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We propose a general mechanism of random-field-induced order �RFIO�, in which long-range order is
induced by a random field that breaks the continuous symmetry of the model. We particularly focus on the case
of the classical ferromagnetic XY model on a two-dimensional lattice, in a uniaxial random field. We prove
rigorously that the system has spontaneous magnetization at temperature T=0, and we present strong evidence
that this is also the case for small T�0. We discuss generalizations of this mechanism to various classical and
quantum systems. In addition, we propose possible realizations of the RFIO mechanism, using ultracold atoms
in an optical lattice. Our results shed new light on controversies in existing literature, and open a way to realize
RFIO with ultracold atomic systems.
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I. INTRODUCTION

A. Disordered ultracold quantum gases

Studies of disordered systems constitute a new, rapidly
developing, branch of the physics of ultracold gases. In
condensed-matter physics �CM�, the role of quenched �i.e.,
independent of time� disorder cannot be overestimated: it is
present in nearly all CM systems, and leads to numerous
phenomena that dramatically change both qualitative and
quantitave behaviors of these systems. This leads, for
instance, to novel thermodynamical and quantum phases,1,2

and to strong phenomena, such as Anderson localization.3–6

In general, disorder can hardly be controlled in CM systems.
In contrast, it has been proposed recently, that quenched dis-
order �or pseudodisorder� can be introduced in a controlled
way in ultracold atomic systems, using optical potentials
generated by speckle radiations,7–9 impurity atoms serving as
random scatterers,10 or quasicrystalline lattices.11 This opens
fantastic possibilities to investigate the effect of disorder in
controlled systems �for a review in the context of cold gases,
see Ref. 12�. Recently, several groups have initiated the ex-
perimental study of disorder with Bose-Einstein condensates
�BEC�,13–15 and strongly correlated Bose gases.16 In the cen-
ter of interest of these works is one of the most fundamental
issues of disordered systems that concerns the interplay be-
tween Anderson localization and interactions in many-body
Fermi or Bose systems at low temperatures. In noninteract-
ing atomic systems, localization is feasible experimentally,17

but even weak interactions can drastically change the sce-
nario. While weak repulsive interactions tend to delocalize,
strong ones in confined geometries lead to Wigner-Mott-type
localization.18 Both experiments and theory indicate that in
gaseous systems with large interactions, stronger localization
effects occur in the excitations of a BEC,14,19–21 rather than
on the BEC wave function itself. In the limit of weak inter-
actions, a Bose gase enters a Lifshits glass phase, in which
several BECs in various localized single-atom orbitals from

the low-energy tail of the spectrum coexist22 �for “traces” of
the Lifshits glass in the mean-field theory, see Ref. 15�. Fi-
nally, note that disorder in Fermi gases, or in Femi-Bose
atomic mixtures, should allow one to realize various fermi-
onic disordered phases, such as a Fermi glass, a Mott-Wigner
glass, “dirty” superconductors, etc.12�, or even quantum spin
glasses.23

B. Large effects by small disorder

One of the most appealing effects of disorder is that even
extremely small randomness can have dramatic conse-
quences. The paradigm example in classical physics is the
Ising model for which an arbitrarily small random magnetic
field destroys magnetization even at temperature T=0 in
two-dimensions, 2D �Refs. 24 and 25�, but not in D�2.26

This result has been generalized to systems with continuous
symmetry in random fields distributed in accordance with
this symmetry.24,25 For instance, the Heisenberg model in a
SO�3� symmetrically distributed field does not magnetize up
to four dimensions �4D�.

In quantum physics, the paradigm example of large ef-
fects induced by small disorder is provided by the above-
mentioned Anderson localization, which occurs in one di-
mension and two dimensions in arbitrarily small random
potentials.5 In this paper, we propose an even more intrigu-
ing opposite effect, where disorder counterintuitively favors
ordering: a general mechanism of random-field-induced or-
der �RFIO� by which certain spin models magnetize at a
higher temperature in the presence of arbitrarily small disor-
der than in its absence, provided that the disorder breaks the
continuous symmetry of the system.

C. Main results and plan of the paper

As is well known, as a consequence of the Mermin-
Wagner-Hohenberg theorem,27 spin- or field-theoretic
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systems with continuous symmetry in dimensions less or
equal to 2D cannot exhibit long-range order. The mechanism
that we propose here breaks the continuous symmetry, and in
this sense acts against the Mermin-Wagner-Hohenberg no-go
rule in 2D. In particular, we prove rigorously that the classi-
cal XY spin model on a 2D lattice in a uniaxial random field
magnetizes spontaneously at T=0 in the direction perpen-
dicular to the magnetic-field axis, and provide strong evi-
dence that this is also the case at small positive temperatures.
We discuss generalizations of this mechanism to classical
and quantum XY and Heisenberg models in 2D and 3D.
In 3D, the considered systems do exhibit long-range order
at finite T�0, but in this case the critical temperature de-
creases with the “size” of the symmetry group: it is the larg-
est for the Ising model �the discrete group Z2�, higher for the
XY model �the continuous group U�1��, and the highest for
the Heisenberg model �the continuous group SU�2� or
SO�3��. In this case we expect that our mechanism will lead
to an increase of the critical temperature for the XY and
Heisenberg models, and to an increase of the order-parameter
value at a fixed temperature for the disordered system in
comparison to the nondisordered one. Finally, we propose
three possible and experimentally feasible realizations of the
RFIO phenomenon using ultracold atoms in optical lattices.

The paper is organized as follows. In Sec. II, we present
the results concerning the RFIO in the classical XY model on
a 2D lattice. First, we rigorously prove that the system mag-
netizes in the direction perpendicular to the direction of the
random magnetic field at T=0, and then, we present argu-
ments that the magnetization persists in the small T�0 case,
as well as the results of numerical classical Monte Carlo
simulations. Section III is fully devoted to the discussion of
the generalizations of the RFIO mechanism to several other
classical and quantum spin systems. In Sec. IV, we discuss
several experimentally feasible realizations of RFIO in ultra-
cold atomic systems. Finally, we summarize our results in
Sec. V.

II. RFIO IN CLASSICAL XY MODEL

A. System under study

Consider a classical spin system on the 2D square lattice
Z2, in a random magnetic field h �see Fig. 1�. The spin vari-
able �i= �cos �i , sin �i�, at a site i�Z2 is a unit vector in the
xy plane. The Hamiltonian �in units of the exchange energy
J� is given by

H/J = − �
�i−j�=1

�i · � j − ��
i

hi · �i. �1�

Here the first term is the standard nearest-neighbor interac-
tion of the XY model, and the second term represents a small
random-field perturbation. The hi’s are assumed to be
independent, identically distributed random, 2D vectors.

For �=0, the model has no spontaneous magnetization m
at any positive T. This was first pointed out in Ref. 28, and
later developed into a class of results known as the Mermin-
Wagner-Hohenberg theorem27 for various classical, as well
as quantum 2D spin systems with continuous symmetry. In

higher dimensions the system does magnetize at low tem-
peratures. This follows from the spin-wave analysis,29 and
has been given a rigorous proof in Ref. 30. The impact of a
random-field term on the behavior of the model was first
addressed in Refs. 24 and 25, where it was argued that if the
distribution of the random variables hi is invariant under
rotations, there is no spontaneous magnetization at any posi-
tive T in any dimension D�4. A rigorous proof of this state-
ment was given in Ref. 25. Both works use crucially the
rotational invariance of the distribution of the random-field
variables.

Here we consider the case where hi is directed along the y
axis: hi=�iey, where ey is the unit vector in the y direction,
and �i is a random real number. Such a random field obvi-
ously breaks the continuous symmetry of the interaction and
a question arises whether the model still has no spontaneous
magnetization in two dimensions. This question has been
given contradictory answers in Refs. 31 and 32: while Ref.
31 predicts that a small random field in the y direction does
not change the behavior of the model, Ref. 32 argues that it
leads to the presence of spontaneous magnetization m in the
direction perpendicular to the random-field axis in low �but
not arbitrarily low� temperatures. Both works use
renormalization-group analysis, with Ref. 32 starting from a
version of the Imry-Ma scaling argument to prove that the
model magnetizes at zero temperature.

The same model was subsequently studied by Feldman,33

using ideas similar to the argument given in the present
paper. As we argue below, however, his argument contains an
essential gap, which is filled in the present work. We
first present a complete proof that the system indeed magne-
tizes at T=0, and argue that the ground-state magnetization
is stable under inclusion of small thermal fluctuations. For
this, we use a version of the Peierls contour argument,34

eliminating first the possibility that Bloch walls or vortex
configurations destroy the transition.

FIG. 1. �Color online� XY model on a 2D square lattice in a
random magnetic field. The magnetic field is oriented along the y
axis, hi=�iey, where �i is a real random number. Right boundary
conditions are assumed on the outer square, possibly placed at
infinity �see text�.
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B. RFIO at T=0

Let us start by a rigorous analysis of the ground state.
Consider the system in a square � with the “right” boundary
conditions, �i= �1,0�, for the sites i on the outer boundary of
� �see Fig. 1�. The energy of any spin configuration de-
creases if we replace the x components of the spins by their
absolute values and leave the y components unchanged. It
follows that in the ground-state, x components of all the
spins are nonnegative. As the size of the system increases,
we expect the x component of the ground-state spins to de-
crease, since they feel less influence of the boundary condi-
tions and the ground state value of each spin will converge.
We thus obtain a well-defined infinite-volume ground state
with the “right” boundary conditions at infinity.

We emphasize that the above convergence statement is
nontrivial and requires a proof. Physically it is, however,
quite natural. A similar statement has been rigorously proven
for ground states of the random-field Ising model using
Fortuin-Kasteleyn-Ginibre monotonicity techniques.25,35

C. Infinite volume limit

A priori this infinite-volume ground state could coincide
with the ground state of the random field Ising model, in
which all spins have zero x component. The following argu-
ment shows that this is not the case. Suppose that the spin �i
at a given site i is aligned along the y axis, i.e., cos �i=0.
Since the derivative of the energy function with respect to �i
vanishes at the minimum, we obtain

�
j:�i−j�=1

sin��i − � j� = 0. �2�

Since cos �i=0, this implies � j:�i−j�=1cos � j =0. Because in the
right ground state all spins lie in the �closed� right half-plane
x�0, all terms in the above expression are non-negative and
hence have to vanish. This means that at all the nearest
neighbors j of the site i, the ground-state spins are directed
along the y axis as well. Repeating this argument, we con-
clude that the same holds for all spins of the infinite lattice,
i.e., the ground state is the �unique� random-field Ising model
ground state. This, however, leads to a contradiction, since
assuming this, one can construct a field configuration, occur-
ring with a positive probability, which forces the ground-
state spins to have nonzero x components. To achieve this we
put strong positive ��i�0� fields on the boundary of a square
and strong negative fields on the boundary of a concentric
smaller square. If the fields are very weak in the area be-
tween the two boundaries, the spins will form a Bloch wall,
rotating gradually from �=	 /2 to �=−	 /2. Since such a
local field configuration occurs with a positive probability,
the ground state cannot have zero x components everywhere,
contrary to our assumption.

We would like to emphasize the logical structure of the
above argument, which proceeds indirectly assuming that the
ground-state spins �or, equivalently, at least one of them�
have zero x components and reach a contradiction. The ini-
tial assumption is used in an essential way to argue existence
of the Bloch wall interpolating between spins with y compo-
nents equal to +1 and −1. It is this part of the argument that

we think is missing in Ref. 33. Note that this argument ap-
plies to strong, as well as to weak random fields, so that the
ground state is never, strictly speaking, field-dominated and
always exhibits magnetization in the x direction. Moreover,
the argument does not depend on the dimension of the sys-
tem, applying, in particular, in one dimension. We argue be-
low that in dimensions greater than one the effect still holds
at small positive temperatures, the critical temperature de-
pending on the strength of the random field �and presumably
going to zero as the strength of the field increases�.

D. RFIO at low positive T

To study the system at low positive T, we need to ask
what are the typical low-energy excitations from the ground
state. For �=0, continuous symmetry allows Bloch walls,
i.e., configurations in which the spins rotate gradually over a
large region, for instance from left to right. The total excita-
tion energy of a Bloch wall in 2D is of order one, and it is the
presence of such walls that underlies the absence of continu-
ous symmetry breaking. However, for ��0, a Bloch wall
carries additional energy, coming from the change of the
direction of the y component of the spin, which is propor-
tional to the area of the wall �which is of the order L2 for a
wall of linear size L in two dimensions�, since the ground-
state spins are adapted to the field configuration, and hence
overturning them will increase the energy per site. Similarly,
vortex configurations, which are important low-energy
excitations in the nonrandom XY model, are no longer
energetically favored in the presence of a uniaxial random
field.

We are thus left, as possible excitations, with sharp do-
main walls, where the x component of the spin changes sign
rapidly. To first approximation we consider excited configu-
rations, in which spins take either their ground-state values,
or the reflections of these values in the y axis. As in the
standard Peierls argument,34 in the presence of the right
boundary conditions, such configurations can be described in
terms of contours 
 �domain walls�, separating spins with
positive and negative x components. If mi is the value of the
x component of the spin �i in the ground state with the right
boundary conditions, the energy of a domain wall is the sum
of mimj over the bonds �ij� crossing the boundary of the
contour. Since changing the signs of the x components of the
spins does not change the magnetic-field contribution to the
energy, the Peierls estimate shows that the probability of
such a contour is bounded above by exp�−2���ij�mimj�, with
�=J /kBT.

We want to show that for a typical realization of the field
h, �i.e., with probability one�, these probabilities are sum-
mable, i.e., their sum over all contours containing the origin
in their interior is finite. It then follows that at a still lower T,
this sum is small, and the Peierls argument proves that the
system magnetizes �in fact, a simple additional argument
shows that summability of the contour probabilities already
implies the existence of spontaneous m�. To show that a se-
ries of random variables is summable with probability one,
it suffices to prove the summability of the series of the
expected values. We present two arguments for the last
statement to hold.
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If the random variables mi are bounded away from zero,
i.e., mi��c, for some c�0, the moment-generating function
of the random variable ��ij�mimj satisfies

E�exp	− ��
�ij�

mimj
� � exp�− c�L�
�� , �3�

with L�
� denoting the length of the contour 
. The sum of
the probabilities of the contours enclosing the origin is thus
bounded by �
 exp�−c�L�
��. The standard Peierls-Griffiths
bound proves the desired summability.

The above argument does not apply if the distribution of
the ground state m contains zero in its support. For un-
bounded distribution of the random field this may very well
be the case, and then another argument is needed. If we
assume that the terms in the sum ��ij�mimj are independent
and identically distributed, then E�exp�−2���ij�mimj��
=E�exp�−2�mimj��L�
�=exp�L�
�log E�exp�−2�mimj��
 and
we just need to observe that E�exp�−2�mimj��→0 as
�→� �since the expression under the expectation sign goes
pointwise to zero and lies between 0 and 1� to conclude that
E�exp�−2���ij�mimj�� behaves as exp�−g���L�
�� for a posi-
tive function g��� with g���→� as �→�. While mimj are
not, strictly speaking, independent, it is natural to assume
that their dependence is weak, i.e., their correlation decays
fast with the distance of the corresponding bonds �ij�. The
behavior of the moment-generating function of their sum is
then qualitatively the same, with a renormalized rate function
g���, still diverging as �→�. As before, this is enough to
carry out the Peierls-Griffiths estimate, which implies spon-
taneous magnetization in the x direction. We remark that our
assumption about the fast decay of correlations implies that
the sums of mimj over subsets of Z2 satisfy a large deviation
principle analogous to that for sums of independent random
variables and the above argument can be restated using this
fact.

E. Numerical Monte Carlo simulations

Based on the above discussion it is expected that the
RFIO effect predicted here will lead to the appearance
of magnetization m in the x direction of order 1 at low
temperatures in systems much larger than the correlation
length of typical excitations. For small systems, however,
the effect may be obscured by finite size effects, which,
due to long-range power-law decay of correlations, are par-
ticularly strong in the XY model in 2D. In particular, the
2D XY model shows finite magnetization �m� in small
systems,36 so that RFIO is expected to result in an increase of
the magnetization.

We have performed numerical Monte Carlo simulations37

for the 2D XY classical model �Hamiltonian �1�, with �=1�.
We generate a random magnetic field hi=�iey in the y direc-
tion. The �i’s are independent random real numbers, uni-
formly distributed in �−�3
hy ,�3
hy�. Note that 
hy is thus
the standard deviation of the random field hi. Boundary con-
ditions on the outer square correspond to �i= �1,0� �see Fig.
1�. The calculations were performed in 2D lattices with up to
200�200 lattice sites for various temperatures. The results
are presented in Fig. 2.

At very small temperature, the system magnetizes in the
absence of disorder �m approaches 1 when T tends to 0� due
to the finite size of the lattice.36 In this regime, a random
field in the y direction tends to induce a small local magne-
tization, parallel to hi, so that the magnetization in the x
direction, m, is slightly reduced. At higher temperatures
�T�0.7J /kB in Fig. 2�, the magnetization is significantly
smaller than one in the absence of disorder. This is due to
non-negligible spin-wave excitations. In the presence of
small disorder, these excitations are suppressed due to the
RFIO effect discussed in this paper. We indeed find that, at
T=0.7J /kB, m increases by 1.6% in presence of the uniaxial
disordered magnetic field. At larger temperatures, excita-
tions, such as Bloch walls or vortices are important and no
increase of the magnetization is found when applying a small
random field in the y direction.

III. RFIO IN OTHER SYSTEMS

The RFIO effect predicted above may be generalized
to other spin models, in particular, those that have finite
correlation length. Here we list the most spectacular
generalizations:

A. Heisenberg ferromagnet (HF) in random fields of various
symmetries

Here the interaction has the same form as in the XY case,
but spins take values on a unit sphere. As for the XY Hamil-
tonian, if the random-field distribution has the same symme-
try as the interaction part, i.e., if it is symmetric under rota-
tions in three dimensions, the model has no spontaneous
magnetization up to four dimensions.24,25 If the random field
is uniaxial, e.g., oriented along the z axis, the system still has
a continuous symmetry �rotations in the xy plane�, and thus
cannot have spontaneous magnetization in this plane. It can-
not magnetize in the z direction either, by the results of Ref.
25. Curiously enough, a field distribution with an intermedi-
ate symmetry may lead to symmetry breaking. Namely, ar-
guments fully analogous to the previous ones imply that if
the random field takes values in the yz plane with a distribu-
tion invariant under rotations, the system will magnetize in

FIG. 2. �Color online� Results of the Monte Carlo simulation for
the classical 2D XY model in a 200�200 lattice. The inset is a
magnetification of the main figure close to T=0.7J /kB.
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the x direction. We are thus faced with the possibility that
a planar-field distribution breaks the symmetry, while this
is broken neither by a field with a spherically symmetric
distribution nor by a uniaxial one.

B. Three-dimensional XY and Heisenberg models in a random
field of various symmetries

We have argued that the 2D XY model with a small
uniaxial random field orders at low T. Since in the absence of
the random field spontaneous magnetization occurs only at
T=0, this can be equivalently stated by saying that a small
uniaxial random field raises the critical temperature Tc of
the system. By analogy, one can expect that the �nonzero� Tc
of the XY model in 3D becomes higher and comparable to
that of the 3D Ising model, in the presence of a small
uniaxial field. A simple mean-field estimate suggests that Tc
might increase by a factor of 2. The analogous estimates for
the Heisenberg model in 3D suggest an increase of Tc by a
factor 3 /2 �or 3� in a small uniaxial �or planar rotationally
symmetric� field, respectively. These conjectures are the sub-
ject of a forthcoming project.

C. Antiferromagnetic systems

By flipping every second spin, the classical ferromagnetic
models are equivalent to antiferromagnetic ones �on bipartite
lattices�. This equivalence persists in the presence of a
random field with a distribution symmetric with respect
to the origin. Thus the above discussion of the impact
of random fields on continuous symmetry breaking in clas-
sical ferromagnetic models translates case by case to the
antiferromagnetic case.

D. Quantum systems

All of the effects predicted above should, in principle,
have quantum analogs. Quantum fluctuations might, how-
ever, destroy the long-range order, so each of the discussed
models should be carefully reconsidered in the quantum
case. Some models, such as the quantum spin S=1/2 Heisen-
berg model, for instance, have been widely studied in
literature.38 The Mermin-Wagner theorem27 implies that the
model has no spontaneous magnetization at positive tem-
peratures in 2D. For D�2 spin-wave analysis39–41 shows the
existence of spontaneous magnetization �though a rigorous
mathematical proof of this fact is still lacking�. In general,
one does not expect major differences between the behaviors
of the two models at T�0. It thus seems plausible that the
presence of a random field in the quantum case is going to
have effects similar to those in the classical Heisenberg
model. Similarly, one can consider the quantum Heisenberg
antiferromagnet �HAF� and expect phenomena analogous to
the classical case, despite the fact that unlike their classical
counterparts, the quantum HF and HAF systems are no
longer equivalent. We expect to observe spontaneous stag-
gered magnetization in a random uniaxial XY model, or ran-
dom planar field HF. A possibility that a random field in the
z direction can enhance the antiferromagnetic order in the xy
plane has been pointed out in Ref. 42.

IV. TOWARDS THE EXPERIMENTAL REALIZATION OF
RFIO IN ULTRACOLD ATOMIC SYSTEMS

Further understanding of the phenomena described in this
paper will benefit from experimental realizations and inves-
tigations of the above-mentioned models. Below, we discuss
the possibilities to design quantum simulators for these quan-
tum spin systems using ultracold atoms in optical lattices
�OL�.

A. Two-component lattice Bose gas

Consider a two-component Bose gas confined in an OL
with on-site inhomogeneities. The two components corre-
spond here to two internal states of the same atom. The low-
T physics is captured by the Bose-Bose Hubbard model
�BBH� �Ref. 43� �for a review of ultracold lattice gases see
Ref. 44�:

HBBH = �
j
�Ub

2
n j�n j − 1� +

UB

2
N j�N j − 1� + UbBn jN j�

+ �
j

�v jn j + VjN j� − �
�j,l�

��Jbb j
†bl + JBB j

†Bl� + H.c.�

− �
j
	� j

2
b j

†B j + H.c.
 , �4�

where b j and B j are the annihilation operators for both types
of bosons in the lattice site j, n j =b j

†b j and N j =B j
†B j are the

corresponding number operators, and �j , l� denote a pair of
adjacent sites in the OL. In Hamiltonian �4�, �i� the first term
describes on-site interactions, including interaction between
bosons of different types, with energies Ub, UB, and UbB; �ii�
the second accounts for on-site energies; �iii� the third de-
scribes quantum tunneling between adjacent sites, and �iv�
the fourth transforms one boson type into the other with a
probability amplitude ��� /�. The last term can be imple-
mented with an optical two-photon Raman process if the two
Bosonic “species” correspond to two internal states of the
same atom �see also Fig. 3�. Possibly, both on-site energies
v j, Vj, and the Raman complex amplitude � j can be made
site-dependent using speckle laser light.13–15

FIG. 3. �Color online� Atomic-level scheme of a two-component
Bose mixture in a random optical lattice used to design spin models
in random magnetic fields �see text�.
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Consider the limit of strong repulsive interactions
�0�Jb ,JB , �� j��Ub ,UB ,UBb� and a total filling factor of 1
�i.e., the total number of particles equals the number of
lattice sites�. Proceeding as in the case of Fermi-Bose mix-
tures, recently analyzed by two of the authors in Ref. 23, we
derive an effective Hamiltonian, Heff, for the Bose-Bose
mixture. In brief, we restrict the Hilbert space to a subspace
E0 generated by �� j�nj ,Nj�
 with nj +Nj =1 at each lattice
site, and we incorporate the tunneling terms via second-order
perturbation theory as in Ref. 23 We then end up with

Heff = − �
�j,l�

�Jj,lB j
†Bl + H.c.� + �

�j,l�
Kj,lN jNl + �

j

V jN j

− �
j
	� j

2
B j + H.c.
 , �5�

where B j =b j
†B jP, P is the projector onto E0 and N j =B j

†B j.
Hamiltonian Heff contains �i� a hopping term Jj,l, �ii� an in-
teraction term between neighbor sites Kj,l, �iii� inhomogene-
ities V j, and �iv� a creation/annihilation term. Note that the
total number of composites is not conserved except for a
vanishing �. The coupling parameters in Hamiltonian �5� are
�Ref. 45�:

Jj,l =
JbJB

UbB � 1

1 − 	 � j,l

UbB

2 +

1

1 − 	 
 j,l

UbB

2� , �6�

Kj,l = −
4Jb

2/Ub

1 − 	� j,l

Ub

2 +

2Jb
2/UbB

1 − 	 � j,l

UbB

2

−
4JB

2/UB

1 − 	
 j,l

UB

2 +

2JB
2/UbB

1 − 	 
 j,l

UbB

2 , �7�

V j = Vj − v j + �
�j,l� � 4Jb

2/Ub

1 − 	� j,l

Ub

2 −

Jb
2/UbB

1 −
� j,l

UbB

−
JB

2/UbB

1 +

 j,l

UbB

+
4JB

2/UB

1 − 	
 j,l

UB

2� , �8�

where � j,l=v j −vl and 
 j,l=Vj −Vl. Hamiltonian Heff de-
scribes the dynamics of composite particles whose annihila-
tion operator at site j is B j =b j

†B jP. In contrast to the case of
Fermi-Bose mixtures discussed in Ref. 23, where the com-
posites are fermions, in the present case of Bose-Bose mix-
tures, they are composite Schwinger bosons made of one B
boson and one b hole.

Since the commutation relations of B j and B j
† are those of

Schwinger bosons,46 we can directly turn to the spin
representation46 by defining S j

x+ iS j
y =B j and S j

z=1/2−N j,
where N j =B j

†B j. It is important to note that since Raman
processes can convert b bosons into B bosons �and con-
versely�, � j�N j� is not fixed by the total number of bosons of
each species, i.e., the z component of m, � j�S j

z� is not con-

strained. For small inhomogeneities �� j,l=v j −vl ,
 j,l=Vj

−Vl�Ub ,Ub ,UbB�, Hamiltonian Heff is then equivalent to
the anisotropic Heisenberg XXZ model46 in a random field

Heff = − J��
�j,l�

�S j
xSl

x + S j
ySl

y� − Jz�
�j,l�

S j
zSl

z

− �
j

�hj
xS j

x + hj
yS j

y + hj
zS j

z� , �9�

where

J� =
4JbJB

UbB
, �10�

Jz = 2	2Jb
2

Ub
+

2JB
2

UB
−

Jb
2 + JB

2

UbB

 , �11�

hj
x = � j

R, hj
y = − � j

I, hj
z = V j − �Jz/2, �12�

with � the lattice coordination number, V j =Vj −v j
+��4Jb

2 /Ub+4JB
2 /UB− �Jb

2+JB
2� /UbB� and � j =� j

R+ i� j
I. In

atomic systems, all these �possibly site-dependent� terms can
be controlled almost at will.23,44,47 In particular, by employ-
ing various possible control tools one can reach the HF
�J�=Jz� and XY �Jz=0� cases.

B. Bose lattice gas embedded in a BEC

The quantum ferromagnetic XY model in a random field
may be alternatively obtained using the same BBH model,
but with strong state dependence of the optical dipole forces.
One can imagine a situation in which one component �say b�
is in the strong interaction limit, so that only one b atom at a
site is possible, whereas the other �B� component is in the
Bose condensed state and provides only a coherent BEC
“background” for the b atoms. Mathematically speaking, this
situation is described by Eq. �4�, in which ni’s can be equal
to 0 or 1 only, whereas Bi’s can be replaced by a classical
complex field �condensate wave function�. In this limit the
spin S=1/2 states can be associated with the presence or
absence of a b atom in a given site. In this way, setting
v j =0 and � j

I =0, one obtains the quantum version of the XY
model �1� with J=Jb and a uniaxial random field in the x
direction with the strength determined by � j

R.

C. Two-component Fermi lattice gas

Finally, the S=1/2 antiferromagnetic Heisenberg model
may be realized with a fermi-fermi mixture at half filling for
each component. This implementation might be of special
importance for future experiments with lithium atoms. As
recently calculated,48 the critical temperature for the Néel
state in a 3D cubic lattice is of the order of 30 nK. It is well
known that in a 3D cubic lattice the critical temperatures for
the antiferromagnetic Heisenberg, the XY and the Ising mod-
els are Tc,XY �1.5Tc,Heis, and Tc,Ising�2Tc,Heis. The estimates
of these critical temperatures can be, for instance, obtained
applying the Curie-Weiss mean-field method to the classical
models. Suppose that we put the Heisenberg antiferromagnet
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in a uniaxial �respectively, planar� random field, created
using the same methods as discussed above, i.e., we break
the SU�2� symmetry and put the system into the universality
class of XY �respectively, Ising� models. Mean-field
estimates suggest then that we should expect the increase of
the critical temperature by factor 1.5 �respectively, 2�, that is,
up to �45 �respectively, 90� nK. Even if these estimates are
too optimistic, and the effect is two or three times smaller,
one should stress, that even an increase by, say 10 nK, is of
great experimental relevance and could be decisive for the
achievment of an antiferromagnetic state.

We would like to stress that similar proposals, as the
three discussed above, have been formulated before,49 but
none of them treat simultaneously essential aspects for the
present schemes: �i� disordered fields, but not bonds; �ii� ar-
bitrary directions of the fields; �iii� possibility of exploring
Ising, XY, or Heisenberg symmetries; �iv� realizing the co-
herent source of atoms; and �v� avoiding constraints on the
magnetization along the z axis.

It is also worth commenting on what are the most impor-
tant experimental challenges that have to be addressed in
order to achieve RFIO. Evidently, for the proposals involving
the strong interaction limit of two-component Bose or Fermi
systems, the main issue is the temperature, which has to be
of the order of tens of nanokelvins. Such temperatures are
starting to be achievable nowadays �for a careful discussion
in the context of Fermi-Bose mixtures see Ref. 50�, and there
exist several proposals for supplementary cooling of lattice
gases, using laser �photons� or couplings to ultracold BEC
�phonon cooling� that can help �for reviews see Refs. 44 and
47�.

V. SUMMARY

In this paper, we have proposed a general mechanism of
random-field-induced order �RFIO�, occurring in systems
with continuous symmetry, placed in a random field that
breaks, or reduces this symmetry. We have presented rigor-
ous results for the case of the 2D classical ferromagnetic XY

model in a random uniaxial field, and proved that the system
has spontaneous magnetization at temperature T=0. We have
presented also a rather strong evidence that this is also the
case for small T�0. Several generalizations of this mecha-
nism to various classical and quantum systems were dis-
cussed. We have presented also detailed proposals to realize
RFIO in experiments using two-component Bose lattice
gases, one-component Bose lattice gases embedded in BECs,
or two-component Fermi lattice gases. Our results shed light
on controversies in existing literature, and open the way to
realize RFIO with ultracold atoms in an optical lattice.

It is worth mentioning two further realizations of RFIO
studied by us recently. RFIO occurs in a two-component
trapped Bose gas at T=0, when the gas is condensed and the
two components are coupled by Raman transition of random
strength, but fixed phase. Although such a system belongs to
the universality class of the �trapped, i.e., located in an inho-
mogenous field� XY model, it exhibits the RFIO effect in a
much stronger manner than the XY model discussed in the
present paper. We have found this observation important
enough to devote a separate detailed paper to it.51 Similarly,
we have studied numerically RFIO in 1D for quantum XY
and Heisenberg chains.52 In such systems, even at T=0, mag-
netization vanishes, but amazingly enough the RFIO effect
seems to work at the level of the magnetic susceptibilities.
Adding a random field confined to a certain axis �respec-
tively, plane�, increases siginificantly the magnetic sucepti-
bility in the perpedicular directions �respectively, direction�.
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