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Disorder or quasidisorder is known to favor localization in many-body Bose systems. Here, in contrast,
we demonstrate an anomalous delocalization effect induced by incommensurability in quasiperiodic
lattices. Loading ultracold atoms in two shallow periodic lattices with equal amplitude and either equal or
incommensurate spatial periods, we show the onset of a Mott transition not only in the periodic case but
also in the quasiperiodic case. Switching from periodic to quasiperiodic potential with the same amplitude,
we find that the Mott insulator turns into a delocalized superfluid. Our experimental results agree with
quantum Monte Carlo calculations, showing this anomalous delocalization induced by the interplay
between the disorder and interaction.
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The Mott insulator (MI) is one of the most remarkable
paradigmatic phases in strongly correlated quantum mate-
rials [1–3]. It appears in condensed-matter systems when
correlation effects associated with the strong electron-
electron repulsion drive a metal-insulator phase transition
[4]. The MI characterizes a broad class of materials [5–10],
and is related to exotic quantum phenomena such as high
critical temperature superconductivity [11], fractional
quantum Hall effect [12,13], and topological phase tran-
sitions [14]. MIs also appear in bosonic lattice models due
to the competition between tunneling and repulsive inter-
actions [15]. Experiments with ultracold atoms in optical
lattices allow for in-depth investigation of many-body
physics in a broad range of models [16–19] and are proved
instrumental for direct observation and characterization of
Mott phases for both Bose [15,20,21] and Fermi [22,23]
systems, first in three dimensions and later also in lower
dimensional systems [24–30]. Remarkably, for one-dimen-
sional (1D) bosonic systems with sufficiently strong
repulsive interactions, a purely periodic potential with
arbitrary small amplitude can stabilize a Mott phase
[31–35], as confirmed experimentally in Refs. [36,37].
Recently, quasiperiodic systems realized by two periodic

lattices with incommensurate spatial periods have attracted
a lot of attention. Disorder induced by such quasiperiodic

potentials induces intriguing quantum phenomena such as
Anderson localization [38–40], Bose glass (BG) [41–43],
and fractional MIs [44,45]. The phase diagrams of inter-
acting bosons in such systems have been extensively
studied theoretically both in one [44–46] and two
[47,48] dimensions and recent experiments have reported
measurements for 1D tight-binding models [40,49,50] and
2D quasicrystals [51,52].
Quasiperiodic lattices offer the possibility of studying

the open problem of localization versus delocalization in
the presence of disorder induced by incommensurate
potentials. Bosons in a 1D periodic lattice with incom-
mensurate filling always exhibit an extended superfluid
(SF) phase at zero temperature. Changing from a periodic
to a quasiperiodic lattice, although keeping the total
amplitude unchanged, the system will tend to localize
and form a BG phase, as illustrated in the first row of
Fig. 1(a). This suggests that quasiperiodicity favors locali-
zation. However, when the number of particles is com-
mensurate with the total number of the lattice sites, the
situation is completely opposite. As illustrated in the
second row of Fig. 1(a), while the periodic case favors a
localized MI phase, the quasiperiodic case will favor the
delocalized superfluid phase. While the Mott transition in
periodic system has been assessed [36,37], the quasiperi-
odic case, especially the delocalizing effect induced by
incommensurability, is still a conjecture.
In this work, we experimentally observe the interplay of

disorder and interaction in a strongly correlated Bose gas
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using ultracold atoms in an optical lattice with switchable
commensurability. We use two shallow periodic lattices
with equal amplitude and either equal or incommensurate
spatial periods. Using transport and excitation measure-
ments, we show the onset of a Mott transition in the
quasiperiodic case, at a different lattice amplitude than the
one already observed in the periodic case [36,37]. The
experiment is in good agreement with quantum
Monte Carlo (QMC) calculations. Comparing the phase
diagrams in the periodic and quasiperiodic cases, both
theory and experiment show anomalous delocalization
arising from disorder.
System and quantum phase diagram—We consider a low

temperature 1D gas of interacting bosons (Lieb-Liniger
gas) in the presence of an external lattice potential. Its
Hamiltonian writes

H ¼
X
1≤j≤N

�
−
ℏ2

2m
∂
2

∂z2j
þ VðzjÞ

�
þ g1D

X
j<l

δðzj − zlÞ; ð1Þ

with m the atomic mass, zj the position of particle j, and
g1D ¼ −2ℏ2=ma1D the coupling constant, with a1D the 1D
scattering length. In the experiment, 1D tubes are created
by strong transverse confinement, and a1D is related to the
3D scattering length a and to the transverse oscillator
length l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mω⊥
p

via a1D ¼ l2⊥ð1 − 1.03a=l⊥Þ=a
[53,54]. The quasiperiodic potential writes

VðzÞ ¼ V
2
½sin2ðk1zÞ þ sin2ðk2zþ φÞ�; ð2Þ

with V the potential amplitude, ki ¼ π=diði ¼ 1; 2Þ the
lattice wave vectors, and di the lattice periods. The recoil
energy of each lattice is Eri ¼ ℏ2k2i =2m. By controlling the
ratio between the two wave vectors, we can realize either a
periodic (k1 ¼ k2, φ ¼ 0) or quasiperiodic (k2=k1 ¼ r with
r irrational, arbitrary φ) lattice. Here we use r ≃ 1.2386….
In the experiment, the interaction strength, measured in
terms of the Lieb-Liniger parameter γ ¼ mg1D=ℏ2n, is
controlled using Feshbach resonance techniques.
Figure 1(b) summarizes our main results: it shows the

quantum phase diagram of the Lieb-Liniger gas in the
presence of either a pure periodic or quasiperiodic potential
with same global amplitude max½VðxÞ� −min½VðxÞ�, at
particle filling nd1 ¼ 1 (nd2 ¼ 1=r < 1). The two axes
indicate the total potential amplitude V and the Lieb-
Liniger parameter γ. We focus on the shallow lattice case
where V ∼ Er1. In principle, theory predicts the existence of
three different phases: the SF, the gapped MI, and the
gapless BG. Nevertheless, a sizable BG phase should
appear only for potential depth V larger than the critical
value Vc ≈ 4.2Er1 [45,55], which is beyond our measured
regime. Hence, only MI and SF appear in the phase
diagram. Here, we show the MI-SF transition points from
both experiment of phase-slip-induced dissipation meas-
urement (circles) and QMC calculations of superfluid
fraction (squares). More details about these techniques
are presented in the later sections.
For weak interaction and small lattice amplitude, both

the periodic and quasiperiodic systems are superfluid (red
region, SF). For strong interaction and larger lattice
amplitude, we find that both stabilize an MI with unit
filling with respect to the first lattice (blue region). These
two domains are separated by a genuine phase transition,
but the critical interaction strength γc differs in the periodic
and quasiperiodic cases. The green region shows the
domain where the periodic potential stabilizes an MI phase
while the quasiperiodic potential induces an SF phase. For
the periodic case, the experimental data for the Mott
transition (black disks) is the one of Ref. [37]. The demons-
tration of the Mott transition in the quasiperiodic case, i.e.,
the second transition line (corresponding to the open blue
markers) between the green and blue regions is the first main
result of our work. It is the first experimental demonstration
of the Mott transition in a non-purely-periodic atomic

FIG. 1. Quantum phase transitions in periodic (P) and quasi-
periodic (QP) systems. (a) Sketch of a strongly interacting Bose
gas for different commensurability: nd1 ¼ q (q ≠ 1; r; 1 − r…,
top) and nd1 ¼ 1 (bottom), for periodic (left) and quasiperiodic
(right) systems with d1 the lattice period with larger spacing.
(b) Phase diagram for the MI-to-SF transition versus interaction
strength and potential amplitude for unit particle filling nd1 ¼ 1.
The transition lines are drawn as cubic polynomial fits of both
experimental (disk and circles) and QMC (squares) data points,
for both periodic (solid markers) and quasiperiodic (hollow
markers) systems.
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system. The second main result is the existence of the green
region where the system is an MI phase in the periodic case
and quasiperiodicity restores a stable SF phase, hence
emphasizing the crucial role of commensurability versus
incommensurability. This confirms the conjectured picture
suggested in Fig. 1(a): it indicates that the quasiperiodic
lattice favors delocalization and induces an SF phase when
the particle filling is commensurate with one of the lattice
periods. Contrary to common situations where disorder leads
to localization, the existence of the green area here suggests
an anomalous delocalization effect induced by disorder. This
is due to the fact that the presence of the second lattice blurs
the periodicity of the first one, which is commensurate with
the particle filling, since nd1 ¼ 1 but nd2 < 1.
Experimental measurement of the transition—The ex-

periment starts with a Bose-Einstein condensate (BEC)
with about 35 × 103 atoms of 39K with tunable scattering
length [56]. It is then loaded into a strong 2D horizontal
optical lattice,which splits the sample into about 1500vertical
tubes with a radial trapping frequency ω⊥ ¼ 2π × 40 kHz.
Each tube contains on average 33 atoms and has a longi-
tudinal harmonic trap potential with frequency ωz ¼ 2π×
160 Hz. Both intertubes and intratubes, the atom distribution
is inhomogeneous. The mean density n̄ is then calculated by
averaging over all the tubes [40,57]. Note our 3D BEC is
prepared at a temperature presumably lower than 10 nK.
Suggested by recent works [60–62], a further cooling may
appear during the dimensional reduction.
For the incommensurate case, we then adiabatically raise

two weak vertical optical lattices with the same amplitude
(V=2) and different wavelengths λ1 ¼ 1064 nm and λ2 ¼
859 nm to transfer the system in the shallow potential of
Eq. (2) with ki ¼ 2π=λi. For the commensurate case, we set
λ2 ¼ λ1. We use aload ¼ 226a0 (a0 is the Bohr radius)
to obtain a mean density n̄ ¼ ð0.99� 0.12Þ=d1 ¼
ð0.80� 0.09Þ=d2. At this point we tune the scattering
length to a variable value a (hence varying γ) and explore
the transport properties of the system in the γ − V diagram.
By suddenly switching off a levitating vertical magnetic

field gradient, we shift the center of the harmonic trap by
δz ≈ 3 μm and excite a sloshing motion of the system in the
longitudinal (vertical) direction. After a variable evolution
time t, we switch off all external confinements and let the
atoms free to expand for tTOF ¼ 16.5 ms before absorption
images are recorded in time of flight (TOF). A typical
image is shown in Fig. 2(a). By integrating along the radial
direction we obtain the longitudinal atom distributions,
whose peak position z can be detected at different evolution
time t [Fig. 2(b)].
In Fig. 2(b) we show an example of the evolution of the

atomic density peak position z for fixed values of both the
quasiperiodic potential depth V and the scattering length a
(cyan circles). Typically we observe an initial increase of
the peak position z up to a certain critical value zc, followed
by a decrease for larger times. This behavior is expected for

a 1D system, in which the presence of phase-slip
events typically induces dissipation in its dynamics [63–
65]. The data for z < zc are fitted by a damped oscilla-
tion zfitðtÞ ¼ zmaxe−Gt sinðω0tÞ, with ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω�2 − 4π2G2

p
,

ω� ¼ ωz

ffiffiffiffiffiffiffiffiffiffiffiffi
m=m�p

, m� the effective mass in the quasiperi-
odic potential, and zmax ¼ ðm�ω�2δztTOF=mω0Þ. G and δz
are fitting parameters. For larger times, the system enters a
strongly dissipative regime where the phase-slip nucleation
rate diverges [64,66]. By fitting the difference between the
damped oscillation zfitðtÞ and the experimental data at any
time with a piecewise function (gray squares), we extract
the critical value zc and its uncertainty. In the presence of a
single periodic potential, the critical value zc is known to
decrease with increasing interactions in both deep [36,66]
and shallow [37,64] optical lattices, and to vanish (reach a
constant value) at the SF-MI transition in the former (latter)
regime. We observe a similar behavior with the quasiperi-
odic lattice. In Fig. 2(d) we show the value zc for increasing
scattering length a for two values of the quasiperiodic

FIG. 2. (a) A representative absorption image of atoms in time
of flight (TOF). (b) Three representative atom distributions along
the longitudinal direction at different evolution time t. (c) Evo-
lution of the atomic peak position z for a quasiperiodic potential
with V ¼ ð1.60� 0.16ÞEr1 and a ¼ ð157� 2Þa0 (cyan circles,
left-hand axis) and difference between the fit of the evolution for
z < zc (zfit) and the experimental data (gray squares, right-hand
axis). The error bars are the squared sum of a standard deviation
of 4–6 independent measurements and the imaging resolution.
The solid cyan (dashed gray) line is a damped oscillation
(piecewise) fit to the experimental data at short (at any) time.
The shaded area shows the 95% confidence band of the
oscillation fit. (d) Critical value zc versus a for two values of
the potential depth: V ¼ ð3.0� 0.3ÞEr1 (blue circles) and V ¼
ð1.60� 0.16ÞEr1 (green squares). The error bars come from the
fit used to extract zc and represent the statistical uncertainties.
Solid lines are the piecewise fit to extract the critical value
of the SF-MI critical point ac (arrows) and its uncertainty: ac ¼
ð187� 2Þa0 and ac ¼ ð330� 15Þa0, respectively, for V ¼ 3Er1
and V ¼ 1.6Er1.
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potential depth V. As already observed for a single weak
lattice potential [37], zc decreases for increasing a and
reaches a plateau for a > ac. The quantity ac can then be
interpreted as the critical scattering length to enter the Mott
lobe associated to the largest density (1=d1). We use a
piecewise function with a second-order polynomial fit to
extract ac and its uncertainty. Consistently with theoretical
predictions, we find that ac increases as V decreases.
In Fig. 1(b) we show the critical interaction strength,

expressed in terms of γ, for the superfluid-insulator
transitions measured for several values of the potential
depth V, in both periodic (black disks) and quasiperiodic
(blue circles) cases. In both cases, we find that γc
monotonically decreases with V, but the critical value to
enter the MI regime is significantly higher for the quasi-
periodic case than for the periodic case, as discussed above.
Quantum Monte Carlo calculations—We now discuss

the numerical calculations. Using continuous-space path
integral quantum Monte Carlo calculations [67] with the
worm algorithm implementation [68,69], we simulate
strongly interacting 1D bosons in the presence of a shallow
potential, be it periodic or quasiperiodic. For given values
of the chemical potential μ, the temperature T, and the
interaction strength g1D, we compute the particle density n
and superfluid fraction fs. The SF phase is characterized by
fs > 0, whereas the MI phase corresponds to fs ¼ 0 and a
plateau at nd1 ¼ 1. We use the system size L ¼ 100d1 and
temperature T ∼ 3 nK. In practice, we judge the MI phase
using the criteria fs < 5% and j1 − nd1j < 5% [37]. Note
that we do not observe any cases where fs ≃ 0 and nd1 ≠ 1,
consistent with the absence of a BG phase in the considered
parameter range.
In Fig. 3, we show the phase diagram versus inverse

interaction strength 1=γ and chemical potential μ for the
quasiperiodic case with V ¼ 3Er1. We find an MI lobe

with nd1 ¼ 1 (blue) surrounded by the SF phase (red). The
SF-MI transitions are shown as black squares. At the tip of
the Mott lobe, we use the resolution δμ ¼ 0.01Er1 (such
that δμ < kBT) and δg1D ¼ 0.5ℏ2=m. This allows us to
locate the critical value of γ accurately. In this given
example, we find γc ¼ 2.0� 0.25 (blue cross) [57].
With this procedure, we compute the critical interaction

strength γc as a function of the potential amplitude V, for
both periodic ðk1 ¼ k2;φ ¼ 0Þ and quasiperiodic ðk1 ≠ k2;
φ ¼ 0.2Þ shallow potentials; see Eq. (2). The final data are
shown as solid black (quasiperiodic) and hollow blue
(periodic) squares in Fig. 1(b). We find that theory and
experiment agree within error bars. This further confirms
the existence of a region (green) where the periodic system
enters the MI phase, but quasiperiodicity restores a stable
SF. The small deviation between theory and experiment
may originate from the finite temperature and inhomoge-
neity effects in the experiment and the finite resolution δμ
in the numerics. Note that here we observe a direct SF-MI
transition up to our resolution. Although no sizable BG is
presented, whether there exists a tiny BG sliver in be-
tween is an open question that deserves further analysis
[42,43,70].
Detection of the Mott gap—The MI phase is further

characterized by the emergence of a finite gap in the excitation
spectrum. In the experiment, we modulate the depth of the
quasiperiodic potential as VðtÞ ¼ V½1þ A cosð2πνtÞ�, with
A ≃ 0.1 for 200 ms so as to generate excitations at the
frequency ν [40]. We then transfer back the Bose gas into
the 3D optical trap by switching off all lattice beams and
measure the variation of the BEC fraction as a function of
the modulation frequency ν [71,72]. Figure 4 shows two
characteristic results respectively below and above the

FIG. 3. Phase diagram versus the inverse interaction parameter
1=γ and chemical potential μ for the quasiperiodic case with
amplitude V ¼ 3Er1, computed using QMC calculations. The
system size is L ¼ 100d1 and the temperature T ∼ 3 nK. The MI
lobe (blue), the SF region (red), and the critical point γc (blue
cross) are determined from the SF-MI transition points (black
squares). The dashed blue line indicates the coupling constant
fg1D ¼ 2.46 where the excitation gap is studied; see Fig. 4.

0 200 400 600 800 1000

-0.6

-0.4

-0.2

0.0

V
ar
ia
tio
n
of
B
EC
fr
ac
tio
n

(Hz)

(a)

0 200 400 600 800 1000

(b)

(Hz)

FIG. 4. Excitation spectra for a quasiperiodic lattice with depth
V ¼ 3Er1 and two different scattering lengths (a) below and
(b) above the critical value ac for the fluid-insulator transition:
a ¼ ð142.4� 1.9Þa0 and a ¼ ð235� 5Þa0, respectively. The
error bars are a standard deviation of about 8 independent
measurements. Solid lines are fits with a second-order poly-
nomial piecewise function. The vertical dashed line corresponds
to the theoretical prediction for a ¼ 235a0 and T ¼ 3 nK, while
the gray area indicates its uncertainty, resulting from the
systematic error on a and l⊥ in the experiment and the error
bar from QMC calculations [57].
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localization transition. As expected, for weak interactions,
any small modulation frequency is able to excite the
system, corresponding to a gapless SF phase [Fig. 4(a)].
In contrast, for strong interactions, no excitation is observed
up to some frequency gap, corresponding to the MI phase
[Fig. 4(b)]. For V ¼ 3Er1, the measured gap is νg ¼ ð350�
50Þ Hz and is consistent, within error bars, with the Mott
gap calculated in the QMC simulations for the same
parameters as in the experiment and low T [see dashed
blue vertical line in Fig. 3 and dashed black line in
Fig. 4(b)]. This further corroborates that the observed
insulating phase is a gapped MI with density n ¼ 1=d1,
instead of a gapless BG.
Discussion—We have demonstrated the onset of a Mott

transition in a shallow 1D quasiperiodic lattice. In the range
1 < V=Er1 < 3 and for n ¼ 1=d1, the critical value of the
interaction strength is larger in the quasiperiodic case
compared to the periodic case. It shows that in this regime
disorder due to the quasiperiodic potential stabilizes the SF
phase, i.e., an anomalous disorder-induced delocalization.
This may be qualitatively understood within renormaliza-
tion group analysis similarly as in Refs. [35–37,70]: for
nd1 ¼ 1, only the first lattice is relevant while the second
lattice is irrelevant, within first-order approximation, hence
lowering the effective strength of the pinning potential.
Still, the SF-to-MI transition observed in the incommen-
surate case is not quantitatively similar to that for a single
lattice, which implies significant renormalization of the
effective strength of the first lattice by the second. This
mechanism may prefigure the onset of a BG phase for
stronger potential amplitudes.
Our work provides an essential contribution to under-

standing the pivotal role played by disorder and commen-
surability in quantum phase transitions. Moreover, further
experimental control would allow us to investigate more
complex quantum phases, such as fractional MIs and BG
phases [45,47,48,55].
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superlattices, Nature (London) 579, 359 (2020).

[10] Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M.
Kroner, and A. Imamoğlu, Strongly correlated electrons and
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[38] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc.
3, 133 (1980).

[39] L. Fallani, J. E. Lye, V. Guarrera, C. Fort, and M. Inguscio,
Ultracold atoms in a disordered crystal of light: Towards a
Bose glass, Phys. Rev. Lett. 98, 130404 (2007).

[40] C. D’Errico, E. Lucioni, L. Tanzi, L. Gori, G. Roux, I. P.
McCulloch, T. Giamarchi, M. Inguscio, and G. Modugno,
Observation of a disordered bosonic insulator from weak
to strong interactions, Phys. Rev. Lett. 113, 095301
(2014).

[41] T. Giamarchi and H. J. Schulz, Localization and interactions
in one-dimensional quantum fluids, Europhys. Lett. 3, 1287
(1987).

[42] T. Giamarchi and H. J. Schulz, Anderson localization and
interactions in one-dimensional metals, Phys. Rev. B 37,
325 (1988).

[43] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, Boson localization and the superfluid-insulator
transition, Phys. Rev. B 40, 546 (1989).

[44] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U.
Schollwöck, and T. Giamarchi, Quasiperiodic Bose-
Hubbard model and localization in one-dimensional cold
atomic gases, Phys. Rev. A 78, 023628 (2008).

[45] H. Yao, T. Giamarchi, and L. Sanchez-Palencia, Lieb-
Liniger bosons in a shallow quasiperiodic potential: Bose
glass phase and fractal Mott lobes, Phys. Rev. Lett. 125,
060401 (2020).

[46] T. Roscilde, Bosons in one-dimensional incommensurate
superlattices, Phys. Rev. A 77, 063605 (2008).

[47] R. Gautier, H. Yao, and L. Sanchez-Palencia, Strongly
interacting bosons in a two-dimensional quasicrystal lattice,
Phys. Rev. Lett. 126, 110401 (2021).

[48] Z. Zhu, H. Yao, and L. Sanchez-Palencia, Thermo-
dynamic phase diagram of two-dimensional bosons in a
quasicrystal potential, Phys. Rev. Lett. 130, 220402
(2023).

[49] L. Gori, T. Barthel, A. Kumar, E. Lucioni, L. Tanzi, M.
Inguscio, G. Modugno, T. Giamarchi, C. D’Errico, and G.
Roux, Finite-temperature effects on interacting bosonic one-
dimensional systems in disordered lattices, Phys. Rev. A 93,
033650 (2016).

[50] C. D’Errico and M. G. Tarallo, One-dimensional disordered
bosonic systems, Atoms 9, 112 (2021).

[51] M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and
U. Schneider, Observing localization in a 2D quasi-
crystalline optical lattice, Phys. Rev. Lett. 125, 200604
(2020).

[52] J.-C. Yu, S. Bhave, L. Reeve, B. Song, and U. Schneider,
Observing the two-dimensional Bose glass in an optical
quasicrystal, arXiv:2303.00737.

[53] M. Olshanii, Atomic scattering in the presence of an
external confinement and a gas of impenetrable bosons,
Phys. Rev. Lett. 81, 938 (1998).

[54] M. A. Cazalilla, Bosonizing one-dimensional cold atomic
gases, J. Phys. B 37, S1 (2004).

[55] H. Yao, A. Khoudli, L. Bresque, and L. Sanchez-Palencia,
Critical behavior and fractality in shallow one-dimensional
quasiperiodic potentials, Phys. Rev. Lett. 123, 070405
(2019).

PHYSICAL REVIEW LETTERS 133, 123401 (2024)

123401-6

https://doi.org/10.1103/PhysRevA.72.053606
https://doi.org/10.1038/nature07244
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1103/PhysRevLett.98.080404
https://doi.org/10.1103/PhysRevLett.100.120402
https://doi.org/10.1103/PhysRevLett.100.120402
https://doi.org/10.1126/science.1236362
https://doi.org/10.1103/PhysRevLett.115.260401
https://doi.org/10.1103/PhysRevLett.115.260401
https://doi.org/10.1103/PhysRevLett.116.175301
https://doi.org/10.1103/PhysRevLett.116.175301
https://doi.org/10.1103/PhysRevLett.117.135301
https://doi.org/10.1016/0375-9601(80)90022-5
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1103/PhysRevLett.47.1840
https://doi.org/10.1016/S0921-4526(96)00768-5
https://doi.org/10.1016/S0921-4526(96)00768-5
https://doi.org/10.1103/PhysRevLett.90.130401
https://doi.org/10.1038/nature09259
https://doi.org/10.1038/nature09259
https://doi.org/10.1103/PhysRevA.93.011601
https://doi.org/10.1103/PhysRevLett.98.130404
https://doi.org/10.1103/PhysRevLett.113.095301
https://doi.org/10.1103/PhysRevLett.113.095301
https://doi.org/10.1209/0295-5075/3/12/007
https://doi.org/10.1209/0295-5075/3/12/007
https://doi.org/10.1103/PhysRevB.37.325
https://doi.org/10.1103/PhysRevB.37.325
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevA.78.023628
https://doi.org/10.1103/PhysRevLett.125.060401
https://doi.org/10.1103/PhysRevLett.125.060401
https://doi.org/10.1103/PhysRevA.77.063605
https://doi.org/10.1103/PhysRevLett.126.110401
https://doi.org/10.1103/PhysRevLett.130.220402
https://doi.org/10.1103/PhysRevLett.130.220402
https://doi.org/10.1103/PhysRevA.93.033650
https://doi.org/10.1103/PhysRevA.93.033650
https://doi.org/10.3390/atoms9040112
https://doi.org/10.1103/PhysRevLett.125.200604
https://doi.org/10.1103/PhysRevLett.125.200604
https://arXiv.org/abs/2303.00737
https://doi.org/10.1103/PhysRevLett.81.938
https://doi.org/10.1088/0953-4075/37/7/051
https://doi.org/10.1103/PhysRevLett.123.070405
https://doi.org/10.1103/PhysRevLett.123.070405


[56] G. Roati, M. Zaccanti, C. D’Errico, J. Catani, M. Modugno,
A. Simoni, M. Inguscio, and G. Modugno, 39K Bose-
Einstein condensate with tunable interactions, Phys. Rev.
Lett. 99, 010403 (2007).

[57] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.133.123401 for atom
distribution in experiments and determination of the
QMC error bars, which includes Refs. [58,59].

[58] C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio,
G. Modugno, and A. Simoni, Feshbach resonances in
ultracold 39K, New J. Phys. 9, 223 (2007).

[59] V. Dunjko, V. Lorent, and M. Olshanii, Bosons in cigar-
shaped traps: Thomas-Fermi regime, Tonks-Girardeau re-
gime, and in between, Phys. Rev. Lett. 86, 5413 (2001).

[60] H. Yao, L. Pizzino, and T. Giamarchi, Strongly-interacting
bosons at 2D-1D dimensional crossover, SciPost Phys. 15,
050 (2023).

[61] Y. Guo, H. Yao, S. Ramanjanappa, S. Dhar, M. Horvath, L.
Pizzino, T. Giamarchi, M. Landini, and H.-C. Nägerl,
Observation of the 2D-1D dimensional crossover in strongly
interacting ultracold bosons, Nat. Phys. 20, 934 (2024).

[62] Y. Guo, H. Yao, S. Dhar, L. Pizzino, M. Horvath, T.
Giamarchi, M. Landini, and H.-C. Nägerl, Anomalous
cooling of bosons by dimensional reduction, Sci. Adv.
10, eadk6870 (2024).

[63] L. Tanzi, S. Scaffidi Abbate, F. Cataldini, L. Gori, E.
Lucioni, M. Inguscio, G. Modugno, and C. D’Errico,
Velocity-dependent quantum phase slips in 1D atomic
superfluids, Sci. Rep. 6, 25965 (2016).

[64] S. Scaffidi Abbate, L. Gori, M. Inguscio, G. Modugno, and
C. D’Errico, Exploring quantum phase slips in 1D bosonic
systems, Eur. Phys. J. Spec. Top. 226, 2815 (2017).

[65] C. D’Errico, S. S. Abbate, and G. Modugno, Quantum phase
slips: From condensed matter to ultracold quantum gases,
Phil. Trans. R. Soc. A 375, 20160425 (2017).

[66] L. Tanzi, E. Lucioni, S. Chaudhuri, L. Gori, A. Kumar, C.
D’Errico, M. Inguscio, and G. Modugno, Transport of a
Bose gas in 1D disordered lattices at the fluid-insulator
transition, Phys. Rev. Lett. 111, 115301 (2013).

[67] D. M. Ceperley, Path integrals in the theory of condensed
helium, Rev. Mod. Phys. 67, 279 (1995).

[68] M. Boninsegni, N. Prokof’ev, and B. Svistunov, Worm
algorithm for continuous-space path integral Monte Carlo
simulations, Phys. Rev. Lett. 96, 070601 (2006).

[69] M. Boninsegni, N. V. Prokof’ev, and B. V. Svistunov, Worm
algorithm and diagrammatic Monte Carlo: A new approach
to continuous-space path integral Monte Carlo simulations,
Phys. Rev. E 74, 036701 (2006).

[70] J. Vidal, D. Mouhanna, and T. Giamarchi, Interacting
fermions in self-similar potentials, Phys. Rev. B 65,
014201 (2001).

[71] C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, and U.
Schollwöck, Spectroscopy of ultracold atoms by periodic
lattice modulations, Phys. Rev. Lett. 97, 050402 (2006).

[72] G. Orso, A. Iucci, M. Cazalilla, and T. Giamarchi, Lattice
modulation spectroscopy of strongly interacting bosons in
disordered and quasiperiodic optical lattices, Phys. Rev. A
80, 033625 (2009).

[73] M. Troyer, B. Ammon, and E. Heeb, in Proceedings of the
International Symposium on Computing in Object-Oriented
Parallel Environments (Springer, New York, 1998),
pp. 191–198.

[74] A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S.
Fuchs,L.Gamper, E.Gull, S.Guertler,A.Honecker et al., The
ALPS project release 1.3: Open-source software for strongly
correlated systems, J. Magn. Magn. Mater. 310, 1187 (2007).

[75] B. Bauer, L. D. Carr, H. Evertz, A. Feiguin, J. Freire, S.
Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler et al.,
The ALPS project release 2.0: Open source software for
strongly correlated systems, J. Stat. Mech. (2011) P05001.

PHYSICAL REVIEW LETTERS 133, 123401 (2024)

123401-7

https://doi.org/10.1103/PhysRevLett.99.010403
https://doi.org/10.1103/PhysRevLett.99.010403
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
http://link.aps.org/supplemental/10.1103/PhysRevLett.133.123401
https://doi.org/10.1088/1367-2630/9/7/223
https://doi.org/10.1103/PhysRevLett.86.5413
https://doi.org/10.21468/SciPostPhys.15.2.050
https://doi.org/10.21468/SciPostPhys.15.2.050
https://doi.org/10.1038/s41567-024-02459-3
https://doi.org/10.1126/sciadv.adk6870
https://doi.org/10.1126/sciadv.adk6870
https://doi.org/10.1038/srep25965
https://doi.org/10.1140/epjst/e2016-60381-0
https://doi.org/10.1098/rsta.2016.0425
https://doi.org/10.1103/PhysRevLett.111.115301
https://doi.org/10.1103/RevModPhys.67.279
https://doi.org/10.1103/PhysRevLett.96.070601
https://doi.org/10.1103/PhysRevE.74.036701
https://doi.org/10.1103/PhysRevB.65.014201
https://doi.org/10.1103/PhysRevB.65.014201
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevA.80.033625
https://doi.org/10.1103/PhysRevA.80.033625
https://doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1088/1742-5468/2011/05/P05001


Supplemental Material for Mott transition for a Lieb-Liniger gas in a shallow
quasiperiodic potential: Delocalization induced by disorder

Hepeng Yao,1, ∗ Luca Tanzi,2, 3 Laurent Sanchez-Palencia,4 Thierry

Giamarchi,1 Giovanni Modugno,2, 3, 5 and Chiara D’Errico6, †

1DQMP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
2Istituto Nazionale di Ottica, CNR-INO, Via Moruzzi 1, 56124 Pisa, Italy

3European Laboratory for Non-Linear Spectroscopy,
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EXPERIMENTAL PARAMETERS

Atom distribution among the tubes

The array of tubes is created starting from a BEC
loaded in a 3D optical trap. A deep 2D horizontal optical
lattice with spacing d = λ1/2 = 532 nm is then adiabati-
cally raised to a typical height of 20 recoil energies. Due
to the radial trapping confinement during the loading of
the 2D lattice, the 1D tubes at the center (tails) of the
distribution contain more (less) particles. The exact dis-
tribution of atoms among the tubes may be estimated
by assuming that the atoms are not redistributed among
the tubes during the lattice loading. The distribution of
the atoms in the tubes is a Thomas-Fermi, i.e.

Ni,j = N0,0

[
1− (i2 + j2)

d2

R2
r

]3/2

, (S1)

where m is the atomic mass, Rr =
√
2µ/(mω2

r), and

µ = ℏω̄
2 (15aload/ℓ̄)

2/5N
2/5
T . The atom number in the

central tube is given by N0,0 = 5
2π

d2

R2
r
NT , NT is the total

atom number, ωr (ω̄) is the radial (geometric mean) op-
tical trap frequency before the loading of the tubes and
ℓ̄ =

√
ℏ/mω̄. Tuning the value of the scattering length

aload during the loading of the 2D lattice on a Feshbach
resonance [1, 2], we can slightly control µ, and thus the
Thomas-Fermi distribution of the atoms in the tubes.
With the parameters used in the experiment we obtain
N0,0 = 53± 10, whose uncertainty is due to a systematic
relative uncertainty of 30% on the total atom number,
and the atom distribution shown in Fig. S1a.

Atom distribution along the tubes and estimation of
the mean density

Both in the horizontal direction (between tubes) and in
the vertical one (along the tubes), the atom distribution
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FIG. S1. (a) Distribution of the atoms in the tubes in
the Thomas-Fermi approximation, with the parameters typi-
cally used in the experiment: NT = 35000, aload = 226 a0,
ωr = 2π × 45 Hz and ω̄ = 2π × 49 Hz. (b) Atom frac-
tion in tubes with maximum density n0 > 2/d1 (red cir-
cles), 1/d1 < n0 < 2/d1 (purple squares), and n0 < 1/d1
(blue triangles), as a function of the scattering length a. (c)
Mean density as a function of a. (d) Atom fraction in tubes
with Thomas-Fermi (red circles), and Tonks-Girardeau (blue
squares) distributions as a function of a.

is inhomogeneous. When the scattering length is tuned
to the variable value a to explore the superfluid-insulator
transition, the distribution inside each tube, and thus
the mean density of the system, may change. On the
contrary, since the tunneling time between neighboring
tubes (h/J⊥ = 0.55 s) largely exceeds the tuning time of
a (≈ 50 ms), the atom distribution between tubes should
not be affected. Depending on the value of the scatter-
ing length a and the atom number, the distribution in
individual tubes is expected to vary from Thomas-Fermi
(weak interactions) to Tonks-Girardeau (strong interac-
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tions) profiles [3]. In each tube we compare both dis-
tributions, and, as done in previous experiments [4, 5],
we retain the one that maximises the central density n0.
The mean density n̄ is then calculated by averaging over-
all the tubes. The value aload = 226a0 has been tuned
to obtain a mean density n̄ ≈ 1/d1. The results of this
procedure, calculated neglecting the effect of the verti-
cal optical lattices, are shown as a function of the scat-
tering length in Figs. S1b-d. They show the fraction
of atoms in tubes with maximum density in different
ranges, the mean density n̄, and the fraction of atoms
in tubes with Thomas-Fermi or Tonks-Girardeau distri-
butions. For V ̸= 0 the assumed distribution inside each
tube is reliable only in the superfluid regime, while it
fails in the Mott one. When increasing the scattering
length in the region of a > ac, in fact, in tubes where the
Mott lobes form the density is fixed. The transport along
the tubes containing one or two regions with n = 1/d1
is globally suppressed, as the part of atoms reaching the
Mott condition stops also the upward parts with different
densities, thus driving most of the tube into an effective
insulating regime. The plateau in zc, shown in Fig. 2
(b) of the main paper, is generated by the tubes where
the critical density n = 1/d1 is not reached (about a 25%
of atoms), as well as the downward part of tubes with
MI regions (about a 10%), which keep moving also for
a > ac. Note that, due to the inhomogeneity of the ex-
perimental system, we estimate that about 55% of atoms
are in tubes containing one or two regions with n = 1/d2.
However, these areas do not alter the determination of
the critical point ac, since we expect to reach the critical
interaction necessary to localize fragments with n = 1/d1
first. In addition, measurements with different mean den-
sities show that the measured ac does not substantially
change with n̄, consistently with the conjecture that the
observed insulating phase is due to the Mott region with
n = 1/d1.

DETERMINATION OF ERRORBAR IN THE
QUANTUM MONTE CARLO CALCULATIONS

When computing phase diagrams like Fig. 3 of the
main paper, we need to calculate the superfluid fraction
fs and particle number N as a function of the chemical
potential µ, for a fixed interaction strength g1D. One
detailed example is shown in Fig. S2. Here, we run
simulations for the quasiperiodic systems with potential
strength V/Er = 3.0, coupling constant mg1Dd1/ℏ2 =
4.0, temperature T = 3 nK and system size L = 100d1.
We show fs as a function of µ nearby the transition point,
where the errorbars of fs presented in the plot originates
from the statistical fluctuations of QMC sampling. We
set the criteria of MI phase as fs < 5% (red dashed line)
and find the transition point at µc/Er = 0.295 ± 0.005.
Clearly, up to our discretization δµ/Er = 0.01, the sta-

FIG. S2. One example of quantum Monte Carlo calculations
for superfluid fraction fs as a function of the chemical po-
tential µ, for a quasiperiodic system with potential strength
V/Er = 3.0, coupling constant mg1Dd1/ℏ2 = 3.5, temperature
T = 3 nK and system size L = 100d1.

tistical errorbar does not influence our judgement of the
critical point. Similar results are found for other poten-
tial amplitudes and interaction strengths.

Another origin of error is the discretization in parame-
ters scannings when computing phase diagrams like Fig.
3 in the main text. We always use δµ/Er1 = 0.01 and
mδg1Dd1/ℏ2 = 0.5. When computing the critical interac-
tion values γc = mgc/ℏ2n in Fig. 1 of the main paper,
we need to consider the contribution from both errorbars.
However, we always find the second one dominants and
this leads to the errorbar δγc = 0.5.

In Fig. 4 of the main paper, we also run QMC simula-
tions for the Mott gap. Its errorbar contains not only the
two stated above, but also the uncertainty of the mea-
sured 3D scattering length a = (235 ± 5)a0. This leads
to the 1D coupling constant mg1Dd1/ℏ2 = 3.97 ± 0.11.
Combining all these errors, we find νg = (350± 50)Hz.
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