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The characterization of excitations in disordered quantum systems is a central issue in connection with glass
physics and many-body localization. Here we show that quench spectroscopy of a disordered model, as realized
from its out-of-equilibrium dynamics following a global quench, allows us to fully characterize the spectral
properties of the disordered phases. In the Bose-Hubbard model, a clear signature of gapless excitations in
momentum-resolved spectroscopy enables us to accurately locate the Mott insulator to Bose glass transition,
while the presence or absence of a well-defined soundlike mode distinguishes the superfluid from the Bose glass
phase. Moreover, spatially resolved spectroscopy provides local spectral properties and allows us to extract the
typical spacing of gapless regions, giving a second independent way to uniquely identify all three phases. Our
findings have far-ranging implications for a variety of experimental platforms and offer a powerful and versatile
probe of the low-energy phases of disordered systems.
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I. INTRODUCTION

Understanding the interplay of disorder and many-body
interactions in quantum matter is a longstanding problem
which remains a highly active area of modern research. While
low-dimensional noninteracting systems can be completely
localized by even an infinitesimal concentration of disorder
[1,2], interacting systems exhibit much richer behavior [3],
from exotic quantum glass ground states [4–7] to collec-
tive Anderson [8–13] and many-body [14–19] localization.
One particularly pressing question is how excitations from
glassy ground states behave in light of recent suggestions that
quantum glass ground states may be smoothly connected to
many-body localization of highly excited states [19]. With this
question in mind, it is highly desirable to develop methods to
probe the excitations of quantum glasses. This is traditionally
realized using Bragg spectroscopy [20,21], but it remains an
extremely challenging task, which requires fine-tuning of both
the momentum and the frequency probed. Moreover, it is
not suitable for probing local properties of inhomogeneous
systems.

Recent advances on the control of strongly interacting
quantum matter, with possibly single-site resolution imaging
in optical lattices [22–28], allow us to reconsider these is-
sues from the perspective of out-of-equilibrium dynamics. A
first step in this direction was reported in Ref. [29], where
the Bose glass to superfluid transition was identified via
the proliferation of fluctuations following a quench across
the transition. Recently, quenches were used to probe lo-
calization of highly excited states and identify many-body
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mobility edges [30]. Here we develop a different form of
excited-state quench spectroscopy which can provide either
momentum or spatially resolved information of disordered
quantum systems and permits us to fully characterize the
spectral properties of the zero-temperature quantum phases.
This should be distinguished from prior work on quench
spectroscopy of homogeneous models [31,32], as the explicit
breaking of translation invariance in the Hamiltonian here
leads to markedly different behavior.

In order to provide a proof-of-concept demonstration of
our approach, we benchmark it using one-dimensional (1D)
disordered bosons, where exact numerical calculations can
be performed. We show that quench spectroscopy provides
all the necessary information to characterize the excitation
spectra and determine the phase diagram. Moreover, we ob-
tain valuable local spectral properties, including the real-space
distribution of gapped and gapless regions in the Bose glass
phase. Our approach may be implemented in present-day
quantum simulators and permits full characterization of the
quantum phases of disordered bosons, including the still elu-
sive Bose glass. Extensions of quench spectroscopy to higher
dimensions and other disordered systems are discussed.

II. MODEL

Interacting bosons in a disordered potential may be de-
scribed by the disordered Bose-Hubbard model (DBHM), the
1D Hamiltonian of which reads

Ĥ =
∑

j

(
−J (â†

j â j+1 + H.c.) + U

2
n̂ j (n̂ j − 1) + Vjn̂ j

)
,

(1)
where â j and â†

j are, respectively, the annihilation and cre-
ation operators of a boson on site j, Vj = � j − μ, with
� j a site-dependent random potential and μ the chemical
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FIG. 1. Phase diagram of the 1D DBHM computed using the
DMRG algorithm (L = 47 and Ns = 15) at �/U = 0.25. The tran-
sition points are found by analyzing the compressibility κ and the
one-body correlator, and the error bars reflect the size of the under-
lying grid used to compute the boundaries. The gray points show
the transition from κ = 0 (MI phase) to κ �= 0, to which the black
solid line is fitted. The parameter δ is plotted in color scale. The cyan
points where δ = 1, indicating the transition between the BG and SF
phases, to which the cyan solid line is fitted. The red arrows represent
the quenches of J/U along lines of constant density as considered in
Fig. 2.

potential. The applications of the DBHM range from disor-
dered superfluid helium [5] to magnetic systems [33–38]. It
has also been emulated in ultracold-atom systems [39,40],
where the disorder can be generated by a speckle pattern
[41,42], a bichromatic quasiperiodic potential [43,44], impu-
rities [45–47], or a spatial light modulator [48,49]. Hereafter,
we consider a disordered potential drawn from a box distribu-
tion � j ∈ [−�/2,�/2], with � the disorder strength.

The quantum phase diagram of the 1D DBHM has been
extensively studied previously [7,50–52]. For reference, we
reproduce it in Fig. 1 using density matrix renormalization
group (DMRG) simulations [53] for the system size L = 47
as used throughout this work, averaged over Ns = 15 disorder
realizations. The equilibrium zero-temperature phase diagram
for the clean system (� = 0) contains two phases: a gapped
incompressible Mott insulator (MI) and a gapless compress-
ible superfluid (SF). When disorder is added into the model,
a third gapless compressible phase intervenes between the
other two [54,55], known as the Bose glass (BG) [4,5]. To
identify those three phases, we compute the compressibil-
ity κ = ∂n/∂μ and the one-body correlator g1(i, j) = 〈â†

i â j〉:
The compressibility allows us to distinguish the MI (which
is the only incompressible phase, κ = 0) from the other two
(κ �= 0). The one-body correlator decays exponentially with
the distance r = |i − j| in both the MI and BG phases and
algebraically in the SF. We introduce the relative Pearson
coefficient δ, which provides a sensitive probe of the rela-
tive quality of exponential and algebraic fits. The Pearson
coefficient P tests for a linear correlation in a given sample.
By computing it for our data in both semilogarithmic and
log-log scales, we may obtain a measure of whether g1(r)
is better fitted by an exponential decay or by a power law,

following Ref. [56]. To obtain the phase diagram, we define
the ratio of the two coefficients P as δ = Ppower law/Psemilog.
By identifying the point at which g1(r) crosses over from
exponential (δ < 1) to algebraic (δ > 1) decay, we obtain a
good estimate of the BG-SF transition [56].

III. OUT-OF-EQUILIBRIUM DYNAMICS

To induce out-of-equilibrium dynamics, we first prepare
the system in its ground state using DMRG with given values
of μ/U , J/U , and �/U . We then quench the hopping from
Ji/U = 0.1 to Jf/U = 0.09 at a fixed density, hence also
changing μ (see the red arrows in Fig. 1). The state then
evolves out of equilibrium under the unitary dynamics gener-
ated by the new Hamiltonian, computed using the many-body
time-dependent variational principle [57], using the hybrid
time evolution method [58–60]. In all of the following, we use
open boundary conditions, a maximum bond dimension χ =
128, and a maximum evolution time of tmax = 20/Ji, with time
steps dt = 0.01/Ji, and we truncate the local occupancy to a
maximum of Nb = 5 bosons per site. We have checked these
parameters and found them to yield well-converged results.
For further details, see Ref. [61]. The timescale and system
size are consistent with state-of-the-art experiments [62].

The out-of-equilibrium dynamics of an observable Ô(x, t ),
at any time t after the global quench and a distance x in real
space, is given by

G(x, t ) = 〈Ô(x, t )〉 = Tr[ρ̂iÔ(x, t )], (2)

where ρ̂i is the density matrix of the initial state. Spectral
properties of the excitations may then be obtained using the
space-time Fourier transform of Eq. (2) [quench spectral func-
tion (QSF)],

G(k, ω) = 2π

∫
dx e−ikx

∑
n,n′

δ(En′ − En − ω)

× ρn′n
i 〈n| Ô(x) |n′〉 , (3)

where |n〉 represents the many-body states of the model, of
energy En. Weak quenches populate the low-lying excited
states and, as previously shown, different properties of the
excitations can be measured from the QSF, depending on the
choice of the observable [31,32]. In contrast with these prior
works, however, the disorder breaks translation invariance and
the energy eigenstates do not have a well-defined momentum
k. Moreover, a global quench of a disordered system generates
single-particle excitations, which are forbidden by translation
invariance in homogeneous systems. Hence the application of
quench spectroscopy to disordered systems is not trivial and
requires some care to interpret. In clean systems, the disper-
sion relation Ek of the excitations have been obtained in both
the MI and the SF using the one-body correlator 〈Ô(x, t )〉 =
g1(x, t ) = 〈â†(x, t )â(0, t )〉. The latter may be experimentally
measured via standard time-of-flight imaging [63]. In the
DBHM studied here, although the energy eigenstates do not
have a well-defined momentum k, the Fourier transform in
Eq. (3) remains well defined and weak disorder only broadens
the spectral features [61]. Below we show that the observable
〈Ô(x, t )〉 = g1(x, t ) provides distinguishing characteristics of
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FIG. 2. The QSF of the g1 correlator (L = 47 and Ns = 25) at
�/U = 0.25, after a quench from Ji/U = 0.1 to Jf/U = 0.09, and
various values of μ/U (see red arrows in Fig. 1). The BG phase
is shown at (a) μ/U = 0.14 and (c) μ/U = 0.71, the MI phase
is shown at (b) μ/U = 0.50, and the SF phase is shown at (d)
μ/U = 0.97. The red dashed line in (b) is the excitation band of the
nondisordered MI. The cyan dashed line in (d) is a linear fit to the
QSF close to k = 0 in the SF phase.

all three phases of the DBHM using the quench spectroscopy
protocol described above.

IV. NUMERICAL RESULTS

Figure 2 shows the modulus of the QSF, |G(k, ω)|, of the
observable g1(x, t ) for four different choices of μ/U spanning
the three phases. The quenches performed are indicated by red
arrows in Fig. 1. For all data, we use a Hann window function
to reduce boundary effects before taking a Fourier transform,
and we subtract the long-time average. The results are then
averaged over Ns = 25 disorder realizations and normalized.
In all cases, the low-k behavior contributes more strongly to
the observed signal. This is because of significant scattering of
excitations from the disorder on small length scales (large k),
which broadens the spectrum at high momenta and results in a
weak signal. In contrast, scattering is expected to be screened
by repulsive interactions at low momenta, hence resulting in a
stronger signal, weakly affected by the disorder [11,12].

V. CHARACTERIZING DISORDERED
PHASES USING THE QSF

We now discuss how to characterize the three phases ex-
pected in the DBHM from the QSF data. The BG and SF can
both be distinguished from the MI by the existence or absence
of gapless excitations. As expected, in the MI, the resonances
of the QSF are strongest around ω/U ∼ 1 and, most impor-
tantly for our purposes, there is no signal close to ω/U = 0,
hence signaling a finite gap. More precisely, the spectrum
measured by the QSF closely matches the corresponding ex-
citation spectrum for the clean system in the MI with n = 1,
E (k) =

√
(U − 6Jf cos k)2 + 32(Jf sin k)2 [64] [see the red

dashed line in Fig. 2(b)]. In spite of significant disorder-
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FIG. 3. Identification of the three phases of the DBHM from the
amplitude of the normalized QSF of g1(x, t ) at the origin |G(k =
0, ω = 0)| (green squares) and the speed of sound Vs (blue circles),
for (a) Jf/U = 0.09 and (b) Jf/U = 0.12, averaged over Ns = 25
disorder realizations. The blue solid line is a piecewise quadratic fit
intended as a guide to the eye. The MI is characterized by |G(0, 0)| =
0 and Vs = 0, the BG by |G(0, 0)| �= 0 and Vs = 0, and the SF by
|G(0, 0)| �= 0 and Vs �= 0. The orange dashed line shows the speed
of sound obtained from the mapping of the clean model to spinless
fermions. The gray region represents the BG phase as identified by
the data in Fig. 1.

induced broadening of the QSF, the gap ε � U − 6Jf is almost
unaffected by the disorder, owing to strong screening in the
low-k sector. This value is to be contrasted with the expected
gap ε = U − � in the atomic limit (Jf = 0). By contrast, in
both the BG and SF phases, we find a strong peak in the QSF
close to zero frequency, indicating the existence of gapless
excitations. By extracting the QSF amplitude at ω = 0 and
k = 0, we thus clearly distinguish the gapped MI [|G(k =
0, ω = 0)| = 0] from the gapless BG and SF [|G(k = 0, ω =
0)| �= 0] phases. Numerical results for two different values of
Jf/U are shown in Fig. 3 (green points and dashed line). The
onset of gapless excitations measured by |G(0, 0)| matches
well with the MI-BG phase transition in Fig. 1 (left boundary
of the gray region in Fig. 3).

To distinguish the BG and SF phases, we use the qual-
itatively different behaviors exhibited by the QSF due to
the different natures of their low-lying excitations. In the
SF [Fig. 2(d)], the QSF shows a clear V-shaped continuum
emerging from the origin, whereas in the BG [Figs. 2(a) and
2(c)] the QSF is featureless close to ω/U = 0. This may be
attributed to the existence of a well-defined speed of sound
in the SF, which is absent in the BG. We can then discrimi-
nate the SF and BG phases by the presence or absence of a
soundlike mode with finite velocity. The velocity of the latter
is numerically extracted by a linear fit close to the origin of
the (disorder-averaged) QSF, the results of which are shown
in Fig. 3 (blue points and solid line). To extract the slope, we
perform several linear fits across different momentum inter-
vals k ∈ [0, kmax] while varying kmax. The error bars in Fig. 3
are given by the standard deviation of the sound velocities
obtained by these different fits [61]. As shown in Fig. 3,
the results exhibit a clear SF-BG transition, which closely
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matches that in Fig. 1 (right boundary of the gray region in
Fig. 3).

To estimate the speed of sound, we may map the DBHM
onto spinless fermions in the interaction-dominated regime
[65,66]. Since the soundlike mode is relevant in the low-k
limit, we may further neglect the disorder. In the regime
with average boson filling 1 < n < 2 corresponding to Fig. 3,
strongly interacting bosons moving on top of a uniformly
filled “vacuum” map onto free fermions with the average den-
sity nf = n − 1. The speed of sound then maps onto the Fermi
velocity with a factor of 2 due to Bose enhancement. It yields
Vs = 4J sin(πnf ), shown as orange dashed lines in Fig. 3. This
result is in remarkable agreement with the fitted velocities
within the SF phase for the nondisordered model (data not
shown here; see Ref. [61]). In the presence of disorder, we find
that the speed of sound is renormalized towards lower values,
as expected from renormalization group analysis within Lut-
tinger liquid theory [4]. Here we find that this renormalization
is weak in the SF phase, down to the SF-BG transition where
Vs drops to zero.

Hence the QSF displays clear features that allow us to
quantitatively distinguish the three phases: The amplitude
of the QSF at ω = 0 and k = 0 discriminates the gapped
phase (MI) from the gapless phases (SF and BG), and a
well-defined soundlike mode uniquely identifies the SF. The
complete phase diagram of the DBHM can be systematically
reconstructed by analysis of the QSF [61].

VI. SPATIALLY RESOLVED QUENCH SPECTROSCOPY

In the BG, the QSF shows clear signals of independent
bands of gapped and gapless excitations [Figs. 2(a) and 2(c)],
a potential indicator of the coexistence of MI and SF regions
within the same sample. To get further insight into the real-
space distribution of gapped or gapless regions within each
realization, we introduce the local spectral function (LSF)

G(x, ω) = 2π
∑
n,n′

ρn′n
i δ(En′ − En − ω) 〈n|Ô(x)|n′〉 . (4)

By identifying whether G(x, ω) exhibits a peak at ω = 0,
we may associate a lattice site x with gapped or gapless
excitations. The simplest possible choice to achieve this is
to consider density fluctuations Ô(x, t ) = δn̂(x, t ) = n̂(x, t ) −
N , where N is the long-time average of n̂(x, t ). This quantity
can be experimentally measured using quantum gas micro-
scopes with single-site resolution [22–28]. Intuitively, density
fluctuations are related to the propagation of excitations in the
system, so the LSF of δn̂(x, t ) gives a gapless response in both
the BG and SF phases and is gapped in the MI [61]. This
spatially resolved probe following a global quench in an inho-
mogeneous system should not be confused with prior work on
local quench spectroscopy [32], which instead focused on the
dynamics of a translation-invariant system following a local
quench.

Representative results are shown in Figs. 4(a)–4(c). We
use a Gaussian convolution to smooth the signal in frequency
before extracting the excitation peak [61]. In the MI [Fig. 4(a)]
we find two clear peaks close to ω = ±U , while in the
SF [Fig. 4(c)] we find a single peak at ω = 0. In the BG
[Fig. 4(b)] we find both these two features, suggesting the
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FIG. 4. Spatially resolved quench spectroscopy. (a)–(c) Normal-
ized LSF |G(x = L/2, ω)| on the center lattice site for a single
disorder realization, a quench from Ji/U = 0.1 to Jf/U = 0.09, and
three values of μ/U = 0.525, 0.695, 0.820 in the (a) MI, (b) BG,
and (c) SF phases, respectively. The dashed line is the result of
Gaussian smoothing. (d) SF region spacing ξ versus μ/U averaged
over Ns = 25 samples for four values of Jf/U , offset for clarity. The
standard deviation of ξ/L across disorder realizations is indicated by
the error bars. The gray regions represent the BG phase as identified
in Fig. 1.

coexistence of multiple types of excitations. By computing
G(x, ω) for each lattice site, we extract the typical size ξ

of gapped regions within a single disorder realization, with
results as shown in Fig. 4(d). The MI is characterized by a
single gapped region with ξ = L, while the SF is characterized
by the absence of gapped regions, e.g., ξ � 0. In the BG, ξ/L
takes on intermediate values, which continuously grow from
the SF to the MI. As shown in Fig. 4(d), the three phases
identified using this probe closely match those found in Fig. 1.
This length scale hence provides a single observable able to
discriminate the three phases and enables full reconstruction
of the phase diagram [61]. Moreover, it provides valuable
information on the distribution of SF regions within the BG,
a key quantity for determining many properties of this phase.
For instance, it allows direct measurement of the growth of SF
regions and could allow for direct observation of the percola-
tion transition (in d > 1) from the BG to the SF phase [67].

VII. CONCLUSION

In this work we have demonstrated that quench spec-
troscopy accomplishes two key goals in the DBHM. First,
momentum-resolved quench spectroscopy is capable of dis-
tinguishing all three phases of the model by testing whether
the excitations are gapped or gapless and in the latter case
whether or not they exhibit a soundlike mode characteristic
of superfluidity. It provides complementary information on
the energy-momentum profile of excitations, similar to stan-
dard Bragg spectroscopy [20,21,68] but beyond lattice shift
and modulation spectroscopy [69–72] and using a greatly
simplified experimental protocol [31,32]. Second, we have
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introduced spatially resolved quench spectroscopy, partic-
ularly fruitful in inhomogeneous systems. Local spectral
properties allow identification of the distribution of gapped
and gapless regions, the typical size of which provides a
single parameter to distinguish the three phases. Both proto-
cols can be used to systematically map out the entire phase
diagram [61]. It is one of the aims of this work to stimulate
experiments realizing quantum simulators for the disordered
Hubbard model or other disordered models. It is expected that
the quench spectroscopy approaches we have proposed here
will provide experimentalists with an accurate probe relatively
easily implemented in such experiments.

The use of quench spectroscopy for disordered systems
extends beyond the 1D DBHM model to higher dimensions
[48], disordered fermions [73], and spin models [74]. It also
applies to continuous models, recently considered as good
candidates to observe the still elusive BG phase [56,75–78].
The extension to higher-dimensional systems is particularly

promising, as this is a regime for which efficient numerical
methods are scarce, but the experimental realization is com-
paratively straightforward. Our work also paves the way to
detailed experimental investigations into rare-region Griffiths
effects in disordered systems, an increasingly important ques-
tion not only for BG physics but many-body localization [19],
where a different form of quench spectroscopy has already
been used to identify mobility edges [30] and spectral func-
tions of local operators have been used to study the effects of
weak system-bath coupling [79].
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