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Localization and spectral structure in two-dimensional quasicrystal potentials
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Quasicrystals, a fascinating class of materials with long-range but nonperiodic order, have revolutionized
our understanding of solid-state physics due to their unique properties at the crossroads of long-range-ordered
and disordered systems. Since their discovery, they continue to spark broad interest for their structural and
electronic properties. The quantum simulation of quasicrystals in synthetic quantum matter systems offers a
unique playground to investigate these systems with unprecedented control parameters. Here, we investigate the
localization properties and spectral structure of quantum particles in two-dimensional quasicrystalline optical
potentials. While states are generally localized at low energy and extended at high energy, we find alternating
localized and critical states at intermediate energies. Moreover, we identify a complex succession of gaps in the
energy spectrum. We show that the most prominent gap arises from strongly localized ring states, with the gap
width determined by the energy splitting between states with different quantized winding numbers. In addition,
we find that these gaps are stable for quasicrystals with different rotational symmetries and potential depths,
provided that other localized states do not enter the gap generated by the ring states. Our findings shed light on
the unique properties of quantum quasicrystals and have implications for their many-body counterparts.
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I. INTRODUCTION

The discovery of quasicrystals in the early 1980s [1]
marked a paradigm shift in crystallography and solid-state
physics, prompting investigations into their structural and
electronic properties [2–7]. Quasicrystals are usually syn-
thetized in the laboratory after fast solidification of certain
alloys [1,8], but have also been observed at their nat-
ural state in meterorites [9,10] and residues of nuclear
blasts [11]. Unlike conventional crystal solids, quasicrys-
tals lack translational invariance, but retain long-range order,
hence challenging the traditional notions of crystalline order
[12,13]. According to the crystallographic restriction theorem,
periodic crystals can only possess twofold, threefold, four-
fold, or sixfold rotational symmetries [14,15]. Quasicrystals,
however, show discrete rotation symmetries of orders n =
5, 7, 8, 9, . . . , hence incompatible with periodic long-range
order [16]. This is evidenced by Bragg spectroscopy patterns
with clear diffraction peaks arranged in accordance to the
forbidden rotational symmetries [17,18]. The key feature of
quasicrystals is then their quasiperiodicity, which amounts
to the fact that finite patterns can be approximately repro-
duced at arbitrary long distances, but usually not exactly and
not periodically. This crystallographic definition is now piv-
otal in identifying and classifying quasicrystals. Due to their
structure, quasicrystals can also possess distinct electronic
properties that set them apart from standard materials. The
electronic behavior in quasicrystals is governed by complex
wave interference patterns, which can, for instance, give rise
to phason quasiparticles [19–21], exotic transport properties
[22–26], and an intricate energy spectrum [27–29]. Under-
standing these distinctive electronic properties is vital for
unraveling the underlying mechanisms governing quasicrys-
tals and their potential applications.

Recent developments in quantum simulation offers a
unique playground to study the physics of complex quan-
tum systems in controlled environments, with the promise
of shedding light on their fundamental properties [30–33].
In recent years, considerable progress has been made in the
quantum simulation of quasicrystals, leveraging various ex-
perimental platforms, including photonic crystals [34–37],
quantum fluids of light [38–40], and ultracold quantum gases
[41,42]. Notably, the use of ultracold atoms as quantum
simulators has gained prominence, owing to the unprece-
dented control over experimental parameters [43–48]. While
one-dimensional (1D) quasiperiodic systems have been exten-
sively studied in the last two decades [49–67], much attention
is now devoted to quasicrystals in dimensions higher than one
[42,68–75]. Previous studies on two-dimensional (2D) optical
quasicrystals have focused on investigating the emergence
of long-range quasicrystalline order using matter-wave inter-
ferometry [41,42], single-particle Anderson-type localization
[41,68,69], as well as Bose glass physics in weakly interact-
ing [69–71,76] and strongly correlated Bose gases [72–74].
In this respect, the physics of single quantum particles in a
quasicrystal potential plays a central role, not only for their
unique properties but also for understanding the many-body
problem. On the one hand, detailed studies of a variety of
1D quasiperiodic systems have revealed exotic localization
and fractal properties, which clearly distinguishes generic
quasiperiodic systems from disordered ones. Even richer be-
havior may be expected for 2D quasicrystalline systems,
and a detailed study of the specific configurations imple-
mented on current experimental platforms is deserved. On the
other hand, understanding the single-body problem is deci-
sive for understanding the many-body properties, especially
in regards to the competition of localization and interparti-
cle interactions, which governs quantum phase diagrams. For
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FIG. 1. Optical quasicrystal for ultracold atoms. A 2D quasicrys-
tal potential with eightfold rotation symmetry is realized using four
pairs of counterpropagating laser beams, making successive angles
of 45◦ each.

instance, it has been recently shown that the emergence of a
Bose glass and an insulating Mott phase in strongly correlated
Bose gases subjected to shallow quasicrystal potentials can
be related to localization and spectral gaps of noninteracting
systems [74].

In this work, we investigate the localization properties
and the structure of the energy spectrum for noninteracting
quantum particles in two-dimensional quasicrystal potentials,
as realized for ultracold-atom quantum simulators. While
quantum states are generally localized at low energies and
extended at high energies, we find an alternation of local-
ized and critical states at intermediate energies. Finite-size
scaling analysis of the inverse participation ratio unveils a
power-law scaling, with a noninteger fractal dimension, for
systems up to sizes of several hundreds of the natural length
scale (optical wavelength). Furthermore, the energy spectrum
shows a complex succession of bands and gaps, and we
show that the most prominent gap is generated by localized
ring states, and the gap width is controlled by the energy
splitting between states with different quantized winding
numbers.

We present our results as follows. A 2D optical quasicrys-
tal with eightfold rotational symmetry is first introduced in
Sec. II and we provide a general overview of the localization
and spectral properties in Sec. III. The localization properties
are then discussed in greater detail within Sec. IV, including
the structure of localized, critical, and extended states, and
their identification from a finite-size scaling analysis of the
inverse participation ratio. Next, in Sec. V, we investigate the
formation of gaps in the energy spectrum and show that they
originate from localized ring states with different winding
numbers. Finally, in Sec. VI, we extend this discussion to qua-
sicrystal potentials with other discrete rotational symmetries,
before ending with our conclusions and the implications of
our results in Sec. VII.

II. QUASICRYSTAL POTENTIAL

The quasicrystal potential we consider, except whenever
mentioned, is the sum of four one-dimensional standing waves
with amplitude V0 and lattice period a = π/|Gk|, and suc-
cessively rotated by an angle of 45◦ (see Fig. 1). It can be

FIG. 2. Eightfold quasicrystal potential. (a)–(c) Real-space po-
tential, Eq. (1), with φk = 0 for all k, plotted at various scales, for the
linear system sizes (a) L = 20a, (b) L = 40a, and (c) L = 60a, all
centered at r = 0. (d) Fourier transform of the potential. The color
scale represents the value of the potential or its Fourier transform
from low values (dark colors) to high values (light colors).

written as

V (r) = V0

4∑
k=1

cos2 (Gk · r + φk ), (1)

with G1 = π
a (1, 0), G2 = π

a ( 1√
2
, 1√

2
), G3 = π

a (0, 1), G4 =
π
a (− 1√

2
, 1√

2
), position vectors r = (x, y), and phase factors φk

of laser beam k. This potential can be realized in ultracold-
atom experiments using four retroreflected laser beams with
slightly shifted frequencies to suppress mutual coherence
[42,69,76]. Generalizations to quasicrystal potentials with
higher rotational symmetries are discussed in Sec. VI.

The eightfold quasicrystal potential with all φk = 0 is
shown at different length scales on Figs. 2(a)–2(c), which
shows the quasirepetition of short-range structures. Here, we
can observe the underlying eightfold rotational symmetry,
which is incompatible with periodic order. This is better seen
in Fig. 2(d), which shows the Fourier transform of the 2D
potential, Eq. (1). The discreteness of the Fourier pattern is
a characteristic of long-range order, while the eight spots
regularly arranged on a circle of radius |k| = 2π/a directly
reflect the eightfold discrete rotational symmetry and absence
of periodic order. For φk = 0, the origin of the 2D system at
r = 0 is a rotational symmetry center. The spot at kx = ky = 0
is due to the finite average value of the potential,

∫
dr
L2 V (r) =

2V0, where L is the linear system size. It may be canceled out
by shifting the potential by −2V0.

To avoid exact rotation symmetry around the center at
(x, y) = (0, 0), for the majority of our results, we consider an
off-centered square area, which is more generic. For instance,
it lifts exact degeneracies of strongly localized states around
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potential minima, that are, however, very far apart from each
other. This facilitates the discrimination of localized and ex-
tended states. In practice, we shift the center from (x, y) =
(0, 0) to (x0, y0) = (−13543a, 196419a), which is far beyond
the system borders we consider. This is equivalent to phase
shifts of the laser beams with φ1 = 0, φ2 � 0.8597π , φ3 = π ,
and φ4 � 1.5540π . Note that the direction of the symmetry
center to the system center is θ = arctan(y0/x0) � −86.06◦.
It is away from any special directions associated with the
discrete rotation symmetry, which are multiples of 22.5◦.

III. SINGLE-PARTICLE SPECTRUM

We now consider massive quantum particles in the qua-
sicrystal potential of Eq. (1). The single-particle Hamiltonian
is

H = p2

2M
+ V (r), (2)

where p = −ih̄∇ is the 2D momentum operator and M is
the particle mass. The eigenstates of this Hamiltonian are
obtained using exact numerical diagonalization. In practice,
the diagonalizations are performed in square areas of linear
sizes L. We use the lattice constant a as the length unit and
the recoil energy Er = π2h̄2/2Ma2 as the energy unit. We
use the spatial discretization dx = 0.1a and the typical system
size is L = 60a, except whenever mentioned. Due to the finite
discretization, only the lowest-energy eigenstates are retained.
They correspond to those whose variation scale λ significantly
exceeds the discretization dx. For an eigenstate with energy E ,
the typical de Broglie wavelength is λ = 2π h̄√

2ME
, which yields

the restriction on the eigenenergy as E/Er � 4
(dx/a)2 = 400.

In practice, we consider potential amplitudes up to V0 = 10Er

and we keep the eigenstates up to energy E = 8V0.
In the numerics, we must impose boundary conditions.

Owing to the nonperiodicity of the potential, any choice would
distort the wave functions in the vicinity of the edges, and
some care should be taken over the states obtained in finite
squares. We should indeed keep the states that faithfully
represent the spectrum in the thermodynamic limit, and dis-
card the states that are created by boundary effects. Here,
we choose periodic boundary conditions, where nonphysical
edge states may appear in the vicinity of the system bound-
aries. We have checked that such edge states disappear from
their initial location when we repeat the diagonalization in
a larger system, while new edge states appear near the new
boundaries, confirming that they are indeed created by the
boundaries. To get a spectrum representative of the thermody-
namic limit, these edges states are thus excluded as follows:
We first reduce each wave function to a binary map. If the
wave-function magnitude at a certain position is larger than
10% of the maximum of the wave-function magnitude, it maps
to 1; otherwise it maps to 0. Then, at each point with value
1, we compute the quantity Z = 1 − 2d/L, where d is the
distance to the nearest edge, as well as, for each eigenstate, its
average Z . The criterion used in this work to only keep bulk
states is the combination of the following two: (i) Z < 0.9
and (ii) the position of the wave-function maximum is at a
distance larger than 3a from the nearest edge of the system.
If an eigenstate fulfills both conditions, it is identified as a

FIG. 3. Energy spectrum of the quasicrystal potential for var-
ious V0. The system size is L = 60a, centered at (x0, y0 ) =
(−13543a, 196419a). We keep the eigenstates with energy up to 8V0

for potential amplitude V0 � 4Er and up to 30Er for larger potential
V0. The color scale shows the value of ln(P−1) for each eigenstate,
while the gaps are colored red.

legitimate bulk state; otherwise, it is identified as an edge state
and is excluded.

Figure 3 shows the single-particle spectrum of the Hamilto-
nian versus the quasicrystal amplitude V0 and the eigenenergy
E , up to 8Er [the color scale represents the IPR of each
eigenstate (see Sec. IV)]. The spectrum has a rich structure
and shows a series of energy gaps (highlighted in red), each
in specific ranges of the quasicrystal amplitude. The largest
gap has been identified earlier [74,75], while the smallest is
more elusive. To locate these gaps systematically, we apply
the following method for each spectrum corresponding to
different values of V0: For each set of successive 500 eigen-
states, we calculate all the eigenenergy differences between
neighboring bulk states and then take the average value of all
these eigenenergy differences. If any eigenenergy difference is
larger than 50 times that mean value, it is identified as a gap.
Otherwise, it is considered to be in an energy band. We have
checked that the gaps thus identified for a system of linear
size L = 60a agree with another approach where the energy
resolution is fixed, and are stable against increasing system
sizes (see Appendix A).

IV. LOCALIZATION PROPERTIES

Quasiperiodic systems are known to exhibit localization
of eigenstates [60,77–81]. To study these properties, we
compute, for each single-particle eigenstate, the inverse par-
ticipation ratio (IPR)

P−1 =
∫

dr|ψ (r)|4
(
∫

dr|ψ (r)|2)2
, (3)

where ψ (r) is the 2D eigenstate wave function and P−1

represents the IPR. Generally, in sufficiently large systems,
states with large IPR are localized while states with small
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IPR are delocalized, which may be either extended or critical.
Figure 3 shows, for every eigenstate, ln(P−1) versus V0 and
E in color scale. For small quasicrystal amplitude V0, all the
eigenstates appear delocalized. This is consistent with the crit-
ical potential for localization Vc � 1.76Er, found in previous
works [68,72]. As V0 increases, the low-energy eigenstates
tend to localize since long-range coherence is suppressed as
the quasicrystal becomes deeper, while higher-energy eigen-
states remain delocalized. In the intermediate-energy range,
the localization behavior is richer. We find that eigenstates
with large and small IPR coexist and, in particular, the IPR
is nonmonotonous against energy.

A. Finite-size scaling analysis

To study localization in more detail, the bare value of the
IPR is insufficient and we consider a more rigorous charac-
terization of localization. It is provided by the scaling of IPR
with the system size L, P−1 ∼ Lγ . In 2D, localized states are
characterized by γ = 0 and extended states by γ = −2. Any
intermediate value of γ between 0 and −2 then identifies
a critical state [80,81]. In the following, we focus on the
case V0 = 2.5Er, which is larger than the critical potential
Vc � 1.76Er, but similar results are found for other amplitudes
of the quasicrystal potential.

Studying the finite-size scaling properties of the IPR re-
quires comparing eigenstates for different sizes. However,
diagonalization in systems with different sizes gives different
total numbers of eigenstates, as the density of states generally
scales with the system area. Hence, given an eigenstate for
a certain system size, there is always some arbitrariness on
picking up the corresponding eigenstate for another system
size to be compared with. To overcome this issue, we com-
pute the averaged IPR of all eigenstates in a narrow energy
window, P−1. The width of the energy window is chosen to be
δE = 0.01Er, narrow enough such that the eigenstates in the
energy window have similar localization properties, but large
enough to have enough states to average. Then, the scaling
exponent γ considered below refers to this averaged P−1, and
characterizes the localization properties in the corresponding
energy window.

For instance, Fig. 4 shows the scaling of the P−1 versus the
system size from L = 20a to 300a, for three different energy
windows. In all cases, it shows a clear power-law scaling,
IPR ∼ Lγ , and the exponent γ is found by a linear fit of
ln(P−1) versus ln(L/a). Figure 4(a1) corresponds to energy
E � 4Er. The quantity ln(P−1) fluctuates with the system size
but shows no clear increasing or decreasing tendency. Linear
regression of the data points yields the slope γ = −0.04 ±
0.03. The small value of |γ | indicates that the states in this en-
ergy window are localized. An example of the wave function
of an eigenstate in this energy window is plotted in Fig. 4(b1).
The state is localized in a few local potential wells, consis-
tently with strong localization. Figure 4(a2) corresponds to
energy E � 6.45Er. In this case, linear regression yields the
slope γ = −2.06 ± 0.06, corresponding to an extended state.
The wave function of an eigenstate in this energy window,
shown in Fig. 4(b2), consistently covers the full system area,
although not homogeneously. Finally, Fig. 4(a3) corresponds
to energy E � 5.81Er. It also shows a clear linear behavior in

FIG. 4. Localization properties of some eigenstates. The left col-
umn (a) shows ln(P−1) versus ln(L/a) for all eigenstates in various
energy windows. Blue disks are data points while orange dashed lines
show linear fits. The quasicrystal amplitude is V0 = 2.5Er and the
system sizes for linear regressions range from L = 20a to 300a. (a1)
The energy window is E/Er ∈ [4.00, 4.01] and the linear fit yields
γ = −0.04 ± 0.03. (a2) The energy window is E/Er ∈ [6.45, 6.46]
and the linear fit yields γ = −2.06 ± 0.06. (a3) The energy window
is E/Er ∈ [5.81, 5.82] and the linear fit yields γ = −1.25 ± 0.09.
The right column (b) shows examples of eigenstates in the corre-
sponding energy windows, with energies indicated on the top of each
panel. The wave functions plotted here are computed for the system
size L = 60a.

log-log scale and the slope is found to be γ = −1.25 ± 0.09,
significantly far from both 0 or −2. In this energy window,
the states are thus neither localized nor extended, i.e., they are
critical. A typical eigenstate is plotted in Fig. 4(b3). Unlike lo-
calized states, these critical states extend over the full system
but, compared to extend states, they only cover a limited pro-
portion of the area. Note, in general, γ may exhibit quite large
standard deviations, particularly when one considers domains
where critical states appear. In our calculations, we consider
the average value and standard deviation from the linear fit,
and do not take into account the spread of individual IPR val-
ues. As we discuss in Appendix B, the distribution of the IPR
for localized and extended states is rather narrow, and does not
contribute significant errors. In contrast, for critical states, we
tend to observe a broader distribution of coefficients γ even
in rather narrow energy windows, which, however, remains
clearly distinct from either localized or extended states. This
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FIG. 5. Localization spectrum in the quasicrystal potential. Up-
per row: scaling exponent γ of the P−1 ∼ Lγ for system sizes ranging
from L = 20a to 100a, except in some narrow energy windows
where data for larger sizes, L = 120a, 160a, 200a, 300a, are also
calculated. Lower row: classification of different kinds of states.
The values of ln(P−1) for all eigenstates with system size L = 80a
are plotted versus their eigenenergies. Localization properties are
shown as background colors: green for localized states, blue for ex-
tended states, and orange for critical states. The potential amplitude
is V0 = 2.5Er.

behavior is strongly indicative of a critical regime, despite the
significant spread of IPR values (and hence larger error in
γ ). The value of γ should therefore be read as a qualitative
figure within critical domains, rather than a quantitative one.

Systematic finite-size scaling and linear fits are performed
over the full spectrum, with results shown in Fig. 5.

For details, see Appendix B. Generally, the system sizes
range from L = 20a to 100a. For some energy windows,
notably where critical states appear, we use larger sizes, up
to L = 300a, so as to check that the scaling behavior of the
IPR persists for larger system sizes. The exponent γ found
from linear fits of ln(P−1) versus ln(L/a) is shown in the
upper row of Fig. 5. The results show that the lowest-energy
states are localized, with γ � 0. For energy E � 6.45Er, i.e.,
above the second large energy gap, all states are extended,
with γ � −2. In the intermediate energy range, there are
critical states whose scaling exponent γ is neither 0 nor −2
but clearly in-between. Taking into account the uncertainty
of the fitted exponents γ , energy ranges with different kinds
of localization properties can be identified as follows, with
results shown in the lower row of Fig. 5: Localized states
for γ > −0.25 (green), extended states for γ < −1.75 (blue),
and critical states for −1.75 < γ < −0.25 (yellow). Also
shown is ln(P−1) for each eigenstate calculated for L = 80a
(red dots). The behavior of the DOS shows that that there are a
significant number of states of each kind in the spectrum. The
behavior of ln(P−1) is rather smooth, up to significant fluctu-
ations. Interestingly, we find that critical and localized states
can coexist at intermediate energies, with no clear mobility
edge or separation between localized and critical domains.
This is reminiscent of “anomalous mobility edges” separating
bands of localized states and bands of critical states as found
in other quasiperiodic models [67].

General properties of localized, extended, and critical
states are further discussed in the following subsections.

B. Localized states

Localized states generally appear in the low-energy range,
as well as at some energy band edges, nearby energy gaps (see

FIG. 6. Wave functions of typical localized states in various en-
ergy ranges. The eigenenergy, indicated on the top of each panel,
increases in the reading order, from (a) to (h). The quasicrystal
potential amplitude is V0 = 2.5Er and the system size is L = 60a.
The insets show magnifications of the corresponding panel in the
vicinity of the localization center.

Fig. 5). Typical localized states in different energy ranges are
plotted on Fig. 6, with eigenenergy increasing in the reader
order, from Figs. 6(a)–6(h). The insets show magnification of
the main panel in the vicinity of the localization center. The
states with lowest energies are strongly localized in a single
local potential well [see Fig. 6(a)]. As the energy increases,
the states start to cover a few potential wells. Some states
are localized in regions where the local potential is almost
eightfold rotational symmetric, and the eigenstates form rings
composed of eight almost equivalent spots [see Fig. 6(b)].
Similar ring states exist with 16 spots (not shown). Other
localized states cover a small cluster of different potential
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wells, such that the tunneling between them is large enough
to compensate the eigenenergy differences between the local
potential wells [see Figs. 6(c) and 6(d)]. As the energy further
increases, states composed of one or many small rings begin
to appear. Figure 6(e) shows such a localized state with one
small ring, with eigenenergy slightly below the energy gap
at E � 4.65Er. The small ring actually corresponds to a set
of several local shallow potential wells that are very near
by each other, and the wave function on these wells merges
into an almost homogeneous circle. Figures 6(f) and 6(g)
are localized states with energies, respectively, right below
and right above the first large energy gap in, approximately,
E/Er ∈ [5, 5.7]. They are also states located on small rings
of nearby potential wells, as for Fig. 6(e). However, unlike in
Fig. 6(e), these small-ring wave functions have, respectively,
one or two node lines due to different phase winding numbers.
These states play special roles in the spectral structure and will
be further discussed in Sec. V. Localized states with relatively
high energies do not all have similar ring structures. Some of
these states are localized in one or multiple potential wells, as
in Fig. 6(h).

C. Extended states

States with high enough eigenenergies are all extended (see
Fig. 5). For a potential amplitude V0 = 2.5Er, extended states
appear after the second large gap, i.e., for energy E � 6.45Er.
Typical extended states are plotted on Fig. 7. They cover the
full system area quasihomogeneously, even though some dark
node regions due to large scale modulation of the wave func-
tion may appear, as for instance in Fig. 7(a3). Extended wave
functions contain many spots separated by node lines. For
low-enough energy, each island has a size comparable with
the lattice constant a, and forms a rather ordered pattern [see
Fig. 7(a3)]. For states with higher energy, the wave-function
variations become stronger and the typical size of the islands
gets smaller. It goes down to the de Broglie wavelength λ =
2π h̄/

√
2mE of the quasi-plane waves rather than the potential

profile. Correspondingly, the states show a complex, quite
disordered, pattern determined by multiple scattering on the
quasicrystal potential [see Figs. 7(a1) and 7(a2)].

While the IPR alone does not seem to characterize the
crossover from “ordered” extended states to “disordered”
ones, a better understanding can be gained by looking at the
density profiles in momentum space, as shown in Figs. 7(b1)–
7(b3). Consider first the highest-energy states [Figs. 7(b1) and
7(b2)]. The momentum distribution of such states is concen-
trated around a marked circle, with a smaller spreading when
the energy increases. This structure may be understood using
simple perturbation theory: Extended states with high-enough
energy E are constructed from plane waves with momentum
kE such that E = h̄2k2

E/2M + 〈V 〉, where 〈V 〉 � 2V0 is the
potential-energy contribution for purely plane waves. We con-
sistently find that the circle with radius kE [shown in red in
Figs. 7(b1)–7(b3)] coincides with the dominant momentum
components of the extended wave function. The quasicrystal
potential weakly couples many plane waves with a modulus
of the momentum nearly equal to kE in almost all directions
and within a structure consistent with the quasicrystalline
eightfold rotational symmetry.

FIG. 7. Wave functions of extended states, with energies given
on top of each panel, V0 = 2.5Er, and L = 60a. We show the
(a1)–(a3) real-space density profiles and corresponding (b1)–(b3)
Fourier space momentum distributions. The red circle indicates the
momentum kE given by a perturbation theory. (a4), (b4) Show the
reconstructed components of (a3)–(b3) [Eq. (5)]. The spots in (a4)
show the positions of the local maxima r j , with color indicating
the phase (blue : φ j = 0, orange: φ j = π ). (b4) Shows the square
modulus of the Fourier transform of Eq. (5). The positions of spots
in (b4) match well with those in (b3).

The formation of the momentum profile of extended states
at a smaller energy is more subtle. In this case, the extended
wave functions are dominated by the quasicrystal poten-
tial and we now have a quasiperiodic, latticelike structure
[Fig. 7(b3)]. The origin of this structure can be deduced
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as follows. First, we note that the extended state in real
space is made of hybridized ring states with three node
lines. The rings are located around some potential max-
ima, which form a discrete lattice in real space, shown in
Fig. 7(a4). The wave function can thus be approximated
as

ψ (r) �
∫

dr′ψ0(r) f (r − r′) (4)

and

f (r) =
∑

j

eiφ j δ(r − r j ), (5)

where ψ0(r) is a sample of the ring states with three node
lines, r j is the position of the jth potential maxima, and
φ j is a phase factor of either 0 or π , which gives the cor-
rect alignment of the local structures in the original wave
function. The phase factor is encoded in the color (blue or
orange) of the lattice points in Fig. 7(a4). To check this
interpretation, we compute the Fourier transform of f (r)
in Eq. (5) and plot it in Fig. 7(b4). The result reproduces
well the primary features of the momentum profile found
in Fig. 7(b3), namely, the quasiperiodic, latticelike structure,
and some of the most significant spots. This shows that the
structure of the lowest-energy extended states is strongly
related to the quasiperiodic nature of the potential. When
the energy E is further increased, the quasiperiodic structure
becomes less significant, with the progressive emergence of
the plane-wave momentum circles observed in Figs. 7(a1)
and 7(a2).

D. Critical states

Critical states generally appear in-between the localized
states not far from the edges of energy bands (see Fig. 5).
The critical states typically extend across the full system, with
complex geometrical patterns, separated in two main classes,
illustrated in Figs. 8 and 9.

On the one hand, Fig. 8 displays the states with energy
closest to E = 4.6218Er for different system sizes. For this
energy, the scaling exponent is γ = −1.49 ± 0.24, clearly
different from 0 and −2. As visible on Fig. 8(a), these critical
states are all composed of small rings, similar to localized
states with no node lines in the rings as in Fig. 6(e). These
critical states, which contain a countless number of the small
rings, have energies slightly smaller than the localized states
containing only one or a few small rings, owing to hybridiza-
tion, which minimizes the tunneling energy. Since the ring
states that form the building blocks of such critical states are
roughly isotropic, they do not favor any clear direction, and,
on a larger scale, they group together and form larger ring
structures containing eight small rings, and eventually form a
“ring of ring” [see Fig. 8(b)]. On even larger scales, these rings
of rings also group together forming more complex structures
[see Figs. 8(c)–8(h)].

On the other hand, Fig. 9 shows an example of the other
class of critical states, found at a higher energy. It displays
the states with energy closest to E = 5.803Er for different
system sizes. Here the scaling exponent is γ = −0.87 ± 0.18,
also corresponding to critical states. However, unlike Fig. 8,

FIG. 8. Wave functions in the critical regime at E � 4.6218Er for
V0 = 2.5Er, shown at different scales. The various panels show the
wave function of the state with eigenenergy closest to E = 4.6218Er

for system sizes increasing in the reader order, from (a) L = 20a to
(h) L = 300a. Note that the colors have been rescaled to increase the
contrast.

which contains rings at different scales, Fig. 9 displays square-
shaped structures. On large enough scales, we find that these
states display straight lines either along the main axes (x
and y) or along the diagonals. In fact, these states are also
built from ring states, but here with two node lines, similar
to that shown on Fig. 6(g). For such ring states with node
lines along the diagonals, hybridization is favored along the
main axes, which maximizes the overlap of wave functions
from adjacent rings. This explains the appearance of lines
along the main axes. Moreover, owing to the eightfold rotation
symmetry of the potential, there are also ring states with
two node lines, but now oriented along the main axes. For
such states, the hybridization is then favored along the diag-
onals, which creates the distinct lines across the diagonals.
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FIG. 9. Wave functions in the critical regime at E � 5.803Er for
V0 = 2.5Er, shown at different scales. The various panels show the
wave function of the state with eigenenergy closest to E = 5.803Er

for system sizes increasing in the reader order, from (a) L = 20a to
(h) L = 300a. Note that the colors have been rescaled to increase the
contrast.

Finally, since all the ring states with two node lines along
either the main axes or along the diagonals are quasidegen-
erate, squarelike structures oriented in either direction also
hybridize, hence forming the complex structure observed in
Fig. 9. In support of this interpretation, zooms of the wave
function show that the lines parallel to the main axes are
formed of ring states with two node lines along the di-
agonals while the lines along the diagonals are formed of
ring states with two node lines along the main axes (see
Appendix C).

For completeness, we have also inspected the critical states
near E � 4.8Er, which now have one node line across their
local center. Some examples are shown in Appendix C.

FIG. 10. Density of states per unit area versus energy for poten-
tial amplitude V0 = 2.5Er and system size L = 80a. The energies of
the centered small rings with winding m = 0, 1, and 2 are indicated
by the dashed lines. The shaded areas indicate the regions of the
corresponding off-centered rings with the same winding numbers.

V. GAPS BOUNDED BY RING STATES
WITH PHASE WINDING

We now study the structure of the energy spectrum. The
DOS for the quasicrystal with amplitude V0 = 2.5Er and a
large system size L = 80a is shown in Fig. 10. It displays
two main gaps, in the energy windows E/Er ∈ [4.98, 5.72]
and E/Er ∈ [5.94, 6.44], respectively, as well as three smaller
gaps at E/Er � 4.11, E/Er � 4.65, and E/Er � 4.71. To
understand the origin of these energy gaps, we study the
properties of eigenstates in the vicinity of the band edges.

A. Ring states at band edges

States localized in small ring structures of the potential
play an important role in the energy spectrum, as also ob-
served in Ref. [75]. For instance, the states right before the
small gap at E � 4.65Er are composed of small rings with
a roughly homogeneous density, similar to that shown in
Fig. 6(e), and spread over different locations. The states right
before the first large energy gap at E/Er ∈ [4.98, 5.72] are
similar ring states but with one node line, similar to that shown
in Fig. 6(f). The states right after the same large gap are also
ring states but with two node lines, similar to that shown in
Fig. 6(g). The energies of ring states with 0, 1, or 2 node lines
are highlighted with the shaded blue areas in Fig. 10.

Although we have so far excluded the symmetry cen-
ter of the potential by considering off-centered systems, it
is useful to reincorporate it in the discussion of these ring
states. Indeed, very regular ring states exist for the eightfold
quasicrystal potential around the symmetry center at r = 0
[see Fig. 11(a)]. Remarkably, these centered ring states have
energies that exactly limit certain bands, as indicated by the
vertical, dashed blue lines in Fig. 10. For instance, the cen-
tered ring state with no node lines [Fig. 11(a1)] is the very last
state of the energy band before the small gap at E � 4.65Er.
Then, there are two degenerate centered ring states with a
single node line each [Figs. 11(a2) and 11(a3)], which lie
immediately before the first large gap, at E � 4.98Er. Finally,
there are another two degenerate, centered ring states with two
node lines ]Figs. 11(a4) and 11(a5)] immediately after the first
large gap, at E � 5.72Er. The other ring states with 0, 1, or 2
node lines that are situated in rings away from the center of the
quasicrystal are slightly distorted [see Figs. 11(b1)–11(b5)],
and their energies lie deeper in the energy bands, as indicated
by the shaded areas in Fig. 10. As discussed below, rejection
of the off-centered ring states inside the energy bands may be
interpreted as a level repulsion effect.
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FIG. 11. Centered (left) and off-centered (right) ring states in
the eightfold quasicrystal potential centered at r0 = (0, 0), with
amplitude V0 = 2.5Er. (a1)–(a5) States at energy band edges: (a1)
last state before the small gap at E/Er � 4.65; (a2), (a3) two al-
most degenerate states immediately before the first large gap in
E/Er ∼ [4.98, 5.72]; (a4), (a5) two almost degenerate states im-
mediately after the same first large gap. They are eigenstates for
the smallest ring around r = 0 with winding numbers (node line
numbers) m = 0,±1, ±2. (b1)–(b5) Off-centered ring states around
r0 = (19.06a, 4.95a) obtained by diagonalization in a square with
size L = 4a.

For the sake of completeness, note that the first state after
the second large gap at E � 6.44Er is made of ring states
with three node lines. In this case, however, many such rings
are connected, hence forming a quite compact extended state.
The states at the band edges of the gap at E/Er � 4.11 are
localized states, and will be briefly discussed later in Sec. V E.
Finally, the states at the other band edges before E � 6.44Er

are also localized states, without any particular features in
their patterns.

These observations indicate that the small ring states, es-
pecially the ones centered on the symmetry center of the
quasicrystal potential at r = 0, play special roles in the struc-
ture of the spectrum, and we discuss them in more detail
below.

B. Central ring

We first consider the ring states around the quasicrystal
symmetry center at r = 0 [see Fig. 11(a)]. They are located in
a nearly isotropic annular potential well of radius ρ0 � 0.61a.
More precisely, the potential has eight very shallow potential
wells along the ring, which may, however, be neglected. In
particular, we find that the ring state with no node, Fig. 11(a1),
has a nearly isotropic density with modulations less than
10%. As a result, the small ring states in Fig. 11(a) may
be approximated by states localized in the nearly isotropic
annular potential well with almost isotropic density and O(2)
rotational symmetry around the symmetry center r = 0. In
the vicinity of the annular well, the Hamiltonian and the
planar angular momentum operator L̂z can be diagonalized
simultaneously, and the wave functions can be written as
φ0

m(r) � um(r)eimθ , where um(r) is a real-valued function, θ

is the polar angle, and m ∈ Z is the phase winding number.
For sufficiently strong potential amplitude V0 and low winding
number m, the functions um(r) are strongly confined around
r = ρ0 and we may neglect the m dependence originating
from the centrifugal term. For details, see Appendix D 1. Fig-
ure 11(a1) is the state with winding number m = 0. The states
in Figs. 11(a2) and 11(a3) correspond to winding numbers
m = ±1. Since the states φ0

±1(r) are strictly degenerate, any
linear combination of both is also an eigenstate of the Hamil-
tonian. Numerical diagonalization returns real-valued wave
functions, i.e., ψ0

+1(r) � √
2u(r) cos(θ − θ1) and ψ0

−1(r) �√
2u(r) sin(θ − θ1), where θ1 is some reference angle. Con-

sequently, the two states in Figs. 11(a2) and 11(a3) show
orthogonal node lines at the angles θ1 + π/2 and θ1, respec-
tively. The angle θ1 is determined by the small modulations
of potential along the annular well and, in the numerics,
by the discretization, which does not satisfy an exact eight-
fold rotation symmetry. Similarly, Figs. 11(a4) and 11(a5)
show states with two node lines, corresponding to linear
combinations of the two degenerate states with winding num-
bers m = ±2, ψ0

+2(r) � √
2u(r) cos(2θ − θ2), and ψ0

−2(r) �√
2u(r) sin(2θ − θ2), with some angle θ2.
We now check the validity and accuracy of our model.

On the one hand, because of their strong localization, we can
find the exact centered ring states by performing diagonaliza-
tion in a small square around r = 0 with size L = 4a, larger
than the ring diameter 2ρ0 � 1.2a. Figure 12(a) shows the
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FIG. 12. Centered ring states. (a) Energy differences Em − E0

between the ring states with winding numbers m = ±1 (blue) and
±2 (green), and the ring state with winding number m = 0 (red, zero
by construction). The dashed black lines show the corresponding
theoretical estimates h̄2 m2/2Mρ2

0 [see Eq. (6)] for m = ±1 and ±2.
(b) Energy spectrum (reproduced from Fig. 3) showing bands (blue)
and gaps (red). The dashed lines show the energies of the ring states
Em obtained from diagonalization in a small system with size L = 4a
for m = ±1 (blue) and m = ±2 (green). The circles are the theoret-
ical estimates using Eq. (6) with E0 corresponding to the numerical
value. The black crosses show the energies of states which enter and
finally close the large gaps at large V0, and the two red triangles
correspond to the two states plotted in Fig. 14 (see discussion in
Sec. V D).

eigenenergies hence obtained subtracted by the eigenenergy
of the state with winding number m = 0 (dashed red line, zero
by construction), i.e., Em − E0 for m = ±1 (dashed blue line)
and m = ±2 (dashed green line). On the other hand, according
to our model, the energies of the centered ring states only
differ by their orbital rotation energy, which can be written
as

Em � E0 + h̄2 m2

2Mρ2
0

, (6)

where we have neglected the m dependence of the radial
Hamiltonian as well as the radial extension of u(r) around
the radius of the ring ρ0. The results of this prediction are
shown as dashed black lines in Fig. 12(a), which correspond

FIG. 13. Off-centered ring states. (a) Quasicrystal potential in
the vicinity of an off-centered annular potential well, centered at
r0 = (19.06a, 4.95a). Color scales represent the potential from low
values (dark purple) to high values (light yellow). The dashed circle
is the ring of radius ρ0 = 0.61a around the local maximum. (b) Per-
turbation potential V (ρ0, θ ) along the ring as a function of the polar
angle θ . (c) Sketch of the energy-level repulsion picture. The red
lines represent energy levels of the centered (unperturbed) ring states
with different winding numbers, and the blue lines their off-centered
(perturbed) counterparts. The dashed lines represent the dominant
couplings.

to the orbital rotation energy for winding numbers m = ±1
and ±2, respectively. As expected, we find an increasingly
better estimate of the ring state energies as the amplitude of
the quasicrystal potential increases, owing to a stronger radial
confinement. In addition, the energies of these ring states are
also plotted on top of the full spectrum for a large system of
size L = 60a in Fig. 12(b). The full spectrum is reproduced
from Fig. 3, with blue denoting the bands and red the gaps.
The dashed lines show the energies of the ring states Em with
m = 0 (red), m = ±1 (blue), and m = ±2 (green) as obtained
from diagonalization in a small system with size L = 4a and
the open disks represent the corresponding theoretical esti-
mates [Eq. (6)]. The ring state energies lie on the bands’ edges.
This is consistent with the fact that the large gap is created
by the centered, localized ring states with winding number
m = ±1 and ±2, before it starts to close at V � 8Er.

C. Off-centered rings

Let us now examine the off-centered ring states, which are
located in annular potential wells around various positions
away from the symmetry center of the quasicrystal potential.
A typical example is shown in Fig. 11(b), which corresponds
to ring states centered at r0 = (19.06a, 4.95a) with 0, 1, or 2
node lines. Quasiperiodicity of the system implies that the po-
tential around such states is similar to that around the central
ring, but with distortions. The latter are weak but clearly non-
negligible [see Fig. 13(a)]. In particular, the potential and the
ring states do not strictly fulfill eightfold rotation symmetry
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around the local center at r0 �= 0 [see in particular the appear-
ance of three deeper wells around the central ring (dashed
red line)]. As a consequence, the corresponding ring states,
Figs. 11(b1)–11(b5), are not as symmetric as the centered
ones, Figs. 11(a1)–11(a5). Nevertheless, the off-centered ring
states have nearly the same radius as the centered one, ρ0 �
0.61a, and can still be classified according to their winding
number or, equivalently, node line number m. Similar prop-
erties are found around other ring states centered at different
locations.

As mentioned above, we have observed that the off-
centered ring states with winding number m = 0 or ±1 have
lower energy than their centered counterparts. In contrast, for
winding number m = ±2, the off-centered ring states have
a higher energy than their centered counterparts. This phe-
nomenon is due to level repulsion, as we show now. Owing
to the similarity of the off-centered annular potential wells
and ring states with their centered counterparts, we may un-
derstand the properties of the former as a perturbation of the
latter. To lowest perturbation order, we write the off-centered
ring states as the shifted centered one φm(r) � φ0

m(r − r0)
and the perturbation potential as 
V (r) = V (r) − V (r − r0).
Working in the sub-Hilbert space of these states, the perturba-
tion matrix elements are

〈φm1 | 
V |φm2〉 ∝
∫

dθ 
V (ρ0, θ )ei(m2−m1 )θ . (7)

On the one hand, the left-hand side of Eq. (7) can be cal-
culated numerically, where the required wave functions are
reconstructed by linear combination of the real-valued numer-
ical wave functions, using φm(r) = [ψ+m(r) + iψ−m(r)]/

√
2

for m ∈ Z. On the other hand, the right-hand side is found
by neglecting the radial extension of the ring states and

V (ρ0, θ ) is a shorthand notation for the perturbed potential
along the ring of radius ρ0 with θ the polar angle. Due to
the three-period oscillation of the potential around the ring
shown in Fig. 13(b), the Fourier integral in Eq. (7) shows
two resonances for m2 − m1 = ±3, and we expect that the
couplings are dominated by the processes such as m ↔ m ±
3. We indeed find that the corresponding couplings are at
least one order of magnitude larger than the other ones (see
perturbation matrix for winding numbers up to |m| = 3 in
Appendix D 2). Since perturbation is stronger for states with
closer unperturbed eigenenergies, the strong couplings be-
tween m ↔ m ± 3 effectively create a two-level system for
states |m = +1〉 and |m = −2〉 on the one hand, and for states
|m = −1〉 and |m = +2〉, on the other hand. The state |m = 0〉
is strongly coupled to both states |m = 3〉 and |m = −3〉,
hence forming a three-level system. The overall effective
system is sketched in Fig. 13(c). Energy-level repulsion in
the two-level systems shifts down the energies of the states
with winding number m = ±1 and up the energies of the
states with winding number m = ±2. Note that the diagonal
perturbation terms 〈φm| 
V |φm〉 are negligible. The couplings
between state |m = 0〉 and states |m = 3〉 and |m = −3〉 shift
down the energy of |m = 0〉 since off-diagonal perturba-
tions always yield negative corrections to the ground-state
energy.

As a result, the energies for the off-centered ring states with
windings m = 0,±1,±2 are shifted in specific directions,

FIG. 14. (a) Ground state of the system alongside (b) the first
state after the first large energy gap, corresponding to the two red
triangles in Fig. 12(b). The system size is L = 60a and the poten-
tial amplitude is V0 = 8.5Er. The insets show magnifications of the
strongly localized states.

which is in agreement with our numerical diagonalization.
As the largest energy gap corresponds to that between ring
states with winding numbers m = ±1 on the one hand and
m = ±2 on the other hand, we have shown that the bottom
of this gap is bounded by the winding m ± 1 ring states at
center r = 0. Likewise, the top of this gap is bounded by the
winding m = ±2 ring states at center r = 0. This persists in
the thermodynamic limit, and the gap width is just the energy
difference between these centered ring states.

D. Closing of gaps

Our model relates the large gaps to ring states with differ-
ent winding numbers. According to Eq. (6), valid for strong
radial confinement, the gap widths may thus be expected to
reach a constant value for large enough potential depth V0

[see also Fig. 12(a)]. Consistently, we indeed observe that
the blue and green dashed lines in Fig. 12(b), which show
the energies of the centered ring states with winding numbers
m = ±1 and ±2, respectively, are almost parallel to each
other. They match the boundaries of the largest gap, shown
in red, for a significant energy range, for 2 � V0/Er � 8.1.
However, this gap, as well as the next one right above, close
progressively, respectively, in the ranges 8.1Er � V0 � 9.6Er

and 5Er � V0 � 5.7Er; see the black crosses in Fig. 12(b),
which indicate the upper limit of the gaps in these regions.
In fact, the closing of both these gaps is due to another kind
of strongly localized states. For weak potential amplitude V0,
the latter have an energy well inside an energy band above
the second gap, but when V0 increases, they enter successively
each gap between the ring states and create the new upper
limit of the gaps. The state closing the largest gap for V0 =
8.5Er [upper red triangle in Fig. 12(b)] is shown in Fig. 14(b)
and, for comparison, the ground state of the system [lower red
triangle in Fig. 12(b)] is shown in Fig. 14(a).

Both these states turn out to be strongly localized in the
same deep potential well, and correspond to the ground state
and the first excited state of this well. More precisely, we may
approximate the deep potential well by a harmonic potential.
The state in Fig. 14(a) is then the ground state of the trap,
while the state in Fig. 14(b) is the first excited state of the same
trap. Consistently with this interpretation, we note that the

013314-11



ZHU, YU, JOHNSTONE, AND SANCHEZ-PALENCIA PHYSICAL REVIEW A 109, 013314 (2024)

local minimum of the trap has a vanishingly small potential
energy and the energy of the excited state in Fig. 14(b) is about
twice that of the state in Fig. 14(a) (see values on top of the
figures). This is what is expected for a 2D isotropic harmonic
trap. The discrepancy to exact energy doubling (about 5%)
may be attributed to slight anisotropy and/or anharmonicity
of the trap. Such kind of deep potential wells spread over
the system and similar states as in Fig. 14 located around
these potential wells are found with similar energies. As the
potential amplitude increases, the first excited states of such
deep potential wells, similar to Fig. 14(b), enter the higher
large gap at about V0 � 5Er and completely close it at about
V0 � 5.7Er. Then, as the potential amplitude further increases,
those states enter the lower large gap at about V0 � 8.1Er and
close it at about V0 � 9.6Er [see black crosses in Fig. 12(b)].
A similar phenomenon explains why we do not observe gaps
at a higher energy. In principle, Eq. (6) suggests even larger
gaps at higher energies. However, we find that various kinds of
states other than the ring states appear inside the gaps induced
by the sole ring states and the latter are not visible. Moreover,
these different kinds of states hybridize at high energy and the
structure of the spectrum is not governed by clear ring states
any more.

E. Self-similarity and minigaps

The spectrum in Fig. 3 presents self-similar structures.
Figure 15(a) shows a zoom of the latter around V0 = 2Er and
E = 3.5Er. It clearly shows several gaps, the lowest two, for
instance, around energy E � 3.4Er for V0 = 1.9Er, and differ-
ent energy for different V0. Although these gaps are almost
invisible on Figs. 3 and 12(b), we have checked that they
are legitimate gaps, according to the procedure presented in
Appendix A. To identity the nature of these gaps, the states
at their edges are plotted in Figs. 15(b)–15(e). Figure 15(b)
shows the state at the bottom edge of the first gap. It is
a state localized around the quasicrystal center r = 0 and
it is composed of eight spots corresponding to eight local
potential wells. The latter are identical to each other due to
exact eightfold rotational symmetry around r = 0. They lie
on a ring larger than the small ring discussed above [shown
for reference as a dashed red circle in Figs. 15(b), 15(c),
and 15(e)]. The states localized on this larger ring can still
be classified according to their winding numbers or equiva-
lently node line numbers. The state in Fig. 15(b) shows one
clear node line and it has thus winding number m = ±1.
Similarly, Fig. 15(c) shows the state with winding number
m = ±2, which lies near the top of the first gap, and the state
at the top of the second gap shown in Fig. 15(e) that with
winding number m = ±3. Note that the state of Fig. 15(c) is
not strictly at the top of the first gap. The state at the very
top edge of the first gap is composed of four off-centered
copies of Fig. 15(c) connected together and has a slightly
lower energy than the centered state shown in Fig. 15(c).
The state at the bottom edge of the second gap shown in
Fig. 15(d) is not localized at r = 0 and has no clear special
structure.

The general picture of these small gaps is thus similar to
that of the large gaps discussed above created by the small ring
states with different winding numbers. The only difference is

FIG. 15. (a) Zoomed spectrum of the eightfold quasicrystal po-
tential for various amplitudes V0. Bands are colored blue and gaps are
red. (b)–(e) Eigenstates at band edges for the two gaps with energy
around E = 3.4Er for V0 = 1.9Er. (b), (c) Bottom and top states of
the first gap. (d), (e) Bottom and top states of the second gap.

that the ring states creating the small gaps have a larger ring
radius, so that the energy differences due to phase windings
are much smaller, and the gap sizes are comparatively much
smaller than the gaps created by the small rings.

VI. QUASICRYSTAL POTENTIALS WITH DIFFERENT
ROTATIONAL SYMMETRIES

So far, we have considered the localization and spec-
tral properties of a quasicrystal potential with eightfold
rotational symmetry. Here we briefly discuss whether or
not quasicrystals with different rotational symmetries may
also possess similar properties. To answer this, we study
quasicrystal potentials that are generated by interfering
a larger number n of laser beams. The general formula
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FIG. 16. Energy spectra of quasicrystal potentials with different rotational symmetries as created by n pairs of counterpropagating
laser beams, with n = 5 (left, 10-fold), n = 6 (middle, 12-fold), and n = 7 (right, 14-fold). The system size is L = 60a, centered at
x = −13543a, y = 196419a. The color scale represents the value of ln(P−1) of each eigenstate, while the gaps are all colored red. The
energies of the first few centered ring states are shown as black crosses.

of a quasicrystal potential with a 2n-fold rotational
symmetry is

V (r) = V0

n∑
k=1

cos2 (Gk · r + φk ), (8)

with Gk = π
a [cos(kπ/n), sin(kπ/n)]. Realization of such po-

tentials has been recently proposed in Ref. [82]. In Fig. 16, we
plot the energy spectra for n = 5, 6, and 7. The general local-
ization picture is similar to that previously discussed for the
eightfold quasicrystal potential (n = 4): For sufficiently large
amplitude V0, the eigenstates are typically localized at low en-
ergy and extended at high energy. At intermediate energy, we
find a nonmonotonous energy dependence of the localization
strength. Moreover, for n = 5 or 6, the spectrum also has at
least one large gap, similar to that found for n = 4, as well as
smaller but visible gaps. For n = 7 instead, the gaps become
much narrower and almost invisible at the scale of Fig. 16.
To understand the origin of these gaps, we note that the qua-
sicrystal potentials created by more than four laser pairs also
have an annular potential well around the center at r = 0, with
almost the same radius ρ0 � 0.61a. As a result, this annular
potential well also hosts ring states with different winding
numbers, the energies of which are still approximately given
by Eq. (6). The energy differences are thus almost the same
as for n = 4, but the reference energy E0 may be dependent
on n. Moreover, they are almost independent of the potential
amplitude for large enough V0. The energies of the first few
centered ring states for each quasicrystal potential are plotted
as black crosses in Fig. 16.

For n = 5, the structure of the spectrum is very similar to
that discussed above for n = 4. In particular, the largest gap is
also created by the gap between the ring states with winding
numbers m = ±1 and ±2, and the gap width is almost the
same as for n = 4. For n = 6, the largest gap may also be
related to ring states, now with winding numbers m = ±2
and ±3, and the gap size is larger. More precisely, the top
of the gap is indeed composed of centered ring states with
winding number m = ±3. In contrast, the bottom of the gap
is not strictly a centered ring state with winding number

m = ±2 since off-centered ring states with the same winding
number have higher energies than the centered one, as dis-
cussed above. For a limited range of quasicrystal amplitude,
2Er � V0 � 4Er, the centered and off-centered ring states with
m = ±2 lie near by the band edge, but the true edge state
turns out to be a different state, which can be either localized
or extended with a complex structure, depending on V0. For
V0 � 4Er, new localized states enter the bottom of the gap, and
progressively close it from below. Note also that for a certain
range of V0, roughly between 2Er and 7Er, the ground state
of the whole spectrum is the centered ring state with winding
number m = 0. Finally, we find that for n = 7 the gaps have
almost negligible sizes, and there is no large gap near the
energies of the ring states. This is because other kinds of states
coexist with those ring states in the same eigenenergy ranges,
even though ring states still have the same energy differences
for different winding numbers. For larger n, we found that
large gaps generated by ring states remain closed.

VII. CONCLUSION AND DISCUSSION

In summary, we have shown that 2D optical quasicrys-
tals host exotic localization properties and intriguing spectral
features. For the eightfold rotationally symmetric potential, a
finite-size scaling analysis of the IPR reveals the presence of
localized, critical, and extended states. Extended states dom-
inate the energy spectrum at large energies, while localized
states populate the low-energy spectrum, as expected. How-
ever, at intermediate energies, we find that localized states can
appear alongside critical states, with no clear separation be-
tween them. Furthermore, large gaps appear in the spectrum,
with some states at the band edges having a strongly local-
ized profile. These localized states can take the form of ring
states with different quantized winding numbers. By modeling
these ring states, we have found that the band edges coincide
with the theoretical energy of ring states, thus confirming that
they play an important role in the formation of energy gaps
within optical quasicrystals. Finally, we have also confirmed
that quasicrystals with other rotational symmetries can also
possess similar kinds of localization properties and energy

013314-13



ZHU, YU, JOHNSTONE, AND SANCHEZ-PALENCIA PHYSICAL REVIEW A 109, 013314 (2024)

spectra, with ring states again playing an important role. In all
cases, the most prominent gaps of the spectra are stable across
a range of potential depths V0 and rotational symmetries,
provided that other localized states do not compete or enter
the gap generated by the ring states. Our results shed light
on localization and spectral properties of optical quasicrystal
potentials, as realized in recent experiments [42,69,76,82].
Further application and development of this work may be
expected in two directions.

On the one hand, our results are directly applicable to
the above-mentioned experiments. The eightfold quasicrystal
potential studied in the main part of the paper has been im-
plemented in the experiments reported in Refs. [42,69,76] and
potentials with higher-order discrete rotation symmetry can be
implemented in a similar manner by using a suitable number
of laser beams (see, for instance, Refs. [41,82]). The qua-
sicrystal potential amplitudes considered here, V0 � 1 − 15Er,
are also relevant for these experiments and interatomic inter-
actions can be canceled with high accuracy using Feshbach
resonance methods [45,83]. Localization may be unveiled in
ultracold-atomic gases using expansion schemes, as proposed
in Refs. [41,84] and realized, for instance, in Refs. [51,85–
87] (see also Refs. [88–92]) for further theoretical discus-
sions. In this scheme, an initially trapped ultracold-atom gas
is released into the quasicrystal potential, generating a wave
packet covering a tunable range of energy components. The
components whose energy corresponds to a band of localized
states stop expanding on a short length scale, while those
whose energy corresponds to a band of extended states show
normal diffusive expansion. Direct imaging at different times
can thus be used to distinguish between them. For the 2D
quasicrystal lattice considered here, bands of critical states
also exist, for which we can anticipate anomalous diffusion,
also observable in the expansion dynamics. In such scheme,
a high-energy cutoff is set by the chemical potential of an
initially interacting Bose-Einstein condensate or the Fermi
energy of an ultracold gas of fermions. When controlled by
the initial interaction strength and/or the number of atoms,
we expect to observe a localized gas at low chemical poten-
tial, anomalous diffusion on top of a localized component
at intermediate chemical potential, and an additional normal
diffusion when the spectral range contains extended states.
Note, however, the coexistence of localized, critical, and ex-
tended components may make their segregation difficult. To
overcome this issue, fine selection of a particular energy may
be realized using radio-frequency transfer from an internal
atomic state insensitive to the quasicrystal potential towards
a sensitive state [93]. Here, the width of the selected energy
range is proportional to the inverse of the pulse duration and
can be chosen from a band of either localized, critical, or
extended states. Expansion then leads, respectively, to pure
localization, anomalous diffusion, or normal diffusion. The
nontransferred part undergoes ballistic expansion or can even
be eliminated by transfer to a nonimaged internal atomic
state. This makes it possible to reconstruct bands of localized,
critical, and extended states, as shown in Fig. 5. The existence
of the gaps discussed here can also be demonstrated by this
approach.

On the other hand, our results on localization and spectral
properties of the single-particle problem studied here also play

an important role in the physics of correlated quantum gases in
a 2D quasicrystalline potential. This is particularly the case
for a gas of correlated bosons. In one dimension and in the
regime of strong interactions, a gas of bosons can be exactly
mapped onto a gas of free fermions, a phenomenon known as
fermionization. This makes it possible to map Mott insulators
onto free spectral gaps and Bose glass onto localized states.
In dimensions higher than one, such exact mapping breaks
down, but fermionization persists nonetheless when the Bose
gas populates only states that are spatially separated from one
another. In this case, strong repulsive interactions suppress
multiple occupation of each localized state, hence mimicking
an effective Pauli principle in real space. Our results could
thus help understand the onset of a Bose glass as well as
a Mott plateau in the strongly interacting regime, found in
recent work [74].
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APPENDIX A: DENSITY OF STATES AND GAPS

Careful identification of the true energy gaps in the spec-
trum can be captured by performing a finite-size scaling
analysis. Here we compute the density of states (DOS) using

gε (E ) = δW (E , ε)

ε
, (A1)

where ε = 0.005Er is a finite-energy resolution and δW (E , ε)
is the number of states in the energy window [E , E + ε).
A good estimate of the DOS is obtained when the energy
resolution ε is smaller than the typical variation scale of the
DOS and larger than the inverse of the typical DOS so that
several states are in each energy slice, gε (E )ε � 1. For the
homogeneous 2D gas, we have g(E )−1Er = 4a2/πL2 � 0.003
for the smallest system size L = 20a.

Figure 17 shows the DOS per unit area versus energy for
different system sizes from L = 20a to 90a. Each point with
zero DOS gives an energy gap, so that all gaps larger than
the energy resolution ε are revealed. For the smallest system
size of L = 20a in Fig. 17, the DOS displays many small gaps
and a few large energy gaps. While the two large gaps are
stable against increasing the system size, only a few small
gaps survive for large system sizes. For the energy resolution
ε = 0.005Er, the structure of the spectrum is stable when the
system size is larger than L � 60a.

APPENDIX B: LINEAR FIT QUALITY FOR FINITE-SIZE
SCALING OF THE IPR

The exponent γ , such that P−1 ∼ Lγ , is found from linear
fits of ln(P−1) versus ln(L/a), with results shown in the first
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FIG. 17. Density of states per unit area versus energy for the
quasicrystal amplitude V0 = 2.5Er and the energy resolution ε =
0.005Er. The various panels correspond to increasing system size
from L = 20a (top) to 90a (bottom). The energy gaps are indicated
by gray shaded areas.

row of Fig. 18 (same data as in the upper low of Fig. 5 in
the main text). To characterize the fit quality, we compute the
Pearson correlation coefficient

r =
∑

j (xi − x)(yi − y)√∑
i(xi − x)2

∑
i(yi − y)2

(B1)

for two data sets xi, yi where x and y are their mean values.
A value of |r| close to 1 indicates good linear correla-
tion between the data sets, while |r| close to 0 indicates
poor linear behavior. The correlation coefficient for linear
fitting of ln(P−1) and ln(L/a) is shown in the second row
of Fig. 18. It shows good linear behavior with r � −1 and
γ � −2 for energy E � 6.45Er, and the states in this en-
ergy range are clearly extended. For a lower-energy range,
however, the coefficients r are much worse, which ques-
tions the corresponding results. This is actually misleading
as when the slope γ is about 0, even weak fluctuations of

FIG. 18. Finite-size scaling of the IPR, performed as in Fig. 4,
for system sizes ranging from L = 20a to 100a, except in
some narrow energy windows where data for larger sizes, L =
120a, 160a, 200a, 300a, are also calculated. The panels, from top to
bottom, show, successively the scaling exponent and the correspond-
ing regression coefficient: (i) γ and r for ln(P−1) versus ln(L/a), (ii)
γ ′ and r′ for ln(P−1 · L/a) versus ln(L/a), and (iii) γ ′′ and r′′ for
ln[P−1 · (L/a)2] versus ln(L/a).

data points around a constant value can greatly affect the
coefficients r.

To circumvent this issue, we repeat the linear regression
for ln(P−1 · L/a) versus ln(L/a) with slope γ ′ + 1 and for
ln[P−1 · (L/a)2] versus ln(L/a) with slope γ ′′ + 2. The re-
sults, together with the corresponding correlation coefficients
r′ and r′′, respectively, are shown in the lower rows of Fig. 18.
The three linear regressions give almost indistinguishable re-
sults for the exponents γ , γ ′, and γ ′′, and, for each energy
E , at least one of the three correlation coefficients r, r′, or
r′′ is close to 1. For instance, the coefficient |r′′| has val-
ues away from 1 for E � 6.45Er since the slope γ ′′ + 2 for
ln[P−1 · (L/a)2] is about 0. It is, however, close to 1 for low-
energy states, and the scaling given by γ ′′ (essentially equal
to γ and γ ′) is reliable in this regime. In general, the fitted
slope γ yields the correct scaling and the quality is assessed
by either r, r′, or r′′.

So far, we have not discussed the spread of IPR values in a
given energy window. For extended and localized domains,
we find that this will not greatly influence our results. To
show this, we plot in Fig. 19 histograms of IPR occurrences
for different system sizes, for the same energy windows as in
Fig. 4 for a localized state (upper row) and an extended state
(lower row). The horizontal axis is rescaled as P−1 × L−γ

with γ = 0 (left column) or γ = −2 (right column). We find
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FIG. 19. Distributions of IPR for different system sizes L, where
the horizontal axis is rescaled as P−1 × L−γ , with γ = 0 (left col-
umn) and −2 (right column), for energy windows (upper row)
E/Er ∈ [4.00, 4.01] in the localized domain and (lower row) E/Er ∈
[6.45, 6.46] in the extended domain.

that the distributions are peaked, and remain fixed in position
as a function of L for the correct choice of scaling (γ = 0
for the localized state and γ = −2 for the extended state). In
contrast, for the opposite choice of the scaling, the position
drifts. This immediately verifies that the underlying states are
either localized or extended.

The behavior of critical states, however, is more compli-
cated. In Fig. 20, we consider the critical energy window of
Fig. 4. The spread of IPR values is much larger, which would
of course inflate the relative error bars of the average IPR.
However, we observe that the distribution clearly shows a
single peak. Moreover, the distributions are shifted for both
rescalings γ = 0 or −2 for increasing L. This indicates that a
majority of states in the considered energy window are neither
localized or extended, but critical.

APPENDIX C: STRUCTURES WITHIN CRITICAL STATES

The two kinds of critical states shown in Figs. 8 and 9
both have the ring states discussed in Sec. V as the building

FIG. 20. Distributions of IPR for different system sizes L, where
the horizontal axis is rescaled as P−1 × L−γ , with γ = 0 (left) and
−2 (right), for energy windows E/Er ∈ [5.81, 5.82] in the critical
domain.

blocks. The ring-shaped critical states shown in Fig. 8 have
the ring states with winding m = 0 as the building blocks
[see Figs. 11(a1) and 11(b1)]; note that these critical states
have energy slightly smaller than Figs. 11(a1) and 11(b1).
The building blocks of square-shaped critical states shown
in Fig. 9 are the ring states with winding number m = 2
[see Figs. 11(a4), 11(b4), 11(a5), and 11(b5)], and these
critical states have energy slightly larger than Figs. 11(a4),
11(b4), 11(a5), and 11(b5). As we discussed in Sec. V,
the off-centered ring states have lower energy than the cen-
tered one for m = 0 and higher energy than the centered

FIG. 21. (a)–(c) Zoomed up plots of several regions of the wave
function shown in (d), which is a copy of Fig. 9(d).
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FIG. 22. Examples of critical states with energy near E � 4.8Er,
which are composed of m = 1 ring state components (i.e., a single
node line). We consider V0 = 2.5Er and L/a = 100. Localized com-
ponents become coupled in circular, ringlike arrangements. These
circular structures are then coupled across diagonal lines.

one for m = 2. At a certain point, off-centered ring states
at different locations hybridize together, forming the critical
states.

The square shape of the critical states in Fig. 9 can be un-
derstood from the shape of the m = 2 ring states, as shown in
Figs. 11(a4), 11(b4), 11(a5), and 11(b5). They may have node
lines in diagonal directions as Figs. 11(a4) and 11(b4) or in
horizontal and vertical directions as Figs. 11(a5) and 11(b5).
When these m = 2 ring states couple to each other, they tend
to connect in the direction where the bright spots touch, as this
will give a strong coupling. As a result, m = 2 ring states with
node lines in diagonal directions couple to each other along
horizontal and vertical directions, and ring states with node
lines in horizontal and vertical directions couple to each other
along diagonal directions. Figure 21 shows several regions of
the wave function Fig. 9(d), plotted in zoomed up scales. We
can see that the typical directions of the state structure are
indeed different from the directions of the node lines in each
of the unit spots.

Finally, in Fig. 22, we show two examples of critical states
with energy near E � 4.8Er. These states are composed of
hybridized ringlike structures on small scale, with a similar
square-shaped pattern to what has been observed before on
large scale. At the intermediate length scale, we observe cir-

FIG. 23. Effective potential Vm(ρ ) for a quasicrystal potential
with amplitude V0 = 5Er and for various winding numbers m.

FIG. 24. Eigenenergies of the centered ring states in the radial
ground state (n = 0, dashed lines) and first excited state (n = 1,
dotted-dashed lines) with winding numbers m = 0 (blue), ±1 (red),
and ±2 (green).

cular structures composed of several ring states with a single
node line each (i.e., m = 1 ring states). The node lines are
aligned in such a way to face the center of the circle. Different
circles couple together and form extensive critical states.

APPENDIX D: RING STATES AND WINDING NUMBER

We discuss here the main properties of the ring states.

1. Centered ring states

The centered ring states live in an annular potential val-
ley centered on r = 0 with radius ρ0. In the vicinity of the
potential valley, the angular dependence of the potential is of
the order of 0.025V0, much smaller than any typical energy
scale in this system, leading to wave-function modulations
less than 10% for V0 � 10Er. We can thus neglect it and
write V (ρ, θ ) � V (ρ). Owing to rotation symmetry, the local
Schrödinger equation and the planar angular momentum op-
erator L̂z = −ih̄ ∂

∂θ
may be diagonalized simultaneously. The

energy eigenstates read as φ(ρ, θ ) = um(ρ)eimθ , with m ∈ Z.
Writing um(ρ) = ρ−1/2 fm(ρ), the amplitude fm(ρ) is then
governed by the semi-infinite one-dimensional, radial equa-
tion

− h̄2

2M

d2

dρ2
fm(r) + Vm(ρ) fm(ρ) = Em fm(ρ), ρ > 0 (D1)

with the effective potential

Vm(ρ) = V (ρ) + h̄2

2M

4m2 − 1

4ρ2
. (D2)

The latter consists of the bare potential V (ρ) and a centrifugal
term.

As shown in Fig. 23, the centrifugal term strongly de-
forms the potential for ρ � 0.1a, but the distortion near the
minimum, ρ0 � 0.61a, is weak enough that the radial eigen-
function fm(ρ) weakly depends on m for sufficiently large V0

and small m. For a sufficiently deep potential well, we may
use a harmonic approximation and write

Vm(ρ) � Vm(ρ0) + 1
2 Mω2

m(ρ − ρ0)2. (D3)
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FIG. 25. Perturbation matrix of the ring states.

The dependence of ωm on m is less than 10% for V0 > 3Er and
|m| � 2, and we can omit the subscript. Similarly, the radius
of the local minimum is almost independent of m in the same
range of parameters. The extension of the radial ground-state
wave function is given by 
ρ =

√
〈(ρ − ρ0)2〉 � √

h̄/2Mω.
For V0 � 3Er, it is small enough, 
ρ � 0.2a, that the har-
monic approximation is good. As a result, the low-energy
centered ring eigenstates have energies

Em,n � V (ρ0) + h̄ω(n + 1/2) + h̄2

2M

4m2 − 1

4ρ2
0

, (D4)

where n ∈ N denotes the nth radial excited state. These
eigenenergies are plotted in Fig. 24 for n = 0 and 1, and

|m| � 2. In the range of interest, we find that the lowest-
energy states are, successively, m = 0, ±1, and ±2, all with
n = 0. Hence, the radial excitations have a higher energy,
and we may restrict to the n = 0 sector. The relevant ring
state only differs by their orbital rotation energy, getting the
theoretical estimate

Em − E0 = h̄2

2M

m2

ρ2
0

, (D5)

with E0 � V (ρ0) + h̄ω/2 − h̄2/8Mρ2
0 . This is nothing but

Eq. (6).

2. Perturbative coupling terms for off-centered ring states

Figure 25 shows, in units of Er, the moduli of all the
perturbation matrix elements 〈φm1 | 
V |φm2〉 [see Eq. (7)]
between the seven ring states with winding numbers m = 0,
±1, ±2, and ±3. The perturbation 
V is the difference be-
tween the potentials around r0 = (19.06a, 4.95a) and around
r = 0. Since the matrix is symmetric, only the upper half
is shown. The numbers in red are the strongest couplings
while those in black are at least about one order of magnitude
smaller.
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