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Quench spectroscopy is a relatively new method which enables the investigation of spectral properties of
many-body quantum systems by monitoring the out-of-equilibrium dynamics of real-space observables after a
quench. So far the approach has been devised for global quenches or using local engineering of momentum-
resolved excitations. Here, we extend the quench spectroscopy method to local quenches. We show that it allows
us to extract quantitative information about global properties of the system, and in particular the elementary
excitation spectrum. Using state-of-the-art numerical methods, we simulate the out-of-equilibrium dynamics of
a variety of quantum systems following various local quench protocols and demonstrate a general scheme for
designing an appropriate local quench protocol for any chosen model. We provide detailed examples of how
the local quench protocol can be realized in realistic current generation experiments, including ultracold atomic
gases and trapped ion systems.
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I. INTRODUCTION

Quantum many-body systems driven out of equilibrium ex-
hibit a diverse range of behaviors which have stimulated much
activity in recent years. A generic quantum system subject
to a sudden quench is expected to relax to a steady state in
thermal equilibrium, provided integrability or disorder does
not break ergodicity. Beyond the asymptotic state, the manner
in which the system approaches thermal equilibrium gives
us information about its microscopic properties. For instance,
the dynamics of correlation functions contain information on
how quantum information propagates throughout the system,
which has prompted both experimental [1–5] and theoret-
ical [6–19] investigations. The question of whether further
information can be extracted from quench dynamics is now
attracting growing attention.

A first step towards extracting such information from the
nonequilibrium dynamics was taken by Lieb and Robinson,
who demonstrated the existence of a bound for the correlation
spreading of local operators in short-range models [20]. A
physical interpretation of this result was later developed us-
ing a semiclassical quasiparticle picture [21], which enabled
generalizations to other models, including long-range systems
[8,17,18,22,23]. The time evolution of correlation functions
displays a causal-cone-like structure in which the behavior
close to the edges yields information about the characteris-
tic propagation speeds of information in the system [17,19].
Spectral properties of collective excitations can also be ex-
tracted from the dynamics of correlation functions [24–27].

It has been recently shown that in a generic many-body
system the dispersion relation of collective excitations can
be obtained by measuring equal-time correlation functions
following a global quench [27]. Such global quench spec-
troscopy relies on the insight that a sudden change of a
global external parameter generates an out-of-equilibrium

initial state populated by a bunch of low-lying quasiparticle
excitations, which spread throughout the system. Separating
out their different contributions, one can reconstruct the ex-
citation spectrum using a space-time Fourier transform of
equal-time correlation functions. Since global quenches pre-
serve translation invariance, the use of nonlocal observables,
such as two-point correlation functions, is necessary to obtain
the dispersion relation of the elementary excitations in ho-
mogeneous many-body systems. In contrast, local quenches
break the translation invariance of the initial state and the
dynamics of local observables may be sufficient to reconstruct
the elementary excitations of homogeneous systems, in spite
of their extended nature. So far, local spectroscopic techniques
have explicitly constructed extended elementary excitations
site by site [28].

In this paper, we show that the nonequilibrium dynam-
ics following a single local quench out of the ground state
is sufficient to unveil the excitation spectrum of a homoge-
neous quantum many-body system. More precisely, we extend
quench spectroscopy to the case of sudden local quenches, of
the type routinely realized in current-generation experiments
[2,3]. We show that appropriate choices of the quench and
the local observable allow us to unveil the elementary exci-
tation spectrum from the ground state as well as transition
energies between excited states. Our approach is benchmarked
on a variety of spin and particle models using state-of-the-
art numerical approaches. Our main goal is to demonstrate
the value of local quench spectroscopy as a new experimen-
tal method which can be implemented in a straightforward
way. By comparison with established pump-probe techniques,
quench spectroscopy offers a simpler experimental protocol:
here, the quench plays the role of the pump, immediately
generating a superposition of excitations without requiring
the fine-tuning of resonant laser beams to address individual
excitations directly.

2469-9926/2020/102(3)/033337(12) 033337-1 ©2020 American Physical Society

https://orcid.org/0000-0003-2257-6521
https://orcid.org/0000-0001-9065-9842
https://orcid.org/0000-0003-1839-6173
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.033337&domain=pdf&date_stamp=2020-09-28
https://doi.org/10.1103/PhysRevA.102.033337


L. VILLA et al. PHYSICAL REVIEW A 102, 033337 (2020)

The paper is organized as follows. After briefly introducing
the models we consider (Sec. II), we discuss the local quench
spectroscopy approach (Sec. III). We then discuss how to ex-
tract elementary excitation spectra (Sec. IV) as well as energy
transitions between excited states (Sec. V), benchmarking
the corresponding approaches on various models. We finally
summarize and discuss the results (Sec. VI).

II. MODELS

To illustrate the local quench spectroscopy approach, we
consider three specific lattice models. We focus on one-
dimensional systems at zero temperature for which exact
numerical simulations can be efficiently performed, and
which are particularly suitable for quantum simulation of
strongly correlated regimes [29]. The approach is, however,
equally valid in higher dimensions. The models which we
study in this work are routinely realized in experimental plat-
forms such as trapped ions [28], Rydberg atoms [30–32], and
ultracold atomic gases [1,33,34]. All are able to reach the
requisite low temperatures and offer a high degree of control,
including the single-site or -atom addressability [35,36] nec-
essary for the engineering of local quenches.

A. Transverse field Ising chain

The first model we consider is the transverse-field Ising
(TFI) spin-1/2 chain, given by the Hamiltonian

ĤTFI = −J
∑

R

σ̂ x
R σ̂ x

R+1 − h
∑

R

σ̂ z
R, (1)

where h is the transverse field, J > 0 the ferromagnetic ex-
change coupling, and σ̂ α

R the Pauli matrix along the axis
α at the lattice site R. A quantum phase transition at h =
J separates a z-polarized paramagnetic phase (for h > J)
from a doubly degenerate ±x-polarized ferromagnetic phase
(for h < J). The exact excitation spectrum can be obtained
by a mapping to noninteracting spinless fermions using the
Jordan-Wigner transformation, followed by a Bogoliubov
transformation [37], which yields

Ek = 2
√

h2 + J2 − 2hJ cos k, (2)

where k is the excitation momentum. In the following dis-
cussion, we will restrict ourselves to the z-polarized phase
in which the elementary excitations are local spin flips [38]
and are suitable to local quench spectroscopy. In contrast, the
x-polarized phase is characterized by topologically nonlocal
domain walls, which are not directly amenable to local quench
spectroscopy. The excitation spectrum in the x-polarized
phase can, however, be obtained from that of the z-polarized
phase via self-dual symmetry—see Appendix B for details.

B. Heisenberg chain

The second model is the Heisenberg spin-1/2 chain, gov-
erned by the Hamiltonian

ĤH = −J
∑

R

(
σ̂ x

R σ̂ x
R+1 + σ̂

y
Rσ̂

y
R+1 + σ̂ z

Rσ̂ z
R+1

)
, (3)

where J > 0 is the isotropic ferromagnetic spin exchange
coupling between nearest neighbors. The Heisenberg chain is

a nontrivial interacting model with a highly degenerate ground
state in which all spins are aligned in the same but arbitrary
direction, irrespective of the value of J > 0. Nevertheless, this
model is integrable and can be solved by Bethe ansatz [39]. It
yields the excitation spectrum

Ek = 4J (1 − cos k). (4)

In contrast to the TFI model, however, the real-space repre-
sentation of the excitations is unknown. We will nonetheless
demonstrate that local quench spectroscopy does not require
such prior knowledge to probe the spectral properties of the
model, as the underlying mechanism is generic.

C. Bose-Hubbard chain

We finally consider the Bose-Hubbard (BH) chain, given
by the Hamiltonian

ĤBH = −J
∑

R

(â†
RâR+1 + H.c.) + U

2

∑
R

n̂R(n̂R − 1), (5)

where J > 0 is the nearest-neighbor hopping amplitude,
U > 0 is the on-site interaction energy, â(†)

R is the annihilation
(creation) operator of a boson at the lattice site R, and n̂R =
â†

RâR is the corresponding occupation number. At temperature
T = 0, the model contains two phases separated by a quantum
phase transition: a Mott insulator (MI) for large U/J and
integer filling, and a superfluid (SF) otherwise. The average
filling is denoted n̄ = (1/L)

∑
R〈n̂R〉.

The excitation spectrum of the model is only known in
limiting cases. In the weakly interacting superfluid regime,
n̄ � U/2J , the excitations are Bogoliubov quasiparticles [40]
with the excitation spectrum

Ek = 2J
√

2 sin2
(

k
2

)[
2 sin2

(
k
2

) + n̄U
J

]
. (6)

Deep in the Mott phase, the BH chain can be mapped to a
fermionic model which admits two types of excitations [7].
Their excitation spectra for n̄ = 1 are

E∓
k = ∓J cos k + 1

2

√
(U − 6J cos k)2 + 32J2 sin2 k, (7)

respectively. In the strongly interacting limit U � J , these
excitations correspond to doublons and holons.

III. LOCAL QUENCH SPECTROSCOPY

Let us now discuss the general idea underlying local
quench spectroscopy.

A. Quench spectral function

The quench spectral function (QSF) was first introduced in
Ref. [27] for global quantum quenches. Here we extend it to
local quenches where translation invariance of the initial state
is broken and the observables are local one-point functions.
Following a local quench at time t = 0, we study the dynamics
of a local observable Ô(x, t ) at a given position x and time
t > 0, and compute the expectation value

G(x; t ) = 〈Ô(x, t )〉 = Tr[ρ̂iÔ(x, t )], (8)
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where ρ̂i is the density matrix immediately after the quench.
The translation invariance of the initial state is broken, but the
Hamiltonian (which is unchanged) remains translationally in-
variant. Using the translation operator, we decompose Ô(x) =
e−iP̂·xÔ(0)e+iP̂·x, where P̂ is the total momentum operator and
we set h̄ = 1. In a common eigenbasis of Ĥ and P̂, each
eigenstate |n〉 has a well defined momentum Pn. Equation (8)
then reads as

G(x; t ) =
∑
n,n′

ρn′n
i ei(En−En′ )t ei(Pn′−Pn )x 〈n| Ô |n′〉 , (9)

where Ô ≡ Ô(0, 0) and ρn′n
i is the initial density matrix co-

herence between the states |n′〉 and |n〉. The QSF is defined by
taking the space-time Fourier transform of Eq. (9):

G(k; ω) =
∫

dx dt e−i(kx−ωt ) G(x; t )

= (2π )D+1
∑
n,n′

ρn′n
i 〈n| Ô |n′〉

× δ(En′ − En − ω)δ(Pn′ − Pn − k), (10)

where D is the spatial dimension. Equation (10) will be the
basis of the following analysis.

At this point it is worth comparing the QSF for local
quenches discussed here with the case of global quenches. The
key element in spectroscopy is the emergence of frequency
and momentum resonances corresponding to elementary ex-
citations between eigenstates, n ↔ n′. For a local quench,
the translation invariance of the initial state is explicitly bro-
ken by the quench and local (one-point) observables Ô(x, t )
are sufficient to produce such resonances at ω = En′ − En

and k = Pn′ − Pn, corresponding to the Dirac distributions
in Eq. (10). In contrast, in the case of a global quench, the
initial state is translationally invariant and it is necessary to
use nonlocal observables, for instance, two-point correlation
functions [27]. For more details, see Appendix A.

In contrast with standard spectroscopic techniques, such
as those probing the dynamical structure factor, local quench
spectroscopy does not require the measurement of a two-time
correlation function, but instead only requires measurement
of a single local observable, which is both numerically
and experimentally advantageous. For further details on the
fundamental differences between quench spectroscopy and
established pump-probe methods, see the extended discussion
in Ref. [27].

B. Local quench spectroscopy protocol

The general strategy of local quench spectroscopy directly
follows from Eq. (10), and from here we will focus on weak
quenches which generate only low-energy excited states. The
local quench protocol we will use takes the same general
form for each of the models we consider. We first initialize
the system in the ground state, and then we apply a local
operator L̂ to a single lattice site in the center of the chain. The
key point is that, because the Hamiltonian is translationally
invariant, the eigenstates have a well-defined momentum and
extend over the full system. The action of the local operator
generates an inhomogeneous state that is thus a superposition
of all low-lying excited states, such that the initial state may

be written |ψi〉 = L̂ |0〉 = ∑
m cm |m〉. To probe the excitation

spectrum from the ground state, two criteria must be met.
First, we need that the selection rules for energy and mo-

mentum in Eq. (10) pick out the transition between the ground
state and the excited states. Specifically, if |n〉 = |0〉 is the
ground state so that Pn = 0 and En = 0, this means that,
for each eigenstate |n′〉, the QSF G(k, ω) displays a peak at
k = Pn′ and ω = En′ . (Alternatively, one can exchange the
roles of n and n′). The choice of the observable is thus crucial
in probing the transitions required to reconstruct the spectrum.

Secondly, the density-matrix coherences between the
ground state and the excited states, ρn′0

i (or ρ0n
i ), must also

be nonzero. This is realized by a quench such that the initial
state has a nonzero overlap with both the ground state and the
excited states.

One possible choice of observable required to probe the
spectrum can be inferred from a simple argument. We first
initialize the system in the ground state. We then apply a local
operator L̂ such that the postquench state is |ψi〉 = L̂ |0〉 and
we require the following two conditions to hold:

(i) 〈0|Ô|n′〉 	= 0, (11)

(ii) ρn′0
i = 〈n′|ψi〉 〈ψi|0〉 = 〈n′|L̂|0〉 〈0|L̂†|0〉 	= 0. (12)

Taking for simplicity the case where the local operator is uni-
tary (L̂† = L̂−1), we may write the vacuum as |0〉 = L̂† |ψi〉 =∑

m cmL̂† |m〉. Inserting this into Eq. (11) gives

〈0|Ô|n′〉 =
∑

m

c	
m 〈m|L̂Ô|n′〉 	= 0. (13)

One suitable—although not unique—choice of operator is
Ô = L̂†, i.e., the observable Ô corresponds to an opera-
tor which “reverses” the quench we perform with the local
operator L̂.

This mechanism of “reversing the quench” is intuitive and
generic, and does not require any prior knowledge of the form
of the excitations. The quench itself generates the excitations,
and a correctly chosen observable allows their properties to
be measured. In situations where the quench is not described
by the action of a unitary operator, one should substitute
L̂ 
→ (L̂−1)† in Eq. (13), making the choice of Ô less intu-
itive. We will however demonstrate that the picture of the
observable “reversing” the quench still holds with only minor
modifications.

The remaining challenge is to ensure that the density
matrix coherences ρn′0

i in Eq. (12) are nonvanishing. This
condition states that, as in any spectroscopic technique, the
probe must couple the ground state to the targeted excitations.
Here the quench itself plays the role of the pump and a coher-
ent superposition must be created. This can be accomplished
by an operator of the form L̂ ∝ 1̂ + P̂, where the operator P̂
couples the ground state to the excited states |n′〉 we want to
probe, so that 〈0|L̂†|0〉 ∝ 1 and 〈n′|L̂|0〉 ∝ 〈n′|P̂|0〉 	= 0. As
we will see, this form is exactly satisfied in spin systems by
the rotation operator.
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FIG. 1. (a) Parametrization (θ, φ) of an arbitrary spin-1/2 state
u (green) on the Bloch sphere. (b) Example of a local quench for a
spin model. Initially aligned along z, the central spin (red arrow) is
rotated around the axis y by an angle π/2 to point along x.

C. Local quenches

We now discuss experimentally realistic quenches suitable
for local quench spectroscopy, applicable to spin and particle
models.

Spin models. For the spin-1/2 models, the local operation
applied to the ground state is a rotation of a spin at some
site S; see Fig. 1(a). The spin rotation operator of an angle
α around the axis n is given by

R̂n(α) = e−i α
2 n·σ̂ = cos

(
α
2

)
1̂ − i sin

(
α
2

)
n · σ̂. (14)

As long as the rotation angle α 	= π , this form satisfies both
Eqs. (11) and (12). In both the TFI and Heisenberg models,
we rotate the central spin around the axis y by an angle
θ = π/2. In the TFI model, for h � J , the ground state is
strongly polarized along z and thus very close to the product
state |ψGS〉  |↑〉⊗L, where L is the spin chain length. The
after-quench state is given by

|ψi〉  |↑〉⊗S−1 ⊗ [
cos

(
θ
2

) |↑〉S + sin
(

θ
2

) |↓〉S
] ⊗ |↑〉⊗L−S ,

(15)

see Fig. 1(b). The elementary excitations of this model are
spin flips, and so rotating the central spin by π/2 means
that we have prepared the system in a coherent superposition
between the z-polarized ground state and a state with a single
spin flip.

In the Heisenberg model, the ground state is highly de-
generate due to global rotational invariance. In our numerical
simulations we lift this degeneracy by applying a small mag-
netic field to the first site of the chain. In the numerics, the field
is aligned along the z axis with strength hz = −10−2J . As with
the TFI model, the ground state is thus also z polarized, and
so the postquench initial state is also approximately given by
Eq. (15).

Bose-Hubbard model. In the BH model, local quenches
consist of the introduction of defects on a single site. In the
superfluid we start from the ground state and then remove all
particles in the center. In the Mott insulating phase, we also
start from the ground state (close to the homogeneous state
with n̄ particles per site when U/J � 1), and remove or add

one particle in the center. In contrast to the spin models, these
quenches are nonunitary and do not conserve the total particle
number.

D. Numerical simulations

One-dimensional quantum systems can be efficiently sim-
ulated using numerically exact tensor network methods. Here,
we use density-matrix renormalization group (DMRG) to ini-
tialize our models in their prequench equilibrium ground state.
We then apply a time-dependent variational principle (TDVP)
algorithm to compute the time evolution following the local
quench. DMRG is a well-established variational technique
for the study of one-dimensional quantum systems [41,42],
able to efficiently compute ground-state properties of quantum
many-body systems. TDVP is a dynamical variational proce-
dure strongly related to the DMRG algorithm [43,44], which
allows efficient simulation of the nonequilibrium dynamics
of the systems we consider. Both techniques in their modern
forms are typically understood in the framework of matrix
product states and tensor networks, and we refer the reader
to Refs. [45,46] for further details.

In all of the following, we use a maximum bond dimension
χ = 256 and simulate lattice chains of size L = 47, compara-
ble with state-of-the-art experiments using ultracold atomic
gases and trapped ion platforms. We have ensured conver-
gence of our numerical results by benchmarking with a variety
of different bond dimensions and system sizes. In all cases, we
use open boundary conditions for the numerical simulations.
We choose to make our local quench in the center of the
chain to minimize boundary effects. We have verified that the
precise lattice site used does not affect the results.

IV. EXTRACTING EXCITATION SPECTRA

We now discuss the implementation of local quench spec-
troscopy to probe elementary excitation spectra.

A. Analytical insight

In the following, we will focus on weak quenches which
generate low-energy excited states containing at most a sin-
gle quasiparticle [47], such that |n′〉 = γ̂ †

q |0〉 with γ̂ †
q the

creation operator of a quasiparticle with momentum q. In
all of the following q = 0 stands for the ground state, i.e.,
the vacuum of quasiparticles. The quasiparticles can be ei-
ther fermionic or bosonic and satisfy the (anti)commutation
relations [γ̂p, γ̂

†
p′ ]± = δp,p′ . The momentum selection rule in

Eq. (10) imposes Pn = q − k, and we find

G(k; ω) = 2π

∫
ρ

q;q−k
i 〈q − k| Ô |q〉 δ(Eq−k − Eq + ω)dq,

(16)

where we moved to the thermodynamic limit and replaced
the sum with an integral. The QSF given by Eq. (16) shows
a resonance in ω for the transitions between the quasiparti-
cle of momenta q − k and q. For the sake of simplicity, we
restrict the presentation to the case where a single type of
quasiparticle is generated by the quench but the discussion
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can be easily generalized to systems with multiple different
types of quasiparticles.

To probe the excitation spectrum, we need an observable
Ô that creates or annihilates an excitation, hence coupling
the ground state with the lowest excited-state manifold. It
follows that Ô should not conserve the number of quasipar-
ticles. The simplest form which satisfies this requirement is
Ô = ∑

p Apγ̂p + H.c., where Ap is an arbitrary function of the
momentum p and we write its complex conjugate Āp. The
coupling term 〈q − k| Ô |q〉 in Eq. (16) is then nonzero in two
cases only. Either q = 0, and then

〈q − k| Ô |q〉 =
∑

p

Āp 〈0| γ̂−kγ̂
†
p |0〉 = Ā−k (17)

or q = k and then

〈q − k| Ô |q〉 =
∑

p

Ap 〈0| γ̂pγ̂
†
q |0〉 = Ak. (18)

The QSF in Eq. (16) thus reduces to

G(k; ω) = 2π
[
Ak ρk;0

i δ(ω − Ek) + Ā−k ρ0;−k
i δ(ω + E−k)

]
.

(19)

For each momentum k, the Dirac distributions induce a
resonance at ω = ±E±k. The QSF thus yields the disper-
sion relation of the first excited-state manifold, k → E±k. If
the system admits different types of quasiparticles, Eq. (19)
should be modified to include a sum over all types of excita-
tions r and each excitation branch is probed by the QSF.

B. Numerical results

We now demonstrate the local quench spectroscopy ap-
proach, using the models introduced in Secs. II A, II B, and
II C. The resolution in frequency of the QSF is inversely
proportional to the total evolution time. We restrict our
simulations to tJ = 10, which allows for immediate com-
parison and implementation in state-of-the-art experiments
[2,3,5,28,48]. Note that our simulations display small finite-
size effects in the form of reflections at the boundaries in the
real-space data. We find that a small number of reflections are
not an issue and do not qualitatively alter the QSF.

TFI chain. We first consider the transverse field Ising chain
(Sec. II A). We initialize the system in the ground state and ro-
tate the central spin along y by θ = π/2 such that the obtained
initial state is close to the product state of Eq. (15).

In order for the local quench protocol to probe the ex-
citation spectrum, we must choose a suitable observable, as
discussed in Sec. IV A. In the present case, we require an ob-
servable which connects the ground state with the spin-rotated
excited state we prepare as the initial state of our quench.
More formally, since the rotated spin in the center of the chain
is a linear combination of a spin up and a spin down, the
spin raising operator σ̂+ = σ̂ x + iσ̂ y couples it to the ground
state. The lowering spin operator σ̂− = σ̂ x − iσ̂ y has no effect
as the resulting state is orthogonal to the ground state. Both
observables σ̂ x or σ̂ y are linear combinations of the operators
σ̂± and can be used to unveil the spectrum. Equivalently, in the
z-polarized phase, we can use the Holstein-Primakoff transfor-
mation to show that both σ̂ x and σ̂ y are of the form described

FIG. 2. TDVP simulation of the TFI model with L = 47 sites.
Top: (a) dynamics of 〈σ̂ y(R, t )〉 for h/J = 3, in the z-polarized phase;
(b) corresponding QSF, in excellent agreement with the exact excita-
tion spectrum given by Eq. (2) (red line). Bottom: the same quantities
for h/J = 1.1, close to the critical point. Here and in the following,
the irrelevant ω = 0 component is removed for visibility, and we plot
the normalized modulus of the QSF.

in Sec. IV A, namely σ̂ x  γ̂ + γ̂ † and σ̂ y  i(γ̂ − γ̂ †), valid
for 〈γ̂ †γ̂ 〉 � 1, where γ̂ and γ̂ † are the annihilation and
creation operators of a spin wave excitation. In contrast, σ̂ z =
2γ̂ †γ̂ − 1 is not of this form and does not allow reconstruction
of the spectrum; see Sec. V.

Numerical results from TDVP are displayed in Fig. 2 for
σ̂ y at h/J = 3 (within the z-polarized phase) and h/J = 1.1
(still in the z-polarized phase but close to the critical point).
In both cases, the maximum of the QSF modulus coincides
with the analytical excitation spectrum (2) (red line). This
excellent agreement with the analytical excitation spectrum
remains in the z-polarized phase even very close to the critical
point h/J = 1. For h/J < 1, corresponding to the x-polarized
phase, the fundamental excitations are nonlocal domain walls
and it is not possible to find a local operator which couples the
ground state to any of the first excited states. Global quench
spectroscopy is therefore preferable in such a case [27]—see
Appendix B for details. In local quench spectroscopy, it is,
however, possible to couple the ground state to excited states
containing two quasiparticles, in which case instead of a spec-
trum we see a broad continuum—see Appendix C.

Heisenberg chain. We now consider the Heisenberg chain.
Contrary to the TFI chain, here the real-space representation
of the excitations is unknown; thus there is no a priori simple
choice for the observable. Despite this, using the same quench
protocol as for the TFI chain, the numerical results displayed
in Fig. 3 show excellent agreement with the analytical dis-
persion relation (4). This example demonstrates that explicit
construction of elementary excitations is unnecessary for the
local quench method. Quite generically, a weak local quench
populates the low-lying eigenstates of the system. As the
quench considered here is the result of a unitary operation,
the logic of Sec. IV holds exactly, allowing us to obtain
the excitation spectrum simply by choosing the observable
which reverses the quench. The only exception to this rule
are cases where the low-lying excited states are protected by a
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FIG. 3. TDVP simulation of the Heisenberg chain with L = 47
sites. (a) Dynamics of 〈σ̂ y(R, t )〉 after preparing the system in the
ground state and rotating the central spin by π/2 around the y axis.
(b) Corresponding QSF modulus in excellent agreement with the
excitation spectrum predicted by the Bethe ansatz Eq. (4) (red line).

symmetry which cannot be broken by a local operator, e.g.,
the topologically nonlocal domain-wall excitations present in
the TFI model for h < J .

BH chain. We finally investigate the Bose-Hubbard chain.
We begin by examining a quench in the mean-field superfluid
regime, where the excitation spectrum is well approximated
by Eq. (6). From hydrodynamical formulations, one can ex-
pand the density operator as n̂ = n0 + δn̂, where n0 is a
classical field and δn̂ is the density fluctuations. In momentum
space, δn̂k = Ak (γ̂k + γ̂

†
k ) (see for instance [49]) such that the

density is of the form required to probe the excitation spec-
trum. After initializing the system in its ground state using
DMRG, here we remove all particles on the central lattice
site and let the system evolve. Numerical data for two fillings,
n̄  1.4 and n̄  3.0, with U/J = 2 is shown in Fig. 4. The
QSF displays clear branches which agree well with Eq. (6).

We now turn to the Mott insulating phase, which contains
two different types of excitations propagating with different

FIG. 4. TDVP simulation of the BH chain in the superfluid phase
with U/J = 2 and L = 47 sites. (a) Dynamics of 〈n̂(R, t )〉 after
preparing the system in the ground state with n̄  1.4, then removing
all particles from the center site. (b) Corresponding QSF modulus
in excellent agreement with the excitation spectrum Eq. (6) (red
line). (c) Dynamics of 〈n̂(R, t )〉 after preparing the system in the
ground state with n̄  3.0 and performing the same quench. (d) The
corresponding QSF modulus. The strong signal close to k = 0 is a
signature of quasi-long-range order in the 1D superfluid (note that
the k = 0 component itself has been removed for clarity).

velocities. To understand the nature of the excitations deep
in the Mott phase, U > 4(n̄ + 1)J , one may restrict the local
Hilbert space to n̄ ± c with c ∈ {−1, 0, 1}, and introduce the
fermionic doublons and holons (noted ĉR,±) related to the
physical particles by â†

R = √
n̄ + 1 ZR,+ĉ†

R,+ + √
n̄ ZR,−ĉR,−,

where ZR,± is the Jordan-Wigner phase factor [7]. The excita-
tions are then found by the Bogoliubov transformation γ̂

†
k,± =

u(k)ĉ†
k,± ± v(k)ĉ−k,∓. In the strongly interacting regime and

to first order in J/U , one finds u(k) = 1 and v(k) = 0, and
the true excitations of the system reduce to pure doublon
and holon excitations.

The natural quench we may wish to make in the Mott
insulator corresponds to the addition or removal of a single
particle. For finite U/J , this corresponds to the creation of
a linear superposition of both types of excitations. However,
this alone is not sufficient for local quench spectroscopy as the
resulting state is orthogonal to the ground state and as such it
does not satisfy Eq. (12). Analogous to the rotation operator
used in spin systems, we must prepare a superposition state
using a local quench operator of the form L̂ ∝ 1̂ + âL/2. The
observable we choose to probe is then â†(R, t ), which again
reverses the quench, plus its Hermitian conjugate, namely
Ô(R, t ) = â(R, t ) + â†(R, t ).

As this procedure does not conserve the total number of
particles in the system, both the preparation of the state and
the measurement of the observable will be experimentally
challenging. This can be experimentally realized in a double-
species Bose-Hubbard model, where we require the bosons
to have two different internal hyperfine states (labeled |↑〉
and |↓〉) which can be individually addressed. By applying
an appropriate laser pulse [33,50–52], it is possible to locally
prepare a boson in the required coherent superposition of
both hyperfine states. Rather than measuring the bare cre-
ation or annihilation operator, the experiment will instead
probe the “spin-flip” operator â†

↓(R, t )â↑(R, t ) + H.c. asso-
ciated to transitions between the two hyperfine states, and
which has previously been reconstructed from measurements
in Ref. [48]. The two-species Bose-Hubbard model can be
mapped onto a pseudospin Hamiltonian in the strongly inter-
acting limit [50,53–55]: this quench again becomes a unitary
rotation of the pseudospin and the required operator again
reduces to a transverse magnetization, precisely as we have
previously discussed in the case of spin chains.

Starting from the ground state with n̄ = 1 and following the
procedure above, we prepare the system with the central site
in a coherent superposition of Fock states (|0〉 + |1〉)/

√
2 and

probe the dynamics of 〈(â + â†)(R, t )〉. The QSF displays one
branch as shown in Fig. 5(b) associated to the quasiparticle
close to the holon (blue line). If we alternatively add one
particle such that the central site is in the coherent superposi-
tion of Fock states (|1〉 + |2〉)/

√
2, we can probe the doublon

dispersion relation; shown in Fig. 5(d). The latter quench may
be much more challenging to engineer experimentally, but we
include it for completeness.

Finally, we stress that the density operator n̂(R, t ) does
not couple the ground state to the first excited-state man-
ifold, and thus cannot be used to probe the spectrum,
though it does allow us to obtain complementary information
about the quasiparticles (see Sec. V). Neither can one use
g1 = 〈â†(R, t )â(0, t )〉 as was done in Ref. [27], since here for
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FIG. 5. TDVP simulation of the BH chain in the Mott insulator,
with U/J = 20, n̄ = 1. (a) Dynamics of 〈(â + â†)(R, t )〉 after the
system was prepared with the central site in a coherent superposi-
tion of Fock states (|0〉 + |1〉)/

√
2. (b) The associated QSF, with

the excitation spectra from Eq. (7) indicated by the cyan and red
lines. In this case only one band (close to the holon for U � J) is
visible. (c) Dynamics of 〈(â + â†)(R, t )〉 now with the central site
in the coherent superposition of Fock states (|1〉 + |2〉)/

√
2. (d) The

associated QSF: in this case, only the band close to the doublon is
visible (red line).

a local quench two-point functions do not allow reconstruction
of the excitation spectrum in a simple way (see Appendix A).

V. LOCAL QUENCH SPECTROSCOPY
FOR TRANSITION ENERGIES

We now extend the local quench spectroscopy and show
that energy differences between excited states within the same
excitation manifold can also be probed.

A. Analytical insight

To probe transition energies, we need an observable Ô
which conserves the number of quasiparticles, as this restricts
the expectation value in the QSF to states within the same
manifold. The simplest form of such an observable is Ô =∑

p,p′ 	=0 Bp,p′ γ̂ †
p γ̂p′ . The only nonzero contributions to the ex-

pectation value 〈q − k| Ô |q〉 are situations where both q and
q − k are nonzero, such that

〈q − k| Ô |q〉 = 〈q − k|
∑

p,p′ 	=0

Bp,p′ γ̂pγ̂
†
p′ |q〉

=
∑

p,p′ 	=0

Bp,p′δq,pδq−k,p′ = Bq,q−k, (20)

where we have discarded an irrelevant k = 0 term. The QSF
given by Eq. (16) now reads as

G(k; ω) = 2π

∫
Bq,q−k ρ

q;q−k
i δ(Eq−k − Eq + ω)dq. (21)

Here, the delta distribution selects transition energies within
the first excited-state manifold, rather than coupling to the
ground state. In general, Eq. (21) does not show any δ-like
divergence, owing to the integral over q. It can, however, show

algebraic divergences along some specific lines k → ω(k). To
show this, it is convenient to define the function

gk (q, ω) = Eq−k − Eq + ω, (22)

and call q	
k (ω) its ω-dependent zeros. As long as ∀q	

k (ω),
∂qgk (q)|q=q	

k (ω) 	= 0, we can rewrite Eq. (21) as

G(k; ω) = 2π
∑
q	

k (ω)

|∂qgk (q	
k (ω))|−1

×
∫

Bq,q−k ρ
q;q−k
i δ(q − q	

k (ω))dq

= 2π
∑
q	

k (ω)

Bq	,q	−k ρ
q	;q	−k
i |∂qgk (q	

k (ω))|−1
. (23)

Since the function gk (q, ω) is in general analytic, a divergence
in the QSF can only be observed when ∂qgk (q	

k (ω)) → 0. In
some cases, it can lead to a well-defined branch, which is not
to be confused with the excitation spectrum, as detailed below.

The special case of a cosinelike dispersion relation. Let us
consider a cosinelike dispersion relation, of the form

Ek = � − v cos k, (24)

where � − v is the gap and v the maximum group velocity.
This spectrum indeed changes its convexity exactly in the
middle of the half-Brillouin zone, at k = π/2. Such a spec-
trum is relevant to many situations. For instance, it applies
to the TFI model away from criticality (h � J or h � J), to
the Heisenberg model for any J , as well as to doublons and
holons in the BH model deep in the MI phase, U � J . The
energy difference appearing in the selection rule of Eq. (21)
can be rewritten as

Eq − Eq−k = −2v sin(k/2) sin(k/2 − q). (25)

The zeros of gk (q, ω) are then given by

gk (q	
k (ω)) = 0 ⇔ sin(k/2) sin [k/2 − q	

k (ω)] = − ω

2v
. (26)

This equation has solutions provided ω � |2v sin(k/2)|, and
we find

q	
k (ω) = k/2 + arcsin

(
ω/2v

sin(k/2)

)
, (27)

for k 	= 0. We can then evaluate explicitly

∂qgk (q)
∣∣
q=q	

k (ω) = 2v sin(k/2)

√
1 −

(
ω/2v

sin(k/2)

)2

. (28)

Using Eq. (23) we finally get

G(k, ω) = Bq	
k (ω),q	

k (ω)−k ρ
q	

k (ω);q	
k (ω)−k

i

|2v sin(k/2)|
√

1 − (
ω/2v

sin(k/2)

)2
. (29)

Therefore, except for pathological cases where the numerator
cancels for all k and ω, the QSF shows a divergence along the
line

ω = ±2v sin(k/2). (30)
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FIG. 6. (a) The divergence of the QSF can be interpreted by
the interference of two different wave packets that propagate with
the same group velocity. This corresponds to frequencies such that
ω = Eq	 − Eq	−k , where the notation q	 is short for q	

k (ω). (b) The
excitation spectrum of the TFI model strongly deviates from the
cosinelike spectrum close to the critical point h/J = 1. Despite this,
there always exist two points (except for a single momentum) with
different momenta but the same velocity such that Eq. (31) is satisfied
and the divergence in the QSF observed (inset).

This is, as we will see in the following numerical results,
exactly the signal that we obtain if observables are chosen so
as to conserve the number of quasiparticles.

Interpretation of the divergence. From the definition of gk ,
the zeros of ∂qgk (q	

k (ω)) correspond to the values of k, where

v	
g(q	

k (ω) − k) = v	
g(q	

k (ω)), (31)

with vg = ∂qEq the excitation group velocity. Hence the ex-
trema of the QSF correspond to situations where two different
wave packets, formed by quasiparticles created by the quench,
propagate with exactly the same group velocity [Fig. 6(a)] and
maximize their interference, either constructively or destruc-
tively. A similar phenomenon is known to induce divergences
in other contexts, such as in antiferromagnets where caus-
tics in the density of states of two-magnon excitations can
be induced by couplings between the ground state and the
second excited manifold [56]. We discuss further features of
two-quasiparticle spectra in Appendix C.

Equation (31) can be satisfied for an interval of values of k
if and only if Ek changes convexity. This condition is far less
restrictive than it may appear, as shown on the TFI model for
the nontrivial situation where h/J is close to 1 [see Fig. 6(b)];
there always exists a value q	 for each k such that Eq. (31) can
be satisfied.

B. Numerical results

Heisenberg chain. Here we start with the Heisenberg
chain, as the spectrum is exactly of the form of Eq. (24)
with � = v = 4J . The local quench procedure is the same as
before, and we again initialize the system in the ground state
where the central spin is rotated by θ = π/2 around y, but here
we instead probe 〈σ̂ z(R, t )〉. Using the Holstein-Primakoff
transformation, this operator in terms of quasiparticles reads
as σ̂ z = 2γ̂ †γ̂ − 1̂, which conserves the number of quasipar-
ticles and is thus (up to an irrelevant constant term) of the
required form discussed in Sec. V A. The numerical result is
shown in Fig. 7. It displays a maximum at ω = ±8J sin(k/2),
consistent with the prediction of Eq. (30).

TFI chain. We now turn to the TFI chain in the high field
regime, h � J . Using an expansion to first order in J/h, the

FIG. 7. TDVP simulation of the Heisenberg chain. (a) Dynam-
ics of 〈σ̂ z(R, t )〉. (b) Corresponding QSF modulus, in excellent
agreement with the prediction coming from energy differences
8J sin(k/2) (blue line). The spectrum is displayed as a dashed red
line for reference.

excitation spectrum (2) can be cast into the form of Eq. (24)
with � = 2h and v = 2J . We probe 〈σ̂ z(R, t )〉, following the
same quench protocol as for the Heisenberg chain. The TDVP
results are shown in Fig. 8(a) for the same parameters as in
Fig. 2(a), showing excellent agreement with the prediction
of Eq. (30); see solid blue line. In the situation where the
excitation spectrum cannot be expanded to give a cosinelike
form, for instance, as in Eq. (2) close to the critical point, one
can still numerically compute the maxima of Eq−k − Eq with
respect to q at fixed k: indeed from Eq. (31) we know that the
divergences in the QSF result from such points. These results
are shown in Fig. 8(c): remarkably, even close to the critical
point, the numerically determined maxima of Eq−k − Eq are
indistinguishable from the prediction of Eq. (30), which gives
excellent agreement with the numerical data.

BH chain. We finally consider the BH model deep in the
Mott insulating phase. From the expressions of â(†)

R given in
Sec. II C, the density operator contains terms proportional to

FIG. 8. TDVP simulation of the TFI model. (a) Dynamics of
〈σ̂ z(R, t )〉 with h/J = 3. (b) Corresponding QSF modulus, in excel-
lent agreement with the predictions coming from energy differences
4J sin(k/2) (blue line). As expected, no signal is visible around the
excitation spectrum (dashed red). (c) Dynamics of 〈σ̂ z(R, t )〉 with
h/J = 1.1, close to the critical point. Here, the excitation spectrum
is close to, but still distinguishable from, the signal from the energy
differences. (d) Corresponding QSF modulus. Even in this regime,
Eq. (30) (blue line) is a very good fit to the data, with any deviations
being below our resolution.
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FIG. 9. TDVP simulation of the BH chain in the Mott insulat-
ing phase with U/J = 75, n̄ = 1. (a) Dynamics of 〈n̂(R, t )〉, where
the initial state is the ground state with one particle in the center
displaced to the neighboring site. (b) Corresponding QSF modulus,
in excellent agreement with the predictions coming from energy
differences for the doublon −8J sin(k/2) (dashed cyan) and the
holon 4J sin(k/2) (dashed blue). The ω = 0 component is removed
for visibility.

γ̂
†
k,±γ̂k′,±, which are of the required form given in Sec. V A,

and can in principle probe both types of excitations. Time
evolution of the density and the associated QSF for U/J = 75
and n̄ = 1 are displayed in Fig. 9. The initial state is the
ground state on which a particle-hole pair has been created
in the center by moving one particle to the neighboring site.
The QSF displays several distinct branches which match the
energy differences Eq. (30) for the doublon (v = 4J) and the
holon (v = 2J), respectively. The doublon propagates twice
as fast as the holon due to the Bose enhancement factor [7],
as can be seen by expanding Eq. (7) to leading order in J/U .
Note that the two branches for the holon correspond to left-
and right-moving signals, respectively, while the single branch
for the doublon is for the right-moving signal alone, matching
the signal seen in the real-space data in Fig. 9(a).

VI. CONCLUSION

In this paper, we have extended quench spectroscopy to
local quenches. We have proposed a general scheme able to
unveil spectral properties of interacting many-body quantum
systems including the elementary excitation spectrum and
transition energies between excited states. Here, we have fo-
cused on one-dimensional systems, where quasiexact tensor
network numerical methods are available which allow detailed
benchmarking of local quench spectroscopy, and where many
experiments are performed [2,3,28]. We expect, however, that
the schemes we propose will be equally valid in higher dimen-
sions. Compared to previous spectroscopic methods which
made use of local quenches, our approach requires only a
single local quench. The main advantage is that it does not
require any prior knowledge of the physical nature of the
excitations, and thus avoids having to explicitly construct the
excitation site by site. This offers a considerable simplifica-
tion over alternative spectroscopic techniques which require
fine-tuned addressing of the system in order to create and
measure local excitations [28]. We have also demonstrated
the versatility of the technique, and the range of information
that can be accessed using different observables. On the one
hand, we have described a general method to obtain the ele-
mentary excitation spectrum by probing an observable which
contains terms that reverse the local quench. This choice al-
lows us to induce couplings between the ground state and the

elementary excitations, and hence probe the corresponding
spectrum, even when the nature of the excitations are not
a priori known. On the other hand, alternative choices of
observable allow us to probe different spectral properties,
such as transition energies between excited states. This il-
lustrates the flexibility of local quench spectroscopy, and its
capability to extract a great deal of information by probing
multiple different aspects of the spectral properties of many-
body quantum systems. From a practical point of view, it is
worth pointing out a direct consequence: the observation of
a well defined branch does not imply that it coincides with
the elementary excitation spectrum. An explicit example of
a strongly interacting lattice model was derived analytically
together with numerical examples to stress this point.
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APPENDIX A: DIFFERENCE BETWEEN GLOBAL
AND LOCAL QUENCH SPECTROSCOPY

Here we compare local quench spectroscopy to global
quench spectroscopy [27]. The key difference comes from
the breaking of the translational invariance of the initial state,
and correspondingly the use of one-point observables instead
of two-point correlators. The derivation of Eq. (10) can be
extended to an equal-time correlator between the operators
Ô1(x, t ) and Ô2(y, t ) such that

G(x, y; t ) = 〈Ô1(x, t )Ô2(y, t )〉
=

∑
n,n′,m

ρn′n
i ei(En−En′ )t ei(Pm−Pn )x

× ei(Pn′−Pm )y 〈n| Ô1 |m〉 〈m| Ô2 |n′〉 . (A1)

Assuming translation invariance of the system, it is convenient
to change variables by setting R = x − y and r = (x + y)/2,
and introduce G(R; t ) = (1/LD)

∫
dr G(r, R; t ). Taking the

space-time Fourier transform we obtain the QSF

G(k; ω) =
∫

dR dt e−i(kR−ωt )G(R; t )

= (2π )D+1

LD

∑
n,n′,m

∫ [
dR ρn′n

i (R) ei(Pm−Pn′−k)R]
× δ(Pn′ − Pn)δ(En − En′+ ω) 〈n|Ô1 |m〉 〈m| Ô2 |n′〉.

(A2)

Below we discuss the consequences of Eq. (A2) for a global
and a local quench.

Global quench. For a global quench, the initial state is
usually taken to be the ground state of the Hamiltonian of
the system (for a different set of parameters than the one
governing the evolution). Since the system is translationally
invariant, so is the ground state. Therefore, ρn′n

i becomes
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independent of R, which allows us to get another selection
rule for the momenta. Equation (A2) now reads as

G(k; ω) = (2π )2D+1

LD

∑
n,n′,m

ρn′n
i δ(Pm − Pn′ − k)δ(Pn′ − Pn)

× δ(En − En′ + ω) 〈n| Ô1 |m〉 〈m| Ô2 |n′〉 , (A3)

which is Eq. (2) used in Ref. [27] to extract the excitation
spectrum in the case of a weak quench. (Note that the sign of
ω is reversed due to a different Fourier transform convention.)

Local quench. For a local quench, the translation invari-
ance of the initial state is broken and ρn′n

i depends on R.
The crucial selection rule which links the momentum of Pn′

with the intermediate state with momentum Pm is missing,
and the dispersion relation cannot generally be obtained from
a two-point function. To circumvent this problem, the QSF
has to be defined using one-point observables, as in the
main text.

Note that, for a global quench, a one-point observable is not
able to probe the excitation spectrum because of the transla-
tion invariance, which cancels any position dependence. More
precisely, the derivation is initially identical to the one pre-
sented in the main paper to obtain Eq. (9), which we rewrite
below for convenience:

G(x; t ) =
∑
n,n′

ρn′n
i ei(En−En′ )t ei(Pn′−Pn )x 〈n| Ô |n′〉 .

Translation invariance of the system imposes that G(x; t ) =
1

LD

∫
dx G(x; t ) is independent of x. It yields the selection rule

δ(Pn − Pn′ ) and the exponential term giving the momentum
dependence vanishes.

APPENDIX B: NONLOCAL EXCITATIONS
IN THE TRANSVERSE FIELD ISING CHAIN

The existence of nonlocal excitations in the TFI chain for
h < J can be understood by a self-duality mapping between
the two phases. The Hamiltonian of the TFI chain is

Ĥ = −J
N−1∑
j=1

σ̂ x
j σ̂

x
j+1 − h

N∑
j=1

σ̂ z
j , (B1)

where the Latin indices j = 1 . . . N refer to the lattice spin
sites. We introduce new variables associated to the bonds
between spins and denote them by Greek indices α =
1, . . . , N − 1. On each bond, a spin operator alongside x is
introduced with a +1/2 value if the bond is ferromagnetic
along z (↑↑ or ↓↓) and −1/2 for an antiferromagnetic one
(↑↓ or ↓↑). An example for a given configuration with N = 6
is shown in Fig. 10(a). It corresponds to the introduction of
the new spin operators

μ̂x
α =

α∏
j=1

σ̂ z
j , μ̂z

α = σ̂ x
i+1σ̂

x
i , (B2)

FIG. 10. (a) Self-duality of the TFI chain, with an original lattice
configuration (black) and the reciprocal lattice configuration (or-
ange). With given boundary conditions, the mapping is bijective if
the value of the first (or last) spin is fixed in real space (gauge choice).
(b) A spin flip in the reciprocal lattice is equivalent to a domain wall
in the original one.

which obey the same commutation rules as Pauli matrices. It
allows us to rewrite the Hamiltonian (B1) as

Ĥ = −h
N−2∑
α=1

μ̂x
αμ̂x

α+1 − J
N−1∑
α=1

μ̂z
α − h

(
σ̂ z

1 + σ z
N

)
. (B3)

Because the last term becomes irrelevant in the thermody-
namic limit, the energy spectrum satisfies Ek ( h

J ) = h
J Ek ( J

h ).
To overcome the difficulty caused by the doubly degenerate
ground state, a gauge may be picked so that the mapping
becomes uniquely defined. Here we choose the first spin to
be always up.

We can now deduce the nature of the excitations for h < J
using the mapping. For h > J , excitations are spin flips in
the original lattice. Applying the duality transformation, for
h < J , the excitations are thus spin flips in the reciprocal
lattice. It is equivalent to a domain wall in the original lattice,
i.e., a nonlocal excitation; see Fig. 10(b). As there is no local
operator which can probe this excitation, and as two-point
correlation functions cannot probe the spectrum (as we have
shown in Appendix A) in the case of local quenches, no appro-
priate local observable can probe the elementary excitations
in this phase. We note for completeness that a spin flip in
this phase corresponds to two domain walls, and therefore to
the second excited-state manifold, which can be probed using
local quench spectroscopy, as we will now discuss.

APPENDIX C: ADDITIONAL SIGNALS IN THE QSF

In the main paper we discussed the main features seen in
quench spectral functions, in particular the energy spectrum
and the sharp branches related to energy differences when the
spectrum is cosinelike. For completeness, we comment in this
Appendix about additional structures which may be observed
in the QSF in numerical simulations. We will focus on the
ferromagnetic phase, h < J , of the TFI chain. The elementary
excitations are nonlocal domain walls and thus cannot be
probed by a local quench (see Appendix B). However, higher
excitations (spin flips) can be unraveled by a local quench as
we show below.
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1. Analytical insight

Starting back from Eq. (10), we assume that the initial
state has a strong overlap with the ground state (say |n′〉), and
account for the contributions in which 〈n| contains two quasi-
particles, with individual momenta k1 and k2. We consider for
simplicity an observable which can create two quasiparticles
of the form Ô = ∑

p,p′ Cp,p′ γ̂ †
p γ̂

†
p′ (alternatively one can con-

sider an observable which annihilates two quasiparticles when
the role of n′ and n is reversed). The momentum selection rule
now imposes only Pn = −k, without fixing either k1 or k2. We
choose k1 = −k − q and k2 = q; then

〈n| Ô |n′〉 =
∑

q,p,p′
Cp,p′ 〈0| γ̂−k−qγ̂qγ̂

†
p γ̂

†
p′ |0〉

=
∑

q,p,p′
Cp,p′δp,qδp′,−k−q ± (p ↔ p′) (C1)

(the + is for bosonic quasiparticles; the − for fermionic ones)
and En = E−k−q + Eq. Finally, the QSF reads as

G(k; ω) = 2π

∫ (
Cq,−k−q ρ

0;(−k−q,q)
i ± sym

)
× δ(E−k−q + Eq + ω)dq. (C2)

[Note that if instead one chooses an observable which annihi-
lates two quasiparticles, with the roles of n and n′ reversed, it
leads to the symmetric selection rule (k, ω) → (−k,−ω) in
energy of the form δ(Ek−q + Eq − ω)].

2. Numerical results

We start from the DMRG ground state (close to the one
where all spins are aligned along the x axis) and rotate the
central spin around y by π/2 such that it points along −z.

FIG. 11. TDVP simulations of the TFI model in the x-polarized
phase for h/J = 0.5. (a) Dynamics of 〈σ̂ z(R, t )〉. The initial state is
the ground state and the central spin is rotated by θ = π/2 around
y. (b) Corresponding QSF modulus. Both the contributions from
the energy sums continuum Eq + Eq−k (continuum boundaries are
represented by the dashed green lines) and the energy differences
Eq − Eq−k (only the upper boundary is represented by the dotted blue
line) can be observed.

Note that, as with the Heisenberg model, here we break
the degeneracy of the ferromagnetic phase by applying a
small symmetry-breaking field on the first site of the chain
with amplitude hx = −10−2J in the x direction. We compute
〈σ̂ z(R, t )〉 and display the result in Fig. 11 for h/J = 0.5.
As expected, in both cases, the QSF computed using TDVP
exhibits a continuum. To compare the numerical results to
the prediction, we compute the derivative of the function
q → E−k−q + Eq with respect to q to find its extremum, for
each value of the parameter k, which then allows us to plot
the envelope as the dashed green lines in Fig. 11. It shows
good agreement with the QSF obtained in the numerical sim-
ulations. A continuum originating from the energy differences
is also barely visible (dotted blue line). Its origin can be
interpreted from the argument detailed in Sec. V here giv-
ing a signal close to 2v sin(k/2) with v = 2h, noticing that
the energy spectrum is known for h < J from self-duality
(Appendix B).
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