered
potentials. However, this method, which inherently does not take into account the specific form of the disorder
amplitude distribution, is not accurate for laser speckle disorder. Instead, we have shown that the calculation of
the second order term in the Born series, which is sensitive to the distribution skewness, is able to explain the
differences reported between the attractive and the repulsive speckle disorders when entering the strong
scattering regime. The validity of this pertubative approach is nevertheless limited to a narrow range of
parameters. As a second main result, we show that one has then to rely on the real shape of the spectral functions,
as measured in [48], in order to interpret our data.

Altogether, our study clarifies the validity range of common theoretical methods to predict the elastic
scattering time of matter waves in disordered potential. It highlights the need for developing adequate
formalisms in order to cope with the full statistics of the disorder, especially in the case of laser speckle disorder
that are commonly used with ultracold atoms. Beside semiclassical approaches, dedicated to the asymptotic
classical regime [46, 47], or the coherent potential approximation [58—60], a very interesting follow up would be
to confront our measurements to the recent theoretical framework of the hidden landscape [61, 62]. Such
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development of quantitative predictions is essential for the understanding of complex transport phenomena,
such as the Anderson localization where discrepancies remain between experiments, numerics and available
theories (see e.g. [63]).
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Appendix A. Second order Born approximation for laser speckle disorder

We show here how to calculate the second order correction 3, = §VGy0VGy6V of the Born expansion. It
involves the three-point correlation function Cs(Ar, Ar’) = 6V (r)6V (r + Ar)6V (r + Ar), which s strictly
null for Gaussian-distributed disorder and equals to

C3(AI‘, AI'/) _ ZVI% e—[Ar2+ Ar24+(Ar—Ar) /202 (A.1)

for a 2D laser speckle disordered potential.
The operator X3, is diagonal in the |k) basis, with matrix elements ¥, (&, k;) = (k;|2,|k;) given by
$(E ki) = Y Gk — K, ki — kKN Go(&, E)Go(E, &), (A.2)
k/’k//
where C;(kgis, kJ;,) is the Fourier transform of the three-point correlation function (A.1). When taking the
imaginary part of (A.2), we obtain

3
Im[X,(& k)] = _ﬂ Z e [&i—K)?+ (K — K" +(K"—k)*10?/6
k/’k/l
[6(€E = &ENpv(€ — &) + pvi(E — EO(E — &), (A.3)

where p.v. refers to the Cauchy principal value. The two terms revealed by (A.3) are related to the two possible
third-order processes, corresponding either to a single scattering event for the wavefunction and two scattering
events for the conjugated wavefunction, or to the other way around.

The second order Born correction is finally obtained by numerically calculating (A.3) at the energy £ = &..

Appendix B. Calculation of the self-energy in the SCBA

We present in this section the main stages in the calculation of the self-energy .. (€, k;) in the self-consistent
Born approximation. The procedure is detailed for a given set of disorder strength | ;| and initial momentum
k;, the overall process being repeated for all the sets of parameters we have explored.

At first we define an energy range [Ein, Emaxl relevant for the calculation of the spectral function. It is
chosen to be centered on the kinetic energy &y, with a width large enough to ensure that the spectral function
area is close to unity. For each energy £ of this interval, the self-consistent equations are then solved. To do so,
we calculate in parallel the self-energy 3, (€, k) for all the momenta k whose kinetic energies are contained in
therange [Emin, Emax]- We proceed by iteration, initializing the solution with the first order Born solution

Eggga = Y. Using (11) and (12), the self-energy Egg’g;l) after n + 1 iteration steps is given by
21/
2 = SRk -1 1 . (B.1)
42 E— & — X (£ K)
The iteration loop is pursued until the convergence criterion
%k | ZUEDE k) — 20 (E K
fﬁ scba ( ) scba( ) <1073 (BZ)
472 LD, k)

isreached.
Once the self-energy is known for each energy &£, the spectral function can be computed using (6). Its
normalization is verified to make sure the energy interval was correctly chosen.
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Appendix C. Extracting the widths of real spectral functions

We present here the procedure to extract the widths AE of the spectral functions experimentally measured in
[48], in order to estimate the scattering time 7. Since the spectral functions are noticeably different between
attractive and repulsive laser speckle potential, we distinguish the two cases on the following.

For attractive laser speckle disorder, we use as fit function the convolution of a Lorentzian distribution L with
an exponential distribution R:

ALNE) = L(E, &, 6E) * R(E, 8E). (C.1)

The Lorentzian distribution

LE &, 66) = & 6¢/2
T &) 1 082/4

hasa central energy £ and a FWHM 0. The exponential distribution is defined as

R(E, ) = ——e E/20(£/58), (C3)
|6&']
such that it converges towards the amplitude distribution of the attractive disorder Py, when its width 6&’
approaches Vg < 0.

Atlow disorder strength | Vz|, the width §& goes to 0 and AZl' approaches a Lorentzian profile, as
experimentally observed (see top panel in figure 5(b)). At high disorder strength, 6&’ goes to V& for R(E, 6&') to
converge towards the classical limit Py, (green dashed line in figure 5(b)). The convolution with L guarantees that
the fit function is smoothed around £ = 0, with 6€ corresponding almost to the energy region where quantum
effects are relevant. In between these two extreme cases, A reproduces well all the profiles of the measured
spectral functions.

For each disorder strength | Vi| for which the spectral function has been measured, we extract the FWHM
AE of A" and we deduce the scattering time 73 = /2 /AE. The value of 7 for any disorder strength is then
deduced by interpolation.

The case of repulsive disorder is more complicated. The profiles of the spectral functions are bimodal, made
of anarrow peak at low energy on top of a broad energy distribution. We fit those profiles by the sum of a
convoluted distribution L * R accounting for the broad part of the spectrum, and a Gaussian distribution G
accounting for the narrow peak. It yields for the fit function

(C.2)

AEP(E) = aL(E, &, 6E) * R(E, 88) + (1 — a)G(&, &, 6E), (C.4)
with « the relative weight of the first contribution. The Gaussian distribution is defined as
()
G(E, E,, 6E) = e VOE ) (C.5)
T OE

where the central energy £ and the full width §€ are chosen to be the same as the ones of L. It results in total in
only one more free parameter-a-compared to the case of attractive disorder. Since the bimodal profile are more
pronounced in the numerical simulations, « is extracted on the numerical data and kept fixed when fitting the
experimental data.

Atlow | Vg|, the spectral function is dominated by a narrow peak that is fitted by G, while L % R accounts for
the small, broad background. When increasing | Vg, the peak amplitude decreases and the spectral function
approaches closer to its classical limit. At high | Vg|, the broad part of the spectrum resembles the one of the
attractive case, whose features are captured by L * R, while the narrow peak resulting from the accumulation of
bound levels is fitted by G. Overall, the fit function (C.4) shows remarkable agreement with the measured
spectral functions at any disorder strength. Since we are experimentally sensitive to the longer timescale when
measuring 7, the relevant energy scale A is given by the width of the narrower structure 6&.

Similarly to the attractive laser speckle case, the value of 7% for any disorder strength is extracted by
interpolation of those measurements.
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