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Introduction

Statistical mechanics is one of the most precise theories in modern physics. Despite its
age (it is almost 150 years old) the statistical approach is still the fundamental tool to
deal with systems made of a macroscopic number of particles. In the presence of the in-
teractions, the microscopic dynamics is impossible to be determined analytically due to
the complexity of the equation of motions. In turn, the statistical approach is able to pre-
dict averages of macroscopic observables at thermal equilibrium and to connect relevant
quantities, such as volume, pressure, temperature, etc..., to the microscopic Hamiltonian
without knowing the dynamics of microscopic constituents. Mathematically, this sim-
plification is due to the ergodic hypothesis which allows to compute time averages as
phase-space ones.
If the system is slightly out of thermal equilibrium, but still connected to a heat reser-
voir, the statistical approach is still reliable. The larger system absorbs the excess of
macroscopic observables of the smaller one helping it to reach equilibrium. Anyway,
The statistical approach fails completely to describe the time evolution of closed systems
driven far from equilibrium. Many protocols exist to drive a system out-of-equilibrium,
the mostly used one is the so called quantum quench. The system is prepared in the
ground state of an initial Hamiltonian Hi and at t = 0 the Hamiltonian is suddenly
changed, from Hi to Hf modifying one coupling constant. This drives the system far
from equilibrium because its initial state is a highly excited state of the final Hamilto-
nian. The fact that the system is isolated makes the time evolution unitary and the
equilibration after long times not always possible.
The time evolution following a quantum quench is far from being ergodic, and the sta-
tistical approach no longer holds. The dynamics of macroscopic observables can then be
determined just by an explicit solution of the microscopic equations of motion. In the
field of out-of-equilibrium dynamics, two are the crucial questions: how local observables
time evolve and how the system thermalizes (if it does) long time after the quench.
In the last decade, the realization of cold atomic clouds has pushed the experimental
research in this field. These systems can be used to reproduce different Hamiltonians
(fermionic, bosonic or spin ones) with a great freedom in the geometry of the system, in
the type of interactions and in their strength. The possibility to change the parameters
of the Hamiltonian faster than any internal time scale allows us to realize the quench
protocol in these experiments. Most important, the fact that these clouds are trapped
using electromagnetic fields makes them extremely well decoupled from the environment.
The isolated-system hypothesis is then well satisfied over the experimental times and the
dynamics of the system is indeed unitary.
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Introduction

Lieb-Robinson bounds Even if it has been possible to obtain crucial results for both
the time evolution and thermalization in different experimental situations, much work
remains to be done to interpret these complicated phenomena. Many of the theoretical
tools used to describe systems at equilibrium cannot be adapted to the out-of-equilibrium.
The research on general principles to understand the time evolution is one of the most
exciting and difficult problems in modern physics. One of the few results existing in this
field are general bounds on the dynamics of local observables, as correlations. They con-
strain the time evolution of specific observables inside precise portions of the space-time
plane. The most famous one is the Lieb-Robinson bound, which applies to lattice models
interacting via finite-range potentials, such as nearest-neighbor or contact terms. The
authors find a bound on the commutator between two local operators defined over two
disjoints set of the lattice. The bound divides the space-time plane in two regions. One
where the commutator can be significant and the other where it is exponentially small.
It defines then a position-dependent activation time t? (R) ∼ R/vlr.
The fact that this activation time scales linearly with R points out that it is a straight
line in the space-time plane. Two local operators, in order to have a non-zero commuta-
tor, need to wait a time proportional to their distance. No surprise then if this is called
“light-cone” effect, in analogy to special relativity. It has to be noticed, however, that in
this case the correlations are not exactly zero for t < t?, as in special relativity, but just
strongly suppressed.
The quantity studied by Lieb and Robinson in their paper is not accessible in modern
experiments. There, the quantities of interest are rather equal-time correlations between
local observables, 〈AX(t)BY (t)〉 − 〈AX(t)〉〈BY (t)〉, where the expectation value is com-
puted using the initial state of the system |Ψ0〉. A bound on this quantity can be derived
if we assume rapidly decaying correlations on this state. This bound takes the same form
as the previous one and we can say that correlations are created in the system following
a linearly increasing light-cone.
This effect has been found in several experimental and numerical works: lattice bosons in
different phases, spin models and fermionic systems. There, the velocity of the light-cone
can be extracted from the data but it cannot be compared directly to the theory because
the value of vlr is not fixed by the bound.
vlr is determined by the so-called microscopic theory. In a system with well defined long-
lived excitations, as quasi-particles or other fundamental excitations, with a well defined
spectrum, the light-cone velocity for correlations is given by vlc = 2 maxVk, where Vk is
the group velocity, derived as usual from the energy spectrum. This result provides an
easy schematic approach to interpret the spreading of correlations. Following a quantum
quench, the sites of the system act as sources of quasi-particles and these are responsible
for the dynamics of the observables. Correlations, as well as other local observables, need
to wait for the arrival of the fastest quasi-particle to be activated at a given distance.
The fastest quasi-particles are then responsible for the first signal in the correlations, i.e.
the actual light-cone.
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Long-range interacting systems While the situation is rather well understood for
short-range interacting systems, many questions remain open for long-range potentials.
For instance, for algebraic interactions of the form V (R) ∼ 1/Rα, the Lieb-Robinson
bound has been extended. For α < D no bound is known. It means that correlations can
a priori be activated at arbitrary large distances in arbitrary short times. For α > D,
the commutator can be bounded by a potential-dependent expression which gives an
activation time of the form t? ∼ α ln (R). Compared to the short-range case, this bound
allows faster-than-ballistic propagation.
This bound has been improved for α > 2D. In this case, it becomes algebraic t? ∼ Rβ ,
with β < 1 which also allows faster-than-ballistic propagation.
These bounds have to be checked in order to see if they are able to reproduce correctly
the propagation of correlations or if they have to be improved again. The realization
of quantum systems interacting via long-range potentials is possible using trapped ions.
They interact like spins with long-range exchange term. These systems respect the gen-
eral hypothesis of the bounds presented before. The study of the dynamics of different
observables points toward the violation of the short-range Lieb-Robinson bounds and
faster-than-ballistic propagation appears for sufficiently small values of α. However, such
systems are not large enough to be free from finite-size effects and they cannot follow the
dynamics for sufficiently long times to have a precise description of the propagation. The
typical system size is in fact around 9 ions but the technological improvement is pushing
forward to obtain larger chains: at the present moment the maximal length is already
22. Future works will better characterize the propagation of correlations in long-range
interacting systems, but for the moment it is fair to say that a quantitative experimental
measurement is lacking.
Numerical approaches have then been used to deal with these systems out of equilibrium,
in particular, the time-dependent density matrix renormalization group (t-DMRG), the
time-dependent variational Monte Carlo (t-VMC), and the truncated Wigner approx-
imation (DTWA). These approaches can be used to explore larger systems for longer
times than the ones in experimental set-ups. The results obtained by these methods for
one-dimensional spin systems exhibit a richer dynamics than the one expected from the
known bounds. In particular, the existence of three regimes of propagation has been
pointed out, including an instantaneous (non-local) regime, an algebraically propagating
(quasi-local) regime and a ballistic (local) regime. It is then clear that it is necessary to
go beyond the present general bounds.

Scope and main results of the thesis The aim of this thesis is to develop analytic
approaches to determine the actual behavior of space-time dynamics of correlations in
long-range interacting systems. This way, we have been able to reproduce previous results
for the long-range Ising model, to give a clear physical picture of the origin of these three
regimes, and to predict (surprisingly) slower-than-ballistic propagation of correlations
in the quasi-local regime. The latter is confirmed by numerical time-dependent Monte
Carlo calculations. Moreover, we have generalized these results to dimension higher than
one (D > 1) where we find: (i) ballistic (local) propagation for α > D + 1, (ii) slower-
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Introduction

than-ballistic (quasi-ballistic) for D < α < D + 1, and (iii) instantaneous for D > α.
The existence of the last two of them is associated to second and first order divergences
in the many-body excitation spectrum.
We then focus on a different model: lattice bosons interacting via a long-range poten-
tials (long-range Bose-Hubbard model) in one dimension. We aim to understand if the
previous results which determine a connection between the regime of propagation and
the energy spectrum of excitations are universal. We start from the density-density cor-
relations and their time evolution that presents a ballistic spreading for every value of
α. This is completely unexpected from the general bounds and the analysis of the Ising
model, where a transition from a bounded to an unbounded propagation occurs at α = 1.
We then use again the analytic approach to explain these data. The bosonic model allows
again long-lived excitations known as Bogoliubov quasi-particles. They are created fol-
lowing the quantum quench and they spread in the system creating correlations and other
observables. For α > 1, the excitation spectrum has a finite maximum group velocity.
This is compatible with a ballistic propagation and it explains the data of the numeric for
these values of α. In turns, for α < 1 the maximum group velocity is infinite and one may
expect non-ballistic spreading. Studying carefully the observable it is anyway possible
to see that not all the modes contribute the same way to the time evolution. Due to the
long-range interactions, some parts of the spectrum have a vanishing contribution to the
dynamics. Using the quasi-particle picture and the stationary-phase approximation we
quantified this contribution and we concluded that the modes with infinite velocity have
a completely negligible effect on the dynamics. To prove this argument we compare the
velocity of the light-cone extracted from time-dependent Monte Carlo data to the one of
the quasi-particles with the largest contribution, finding a perfect agreement.
The previous discussion has showed that the inhomogeneous contribution of quasi-particles
has strong effects on the space-time dynamics of quantum correlations. Since the dis-
tribution of contributions obviously depends on the observable, one may expect that
the correlation dynamics is observable-dependent. We then study another observable,
namely one-body correlation function, and its time evolution. There, the quasi-particles
that contribute stronger to the time evolution are the ones with infinite velocity. We find
then that for α < 1 the propagation is algebraic and faster-than-ballistic, meaning that
in this case the effect of the infinite velocity modes is not negligible. This last work then
allows us to conclude that the energy spectrum is not the only quantity to determine the
dynamics of correlations. The role played by the specific observable is completely unex-
plored in the general bounds but it can be encoded naturally using the quasi-particles
picture.

Content of the manuscript

Chapter 1 We start with a comparison between quantum systems at- and out- of equi-
librium. Reviewing different results in the literature, we describe how different
models are realized in cold atomic gases as well as in other systems and how they
can be probed using different techniques. We introduce the reader to the two main
problems of the out of-equilibrium dynamics: the spreading of correlations and
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the thermalization problem. The latter is described in more details at the end
of the chapter. Its classical and quantum descriptions are given and, finally, the
experimental observations of thermalization or its absence are discussed.

Chapter 2 This chapter is dedicated to the universal bounds on the dynamics of many-
body quantum system as well as the experimental, numerical, and theoretical un-
derstandings of short-range interacting models. We review the bounds on these
systems on both the commutator and the correlation function starting from the
literature works where they are derived. We revise the microscopic approach and
the main experimental and numerical observations of the light-cone dynamics of
correlations. We finally review several extensions of the previous bound in presence
of long-range interactions.

Chapter 3 In this chapter we present the study of long-range interacting spin models, in
particular the long-range Ising model in transverse field. We start with a review of
its experimental realizations in trapped-ion experiments. We then revise different
numerical methods used to study the time evolution of this system. They point
out a strong dependence on the interaction decay. This study is based on the
quasi-particles approach described before for short-range models. W present then
my results based on this method. We provide an analytical description of the
three different regimes found in the time evolution. We connect the propagation of
correlations to the divergences of the energy spectrum of fundamental excitations
of the system. We compare these expressions to the Monte-Carlo results obtained
by a collaborator and published in a joint publication. A good agreement between
my analytic predictions and the numerical results is found.

Chapter 4 In this chapter we study a system of lattice bosons interacting via a long-
range potentials. We want to determine what is universal in the time evolution
and what it is not. Numerical simulations find that the propagation of two-body
(density-density) correlations in this model is always ballistic. This result cannot be
understood as before using the energy spectrum of excitations. In fact, surprisingly,
the finite propagation takes place also in the presence of quasi-particles with infinite
velocity. We demonstrate that this can be understood looking at the part of the
spectrum that contributes most to the time evolution of the observable. This can
be used to see that the large velocities present in the spectrum do not contribute
to the time evolution. We then study a different observable, namely one-body
correlations, finding a faster-than-ballistic propagation. This can be understood
using the quasi-particles picture and it opens the door for an observable-dependent
definition of locality. We then demonstrate that the time evolution in long-range
quantum systems cannot be understood looking just at the energy spectrum, but
more quantities have to be involved. Also in this case, we find that the general
bounds are not able to reproduce the behavior of the time evolution. The analytical
expressions have been obtained by the author and they are compared to Monte-
Carlo simulations realized by a collaborator and published in a joint publication.
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Introduction en français

La mécanique statistique est l’une des plus importantes théories de la physique moderne.
Même si elle a presque 150 ans, l’approche statistique est encore un instrument fonda-
mental pour décrire les systèmes avec un nombre macroscopiquement grand de particules.
En présence des interactions, la solution des équations du mouvement est extrêmement
compliquée et une solution explicite pour la dynamique du système manque toujours.
Par contre la description statistique est capable de décrire les moyennes des observables
macroscopiques à l’équilibre thermique et de connecter différentes quantités comme le
volume, la pression, la température, etc... sans résoudre complètement les équations du
mouvement pour les constituants fondamentaux. Mathématiquement la condition qui
assure l’équivalence entre les moyennes statistiques et les moyennes temporelles est ap-
pelée condition d’ergodicité. Si le système est très peu hors de l’équilibre thermique et en
contact avec un réservoir, le méthode statistique est encore capable de décrire le compor-
tement du système. Dans ce cas, le réservoir absorbe l’excès des quantités macroscopiques
présentes dans le système et, le stabilise, et le conduit à l’équilibre. La description sta-
tistique est de toute façon complètement inutile si le système est très loin de l’équilibre
thermique et est isolé. Un grand nombre de protocoles peut être utilisé pour pousser un
système hors de l’équilibre. Le plus utilisé est le quantum quench. Le système est préparé
dans l’état fondamental d’un Hamiltonien initial Hi et à t = 0 l’Hamiltonien est changé
Hi → Hf selon un changement rapide d’une constante de couplage. Ce changement
pousse le système hors de l’équilibre parce que l’état initial est un état énergétiquement
très loin de l’état fondamental du Hamiltonien final. En plus, le fait que le système est
isolé force l’évolution temporel à être unitaire et la thermalisation aux temps longs n’est
pas du tout assurée. Dans ce cas, l’évolution temporelle est loin d’être ergodique et, par
conséquent, l’évolution temporelle n’est pas du tout décrite par une simple moyenne sta-
tistique. La seule façon de déterminer l’évolution temporelle des différentes observables
est de la calculer explicitement à partir des équations de mouvement microscopiques.
Les deux questions principales pour ce problème sont : quel est le comportement des
observables locales pendant l’évolution temporelle et comment le système thermalise, s’il
thermalise. La réalisation de nuages d’atomes ultra froids a revigoré la recherche de nou-
veaux effets dans la physique hors de l’équilibre. Ces systèmes peuvent être utilisés pour
modéliser différents Hamiltoniens (fermioniques, bosoniques et aussi de spin) avec une
grande liberté sur le choix de plusieurs paramètres : la géométrie du système, le type
et l’intensité des interactions. En particulier, la possibilité de changer l’intensité des in-
teractions extrêmement rapidement, comparé à toutes les échelles de temps internes des
nuages, a permit de réaliser avec une grande précision le protocole du quantum quench.
Plus important, les nuages sont piégés en utilisant des champs magnétiques ou électriques
et ils sont donc presque parfaitement isolés du laboratoire. L’hypothèse d’isolation, fon-
damentale pour le protocole du quench, est donc bien satisfaite, de sorte que l’évolution
temporelle est unitaire.
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Borne de Lieb-Robinson Même si plusieurs expériences ont étés menés pour explorer
et l’évolution temporelle, et la thermalisation, en obtenant des résultats cruciaux pour
les deux champs de recherche, un grand travail reste à faire du coté théorique pour
expliquer en profondeur ces phénomènes. En fait, la plupart des approches théoriques
et numériques utilisées pour étudier les systèmes quantiques à l’équilibre sont complè-
tement inutiles quand on est hors de l’équilibre. La recherche des principes généraux
pour comprendre precisament la dynamique des systèmes quantiques en interaction est
donc devenue l’un des plus intéressants et difficiles problèmes pour la physique moderne.
Un des rares résultats généraux pour la dynamique des corrélations est la présence de
bornes sur leur évolution temporelle. Ces bornes forcent la dynamique dans des régions
spécifiques du diagramme d’espace-temps. Le plus connue de ces bornes est la borne
de Lieb-Robinson qui s’applique aux systèmes de spins sur réseau avec interactions à
courte portée, comme les interactions premier-voisin. Les auteurs trouvent une borne sur
le commutateur entre deux observables localisés sur deux parties disjointes du réseau.
La borne détermine une séparation entre deux parties du diagramme espace-temps. Une
zone où le commutateur est grand et une autre zone où il est exponentiellement petit.
La séparation entre ces deux zones définit un temps d’activation qui est proportionnel
à la distance entre les deux zones t? ∼ R/vlr. Le fait que ce temps d’activation dépend
linéairement de la distance R définit cette ligne de séparation comme une droite. Donc,
deux observables localisées dans deux zones distantes R, doivent attendre un temps fini
t? proportionnel à R pour avoir un commutateur significativement différent de zéro. Par
analogie avec la relativité restreinte, cet effet est appelé cône de lumière. Il faut noter
que les commutateurs pour temps précédents au temps d’activation n’est pas exactement
zéro, comme dans la relativité restrainte, mais simplement extrêmement petit.
La quantité étudiée par Lieb et Robinson dans leur papier n’est pas accessible aux
expériences. Dans ce cas, les quantités mesurées sont les corrélations au même temps
〈AX(t)BY (t)〉 − 〈AX(t)〉〈BY (t)〉 où la valeur moyenne est calculée pour l’état initial du
système |Ψ0〉. Cette quantité peut être bornée en utilisant le résultat de Lieb et Robinson
si on suppose que le corrélations présentes avant le quench décroissent exponentiellement
avec la distance. La borne sur les corrélations dans ce cas prend la même forme que
pour le commutateur. Les corrélations donc sont activées avec un cône balistique qui se
propage à vitesse finie.
Ce effet a été trouvé dans plusieurs expériences et travaux numériques : bosons sur ré-
seau dans les phases isolante et superfluide, modèles de spin et systèmes fermioniques.
Les donnés peuvent être utilisées pour déterminer expérimentalement la vitesse de pro-
pagation des corrélations. Cette vitesse ne peut être comparée directement à la borne
parce que elle ne détermine pas la valeur de la vitesse de Lieb-Robinson.
La vitesse de propagation peut être fixée en utilisant la théorie microscopique. Si dans le
système il y a des excitations bien définies, comme des quasi-particules ou des magnons,
avec une spectre Ek, la vitesse du cône est déterminée par vlc = maxVk, où Vk est la
vitesse du groupe des excitations Vk = ∂kEk. Ce résultat nous donne une façon simple
d’interpréter physiquement le phénomène de la propagation des corrélations. Après un
quench, les sites du réseau émettent ces excitations qui se propagent dans tout le sys-
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tème en transportant les corrélations et autres observables locales. Pour avoir un signal
à une distance fixée dans une observable, on doit attendre l’arrivée des excitations les
plus rapides qui créent le premier signal. Ces excitations sont donc responsables du cône
et leur vitesse détermine la vitesse du propagation des corrélations.

Interactions à longue portée La dynamique des corrélations dans des systèmes avec
interactions de courte portée est donc bien comprise. Pour la dynamique en présence
d’autres types d’interactions, en particulier les interactions à longue portée, la physique
n’est pas du tout claire. La forme typique de ces interactions est une décroissance algé-
brique avec la distance 1/Rα. Pour cette forme d’interactions la borne de Lieb-Robinson
a été etendue. Pour α < D, où D est la dimension du système, aucune borne a été
trouvée pour systèmes infinis pour l’instant. Cela nous permet de supposer que les cor-
rélations et autres observables locales peuvent être activées arbitrairement loin en un
temps arbitrairement petit. Pour α > D, le commutateur entre deux observables locales
est borné par une expression qui dépend explicitement du potentiel. Il est possible de
définir un temps d’activation qui dans ce cas dépend logarithmiquement de la distance
t? ∝ α ln (R). Comparé avec le cas des interactions à courte portée, quand les interactions
sont à longue portée la propagation peut être beaucoup plus rapide que balistique. Cette
borne a été améliorée pour α > 2D où le temps d’activation prend une forme algébrique
t? ∝ Rβ avec β < 1 qui détermine aussi une propagation plus rapide que balistique.
Ces bornes doivent être testées pour confirmer si elles sont capables de décrire correcte-
ment la propagation des corrélations ou elles doivent être encore améliorées. En labora-
toire est possible réaliser des systèmes des ions avec interactions à longue portée et les
pousser hors de l’équilibre pour étudier l’évolution temporelle de différents observables
expérimentalement. L’analyse des donnés expérimentales pour la propagation des cor-
rélations dans ces systèmes confirme la violation des bornes de Lieb-Robinson pour des
systèmes de courte portée. En plus, un horizon dans le temps d’activation est présent et
pour des valuers de α suffisamment petites cet horizon est algébrique et super-balistique.
Ces systèmes ne sont pas assez grands pour être exempts des effets de taille finie. Le
nombre d’ions typique dans ces systèmes est 9 ∼ 10, ce qui rend ces systèmes plutôt
petits, en particulier pour des interactions de longue portée. Le développement technolo-
gique est en train d’améliorer les techniques expérimentaux et au moment présent, il est
possible de réaliser des systèmes de 22 ions, qui ont été utilisés pour étudier la thermali-
sation dans ces systèmes. C’est donc probable que les travaux futurs sur la propagation
des corrélations dans ces systèmes amélioreront considérablement les mesures, mais pour
le moment il est juste d’affirmer que des mesures quantitatives manquent.
Différentes méthodes numériques ont été développées pour étudier ces systèmes hors de
l’équilibre : le Density Matrix Renormalization Group dépendant du temps (t-DMRG),
le Monte Carlo variationnel dépendant du temps (t-VMC) et l’approximation de Wigner
(DTWA). Ces méthodes peuvent simuler l’évolution temporelle de systèmes un ordre de
grandeur plus grands de ceux réalisés en laboratoire. Les premiers résultats obtenus par
ces méthodes présentent une dynamique beaucoup plus riche que celle envisagée par les
bornes. Trois régimes sont en fait présents dans la propagation : un régime instantané
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(non local), un régime où les corrélations se propagent algébriquement (quasi-local) et
un régime où les corrélations se propagent balistiquement (local). Ces résultats montrent
la nécessité d’une description plus précise que celle donnée par les bornes.

But et résultats principaux de la thèse Le but de cette thèse est de présenter une
méthode analytique pour déterminer le comportement de la propagation des corrélations
dans des systèmes avec interactions de longue portée. Avec cette méthode nous avons
reproduit les résultats présents dans la littérature pour le modèle de Ising, donné une in-
terprétation claire de l’origine des trois régimes présents dans la dynamique et démontré
qu’une propagation sub-ballistique est présente dans le régime quasi-local. Bien qu’une
propagation sub-balistique soit surprenante en présence d’interactions de longue portée,
ce résultat est confirmé par des simulations Monte Carlo. Nous avons ensuite généralisé
nos résultats analytiques en dimension quelconque et trouvé encore trois régimes : (i) un
régime balistique pour α > D + 1, (ii) un régime sub-ballistique pour D < α < D + 1
et (iii) un régime instantané pour α < D. L’existence des deux derniers est associée aux
différents divergences dans le spectre d’excitations.
Nous avons ensuite étudié un modèle de bosons sur réseau avec interactions de longue
portée (long-range Bose-Hubbard model) en une dimension. Cette étude veut comprendre
si la relation entre le spectre d’excitations et le régime des propagation démontrée pour
le modèle de Ising est universel ou non. Nous étudions les corrélations densité-densité et
nous trouvons que le propagation de cet observable est balistique pour toutes les valeurs
de α. Ce résultat n’est pas prévu si on regarde juste les bornes. L’analyse faite sur le
modèle de Ising montre en effet,une transition entre un régime instantané et un régime
avec un forme de localité à α = 1. On utilise donc encore une méthode analytique pour
expliquer ces donnés. Les excitations fondamentales pour ce modèle sont les particules de
Bogoliubov. Ces quasi-particules sont créées après le quench et elles se propagent dans
le système avec les observables locales. Pour α > 1, le spectre des excitations a une
vitesse de groupe bornée et cela est en accord avec une propagation balistique avec une
vitesse finie. Par contre, pour α < 1, la vitesse maximale est infinie et une propagation
non balistique est attendue. Une étude plus approfondie de l’observable permet de com-
prendre que la contribution des différentes quasi-particules à l’évolution temporelle de
l’observable n’est pas la même pour tous. En utilisant les quasi-particules, il est possible
de quantifier la contribution des différents modes à l’observable et de déterminer que la
contribution des quasi-particules avec une vitesse infinie est complètement négligeable
comparée aux autres. Nous avons ensuite comparé la vitesse extraite des données Monte
Carlo et la vitesse des quasi-particules qui donnent la contribution majeure à l’observable
et nous avons trouvé un accord parfait entre les deux.
L’analyse des corrélations densité-densité a confirmé que les inhomogénéités des contri-
butions des différentes parties du spectre ont un effet très important sur la propaga-
tion des observables. Les poids qui quantifient les différents contributions des différentes
quasi-particules dépendent fortement de l’observable et on peut donc conclure que la
propagation dépend de l’observable. Nous avons donc étudié une observable différente,
les corrélations à un corps, et son évolution temporelle. Pour ce observable spécifique,
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la contribution majeure vient des modes de vitesse infinie. Nous avons trouvé que pour
α < 1 la propagation est algébrique et plus rapide que balistique, ce qui confirme que les
quasi-particules avec une vitesse infinie contribuent à la propagation. Ce dernier travail
nous permet de confirmer que le spectre des excitations n’est pas toujours la seule quan-
tité qui détermine la propagation des observables. Les observables même jouent un rôle
fondamental pour la détermination de l’évolution temporelle. Ce rôle est complètement
inexploré par les bornes générales mais il peut être pris en compte très facilement en
utilisant le méthode analytique développée dans cette thèse.
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1 Out-of-Equilibrium dynamics of
many-body quantum systems

1.1 From equilibrium to out-of-equilibrium physics

Statistical mechanics [1] is one of the most precise and powerful techniques in modern
theoretical physics. It explains how to describe a variety of systems made of a huge
number of degrees of freedom using just a small number of macroscopically measurable
parameters. In particular, we deal with systems at the equilibrium once these parameter
do not change appreciably in time.
On the one hand, the thermodynamics was able to well describe the properties of fluids
and gases at equilibrium in terms of some simple quantities such as pressure, volume,
and moles without a microscopic theory [2].
On the other hand, classical mechanics describes the motion of classical particles and
more complicated rigid objects as points in the phase-space, a mathematical space de-
fined by the positions and the momenta of all the classical particles. The state of the
system moves in this space according to the Hamilton equations of motion, which are
extremely precise [3]. Moreover, the atomistic theory infers that all the macroscopic ob-
jects are composed by more fundamental constituents, say atoms or molecules, that fulfill
these equations of motion. Statistical mechanics determines the macroscopic behavior of
liquids and gases from the microscopic behavior of atoms, connecting the atomic lengths
and time scales to the macroscopic ones of the typical systems studied in thermodynam-
ics.
The dimension of the phase-space for N point-like classical particles in a three dimen-
sional space is equal to 6N , that is 3N spatial coordinates and 3N momenta. Thanks
to statistical mechanics, it is possible to describe the system on a macroscopic scale in
terms of just a small number of parameters. It is in fact clear that the motion of atoms
at a microscopic level is much faster than the macroscopic one. This difference in length
and time scales makes it possible to average out these microscopic degrees of freedom
and to find an effective and simpler description at larger scales.
The discovery of quantum mechanics sparked a dramatic revolution in the way we see
the microscopic world and its behavior. A system is described by a wave-function, which
is mathematically a vector in a Hilbert space, and its time evolution is given by the
Schrödinger equation [4]. This new description of the microscopic theory is anyway nat-
urally encoded in statistical mechanics using the same hypothesis as in the classical case,
i.e. ergodicity. Anyway, at the quantum level, a huge distinction between two different
types of particles have to be done: bosons and fermions. The difference between them
relies on the microscopic level: two bosonic particles can be exchanged without changing
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the wave-function while the same process involving two fermions changes the sign of the
wave-function.
This imposes a constraint to the number of particles that can occupy a single quantum
state: if they are bosons this number can range from zero to infinity while just one
fermion can occupy a state at most. The consequences of these statistics are not only
at the microscopic level but also at the macroscopic one. Even if differences between
these two types of particles are usually small at large temperatures, when the system is
at absolute zero temperature, or at extremely low temperatures, bosonic and fermionic
systems have different behaviors. On one hand, the ground state of a bosonic system is
defined as the state where all the particles occupy the lowest single-particle energy state.
This effect is known as Bose-Einstein condensation and it has been observed experimen-
tally in 1995 in [5, 6]. The system in this state has a macroscopically large wave-function
thanks to its huge coherence length. This state exhibits features typical of the quantum
world on macroscopic length scales, such as superfluidity, which was, at the beginning,
not distinguished from Bose-Einstein condensation.
On the other hand, the ground state of a system of N non-interacting fermions has a com-
pletely different structure because of the Pauli exclusion principle. Fermionic particles
cannot condensate in the lowest energy state and they occupy the N lowest single-particle
energy levels. This state is called a Fermi sea and it is fundamental to describe many
physical properties like the atomic structure and the consequent stability of matter, met-
als, semiconductors, and also the physics of massive stars such as supernovae.
Previous examples are meaningful when interactions between particles vanish, but they
can significantly change the physics of both bosons and fermions. If interactions between
fundamental constituents are small, bosonic and fermionic systems can be described using
different perturbative approaches. Bosonic systems are described by accurate quadratic
theories, such as the Bogoliubov theory of superfluidity [7]. On the other hand, when
interactions between fermions are allowed at zero temperature, extreme effects appear.
The most studied one is superconductivity, discovered in Leiden in early 1900, and ex-
plained by Bardeen Cooper and Shrieffer [8] after almost 50 years. This effect is induced
by the interaction between the vibration of the metallic crystal and the electrons in the
conducting band and it consists in a vanishing resistance of some metals at extremely
low temperature.
All the results obtained in equilibrium statistical mechanics, both classical and quantum,
rely on the assumption that the dynamics of the system is ergodic. Ergodicity allows to
get rid of the microscopic dynamics of the constituents of the system and to compute
expectation values simply as averages over a defined surface. In Sec. 1.5.1 we will give
more details about ergodicity and how it is not always present when the systems are out
of equilibrium.

The reader could anyway say that equilibrium physics is quite rare, usually a nontrivial
time evolution is present in physical systems at any scale. Not all the results of sta-
tistical theory fail to describe such situations. If we think about the simple problem
of two systems with different macroscopic parameters in contact, we know that there
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is a transport of energy, particles, and other quantities between them in order to reach
a new equilibrium for the global system. If the amount of “quantities”, like energy for
example, exchanged is small compared to its total amount, then the system can still be
described by statistical mechanics using linear response theory [9]. If this is not the case,
then statistical mechanics fails to describe the dynamics and the system is “far-from-the-
equilibrium”.
Once far from equilibrium, the full dynamics of the microscopic constituents has to be
solved in order to infer the macroscopic one. The time dependence of the observables has
to be computed explicitly from the microscopic equation of motion [10]. Driving a system
out-of-equilibrium in a controlled way and measuring microscopic quantities with a high
degree of precision have been impossible tasks until recent times. Thanks to new cold
atomic setups, now it is possible to engineer different types of systems and, in particular,
to realize close quantum systems [11]. In Sec. 1.3 we will describe in detail these cold
atomic setups. This is almost impossible in standard condensed-matter systems because
of the presence of the phononic degrees of freedom or of the environment which cannot
be neglected. The presence of a thermal bath tends to destroy the quantum nature of
the microscopic quantum time evolution, making it more classical.
A deep understanding of this far-from-equilibrium dynamics in both classical and quan-
tum systems is fundamental to describe properly the physical world we observe. Physics,
at all scales, shows strong out-of-equilibrium effects from the time evolution of the Uni-
verse after the big-bang to the dynamics of small clouds of atomic gases in cold atomic
experiments. Moreover, several technological applications of the dynamics of quantum
many-body systems are possible, the most important one is related to the quantum com-
puter. This device will perform local operations on quantum q-bits and clearly, these
processes are all out-of-equilibrium ones. No-one would ever buy a computer without the
possibility to change its internal state, i.e. the information contained in it.

1.2 Open questions in far-from-equilibrium quantum
dynamics

1.2.1 A simple example: The Kapitza pendulum

The out-of-equilibrium dynamics is sometimes impossible to predict from the mere knowl-
edge of the equilibrium one. Completely new effects appear during the time evolution
of physical systems far-from-equilibrium. A simple example where this occurs is the
Kapitza pendulum [12, 13]. Here, a simple time-dependent perturbation of an extremely
simple physical system gives rise to an drastic change in its physics. Before describing
the Kaptiza pendulum, we briefly review the physics of the standard pendulum at equi-
librium.
The mechanical energy of the system, represented in Fig. 1.1, is

E = m
l2

2
θ̇2 −mg cos (θ)
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Figure 1.1: Representation of the physical pendulum. Two equilibrium positions are present as function
of θ: a stable one at θ = 0 and an unstable one at θ = π. From Wikipedia.

where θ is the angle describing the amplitude of oscillations, m is the mass of the particle,
l is the distance from the fulcrum, and g is the gravitational acceleration. The equilibrium
position of the system can be found imposing ∂θE = 0 at θ̇ = 0. We find that θ = 0
and θ = π are the two equilibrium positions. Anyway, these are not of the same type:
θ = 0 is a stable equilibrium position, while θ = π is an unstable one. In the first case a
force always points to the equilibrium position forcing the pendulum to oscillate around
it. In the second case the force pushes the point far away from the unstable equilibrium
position. This respects the everyday intuition: if the pendulum is placed at θ = π a small
perturbation is sufficient to push it far away from it. The situation drastically changes
when the system is driven out-of-equilibrium. This can be done inducing oscillations of
frequency Ω and amplitude a of the fulcrum. A schematic representation is presented in
Fig. 1.2 where now the angle θ is referred to the vertical line.
If Ω is small compared to the typical frequency of the pendulum ω, then the system
can be described again using the equilibrium physics. At every time t the system can
be considered at equilibrium and it has oscillations of frequency ω around the point
where the fulcrum is. In this case the out-of-equilibrium protocol affects the system as a
modulation.
When the frequency Ω becomes much larger than ω the situation drastically changes.
In this case the system is far from equilibrium and the effects of the oscillations of the
fulcrum cannot be simply taken into account as simple modulations and here it is the
point where our intuition fails. Averaging over the extremely fast and small oscillations
of the fulcrum, represented by a/l � 1 and ω/Ω � 1 with aΩ/lω finite, we obtain an
effective potential

Veff = −mgl cos (θ) +

[
1

2
maΩ sin (θ)

]2

,
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Figure 1.2: Schematic representations of the Kaptiza pendulum. The Kapitza pendulum is a standard
pendulum where the fulcrum oscillates with frequency Ω and amplitude a, as represented
in the figure. When Ω is sufficiently larger (see text for details) the upper equilibrium
position θ = 0 in this figure, θ = π using the reference of the previous figure, becomes
stable. This effect is due to the fact that the system is driven out of equilibrium using an
oscillating drive. From Wikipedia.

where a is the amplitude of the oscillations of the fulcrum that has to be much smaller
than l. The equilibrium positions of the effective potential are then

∂θVeff = m sin (θ)

[
gl +

a2Ω2

2
cos (θ)

]
= 0.

θ = 0 and θ = π are again the equilibrium positions, but if we compute the second
derivative of the effective potential we have

∂2
θVeff = m

[
gl cos (θ) +

a2Ω2

2

(
2 cos2 (θ)− 1

)]
.

For the equilibrium position at θ = π its value is

∂2
θVeff (θ = π) = −mgl +

ma2Ω2

2
,

which is larger than zero, meaning a stable equilibrium point, if

a2Ω2

ω2l2
> 2.

This stabilization of the upper equilibrium point is completely unpredictable from the
study of the system at equilibrium. This effect depends also on the protocol used to drive
the system out of equilibrium. Different protocols, or the same protocol with different
parameters, do not lead to the same physical results. In our example this is represented
by the two different behaviors for small and large values of Ω compared to ω.
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1.2.2 A difficult problem

The specific problem of the Kapitza pendulum points out that an ad hoc description for
out-of-equilibrium physics is needed. Different types of innovative methods have been
developed in last years [14, 11], and many more will be created in the future. The aim is
to create a comprehensive set of theoretical, numerical, and experimental tools to study
and understand out-of-equilibrium physics.
The dynamics of a many-body quantum system, which is the topic of this manuscript,
is always extremely difficult to solve analytically. The complexity of the mathematical
problem grows exponentially with the number of constituents if they are interacting.
However, some models are exactly solvable [15], and they play a key-role in the theo-
retical analysis of out-of-equilibrium physics. Examples of these systems are the ones
described by quadratic Hamiltonians, or others solvable by more complicated methods
as the Bethe ansatz [16]. Even if the number of such models is quite small, they are im-
portant to push the research in model-independent results that can be applied to more
complicate situations.
In order to check the validity of these more general results, new numerical and experi-
mental methods have been developed. Quantum Monte Carlo (QMC) [17] and Density
Matrix Renormalization Group (DMRG) [18] are two excellent and extremely precise
tools to study the physics at the equilibrium. Anyway, they are not suited for the out-of-
equilibrium physics in their usual form. Extensions of these methods have been proposed
to make them reliable and suitable for this new challenge. In particular, the DMRG has
to deal with the strong increasing of the entanglement during the time evolution. This ef-
fect has been corrected in the time-dependent DMRG (t-DMRG [19, 20] and TEBD [21])
algorithm which is now able to study the time-evolution of many out-of-equilibrium prob-
lems. We will present some results obtained using this method later, see Sec. 2.3.1 and
3.2. The time-Variational Monte Carlo [22, 23] is the extension to time-dependent prob-
lems of the Quantum Monte Carlo. This methods is based on an ansatz of the wave
function of the Jastrow type [24] with time-dependent complex parameters. The time-
evolution of these parameters is described by a first-order differential equation that gives
the dynamics of the wave function and the observables. This method will be described
in detail later in this manuscript 2.3.1.

The experimental tools play also a key-role in the research in out-of-equilibrium physics,
the goal of this study is to use experimental setups as quantum simulators [25]. The idea
behind a quantum simulator is to use a quantum system to simulate the behavior of a
much more complicated model. This is a conceptual breakthrough in the way we used
to see an experimental setup.
A quantum simulator can:

• reproduce single- and many-particle physics, from the kinetic to the interaction
terms

• be prepared in a generic state with a high degree of precision
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• perform precise manipulations on the state of the system

• access the result of the simulation probing the system

Even if these requirements are extremely difficult to satisfy, modern cold atomic gases
are the perfect examples of quantum simulators. We will see how these systems are pre-
pared and how they are used to study the out-of-equilibrium dynamics, in between other
extremely important problems, in Sec. 1.3.
While we have powerful numerical methods available, t-DMRG and t-VMC, and ex-
tremely versatile experimental setups it is useful to develop new analytical methods as
well. The importance of the theoretical works for this field relays in their possibility not
to solve just one specific problem, but to generalize its solution to a more general class of
them. This will help to build a consistent physical picture that can be used to interpret
also numerical and experimental results obtained in more complicated situations.

1.2.3 Open challenges

In this manuscript we will focus on the dynamics of many-body quantum physics driven
out of equilibrium. As we saw in the Kapitza pendulum example: the protocol is a crucial
part of the description of out-of-equilibrium physics 1.2.1.
We will choose the simplest available protocol: the quantum quench. It consists in
preparing the system in an eigenstate of an initial Hamiltonian Hi and then performing
a sudden change to a new one Hi → Hf . This change is obtained by varying the value of
one of the coupling constants in the Hamiltonian. After the change in the Hamiltonian,
the system is decoupled from the environment and it evolves in time with a unitary evo-
lution. We will focus on instantaneous variations of the parameters but it is possible to
take into account also slow quenches, where the change takes place over a finite time.
The perfect isolation of the system, crucial for the quench protocol, is extremely chal-
lenging to be realized in a laboratory. Such condition is anyway present in modern cold
atomic gases (see Sec. 1.3.4). These systems are able to simulate different types of inter-
acting models and they can follow the time evolution on different times scales.
Even if many different works are published every day in the field of out-of-equilibrium
physics, they can be classified in two general macro-categories:

• The time evolution of observables during and right-after the out-of-equilibrium
protocol.

• The description of the state reached by the system long time after the out-of-
equilibrium protocol.

The first question is the main topic of this manuscript and it will be discussed in detail
in next chapters. In particular, the role played by the range of interactions during the
time evolution will be extensively discussed. When interactions are short-range, the
perturbation induced by a local observable spreads in the system linearly in time and
space, see Sec. 2.1. In the case of “long-range” interactions, different regimes appear
depending on the model and the observable.
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For what concerns the thermalization problem, it is an extremely interesting and exciting
field of study. We will give a brief description, far from being complete, in Sec. 1.5 but
it will not be further discussed in the rest of the manuscript.

1.3 Ultracold atoms as model systems

As we said, cold atomic gases are systems used to mimic the behavior of different classes
of many-body quantum systems. We are now going to discuss in detail, how it is possible
to realize these systems and to use them to explore the out-of-equilibrium behavior of
quantum systems.

1.3.1 Gaseous systems at low temperatures

As first, we want to put the gas in a regime where quantum effects are dominant. This is
called the quantum degenerate regime. The crossover between the classical and degen-
erate regime in three dimensions is defined by the condition

λ3n ∼ 1, (1.1)

where n is the density of particles, and λ is the de Broglie wave-length of a particle of
mass m at temperature T

λ =
h√

2πmkBT
.

The value of λ determines the length scale where quantum effects are relevant. If its value
is much smaller than the typical inter-particle distance, (1/n)1/3, then quantum effects
do not affect the classical motion. On the contrary, if λ� (1/n)1/3, the quantum nature
of particles cannot be neglected. Quantum statistics as the Bose-Einstein or Fermi-Dirac
distributions has to be taken into account. The separation between the classical and the
quantum regime is then defined by relation (1.1).

1.3.1.1 Quantum gases in the degenerate regime

We want now to describe how it is possible to obtain this regime in an experimental
setup. Many different experimental techniques have been used and they improve quickly
trying to obtain better and better results. The aim of all of them is to obtain compressed
and cold atomic clouds in the quantum degenerate regime.

Laser-cooling Generally, the atoms are extracted from a source, which releases an atom
cloud traveling pretty fast, its velocity is around a few hundred meters per second. The
atoms are usually extracted at room temperature or even higher temperatures, depending
if they come from an oven or not. In both cases, they are extremely far from the quantum
degenerate regime.
The first process to enter in this regime is the laser cooling of atoms [26]. It consists in
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the application of six counter-propagating laser beams, two for every spatial direction,
to slow down the atoms. The lasers act as a viscous force

FLasers = −αv,

where α is the effective viscosity and v is the velocity of atoms.
In order to confine atoms in the region hit by the lasers, a magnetic field B is applied
inducing a linear force

Ftrap = −Bx
which traps the atoms along the direction x.
This step aims at loading the trap with a sufficiently large number of atoms and start-
ing to slow them down with the lasers. The slow-down process cannot go on forever.
It is balanced by cycles of absorption-emission of photons by the atoms inducing dis-
sipative forces on the atoms, hence producing heating effects. When the slow-down
and absorption-emission processes balance each others, the temperature of the cloud is
around some millikelvin. The magnetic confinement is then turned off and the cloud
then is cooled down to tens of hundreds of microkelvin thanks to the lasers alone.

Trapping The cloud is now extremely cold but it is not sufficiently dense to enter in
the degenerate regime. Instead of decreasing the temperature, i.e. increasing λ, the
degenerate regime is achieved compressing the cloud, i.e. increasing the value of n. This
is done using the force induced on the atoms by the laser beams.
An oscillating electric field E (r, t), as the one created by a laser beam acts on the
electrons inside the atoms polarizing them. Due to their interaction with the electric
field the atoms gain a dipole moment d. In the case of a laser beam with frequency ωL,
the components of the vector d can be written as

di =
∑
j

αij (ωL)Ej (r, t) ,

where i and j label the components in three dimensional space [27] and ωL is supposed
far from atomic transitions.
The energy shift value ∆E is given by the Stark effect [28]

∆E =
∑
i,j

αij (ωL) 〈E∗i (r, t)Ej (r, t)〉,

where the average 〈. . .〉 is performed over several oscillations of the field. The dominant
contribution to the summation is the term where the energy E1 = ~ω1 is closest to the
laser ∆ = ωL − ω1. The polarizability tensor αij can then be approximated by

αij (ωL − ω1) ∝ δij
∆

and the energy shift

∆E ∝ 1

∆
〈|E (r, t) |2〉 ∝ I (r)

∆
,
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where I(r) = 〈|E (r, t) |2〉 is the intensity of the laser.
The effective potential induced on the atoms is then

Vopt (r) ∝ I (r)

∆
,

which follows the intensity profile of the laser beams and it can be attractive or repulsive
depending on the sign of ∆. If ∆ < 0 the laser is red detuned and the atoms are attracted
by the region where the intensity is larger. Conversely, when the laser is blue detuned
∆ > 0 the atoms are pushed away from the same regions. Different geometries can be
realized changing the shape of I(r).
In the standard case, I(r) has a gaussian shape

I(r) ∼ I0e
− |r|

2

2σ2 ,

where I0 > 0 is the maximal intensity and σ is its typical size. If I0 is larger than any
intrinsic energy scale of the atomic cloud, then it will lay at the bottom of the potential
created by the laser. There, the potential can be approximated by an harmonic shape

V (r) =
I(r)

∆
≈ I0

∆
− I0

∆σ2

|r|2
2
. (1.2)

Different potentials can be obtained by shaping I(r) at will.

Evaporative cooling At this stage, it is sufficient to decrease again the temperature
of the cloud to enter the degenerate regime. This is achieved using evaporative cooling
techniques [29]. In this process, we lower the value of I0 in Eq. (1.2) at the energy of the
most energetic particles in the potential well. In this way we let the atoms with large
velocities, i.e. the part of the cloud with a high temperature, escape out of the trap.
The residual part of the cloud, composed by the slowest particles, thermalizes at the
bottom of the trap. This process needs scattering between the remaining atoms in the
trap to reach a well definite temperature. The residual cloud inside the trap has then a
temperature smaller than the initial one. Even if loosing atoms is not helping our gas
entering the degenerate regime, it decreases n, the loss of a small amount of energetic
atoms is compensated by the huge decreasing in the temperature. At this stage the gas
is now at the quantum degenerate regime, where nλ3 � 1, and the temperatures are
1 ∼ 500 nK. The atomic cloud in these conditions is fully dominated by quantum effects.

1.3.1.2 Measurements in cold atomic gases

Once our system has been prepared in the degenerate regime, it is important to have
methods to probe it. Different ways allow to measure different observables in the atomic
cloud, in particular densities in real and momentum space. The most simple way to
do that is to shine the cloud with a laser beam and to analyze the resulting shadow.
The decreasing of the intensity of laser depends on the density of the cloud and we can
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then reconstruct the position of the every atom. These measurements are called in-situ
measurements and they are used to obtain the spatial density n(r) of the cloud. These
are destructive measurements, the states of the atomic cloud before the measure are
completely different. For lattice models, which we will describe in Sec. 1.3.2, the pre-
cision of modern measurements of this type can reach the single-site resolution or even
single-excitation precision [30].
The density in momentum space are obtained using time-of-flight measurements. There,
the trap confining the atoms is suddenly turned off and the atomic cloud expands while
falling. Shining the cloud during its expansion and comparing it to the initial state al-
lows to determine the momentum distribution n(k). Since the cloud can be assumed to
expand freely, at least for some small times after its release, the momentum is given by
k = mR/t where R is the position of the cloud. Clearly, this method is also destructive
because once the cloud is released and shined with leaser beams, the system has to be
regenerated from the very beginning.
A third method that is used in many out-of-equilibrium experiments is the matter-wave
interference [31] technique. It consists in preparing the system inside a trap, as we de-
scribed before, and then splitting the cloud in two identical parts. This is possible thanks
to an extremely fast change of the intensity I(r) of the laser from a single to a double
potential-well configuration. The potential barrier can be set in a way that the two
systems in the two potential wells do not interact and they evolve independently. At
a certain time both the potential-wells are then turned off and the two clouds expand.
While falling, they interact and the interference pattern between them is measured. It
gives information about the local phase difference between the two clouds. This process
is again destructive and the atoms are completely lost after the measurement.
Our description of the cold-atom experiments is extremely general, and we did not enter
in all the details that an experimentalist has to solve in order to obtain good measure-
ments. These details depend on the specific atomic specie used, and on the specific
setup. What we described here was a paradigmatic example of how a cold-atom exper-
iment is structured and how it works. We hope that the interested reader may find all
the information in the references we gave [32, 33, 25, 34].

1.3.1.3 Observation of the ground states of Bose and Fermi gases

Bose-Einstein condensation The first experiment we want to present is the observation
of a Bose-Einstein condensate in a cold atomic gas [35]. This has been obtained by the
group of Cornell et Weiman at JILA in 1995 [6] and, in the same year, by the group of
W. Ketterle [5], all of them have been awarded of the Nobel Prize in 2001.
The energy distribution n(E) of a non-interacting gas of bosonic particles, i.e. the num-
ber of particles occupying the same energy level, is determined by the Bose-Einstein
distribution

n (Ek) =
1

eβ(Ek−µ) − 1
,
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where β = 1/kBT , Ek is the single particle energy, and µ is the chemical potential. The
Hamiltonian for a non-interacting system can be written as

H =
∑
k

(Ek − µ) b†kbk,

where the operator bk destroys a particle of momentum k while its adjoint creates a
particle of the same momentum. The dispersion relation is the free one Ek = |k|2

2m .
In order to ensure that the wave-function fulfills the right properties under exchange of
two particles, the bk and b†k operators have to be[

bk, b
†
k′

]
= δk,k′ .

At extremely low temperatures, the state of the system is the one that minimizes the
total energy, i,e, its ground state. This is possible if all the particles occupy the state with
k = 0. The Bose-Einstein condensation is then determined by a macroscopic occupation
of the lowest energy state

n (E0) = N0 ∼ N.
It is clear that the condensation is in the momentum space, where one of the momenta
is macroscopically occupied while the others are microscopically occupied. The conden-
sation happens also in real space if our single-particle Hamiltonian is not translational
invariant. In the case of an harmonic trap, the single-particle Hamiltonian is given by
the standard harmonic oscillator one. In this case the condensation in k-space state
determines also the one in real space because the wave-functions of all the particles are
concentrated at the bottom of the trap.
In their experiment [6], Cornell et his collaborators used a could of 87Rb atoms cooled
down at 170nK in an optical harmonic trap and a phase-space density nλ3 ∼ 105 − 106.
In this case, the presence of the condensate is detected through the velocity distribu-
tion, Fig. 1.3, where a macroscopic occupation of the v = 0 appears under a critical
temperature.
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Figure 1.3: Velocity distribution v of a Bose-Einstein condensate for, from left to right, T > TC where
the distribution of atoms at v = 0 is of the same order of magnitude of the other values of v,
T < TC where a strong peak at v = 0 signals the condensation of a large number of particles
in this state and for the same value of temperature but after a stronger evaporative cooling
that suppress the influence of v 6= 0 enhancing the effect of Bose-Einstein condensation.
Figure from Ref. [36].

This study has been a huge breakthrough in the observation of the equilibrium prop-
erties of matter at extremely low temperatures. In particular, it pointed out that cold
atomic systems are perfect to realize isolated quantum systems.

Fermi-sea Cold atoms have also been used to explore the microscopic properties of
fermionic gases at low temperatures [33, 37, 38]. Fermions compose the standard matter,
and the exclusion principle, which is their intrinsic characteristic, is used to explain
the stability of matter, the evolution of supernovae, and the properties of metals and
semiconductors.
The ground state of a fermionic system reflects the exclusion principle and it is completely
different from the bosonic one. Bosons can all occupy the same state, meaning that the
minimal energy configuration for a system of N bosons is the one where all of them
are in their lowest-energy state. In contrast, Fermions cannot occupy the same energy
level, and the minimal energy configuration of the system is then different. In a system
made of N fermions, with single particle spectrum En, the ground state is defined as the
state where the N lowest energy states, from E0 ≤ E1 ≤ · · · ≤ EN−1, are occupied. If
the Hamiltonian is a free and translational invariant Hamiltonian, it can be written in
Fourier space as

H =
∑
k

(Ek − µ) f †kfk

where again Ek = k2

2m is the dispersion relation, and µ the chemical potential. The

particle operator fk
(
f †k

)
destroys (creates) a particle of momentum k and they fulfill
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anti- commutation rules {
fk, f

†
k′

}
= δk,k′ .

This ensure the right symmetry of the wave-function under particle exchange.
The ground state in Fourier space is then described as a step function where the first N
lowest energy levels are occupied

|GS〉 ∝
∏

k≤kF
f †k |0〉 ,

where |0〉 is the vacuum state. The key parameter to describe this state is the Fermi
momentum kF and the associated Fermi energy EF . The first corresponds to the wave-
vector of the particles with largest energy and the latter to its energy. It is important
to notice that this state has a discontinuous structure in k-space, with all the momenta
occupied for k ≤ kF and all empty otherwise, this density distribution is called a Fermi-
step. Indirect proofs of the existence of such a state have been found in many physical
systems, e.g. the pressure of the supernovae. A direct observation of the Fermi distribu-
tion at zero temperature has anyway been possible just using cold atomic gases.
In Ref. [39], a cloud of 9×104 40K has been first trapped, and then cooled down to reach
the quantum degenerate regime. The momentum distribution has been measured using
time-of-flight techniques, described in Sec. 1.3.1.2. In order to avoid density changes due
to the harmonic confinement, the data has been taken just from the central part of the
trap. There, the local density approximation gives meaningful results for translational
invariant systems. The observed momentum distribution is not a perfect Fermi step.
This is due to the fact that even if the gas is at extremely low temperatures, the Fermi
step is reached just at exactly zero temperature. In Fig. 1.4 the values of the occupancy
n(k) as a function of k are plotted. It is possible to see that the occupation number
has a sharp cut exactly at k = kF as expected. The distribution does not go exactly to
zero because of the temperature effects, but anyway it can be fitted using the theoretical
temperature dependence of the Fermi-Dirac distribution

n (Ek) =
1

eβ(Ek−µ) + 1

at T = 1/βkB = 0.12TF where TF = EF /kB. The solid line in the same figure is
obtained from the previous equation at the temperature of the cloud and using kF as
fitting parameter.
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Figure 1.4: Occupation number n(k) as function of the momentum k measured in units of kF in a
non-interacting Fermi gas [33, 37, 38]. The points are the experimental results and the
line is obtained using the Fermi-Dirac distribution at the temperature of the gas and then
fitting using kF as single free parameter. In order to obtain a result comparable to the
theory of homogeneous gases, the experimental data are obtained using just the internal
16% of the trap. The temperature T is fixed using the data from the full average over the
trap.
In the inset the results obtained by all the trap are shown. It is possible to see how the
homogeneity condition affects the results: the points are the experimental results obtained
averaging over six images and the dotted line is the fit for an harmonically trapped Fermi
gas. The fit, as before is performed just using kF as free parameter. The solid line is the
Fermi-Dirac distribution for a free homogeneous gas at the same conditions, the difference
between the two points out the huge effect of inhomogeneity of the trap. Figure from
Ref. [39].

Many other complex behaviors have been detected with a great accuracy using cold
atomic gases which now are a fundamental tool to explore and open new frontiers in
physics. In the previous examples, anyway, a huge simplification is used: the particles
are not interacting. Even if this condition makes the theoretical description easier, a lot
of physical effects are neglected in this way. We will see now how interactions are taken
into account.

1.3.1.4 Engineering and controlling interactions in cold atomic gases

In cold atomic systems different types of interactions can be engineered. The first idea is
to use the interactions that naturally take place between two atoms at the microscopic
level. Even if they are really complicated, since they involve many sub-atomic details,
usually these interactions are extremely short-ranged and isotropic at the energy scales
involved in experiments.
This introduces a huge simplification in their theoretical description because atoms can
be modeled as soft spheres with a coupling constant gs, determined by the scattering
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length as via the relation

gs =
4π~as
m

and the potential may be replaced by a pure contact potential

V (r) = gsδ (|r|) . (1.3)

Theoretically, this imposes some conditions on the typical energy scales accessible, for
example the energy of a collision has to be not large enough to excite internal degrees
of freedom. Moreover, the spherical symmetry of the previous expression is given by the
s−wave scattering which is the only one contributing to the collisions at low energies.
The higher momentum collisions, as the p−waves scatterings, are suppressed because the
energy of the colliding particles is not large enough to overcome the centrifugal barrier. At
low energies these processes are then neglected, leaving a spherically symmetric effective
scattering.
The introduction of interactions in both fermionic and bosonic systems can then be used
to explore new physics in cold atomic gases. Effects range from the fermionization of one-
dimensional interacting bosons to high-temperature superconductivity in metals, which
seems to be catched by the Fermi-Hubbard model.
Creating interactions is anyway not really useful if it is not possible to control them.
This is fundamental both at equilibrium and out-of-equilibrium. In the first case, the
exploration of physics at different interaction strengths can be used to study the phase-
diagram of the model, detecting different states of matter and phase transitions. In the
latter, we want to induce a change in the system to create a time evolution. As we said,
a sudden change in the interactions between particles is the best way to induce a non
trivial dynamics.
The easiest way to achieve that takes advantage of the specific form of Eq. (1.3). In
order to change the strength of interactions is sufficient to modify the scattering length
as. This can be done coupling the atoms to a magnetic field and creating a Feshbach
resonance [40]. The physical meaning of such a phenomenon can be understood using a
simple picture. We can consider a scattering between two atoms which has a “background”
channel potential Vbg(R) and “closed” channel Vc(R). Vbg(R) has a free state for large
distances R, and Vc(R) allows a bound state. The Feshbach resonance occurs when, for
a small collision energy E, a resonance occurs between the bound state of energy Ec in
the closed channel and the free state in the background potential. This resonance can be
tuned with a magnetic field used to control the energy difference between the two states
if they have different magnetic moments. The importance of this process is its effect on
the scattering length, which can be written, close to the resonance, as

as(B) = abg

(
1− ∆

B −B0

)
(1.4)

where abg is the scattering length of the background potential alone, B0 is the value
of the potential where the resonance occurs and a diverges and ∆ is the width of the
resonance. Eq. (1.4) provides a powerful method to tune the interaction strength to
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almost any value from infinitely repulsive to infinitely attractive. as(B) ranges from −∞
to +∞ depending on sign of ∆ and the difference B −B0.
Even if this method allows us to change the intensity of the potential, it does not allow
us to change its form. In this manuscript we will focus on interactions not of the same
type of Eq. (1.3): the long-range ones.
The prototype of such potential is

V (R) ∝ 1

|R|α

which is isotropic and with a long-range tail determined by α. It is possible to realize
long-range interactions using dipolar molecules [41] or trapped ions [42]. At the funda-
mental level, dipolar interactions are also not spherically symmetric. They are repulsive
along one direction and attractive along the others, creating a strong dependence of the
physics to the geometry of the trap. Moreover, in optical lattices, the extension of the
Bose-Hubbard model, see Sec. 1.3.2, with such interactions exhibits different exotic solid
phases as super-solids, check-board states or superfluid phases [43, 44, 45, 46].
Long-Range interacting quantum systems will be intensively studied in this manuscript.
In particular the consequences of long-range interactions on the time evolution of cor-
relations will be discussed. It is then important to know that they can be realized in
experimental setups to allow the possibility to check theoretical results in real experi-
ments [47, 48].

1.3.1.5 Most important systems realizable in cold atomic experiments

Cold atomic setups give us the possibility to realize many different types of systems which
we briefly review here.

Low-dimensional systems The most striking example of such a freedom is the realiza-
tion of one and two dimensional systems thanks to the optical techniques we described
before. The confinement along any of the three directions is obtained thanks to a cou-
ple of counter-propagating laser beams. They act on the atoms as a static potential.
Eq. (1.2) can be generalized to anisotropic I(r) with inhomogeneous σi, namely

I(x, y, z) = I0e
− x2

2σ2
x e
− y2

2σ2
y e
− z2

2σ2
z .

This generates an anisotropic potential

V (x, y, z) =
I0

∆

[
1− 1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
.

We can then tune σz, for example, to be extremely small compared to the other two. In
this way the excitations along the z direction are energetically expensive. This constraints
the motion into the x−y plane, where it is energetically favorable, and we obtain a perfect
bi-dimensional system. If we do the same for two directions, σx � σy = σz, then the
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motion will be forced along a tube and we obtain an effective one-dimensional system.
These one-dimensional systems are extremely interesting from the theoretical point of
view. It is known that quantum fluctuations become dominant in one dimension. Many
exact theoretical tools to solve the Schrödinger equation, like the Bethe ansatz or the
inverse scattering methods [49, 50], can provide exact solutions for many-body quantum
systems. Moreover, many approximation methods are available such as bosonization or
Luttinger-liquid theory [51]. Also numerical methods are available, such as the Density
Matrix Renormalization Group (DMRG) [18] and its derivations.
These low-dimensional geometries are realized in cold atom setups with both Fermi and
Bose particles. They can explore different phenomena as the microscopic properties of
Luttinger liquids [52, 53, 54, 55] and the fermionization of bosons in the Tonks-Girardeau
regime [56, 57, 58, 59, 60].

Optical lattices Cold atoms can be used also to realize perfect lattices, as we will discuss
in details in Sec. 1.3.2. Periodic potentials are fundamental to describe condensed-matter
models. They occur in almost all solids and in particular in metals and crystals. Even
if these structures are present in Nature and they can be realized in different shapes
thanks to crystal growth techniques, in all condensed-matter systems crystals have some
defects. These defects need to be described using ad hoc theoretical methods, which
are not always easy to handle. Moreover, crystal lattices allow the presence of phononic
excitations that act on the particles as a thermal bath. This makes hardly possible to
drive these systems out of equilibrium in a controlled way. For the quench protocol
described before the presence of such a bath is even more dangerous because it makes
the time evolution non unitary.
These two problems can be solved using cold atomic gases. Lattices can be realized using
laser beams with spatially ordered intensity profile. The effective model describing the
motion of atoms in a lattice is the so-called Hubbard model discussed in detail in the next
section 1.3.2. The main feature of these systems is the perfect realization of the lattice
without any defect and without any phononic excitation. In this sense, cold atomic gases
are the only possibility to realize an unitary evolution in a lattice model for sufficiently
long times. The quantum quench requires in fact a complete isolation of the system from
the environment.

Further examples Many other interesting effects can be simulated and probed in cold
atomic gases, which versatility is the key to their success in the last decades. Disorder
plays a central role in condensed-matter physics. It leads to striking effects as the local-
ization of the waves in a disordered potential, known as Anderson localization [61]. If
weakly repulsive interactions are then allowed between the particles, their effect tends
to delocalize the wave function. In contrast, disorder tends to localize it. It is then im-
portant to understand how interactions and disorder interplay and how to compute the
critical values of the couplings that separate the Anderson insulator from the superfluid
and the superfluid from the Mott Insulator. Disorder can be created in optical lattices
superimposing different optical potentials with incommensurate wavelengths [62, 63, 64].
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Tuning the parameters in different ways it is possible to explore different regimes ranging
from Anderson-Bose glass to the transition between the Anderson-glass and the Mott-
Insulator taking also into accounts the effects of the trap [65, 66, 67, 68]. The signature of
the Anderson localization can be also detected by the analysis of the weak nonlinear ef-
fects in the BEC, as proposed by different theoretical works [67, 69, 70, 71, 72, 73, 74, 75],
which is a promising field of study that can be applied to experiments in the future [76].
Another field where cold atomic gases are intensively used is the study of high-temperature
superconductivity. The fundamental nature of this phenomenon represents a mystery for
modern physics. However it seems that some hints can arrive from the study of the D = 2
Fermi Hubbard model with spin 1/2 [77]. This system is difficult to simulate numerically
and the results obtained are still hardly debated. Its realization using cold atomic atoms
with spin or pseudo spins [78, 79], or with fermions [80, 81] or with fermions-bosons
mixtures [82, 83] will give crucial hints for the solution of the high-temperature super-
conductivity problem.
The realization of a large zoology of spin systems with topological order is possible in
cold atoms and they could be used in quantum computation [84, 85]. These models are
obtained using excited molecules with strong dipolar interactions, which are supposed to
be a good to realize a toolbox for quantum computation thanks to the anisotropy in the
dipole-dipole interaction [86, 87].
Last but not least, the fractional quantum Hall effect has been intensively studied in
condensed-matter physics and a huge theoretical effort has been done to deepen its
understanding [88, 89]. Nevertheless, the experimental observation of the features of
strongly-correlated states, as the anyonic nature of the excitations determining this ef-
fect, is still missing. In order to clarify these questions, it has been proposed to study
these effects in a rotating Bose-Einstein condensate, where the rotation acts like the
presence of a constant magnetic field along the axis [90, 91, 92, 93]. This can be sim-
ulated in the Bose-Hubbard model where particular hopping matrices can lead to Hall
states [94, 95, 96, 97].
In this section we presented a small number of the applications of cold atomic gases.
The list is far from being complete and it is increasing in time at a large rate extending
the fields where cold atomic gases are a crucial tools to deepen the understandings of
quantum physics.
In the next section we will focus on the most known lattice model that can be realized in
cold gases: the Hubbard model. This model is per se an extremely interesting model for
the fact that it shows effects of an extremely correlated systems as the Mott insulator-
superfluid transition, observed in [98], but it can be used to simulate more complicated
models as spin models. It will be at the heart of the discussion of the next chapters.

1.3.2 Lattice systems and Hubbard models

We can now discuss more intensively one of the most important models that have been
realized in cold atoms: the Hubbard model, which aims to describe interacting particles
on a lattice.
A lattice is created using the same optical techniques used for the trapping process 1.3.1.1.
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A standing wave creates a potential proportional to its intensity. If this takes the form
I(r) = I0 sin2 (k · r) we create an effective spatially ordered potential which acts on the
particles as a lattice.
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Figure 1.5: Schematic representation of how it is possible to create lattices using counter-propagating
laser beams. The interference between lasers creates a spatially oscillating patter that acts
like a periodic effective potential on atoms. a) Two counter-propagating beams along one
direction create an effective one dimensional lattice. b) two couples of counter-propagating
beams along two directions, x and y, create a spatially ordered potential along the two
directions that induces a two dimensional lattice.
Lattices create this way do not allow phononic excitations and no impurities are present.
These two effects affect all the lattices in condensed matter systems, as metals or crystals,
and they can lead to drastic consequences in the physical behavior of the systems. Figure
from Ref. [99].

Since the gas is extremely cold, it occupies the lowest accessible energy states. This
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means that the wave-function is located at the minimum of the lattice potential. The
natural basis to describe the state of the system is the Wannier one. These functions are
peaked at the bottom of the lattice sites and they decay algebraically outside.
Physically, two main effects occur in the system: a hopping between nearest-neighbor
sites and an interaction between particles occupying the same site. The first is due to
the tunneling effect between a site and the neighbor one. The latter occurs because of
the extremely short range of the interactions between particles, see Eq. (1.3).
We can then built a Hamiltonian using the particle operators ai and a

†
i , that respectively

destroys and creates a particle at the site i , and they fulfill the (anti-) commutation
relation depending on the (fermionic) bosonic nature of the chosen particles.

The Bose-Hubbard Model We start our discussion from the simplest case of a lattice
loaded with a single specie of bosonic atoms. As we said, the particles can hop between
nearest neighbor sites and they interact when they are on the same site.
The hopping term takes into account the process that destroys a particle at site i and
creates another one at site i+R. The tunneling process decays rapidly with the distance
because of the fast suppression of the Wannier functions. The most important process is
the one between nearest neighbors sites, R = 1, which probability is J :

Hhop = −J
∑
〈i,j〉

(
a†iaj + aja

†
i

)
.

The value of J is determined by the transition matrix between the Wannier function at
the site i and the one at the site i + 1 mediated by the kinetic potential acting on the
cloud.
The interactions between particles is determined by the same point-like interaction po-
tential described before. Because of its extremely short range nature, this process is
allowed just if two particles occupy the same site i. We can write it as if every of the ni
particles at the site i interacts with the other ni− 1 with a uniform cost U . The number
of interaction processes is then 1

2ni(ni−1) where the factor 1/2 corrects double counting.
This yields to an interaction Hamiltonian of the form

Hint =
U

2

∑
i

ni (ni − 1)

Summing these two fundamental pieces, in the case of a single bosonic species, we find
the celebrated Bose-Hubbard Hamiltonian

HBH = −J
∑
〈i,j〉

(
a†iaj + aja

†
i

)
+
U

2

∑
i

ni (ni − 1) .

It is then possible to add a confinement potential, which depends on the on-site energies
εi, and a chemical potential that takes into account the energetic cost of adding or
removing particles. The full Hamiltonian then reads

H = −J
∑
〈i,j〉

(
a†iaj + aja

†
i

)
+
U

2

∑
i

ni (ni − 1) + εi
∑
i

ni − µ
∑
i

ni. (1.5)
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The ground state of the Hamiltonian is determined by the competition between the
hopping, which tends to delocalize the wave function letting atoms spread around the
lattice, and the on-site interaction term, which tends to localize the wave function.
We study a homogeneous system (εi = 0) and we analyze the two opposite cases where
U = 0 or J = 0 respectively. In the first case the Hamiltonian describes simply a pure
hopping

H = −J
∑
〈i,j〉

(
a†iaj + aja

†
i

)
− µ

∑
i

ni.

The ground state of this Hamiltonian is simply a Bose-Einstein condensate [100]. It can
be found rewriting it in the Fourier space, using the operators aq = 1

N

∑
R e
−ıR·qaR, we

get
H =

∑
q

(εq − µ) a†qaq.

The ground state for a N -particle system is simply the minimal energy configuration

|GS〉 ∝
(
a†q=0

)N
|0〉 =

(∑
i

a†i

)N
|0〉

where |0〉 is the vacuum state. This ground state represents a completely delocalized state
where the particles form a cloud of atoms, each occupying the entire lattice. Naively,
this is represented by the fact that the state is sharp in k-space, consequently it is broad
in R-space.
The ground state of the system with J = 0 has a completely different structure, deter-
mined by the Hamiltonian

H =
U

2

∑
i

ni (ni − 1)− µ
∑
i

ni.

This Hamiltonian can be diagonalized simply using the local Fock basis of every site |ni〉
and obtaining a pure local description where all the sites are decoupled. The ground
state is then a fully localized state at zero temperature where all the particles are in one
of these states. In the specific case of 〈n〉 = n̄ ∈ N, where an integer number of particles
occupies every site, the state is a Mott insulator. Now, if we allow small hopping between
nearest-neighbor sites, setting J 6= 0, the high energetic cost due to the on-site interac-
tions U cannot be payed by the hoping term J � U . The motion of particles is then
completely suppressed creating an insulating state. If the mean number of particles per
site is not an integer〈n〉 6= n̄ then we have a superfluid state over a Mott insulator with
[n̄] particles per site, where [.] is the integer fraction. In every site we have a portion of
particles that localizes and forms the insulator. The excess of particles per site, n̄− [n̄],
forms a superfluid.
The competition between these two phases is determined by the ratio U/J . A quan-
tum phase transition between the superfluid regime (U/J � 1) and the Mott insulator
(U/J � 1) occurs at a critical value Uc/Jc. This phase transition has been studied
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Figure 1.6: Experimental observation of the momentum distribution n(k) in a Bose-Hubbard model in
two dimensions. a) In its superfluid phase where the particles are delocalized. In this state
the particles act as coherent sources of signals for the measurements. The fact that they
are coherent creates the ordered pattern observed in the n(k). b) In the Mott insulator
phase where an integer number of particles occupies every site and the hopping between
nearest-neighbor sites is suppressed. In this case, atoms in different sites act as incoherent
sources for the measurements. These incoherence destroys every signal in the momentum
distribution and consequently no ordered structure is present in this observable. Figure
from Ref. [104].

and detected in cold atomic gases in one [101, 102, 55], two [101], and three dimen-
sions [98, 103]. For the two dimensional case, the results are shown in Fig. 1.6. The
structure of the two different ground states is in fact completely different once observed
in k-space. The small U regime, i.e. superfluid state, has an organized structure in k
space with ordered peaks. The coherence between the signals coming from all the de-
localized atoms creates this ordered pattern. On the other side, when J is small, the
system is in a Mott insulating state where atoms in different sites are not correlated.
This destroys the interference patter seen in the superfluid case and a cloud without any
structure in k space is detected.

Fermi-Hubbard model The Bose-Hubbard Hamiltonian we presented before is not the
only example of Hamiltonians of the Hubbard type. A first simple change can be intro-
duced using fermionic particles instead of bosonic ones. In this case the creation and de-
struction operators are respectively f †i and fi and they anti-commute

{
f †i , fj

}
= δij [105].

The hopping term clearly represents the same physical effects as in the bosonic case: a
particle can tunnel through the potential barrier and appear on the other side and it is
represented as

−J
∑
〈i,j〉

(
f †i fj + f †j fi

)
.
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The fact that the same site cannot be occupied by more than one fermion is ensured by
the anti-commutation relation.
The interaction term has anyway to be changed since ni (ni − 1) = 0 because of the
fermionic statistics. We can consider an interaction term that involves the overlap be-
tween two nearest neighbor sites, which is not zero. It is due again to the small leaks
outside the single site of the Wannier wave-function

V
∑
〈i,j〉

ninj ,

where these are the number of atoms at nearest-neighbor sites i and j. Even if this term
has been studied in many theoretical works on the Fermi-Hubbard model, its detection
in cold atomic experiments is still missing.
If we want to allow on-site interaction for fermions we need to overcome the Pauli ex-
clusion principle. This can be achieved using internal degrees of freedom of the atomic
species. New particles operators fi,σ, depending now on the internal state σ are now
defined. The anti-commutation relations are then{

f †i,σ, fjσ′
}

= δσσ′δi,j .

In the case of spin-1/2 particles we have two internal states σ = {↑, ↓}, two particles can
share the same site if they have opposite spins. The interaction term is then

Hint = U
∑
i

ni,↓ni,↑.

Terms of these type can be induced and controlled in cold atomic systems and their effect
can be measured [106].

Extended Hubbard models We can then generalize the previous results to include
different internal degrees of freedom with different interaction strengths which can depend
also on single site i labeled as Uiσσ′ . This gives generalized on-site interactions of the
type

Hint =
∑
i,σ,σ′

Uiσσ′ni,σni,σ′ .

More complicated interactions can be used, as the long-range ones we briefly described
before [41]. These interactions depend on the distance |i − j| between sites and on the
internal states σ and σ′ of the particles

Hint =
∑
i,j,σ,σ′

Vσ,σ′ (|i− j|)ni,σnj,σ′ .

From the theoretical point of view, it is possible to include in the model also a long-range
version of the hopping term. It destroys a particle at the site i and creates it at site j,
and it takes the form

Hhop =
∑
i,j,σ,σ′

tσ,σ′ (|i− j|)
[
ai,σa

†
j,σ′ + aj,σ′a

†
i,σ

]
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Figure 1.7: Schematic representation of a D = 2 Hubbard model. It is possible to load into the
lattices different atomic species to create more exotic systems, as Fermi-Fermi or Bose-
Fermi Hubbard models. In this figure it is possible to see a system with two species, red
and blue. The interactions between them are on-site, with coupling U , and the motion on
the lattice is induced via hopping between nearest-neighbor sites with coupling J . This
is one example of the variety of systems can be described by Hubbard-like Hamiltonians.
Figure from Ref. [82].

these terms are anyway impossible to realize in state of art experimental setups and they
can be explored just numerically and theoretically.
Mixed systems, see Fig. 1.7, can also be realized. Loading the lattice with two different
atomic species, like two fermionic or two bosonic or Bose-Fermi mixtures, it is possible
to explore even more complicated phases of matters.
Clearly, the difficult in the realization and control of these Hamiltonians grows with the
complexity of the added terms, in particular when interactions are present. These Hub-
bard type Hamiltonians are anyway able to reproduce different physical effects in lattice
models from the Mott-Superfluid transition, we observed before, to the superconductivity
for the fermionic version [99, 107, 108, 34, 109].

1.3.3 Spin models

Spin models [110] are used to understand the magnetism in complex materials and they
can be used to engineer different quantum states [85]. Such systems can be realized in
the laboratory using the Hubbard model. Different spin systems can be obtained using
internal degrees of freedom or specific limits of that Hamiltonian.
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Implementation of the XY model We can provide an explicit example: the XY model.
We start from the homogeneous Bose-Hubbard model described by Hamiltonian (1.5)
where εi = 0 for simplicity

HBH = −J
∑
〈i,j〉

(
a†iaj + aia

†
j

)
+
U

2

∑
i

ni (ni − 1)− µ
∑
i

ni.

The XY model is a spin 1/2 model. Two possibles states are needed: one for the spin
up and another for the spin down. The easiest way to obtain this condition is to use the
ni = 0 eigenstate as down spin and the ni = 1 one as the up spin. We then have to limit
the number of possible particles per site to N = 1. This condition is satisfied exactly if
the on-site interaction energy U is larger than all other energy scales µ and J . In this
way, the possibility that two atoms are on the same site is extremely small and every site
has the same local Hilbert space of a spin-1/2. For this specific regime, called hard-core
limit, using the transformations

a†i =
1

2
σ†i

ai =
1

2
σ−i

ni =
1

2
(σzi + 1)

it is possible to map the Bose-Hubbard Hamiltonian onto the spin-1/2 XY Hamiltonian

HXY = −J
4

∑
〈i,j〉

(
σ†iσj + h.c.

)
− µ

2

∑
i

(σzi + 1) ,

where σ±i = (σx,i ± ıσy,i) /2, σγ,i where γ = x, y, z are the Pauli matrices. The hopping
term with energy scale J acts as an exchange term between spins while the chemical
potential µ represents a magnetic field.
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Other spin models

Figure 1.8: Representation of a spin model in optical lattices. Spin models can be realized in cold
atomic experiments using internal degrees of freedom of the atomic species loaded into the
lattice. Using atoms with N internal states we can obtain an Hamiltonian for effective
spin of magnitude S = (N − 1) /2. The understanding of spin models is fundamental in
many field of condensed matter physics from magnetism to quantum Hall effect. Cold
atomic gases provide perfect spin models which can be used to simulate a wide range of
Hamiltonians. Figure from Ref. [111].

Spin systems can also be realized using internal states of the atoms , every internal state
represents a spin component. As we said in the description of the Hubbard model, atoms
in different internal states can be loaded in the optical lattices. These N internal states
create an effective spin S = (N − 1) /2 that can be used to reproduce spin Hamiltonians.
More complicated mixtures of species of bosons can be used to obtain more exotic Hamil-
tonians. For example, a Bose-Bose mixture can be reduced to the XXZ model and the
Bose-Fermi mixture can simulate a spin model just for 1D systems, where it simulates
a XXZ model in external field [112, 113, 114]. All the previous proposals are extremely
complicated to realize in an experimental setup and many different new cooling protocols
have been proposed to reach the ranges of temperatures where the interesting physics
appears [115, 116, 117, 118].

Trapped ions A specific class of systems that can be used to simulate quantum spin
chains are trapped ions [42]. They are made of ions loaded into linear radio-frequency
trap [119, 120, 121]. In these traps, the competition between the repulsive electric force
and the trapping force, attracting the atoms at the bottom of the trap, creates a natural
crystal. Laser-light-mediated interactions can be created between the ions in the trap.
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Figure 1.9: Schematic representation of the internal states of a trapped ionic system. The interactions
between the particles can be engineered thanks to beams of lasers. This model can also
be used to obtain long-range exchange terms between spins at different sites. Figure from
Ref. [111].

Different models can then be simulated inducing different interactions.
In [122, 123] it has been presented how the following Hamiltonian can be realized in
trapped ions

H =
1

2

∑
i,j

Jαi,jσ
α
i σ

α
j +

∑
i

Bα
i σ

α
i .

The spin-spin interaction is realized by coupling the spins to off-resonant radiation in a
regime where the energy scale that controls the motion of the ions is negligible compared
to the detuning of the laser. In 2008 the previous Hamiltonian has been implemented to
simulate a one dimensional Ising chain, where

Jαij = J
δj,i+1 + δj,i−1

2
.

The pramagnetic to ferromagentic transition has been observed setting the exchange
coupling between spins in presence of magnetic field to different values. In Fig. 1.10,
the average magnetization of crystals composed by N = 2 and N = 9 ions of 171Y b+ is
presented as function of B and J [124, 125]. It is possible to see how both the set of data
are in good agreement with exact theoretical predictions for the studied observable. It
is also possible to see how, around B = J , the magnetization has a pronounced change
which becomes sharper increasing the number of atoms. This is a signature of the phase
transition occurring at this point in the thermodynamic limit N →∞.
This model is not the only one that can be simulated using ions crystal and more com-
plicated Jαij functions can be engineered, even if the system sizes are still not huge.

45



1 Out-of-Equilibrium dynamics of many-body quantum systems

However the experimental control over the system is improving, and in some years it will
be possible to control sufficiently big systems to compete on classical computers.

Figure 1.10: Average magnetization as function of the couplings for the one dimensional Ising model
realized in a system composed by N = 2 and N = 9 trapped ions, see text and [42]. It
is possible to see how both the data sets are in good agreement with exact numerical
simulations of the same model. The derivative of the magnetization around B = J

becomes steeper passing from N = 2 to N = 9. This is due to the fact that in that
point a quantum phase transition occurs in the thermodynamic limit [126]. Figure from
Ref. [42].

1.3.4 Cold atoms out of equilibrium

In the previous sections we discussed how cold atomic gases are used to implement differ-
ent Hamiltonians in atomic clouds at extremely low temperatures. These temperatures
are obtained using evaporative cooling and magnetic or optical confinement allowing
great flexibility, see Sec. 1.3.1.1and Refs. [127, 128, 129, 130, 131, 99, 32]. Moreover, it
is possible to engineer directly the quantum state of the system loading selected atoms
in selected states [132, 133] controlled by the experimentalists.
The great freedom we have in the realization of Hamiltonians and quantum states, the
extremely weak coupling between the cloud and the external environment have allowed
the study of many out-of-equilibrium phenomena in these systems. As we said, the pro-
tocol we want to use to drive quantum systems out of equilibrium is the quantum quench.
This relays on two fundamental hypothesis:3

1. An instantaneous variation of one of the microscopic parameters of the Hamiltonian

2. A unitary time evolution, i.e. the system has to be completely decoupled from the
external environment.
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Both these conditions can be satisfied in cold atomic gases. Interaction strengths can be
changed via Feshbach resonance, see Sec. 1.3.1.4, and the cloud can be isolated from the
environment that is peculiar feature of these systems. In 3He experiments, for example,
the liquid was contained in a metallic container and the absorption of the helium atoms
by this barrier made impossible to achieve a perfect isolation. If interactions between
the system and the environment are still present the time evolution of the system is far
from being unitary. The atomic clouds have decoherence times of the order of hundreds
of milliseconds, which are much longer than the typical microscopic time scales, order of
milliseconds.
Many groups have analyzed and studied different out-of-equilibrium situations using
different techniques. We will briefly review the most important ones. The group of
Bloch [98, 134] studied the dynamics of trapped bosons in an optical lattice. They
performed a sudden change within the superfluid regime in the potential barrier of the
lattice, which controls the interaction potential and the hopping term, and they studied
the presence of collapses and revivals in the wvae-function. These effects are due to the
fact that, after a quench, the time evolution can be written on the Fock space, where
every component has a time and energy dependent phase that periodically dephase and
rephase the field.
The setups of Weiler et al. [135] and Lemporesi et al. [136] focused on the formation of
a Bose-Einstein condensate using evaporative cooling. As we described in Sec. 1.3.1.1,
during the evaporative cooling the most energetic part of the atomic cloud escapes from
the trap. Using radio-frequency transitions it is possible to control the rate of atoms
escaping the trap for unit of time. In this way, the velocity at which the system enters
in the degenerate regime can be fixed. This can be interpreted as a slow quench, where
a parameter of the Hamiltonian changes smoothly over a finite amount of time. In such
situation, the formation of defects can be observed while creating the Bose-Einstein con-
densate. The dependence of the density of defects on the escaping rate can be compared
to the Kibble-Zurek theory [137] finding a perfect agreement between theory and exper-
imental data. In this case, experimental coherence times are so long that they overcome
the computational time accessible by classical numerical simulations [138].
In these experiments, measurements are obtained using the standard techniques already
used for the equilibrium: “time-of-flight” measurements for the density in the Fourier
space and “in-situ-imaging” to detect atoms positions in real space, see Sec. 1.3.1.2. Both
of them are extremely precise to study the system during its time evolution. When com-
bined with fluorescence and high-resolution optics, they also can reach precision up to
the level of single atoms [139, 98, 140].
In [141], Bucker at al. achieved the single atom sensibility in fluorescence time-of-flight
letting the atoms pass through a resonant laser beam. A proposal improving this mech-
anism is discussed in [30]. This method aims at measuring not only single atoms but
also single excitations in the system. The same technique is used to observe paramet-
ric amplification dynamics which consists in studying the decay of excited states of the
atoms due to interactions. The highly instable initial state where all atoms are in the
first excited sate is realized making two beams of atoms collide with proper impulse as
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described in [142, 143, 144].
Another measurement obtained in cold atomic gases is the matter-wave interference we
described before and it has been applied in out-of-equilibrium [145, 146, 147]. In par-
ticular, it has been applied in [148] to show that a cloud of 87Rb atoms has memory of
its initial state for sufficiently long times. This confirms the fact that thermalization in
closed quantum systems is not as simple as in other cases. The study of the interfer-
ence pattern of matter-waves [149, 150, 151] reveals that the system does not thermalize
immediately to a thermal state but long-lived pre-thermalization plateau, different from
the thermal equilibrium state, are present [152, 148, 149].
Out-of-equilibrium protocols, as the quantum quenches or the ramps, relay on the fact
that it is possible to change some parameters of the Hamiltonian without altering the
state of the system. As for the equilibrium physics, the value of the scattering length
that defines the typical interactions between atoms in cold atomic gases is determined
by the Feshbach resonance, see Sec. 1.3.1.4. An example of interaction quench is the
one described in [153], where 133Cs are prepared as a bidimensional superfluid state
into a highly deformed optical trap. The interaction between particles is instantaneously
changed performing a quantum quench. The time evolution of this system reveals two
things: on short time scale the density fluctuations are generated by the sound waves of
the final Hamiltonian and on longer time scales the density profile converges to the one
of the post-quench Hamiltonian at equilibrium.
As we said before, spin systems can be realized using cold atoms and it is also possible to
drive them out-of-equilibrium. The one-dimensional Ising model has been realized load-
ing the atoms in a tilted optical lattice [154, 155, 156]. The system has been prepared in
its ground state and then, using Feshbach resonances again, a quench in the vicinity of the
phase transition [126] has been performed. The presence of coherent oscillations in the
spins has been observed together with the tunneling between nearest neighbor sites [157].

The previously presented results are just some of the most important experiments re-
alized in cold atomic gases to explore the out-of-equilibrium dynamics of many-body
quantum systems. In Sec. 2.3.2 we will analyze in detail the experimental observation
of the propagation of correlations in short-range interacting quantum systems, while the
same analysis in presence of long-range interactions will be discussed in Sec. 3.1. At the
end of this chapter, Sec. 1.5.3, we will analyze two important experimental works on
thermalization in closed quantum many-body systems.

1.4 Propagation of information

As we said in Sec. 1.2, there are two main research fields related to the time evolution of
quantum systems:

• how it is possible to describe the time evolution itself

• how to describe the state reached by the system long time after the quench.

48



1 Out-of-Equilibrium dynamics of many-body quantum systems

Here we want briefly to introduce the first point, which will be extensively discussed in
the next chapters, the second point will be briefly discussed in Sec. 1.5. As we briefly
presented before, many experimental tools have been developed to study the dynamics
of many-body systems. It is then important to understand what the theory can infer on
these phenomena.
Usually, the out-of-equilibrium dynamics of systems connected to a thermal bath can be
treated using linear-response theory [9]. The excess of energy and other quantities in the
system is rapidly absorbed by the thermal bath, which state is not significantly altered
by this absorption due to its size. The system then rapidly termalizes thanks to the
thermal bath and the physical description can be easily represented in the framework of
statistical mechanics.
The situation considered here is much more complicated. We assume that the system
is far from equilibrium and it is closed. The excess of energy or other quantities are
now forced to stay inside the system and they give rise to different physical effects. The
system cannot be described statistically and then its description is purely microscopic.
The physical state is then described by a wave vector |Ψ〉, defined in some Hilbert space.
Its time evolution is given by the Schrödinger equation [4]

ı∂t |Ψ〉 = H (t) |Ψ〉

where H(t) is a time-dependent Hamiltonian. As it is well known, the explicit form of
the time evolution operator for a generic time-dependent Hamiltonian is impossible to
write in a closed form, and approximation methods have to be used.
In the case where the Hamiltonian is time-independent, an explicit solution can be found
expressing the state of the system in the basis of the eigenstates of the Hamiltonian

|Ψ(t)〉 =
∑
n

e−ıEn 〈Φn|Ψ0〉 |Φn〉 .

There, the complications come from the sum over an arbitrary large number of terms
and the scalar products between the eigenstates and the initial state. Even in the cases
where the eigenstates are known, these tasks are usually too though to be done. Because
of these problems, an explicit expression for the time evolution of generic observables is
extremely difficult to find also for models where the spectrum is known.

Lieb-Robinson bounds It is anyway possible to extract more general results from the
previous equation, as found by Lieb and Robinson in 1972 [158] and it will be discussed
in Sec. 2.1. They analyze the problem from a more general point of view, looking for
something as much universal as possible, that can be applied to the widest class of models.
They find that if the interactions between sites have a finite range the effect of a local
operator located in a finite set of the lattice takes a finite amount of time to affect another
region at distance R. This amount of time t? is called activation time and they find that
it is proportional to the distance between R the two sets. The proportionality constant
between t? and R has the dimensions of a velocity and it is called the Lieb-Robinson
velocity, R = vlrt

?. In the region t < t? the effects of the perturbation are extremely
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small.
In other words, the propagation of signals during the time evolution is bounded by a
ballistic cone in the space-time diagram. The similarity between this effect and the
propagation of information in special relativity motivates the name “light-cone” effect.
As it is well known, relativity does not allow signals traveling with a velocity faster than
c, the velocity of light in the vacuum. So, two points in the space-time diagram, for
instance (R1, t1) and (R2, t2), can be connected just if

R2 −R1

t2 − t1
≤ c.

This equation imposes a strict bound on the part of the (R, t) plane accessible to physical
signals.
This bound on the maximum velocity is preserved also using quantum entangled states.
These states are able to affects instantaneously two arbitrary distant points in space [159]
but they cannot be used to send signals because of the probabilistic nature of quantum
measurements [160]. It is well known that the quantum theory allows non-local and
instantaneous effects. This can be done preparing the system in particular systems like
Bell pairs. However, these particular states cannot be used to send communicate. Indeed,
the first measurement on the Bell pair is probabilistic and it projects the state on an
undetermined one. Therefore the pair cannot be used to send a chosen message.
The theorem demonstrated by Lieb and Robinson is anyway an effective light-cone. The
effect of a local observable is extremely small outside the “light-cone” region but it is not
strictly zero, as for a signal outside the real light-cone in a relativistic theory. Moreover,
the result [158] provides just a bound and not an exact theorem, in this sense it has to
be clear that the signals are suppressed in the outside-cone region. No clue is given by
the theorem about what happens inside, where the bound is order O(1) or larger. The
Lieb-Robinson bound provides a universal result obtained without solving the equation
of motion. However, the price to pay is the sacrifice of the knowledge of the structure
inside this “light-cone”.
The theorem is not able to determine in a clear and physical way the velocity vlr which
appears then just as a mathematical parameter with the dimensions of a velocity. It can
depend on the specific form of the interactions, which do not enter in the scaling between
t? and R. The quantification of this parameter is fundamental to give to the entire bound
a more practical use. These questions can be studied using the microscopic theory.

Cardy-Calabrese approach The first study of the connection between the velocity of the
light-cone and the microscopic theory is due to Cardy and Calabrese in [161]. There, they
studied how different observables evolve in time following a quantum quench to a point
of the parameter space where the system is described by a conformal field theory [162].
In these theories, the model acquires scale invariance and, consequently, the dispersion
relation Ek = λk is linear. The relevant velocity to describe the propagation of local
observables, correlations in their case, is the group velocity λ = ∂kEk. More important
than the result itself, an interpretation scheme is proposed in the paper. It states that the
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spreading of correlations and other local observables following a quantum quench can be
seen as the spreading of quasi-particles with a velocity determined by the group velocity
vk = ∂kEk. The light cone effect is generated by the fastest quasi-particles, because they
are the first to connect two points.
The velocity of the light-cone is then simply determined by the microscopic theory as
the maximum group velocity multiplied by two

vlc = 2maxk∂kEk.

How this factor 2 appears will be explained in detail in Sec. 2.2. Naively if we are ob-
serving correlations between two points, x1 and x2 > x1, they both act as source of
quasi-particles. Quasi-particles coming from x1 to x2 and vice-versa will meet half-way
because they have the same velocity vk. The effective distance to cover is then not R
but R/2 which means that the particles effectively travel as the double of the velocity.
This is an important step. It connects directly the microscopic theory and the macro-
scopic one, provided by the Lieb-Robinson bound. Both of them agree on the scaling
of the activation time t?, which is linear in R, and the microscopic theory determines
exactly the light-cone velocity.
The Cardy and Calabrese argument has found to be able to predict the spreading of cor-
relations also in situations not exactly described by the Lieb-Robinson bound. On the
one hand ,the first just needs that the final Hamiltonian allows well-defined excitations
with a finite maximum group velocity. On the other hand, the Lieb-Robinson result is a
bound over the commutator between two local observables and its rigorous extension to
the correlation function requires strict hypothesis on the pre-quench state.

Long-Range interactions The previous results hold for short-range interacting quan-
tum systems. As we discussed in Sec. 1.3.1.4, different types of interactions can be
realized in cold atomic gases, e.g. long-range interactions. The main question is: “Is it
possible to find a macroscopic general bound if the interactions are long-range?”. The
answer is yes, as found in [163, 164] and we will discuss in Sec. 2.4. The result is anyway
extremely different from the short-range case.
In the specific case of a lattice spin model with long-range interactions, it is possible
to impose a bound on the commutator between local observables just if the long-range
potential decays sufficiently fast. In this case, the bound depends explicitly on the form
of the interactions. In particular, the activation time t? is no longer proportional to R
but one finds t? ∝ ln [V (R)], where V (R) is the potential. This changes drastically the
scenario from the short-range point of view, mainly because it seems that the universality
present in the short-range bound is completely lost.
Approaches to improve this logarithmic bound have been proposed. For example in [165]
an extension of the previous theorem for finite systems with generic long-range interac-
tions has been formulated. Another proposition [166, 167] has improved the light-cone
shape, from a logarithmic bound to an algebraic one. We will analyze all these results in
detail in Sec. 2.4 presenting their predictions on the time evolution of quantum systems.
Since many different bounds are present, it is then important to study the time evolution
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of long-range interacting quantum systems from the microscopic point of view. It will
be possible to determine which of the proposed bounds, if any, describes correctly the
time evolution. The study of exactly-solvable models with such interactions and their
dynamics following a quantum quench is then crucial. Several works in the literature
demonstrate the presence of different regimes in the propagation of correlations depend-
ing on the decay of the potential [168, 169, 170, 23, 171]. We will use the name “regime”
to identify these behaviors to be consistent with the other works in the literature. They
range from an instantaneous propagation for slow decaying interactions to a ballistic
spreading for fast decaying interactions. These have been observed in t-DMRG [168],
DTVP [169], t-VMC [23], DTWA [172]. Also, they have been observed analytically
for exactly solvable models [173, 23, 170, 169]. On the other side, the extended Bose-
Hubbard model, studied both with the t-VMC and the quasi-particles approach [23],
exhibits a ballistic propagation for all the long-range potentials studied. We will review
the most important literature works in Chap. 3 and 4, where we will also present my
results published in [23, 170].
None of the results found in these works violates the macroscopic bounds proposed
in [166, 163]. Anyway, it is clear that these are not able to predict the correct time
evolution found in the numerical simulations and analytic computations.
It is then crucial to study and understand which are the key quantities to interpret prop-
erly the dynamics in the presence of such interactions. These results will be useful to lead
the discovery of new, more precise, bounds which will be able to describe correctly the
dynamics of quantum systems with long-range interactions that can be then extended to
non-solvable models.

1.5 Thermalization

We briefly discuss now the thermalization problem. We give more details than about
propagation of information since we will not discuss it again in this manuscript.

1.5.1 Ergodicity in closed quantum systems

Equilibrium is a fundamental condition in physics and the process that leads a system
from an out-of-equilibrium state to an equilibrium one is called equilibration. This is a
natural process in systems coupled to a bath or an external system because the exchange
of quantities between the two leads to a stabilization of the macroscopic properties of
smaller systems. For closed quantum systems anyway the system has to redistribute the
excess of energy and other quantities alone. Internal interactions are then the only way
for the system to restore equilibrium and this means to satisfy the ergodic condition.
The concept of ergodicity is clear in classical physics: it means the equivalence between
time and phase-space averages. During its time evolution, the system explores all the
accessible phase-space [1]. This portion is defined as the hyper-surface where the points
have the same energy as the initial state. Mathematically, given the initial condition
X0, this hyper-surface is defined as E = H (X0) = H (X (t)) where X (t) is the time
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evolution of the system.
The time evolution of a generic observable A in the phase-space can be written as

A(X(t)) =

∫
dY A(Y )ρps(Y (t)),

where ρps = δ(Y − X(t)). This is the time-dependent density of points in the phase
space. Since the time scales of the microscopic motion are extremely fast compared to
the macroscopic ones, we can average this distribution over time in order to obtain a
result independent on the microscopic dynamics. The result will depend just on the
hyper-surface through E

ρ̄ps = δ [Y −X (t)] ≡ lim
T→∞

1

T

∫ T

0
dtδ [Y −X (t)] = ρmc(E),

where ¯ = limT→∞ 1
T

∫ T
0 dt and the density ρmc(E) is the micro-canonical distribution.

If we want a meaningful definition of phase-space averages, the memory of the initial
condition X0 has to be lost after a finite time smaller than the macroscopic time scales.
This is true if the trajectory X (t) covers uniformly the energy surface, meaning that we
can start from every initial condition and span the entire surface, which is the definition
of an ergodic system. In the case where this is true then it is possible to compute
observables as phase-space averages instead of time averages.
In the domain of quantum physics the concept of quantum ergodicity is still not fully
understood, even if its study has begun almost a century ago (in 1929 [174]). We can
start from the microcanonical density matrix ρ̂mc. We can express this operator using the
eigenstates |Ψi〉 and the eigenvalues Ei of the HamiltonianH. We can then define suitable
energy shells of width δE around the mean values E, where δE is sufficiently small
compared to macroscopic scales, but sufficiently large to contain enough microscopic
energy levels. In this way, the average will be computed using a sufficiently large number
of terms in order to obtain a meaningful result.
The microcanonical ensemble density matrix is then written as

ρ̂mc =
1

NE

∑
i∈GE
|Ψi〉 〈Ψi|

where the sum is restricted to the set GE defined by the NE energy levels between E and
E + δE.
Now we have to ask if every initial normalized state |Ψ0〉, written in the |Ψi〉 basis

|Ψ0〉 =
∑
i∈GE

ci |Ψi〉
∑
i

|ci|2 = 1,

converges to the distribution ρ̂mc for every set of coefficients ci after a time average. If
the system is closed, the time evolution is unitary and it gives

|Ψ(t)〉 = e−ıHt |Ψ0〉 =
∑
i∈GE

ci,Ee
−ıEit |Ψi〉 .
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We average over the time evolution as we did before, obtaining

|Ψ (t)〉 〈Ψ (t)| ≡ lim
T→∞

1

T

∫ T

0
dt
∑
i,j∈GE

c∗i cje
−ıt(Ej−Ei) |Ψj〉 〈Ψi|

the time average can be computed easily, giving

lim
T→∞

1

T

∫ T

0
dte−ıt(Ej−Ei) = δ (Ei − Ej)

Plugging this result in the previous equation we get the so called diagonal ensemble

|Ψ (t)〉 〈Ψ (t)| =
∑
i∈GE
|ci|2 |Ψi〉 〈Ψi| = ρ̂diag.

The ergodic condition is then satisfied if the equality ρ̂mc = ρ̂diag holds. We need to
request |ci|2 = 1/NE which is extremely stringent condition on the initial state. It
is then almost impossible to realize quantum ergodicity simply “quantizing” the same
concept already seen for classical systems [174, 175].
The problem can be solved focusing on the observables instead of on quantum states [176,
177, 174]. If we choose a set of macroscopic observablesMβ , we expect that, in the long-
time limit, the expectation value tends to the one of the microcanonical ensemble

lim
t→∞
〈Ψ (t)|Mβ |Ψ (t)〉 → Tr [Mβ ρ̂mc] ≡ 〈Mβ〉mc. (1.6)

The limit procedure have to be taken carefully because of the presence of revivals in
finite systems [178]. This means that the thermodynamic limit has to be taken before
the long-time limit, if we invert these two, no thermalization will be present. A rigorous
way to define the equality (1.6) consists in computing the mean square difference between
the two sides and observe if this goes to zero with time [179].
In other case, a simpler solution consists in evaluating the time average of Eq. (1.6) and
verifying that

〈Ψ (t)|Mβ |Ψ (t)〉 = Tr [Mβ ρ̂diag]→ 〈Mβ〉mc.
If this holds, the diagonal ensemble and the microcanonical ensemble give the same
expectation values, i.e. they are equivalent. This is true if the observablesMβ depend
just on the macrostate and not on the microstate of the system. Mathematically this
forces the observables Mα to commute and to be coarse grained over the surface GE .
This means that if we take two eigenstates |Ψi〉 and |Ψi+1〉 so that |Ei − Ei+1| ∼ δE,
then

| 〈Ψi|Mβ|Ψi〉 − 〈Ψi+1|Mβ|Ψi+1〉 | ∼
1√
D
∀β,

where D is the dimension of the Hilbert space. This forces the observables to have almost
the same expectation value over the surface GE . If the previous hypothesis are satisfied
then it is possible to demonstrate that the diagonal ensemble and the microcanonical one
are equivalent for non pathological initial state |Ψ0〉 . The system is then ergodic.
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1.5.2 The generalized Gibbs ensemble

All the previous discussion is purely mathematical and it is then important to find ex-
amples where ergodicity is explicitly found.
The discussion in the previous section seems to state that ergodicity is present in every
quantum system, many experimental works, as [180], tell us a completely different story:
ergodicity is not at all guaranteed in a quantum system. If It is described by an integrable
or nearly-integrable Hamiltonian, thermalization can be absent. An integrable Hamilto-
nian is a theory where an infinite number of conserved charges is present. The absence of
thermalization in these systems has been predicted in several works [181, 182, 183]. The
presence of these conserved charges constraints the motion of the system in a portion
of the Hilbert space which is much smaller than the one needed to satisfy ergodicity.
This condition is then absent and the state of the system cannot relax to a thermal state
but only possibly to a different ensemble. The conserved charges have to respect the
same hypothesis as the operators Mβ we saw before. This automatically excludes the
projector operators. Any Hamiltonian has an trivial infinite set of conserved operators:
Pj = |Ψj〉 〈Ψj | where |Ψj〉 is the eigenstate of the Hamiltonian. These operators are in
fact not coarse grained over the surface GE . If we take two states |Ψi〉 of energy Ei and
|Ψi+1〉 of energy Ei+1, the difference between their expectation values is not going to
zero

| 〈Ψi|Pj |Ψi〉 − 〈Ψi+1|Pj |Ψi+1〉 | =
{

1 j ∈ {i, i+ 1}
0 otherwise

The projector operators, even if they are always conserved during the time evolution, are
not meaningful operators to describe thermalization.
In the next examples we will see practical cases in quantum and classical mechanics
where these conserved quantities are explicitly found.

Integrability in classical systems To discuss this point, we can give more details using
a simple toy model of classical integrable system which is the periodic harmonic chain,
which Hamiltonian reads

H =

M−1∑
i=0

[
p2
i

2m
+
mν2

2
(xj − xj+1)2

]
where xj are the deviations from the equilibrium positions, pi are the momenta of the
particles and M is the number of particles, and we assume periodic boundary conditions
on the chain. We drive the system out of equilibrium displacing some of the particles
from their equilibrium positions. We can then study the time evolution of this out-
of-equilibrium state. The Hamiltonian can be diagonalized in the Fourier space. It
describes excitations of quasi momenta qn = 2πn/M with n ∈ N and the dispersion
relation ωn = 2ν sin (q/2). The absence of thermalization in this case is due to the fact
that no exchange of energy is present between the qn modes, but the system can reach
an asymptotic state at very long times [184, 185].
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This can be understood from the explicit expression of the displacement of one of the
particles, which can be written in Fourier space as

xj (j) =

M−1∑
n=0

xqn(t)e−ıqnj ,

and
xq(t) = Aq cos (ωqt) ,

where Aq is the complex amplitude determined by the initial conditions. If we assume
that just the small momenta q � π are excited, it is then possible to linearize the
dispersion relation around q ≈ 0, where ωq ≈ νq. Since the spectrum is linear, the state
of the system is periodic of period T = M/ν. The motions persists for infinite time and
the system does not thermalize to a steady state. Thermalization appears if the linear
approximation does not hold. In that case, a time scale is identified by

τ (ωn̄+1 + ωn̄−1 − 2ωn̄) ∼ 1,

where n̄ is the maximum of Aq. For the model we are interested in it is possible to
compute explicitly as τ ∼ M2/ν and this defines the long-time limit. For t � τ all the
modes are completely dephased and the different modes are uncorrelated due to non-
linear effects in the spectrum. This final state is completely determined by the modules
of the amplitudes, |Aq|, which are M real-valued numbers representing the occupancies
of the respective modes and which are conserved during the time evolution.

Integrability in quantum systems If we now try to extend the previous argument to
the quantum case, we can consider a simple many-body integrable model as the Ising
chain in transverse field [126]. Its Hamiltonian reads

H = −
∑
i

(
σxi σ

x
i+1 + gσzi

)
,

where σxi and σ
z
i are the local spin operators at the site i, and g is the interactions strength

of the magnetic field normalized to the spin exchange coupling. This model has a simple
phase transition at gc = 1 where the spectrum of excitations becomes gapless. For values
of g < gc the system is ferromagnetic and for g > gc the system is paramagnetic. Both
these phases are gapped. The system can be diagonalized mapping it to a free fermionic
model using the Jordan-Wigner transformations [186] and then writing the Hamiltonian
in the Fourier space

H = 2
∑
k>0

[
(g − cos (k))

(
c†kck − c−kc

†
−k

)
+ ı sin (k)

(
c†kc
†
−k − c−kck

)]
,

where k = 2πn/L where L is the length of the chain. Using a standard Bogoliubov trans-
formation, ck = cos (θk) γk−ı sin (θk) γ

†
−k [7], and choosing tan (2θk) = sin (k) / [g − cos (k)]

the previous Hamiltonian becomes diagonal

H =
∑
k

Ekγ
†
kγk,
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where Ek = 2
√

[g − cos (k)]2 + sin2 (k) is the dispersion relation of the Bogoliubov quasi-
particles. The time evolution of the system can then be easily written from the equation
of motion of the γk which diagonalize the Hamiltonian γk = exp (−ıEkt) γk(0). As for
the harmonic chains, the time-dependent phases are incommensurate and they become
completely uncorrelated after long times. Anyway, the occupation of every energy level,
namely 〈γ†kγk〉, is constant during the time evolution. We can study the time evolution
of the total magnetization following a sudden quench in the parameter g [10], which a
global operator and it reads

Mx (t) =
∑
i

σxi = −2
∑
k>0

[
cos (2θk)

(
γ†kγk − γ−kγ

†
−k

)
+ ı sin (2θk)

(
γ−kγke

−ı2Ekt − γ†kγ
†
−ke

ı2Ekt
)]
.

If we take the time average of this expression, we find that its expectation value over a
generic initial state |Ψ0〉 is

〈Mx (t)〉 = −2
∑
k>0

cos (2θk)
(
〈γ†kγk〉 − 〈γ−kγ

†
−k〉
)

so its thermalization value depends just on the initial occupation number. Looking at this
peculiarity, Rigol et al. [187] suggested that the steady state of the system is described
by an ensemble of the type

ρG =
1

Z
e−

∑
k λkγ

†
kγk ,

which is a generalization of the Gibbs ensemble to the case of L conserved quantities
γ†kγk.
The form of ρG can then be used to compute expectation values of local observables. As
for the standard ensembles the Lagrange multipliers λk are fixed by the conditions

〈Ψ0| γ†kγk |Ψ0〉 = Tr [ρGnk] = 〈γ†kγk〉G

The Generalized Gibbs Ensemble (GGE) The ensemble ρG is exactly the one presented
in [188] to describe the behavior of a system with N conserved quantities Iα. In this case
the maximization of the entropy has to be done introducing N Lagrange multipliers λα.
The subsequent ensemble has the density matrix

ρG =
e−

∑
α λαIα

Z
.

It is usually assumed that all integrable theories thermalize to a GGE. It has then to
be determined the nature of the quantum charges to include in the exponent of the
summation. This opens several problems on the set of observables that have to be
chosen because in principle the projectors on the eigenstates of the Hamiltonian are
always conserved for all systems, both integrable and non-integrable. The answer to this
question can be found studying the case of the Gibbs ensemble. There, the explicit form
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of the probability density comes from the fact that sufficiently large subsystems have to
behave as statistically independent. This assumption and the fact that the conserved
quantities have to be additive are crucial for the determination of the Gibbs ensemble as
the exponential of the energy and not of another function of the energy. In the same way,
the conserved charges Iα have to be chosen to be additive when the subsystem considered
is sufficiently large. For the specific case of the Ising model, the operators γ†kγk have
been found to respect these conditions in [187]. The relaxation of different integrable
models to the GGE has been tested explicitly in many different models as: Luttinger
Liquids [189, 190], free bosonic theories [191, 192], hardcore bosons [187], Lieb-Lininger
model [193, 194], spin models [195, 196, 197, 198] and Hubbard-like models [199, 200].
The previous discussion is more an argument than a real theorem, even if thermalization
has been found in some classes of models, a general theorem that states how different
systems thermalize is still missing. Moreover, the exploration of long-time dynamics of
many-body interacting quantum systems is, from the numerical point of view, extremely
challenging. The possibility to simulate different Hamiltonians in experimental cold
atomic gases plays then a key role in the exploration of the thermalization problem
in such systems. As we said in Sec. 1.3, cold atomic gases can be used to engineer
different Hamiltonians and to drive them out of equilibrium. Moreover it is also possible
to constraint systems in reduced dimensionality, as one or two dimensional geometries.
Integrability is in fact an extremely delicate characteristic of the system, a fine tuning of
all parameters of the Hamiltonian is needed to observe it. Extra terms in the Hamiltonian
drive the system away from integrability and produce drastically different results. In
classical physics the role of perturbations in an integrable theory is well understood
using the KAM theory [3]. At the quantum level, however, this is not the case. Even
small perturbations produce pre-thermalisation plateau [201, 148, 202] described by the
GGE before that real thermalization occurs. Anyway, it is still not known how to define
“small” and “large” in the context of perturbation around the integrable case.

1.5.3 Experimental study of thermalization in closed quantum systems

As we said in the last section, integrability is an extremely delicate peculiarity of some
Hamiltonians and, anyway, its effects on the physical behavior of quantum systems are
drastic, in particular on their thermalization. We want now to discuss two main exper-
iments on thermalization in closed quantum systems, in integrable and non-integrable
models. The first one is the observation of the absence of thermalization in a many body
quantum systems due to its integrability. The second one is the experimental observation
of thermalization in the Bose-Hubbard model. We present these two examples between
many others because they are two milestones in this topic. They exhibit how cold atomic
gases can be used to explore these systems that demand an extremely fine tuning of all
the parameters which can be achieved just in these setups.

Absence of thermalization: the quantum Newton cradle. The “quantum Newton
cradle” realized by T. Konishita and his collaborators in 2006 [180] is one of the most
beautiful examples of how cold atoms can study time evolution for extremely long times.
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The system is a bosonic one dimensional gas described by the Lieb-Liniger [203] Hamil-
tonian

HLL = − ~2

2m

∑
i

∂2
i + g

∑
i<j

δ (xi − xj) .

It represents bosons with point-like interactions of coupling constant g. The system
has two different regimes controlled by the parameter γ = mg/~n1D, where m is the
mass of the particles, and n1D is the one-dimensional density of the confined bosonic
gas [203, 204]. When γ is small, the system is can be described as weakly-interacting
bosons. In the opposite the limit, γ � 1, the system is described by a symmetric wave
function: Tonks-Girardeau wave-function [205]. This wave-function is obtained by the
modulus of a determinant of anti-symmetric wave functions of spinless fermions.
In the experiment, the one-dimensional system is weakly confined using a harmonic trap
and it is prepared in the ground state of the Hamiltonian. At t = 0 the wave-function
is then split in two equal parts with equal and opposite momentum. This is obtained
pulsing a 3, 2THz optical lattice along the tubes which acts as a phase grating [206].
Two pulses of intensity 11Wcm−2, time length 23µs, and time separation 33µs deplete
the region at k ≈ 0 momentum and populate the states of momentum ±k, the wave-
vector of the superimposed optical lattice. The two split wave functions oscillate in the
trap, colliding again at its center. During the collision they exchange momentum and
energy as in the famous Newton cradle. The astonishing fact is that these oscillations
are persistent and a relaxation is found just for extremely long time, see Fig. 1.11.

Figure 1.11: Left: Pictorical representation of the quantum Newton’s cradle experiment. Center: Data
from the time evolution of the experiment with the n(x). Right: plot of the momentum
distribution at different times, the memory of the initial state remains for extremely long
times as predicted by thermalization for nearly integrable models. Figures from Ref. [180].
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This effect has been found for all the values of γ studied, and it is due to the fact that
the Lieb-Lininger Hamiltonian is integrable in one dimension [50]. Once the experiment
is reproduced in a 2 or 3 dimensional trap the system thermalizes to an equilibrium
distribution after some collisions of the two wave-functions. This effect is a signature of
the absence of integrability of the Hamiltonian in dimensions higher than one [207].
Thermalization can be detected looking at the momentum distribution, measured using
time-of-flight techniques. In 1D the momentum distribution comes back always to the
initial value while in 3D it thermalizes to the Gaussian equilibrium function after some
collisions, Figs. 1.11. This experiment is particularly important because of the presence
of a weak confinement along the axis of motion which explicitly breaks the integrability of
the Hamiltonian. This absence of integrability creates pre-thermalization plateaus where
the system behaves as an integrable system. The system is supposed to thermalize to
the standard thermal distribution for larger times. These time scales are not accessible
by this experiment.

Thermalization: the Bose-Hubbard Hamiltonian The experiment performed by Trotzky
et al. [208] explores on the other hand the relaxation in systems with non-integrable
Hamiltonians. They study the relaxation in a Bose-Hubbard chain with harmonic trap,
described by the Hamiltonian

H =
∑
i

[
−J

(
â†i âi+1 + âiâ

†
i+1

)
+
U

2
n̂i (n̂i − 1) +

K

2
j2n̂i

]
where J controls the short-range hopping between nearest-neighbor sites, U the on-site
interactions, and K the interaction between the particles and the confinement potential.
As we said in Sec. 1.3.2, this Hamiltonian can be implemented in modern cold atomic
gases.
The out-of-equilibrium protocol is the following, see Fig. 1.12:

1. The initial state of the system at t = 0 is

|ψ (t = 0)〉 = |. . . , 1, 0, 1, 0, . . .〉 (1.7)

where just the “even” sites are occupied and the “odd ones are empty. The couplings
J and U are such that no tunneling between nearest neighbor sites is allowed.

2. At t = 0 the quench is performed to a set of values J , U , and K such that tunneling
is allowed and the state |ψ (t = 0)〉 evolves according to the Hamiltonian.

3. After a time t the time evolution is frozen suppressing the tunneling. The state
|ψ(t)〉 is probed measuring the density in the odd-sites thanks to band-mapping
techniques.

The initial state is prepared creating a set of one dimensional systems using a three
dimensional lattice of wave length λxl = 1, 530 nm. The motion along the y and z direc-
tions is suppressed using laser beams of wave-length λy,z = 844 nm. This configuration
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Figure 1.12: Top panel: Schematic representation of the Out-of-Equilibrium protocol performed
in [208]. In the stage (1) the system is prepared in the state with an ordered state
with one particle every two sites, the tunneling between the sites is suppressed thanks to
the enhancement of the barrier. In the second stage (2), the tunneling between ties is
allowed and the particles can jump from a site to the other one. In th final stage (3), the
system is frozen again enhancing the potential barriers and the state of the system is read
using fluorescence. Bottom panel: Results for the quantity nodd presented in [208]. The
solid line represents the t-DMRG results with just nearest-neighbor hopping while the
dashed one represents the same computations with next-to-nearest-neighbor interactions
obtained by the same method. Figure from Ref. [208].
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of the couplings creates a set of 1D Mott insulators with an average of one atom per site,
see Sec. 1.3.2. The systems are not all equal: the average number of particles for every
1D system is 31 while the maximum number of particles is 43.
A shorter lattice of wave length λx,s = 2λx,l is added along the x-direction. This lattice
creates empty sites in between of the already present ones. After that, the lasers of wave
length λx,l are turned off and the initial state of (1.7) is realized. Since the values of the
hopping are extremely small, the system is completely frozen.
At time t = 0, step 2 is performed allowing the dynamics of the particles along the x
direction, the hopping along the other two directions is still suppressed. After a time t
the intensity of the laser is ramped up to the initial value and the dynamics stops. The
system is now ready to be probed. Clearly, the measures are performed at the same time
on all the 1D tubes and the results of the experiment are the averages over all the tubes.
The time evolution of the density of the odd sites is measured using band-mapping tech-
nique [209, 210] and they are compared to accurate t-DMRG simulations for the same
systems and geometry. A good agreement between numerics and experimental results is
found for U/J . 6. The difference between the two for larger values of U/J is due to
next-to-nearest neighbor hopping. These processes are represented by

HNNhop = −JNNN
∑
i

(
â†i+2âi + âi+2â

†
i

)
,

which, once included in the numerical simulations, improves the agreement between nu-
merical and experimental data, see Fig. 1.12. For even larger values, U/J & 10, larger
deviations are observed and they are due to the residual hopping between different tubes
which is not taken into account in numerical simulations.
The density of odd sites exhibits oscillations of period T ' h/4J and it damps to its
equilibrium value, nodd = 1/2, after less than 5 oscillations. In the absence of the trap,
K = 0, the time evolution can be computed analytically in the cases of U/J ≈ 0 or
U/J → ∞ using different types of perturbative approaches [211, 212]. Since both these
approaches are based on free-quasi-particles, the correlation functions are algebraically
suppressed as 1/

√
t. The measured ones decay as 1/tγ with γ > 1/2 because of the

residual interactions between quasi-particles neglected in the theoretical models. Inter-
actions between fundamental excitations helps to redistribute the energy and momentum
between the degrees of freedom. This leads to a faster relaxation than in the free case.
The numerical results obtained by t-DMRG are again in agreement with the experimen-
tal ones, showing a faster decay than the analytic case.

The two previous examples illustrate how integrability drastically affects the out-of-
equilibrium dynamics. Integrability, in fact, reduces the portion of the Hilbert space
accessible to the dynamics of system. The system is not able to explore the whole por-
tion of the Hilbert space necessary to satisfy ergodicity. Absence of integrability allows
a much faster exploration of the Hilbert space. This effect is stimulated by the presence
of interactions, they are responsible for the exchange of energy between the degrees of
freedom and they lead to a faster relaxation than in the free case.
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2 Lieb-Robinson bounds and
light-cone-like dynamics

In the previous section we briefly introduced the problem of the out-of-equilibrium dy-
namics in many-body quantum systems and then we discussed the thermalization prob-
lem. In this chapter we will revise the most important literature results on the dynamics
of correlations we briefly outlined in Sec. 1.4.
At first, we start from the bound on short-range interacting lattice spin models known
as the Lieb-Robinson bound (LR) [158] and its consequences on the correlation func-
tion [163, 213]. Both these results predict that the correlations between two local observ-
ables need a finite amount of time to be activated when the system is out-of-equilibrium.
This activation time scales linearly with the distance between the two observables, cre-
ating an effective light-cone in the time-space plane. We then analyze the quasi-particle
picture as explained by Calabrese and Cardy (CC) in Ref. [161]. We will see how the
microscopic point of view (CC) is consistent with the macroscopic bound (LR) and more-
over how it fixes some of its free parameters, as the light-cone velocity. We then review
some of the numerical and experimental main results that confirm the presence of a light-
cone structure in the evolution of correlations like the one performed by M Cheneau et
al. [214] and the numerical results provided by t-DMRG [215] and t-VMC that we will
discuss in more details [216].
We will then present several extension of the LR theorem to other types of interactions,
such as long-range ones [163, 164, 166, 165]. Most important, we will see how the bound
drastically changes its physics compared to the short-range case. For the long-range case
the correlated region is no longer linear but its shape depends on the long-range poten-
tial. It thus exhibits a much faster propagation of correlations than in the short-range
case.
The effects of these interactions on the time evolution of local observables will be the
main topic of the rest of the manuscript.

2.1 Lieb-Robinson bound

2.1.1 Time-dependent dynamics

The time evolution of a closed quantum mechanical system is governed by the Schrödinger
equation

ı∂t |Ψ〉 = H |Ψ〉
where we set ~ = 1, |Ψ〉 is the state of the system described by a vector in an Hilbert
space, H is the Hamilton operator that can be a generic Hermitian operator defined in
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the same Hilbert space as the state.
If the Hamiltonian is time independent, ∂tH = 0, then the previous equation has a simple
solution

|Ψ〉 = e−ıtH |Ψ0〉 ,
We can then expand the previous expression on the basis of the eigenvectors of the
Hamiltonian

H |n〉 = En |n〉 ,
to obtain

|Ψ(t)〉 =
∑
n

e−ıtEn |n〉 〈n|Ψ〉 .

The time evolution of the state depends just on the spectrum of the Hamiltonian and
the overlaps between the eigenvalues |n〉 and the initial state |Ψ0〉.
In the context of quantum quenches, see Sec. 1.3.4, the time evolution is exactly given by
the exponential time evolution because the post-quench Hamiltonian is time-independent
as the initial one. The initial state, |Ψ0〉, is not an eigenstate of the final Hamiltonian
and then a non-trivial dynamics may show up.
The time evolution of expectation values of a generic operator A follows naturally by

〈A〉(t) = 〈Ψ(t)|A |Ψ(t)〉 =
∑
n,m

e−ıt(En−Em) 〈Ψ0|m〉 〈n|Ψ0〉 〈m|A |n〉 . (2.1)

Apparently this solves completely the problem of the time evolution in a generic quantum
mechanical following a quantum quench.
Apparently, because the previous expression hides some insidious problems to solve:

1. The exact solution of the Hamiltonian can be done just for simple models. For
a generic many-body interacting quantum system it is almost impossible to solve
it. Anyway, even when this solution is available, a clear physical interpretation is
difficult to extrapolate from the previous exact expressions.

2. The overlaps between the initial state |Ψ0〉 and the eigenstates of the Hamiltonian
are extremely complicated to write as function of the parameters of the problem,
in particular in the case of a many-body system.

3. The summation over all the quantum numbers n and m is extremely difficult and
actually almost impossible to be carried out exactly for generic systems.

The previous tasks can be done in just several specific cases like solvable models for
a small number of particles and taking an initial specific initial state. An example is
shown in Ref. [217] for the exactly solvable Lieb-Lininger model where the quench can
be computed exactly just for less than 10 particles and starting from a non-interacting
state. In these cases, numerical approaches are fundamental, because they are the only
method able to compute the time evolution. We will review the most important methods,
as t-DMRG and t-VMC later in this chapter.
The situation becomes much more complicated if we allow the Hamiltonian to be time
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dependent, H(t). In this case the solution of the Schrödinger equation has to be expressed
implicitly using the time evolution operator U(t1, t0) which has the following general
properties

U(t1, t1) = I
U(t2, t1)U(t1, t0) = U(t2, t0)

ı∂tU(t, t0) = HU(t, t0)

If the system is prepared in an initial state |Ψ0〉at a time t0, the time evolved state is

|Ψ(t)〉 = U(t, t0) |Ψ0〉 .

Using the previous properties the time-evolution operator can then be written as a power
series in the following form

U(t, t0) = I +
∑
n∈N ?

(−ı)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtnH(t1)H(t2) . . .H(tn)

It seems like the only way to obtain a solution of the problem in a generic case is a
numerical exact diagonalization of the Hamiltonian and a subsequent numerical eval-
uation of the equation (2.1). Clearly these results will be extremely size- and model-
dependent and they will not give any hint about the real physics taking place at different
scales during the time evolution. Luckily, some bounds on the time evolution of a wide
class of Hamiltonians have been demonstrated. These results have the strong point to
be extremely general and they provide general bounds on the dynamics of different ob-
servables. The first one of these results is the Lieb and Robinson bound on short-range
interacting lattice Hamiltonian. It states that the dynamics of the commutator between
two local observables is constrained inside a region in the R and t plane. The result has
been demonstrated for the first time in Ref. [158] and then it has been extended to more
general lattices in other papers [164, 163, 218].

2.1.2 Lieb-Robinson bound

In this section we do not want to give full details of the mathematical demonstration of
the theorem but we will simply sketch its most important passages. Our aim is to give the
most clear physical interpretation as possible. The theorem holds for lattice systems with
short-range interactions and finite local Hilbert space, the prototype of such a system is
a one dimensional Ising model in transverse field, the Hamiltonian of which reads

H = −J
N−1∑
j=1

SzjS
z
j+1 +B

N∑
j=1

Sxj , (2.2)

with open boundary condition (OBC). The local Hilbert space of every site j has dimen-
sion 2, spin up and spin down. It means that the entire system is represented in a space
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of dimension 2N . For a more generic situation with local Hilbert space of dimension d,
the total Hilbert space is given by dN where N is the total number of the sites.
Hamiltonian (2.2) is composed by two parts: the one involving the interaction between
a spin and the external field B, which acts just on the local Hilbert space of the j-th
site independently from the others. The spin exchange part is represented by the Sxi S

x
i+1

term, which creates interaction between nearest-neighbor spins. It has a finite range
because its effect involves just spins at finite distance R = 1. In the future, we will
refer to these interactions as “short-range”. We will apply this terminology to all the
interactions acting on a finite set of sites of the lattice. Other examples of “short-range”
interactions are next-to-nearest-neighbor interactions as Sxj S

x
j+2 and all the other types

of Hamiltonians acting on a site i and on the i+R with finite R.
What we want to demonstrate is that local operators in different disjoint regions of the
lattice need time to be in contact due to the fact that local interactions take a finite time
to connect them. An example of this process can be done using Hamiltonian (2.2). Since
the interactions are restricted to nearest-neighbor sites, a spin flip at site i takes a finite
time to affect the site i + δ. In fact, this spin-flip has to interact with all the sites in
between i and i+ δ. The velocity of this spreading is not simply the ~/J , determined by
the nearest-neighbor coupling, but a more complicated one we will present in Sec. 2.2.
Assuming that interactions are just local we can prove that the effects of a local operator
are exponentially suppressed outside a linearly increasing region of the lattice.
This result fixes the concept of “locality” for many-body quantum systems when they are
out-of-equilibrium. The perturbation introduced by a generic local operator located in a
region of the lattice spreads with a constant fixed velocity. The previous sentence needs
to be associated to a distance, in order to define what is “near” and “far” from a site and
define also properly which are “short-range” interactions and which are not. The natural
distance defined on a lattice system is the Manhattan metric [219]

M (x, y) =
D∑
i=1

|xi − yi|,

where xi and yi are the components along different directions of the two position vectors
x and y. Furthermore, the theorem holds for all the generic types of distance which can
be defined over the lattice. We will refer to the distance between the site i and j simply
as dist (i, j), assuming that it fulfills all the geometrical requirements for this quantity
and it scales linearly with the distance between the two points.
The distance between two sets of the lattice X and Y is then defined as

dist (X,Y ) = min
i∈X,j∈Y

dist (i, j)

which represents simply the shortest path between the two in the chosen metrics. In the
same way we can write the diameter of a region A as

diam(A) = max
i∈A,j∈A

dist (i, j) ,
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which is the maximal distance between two points of the set.
We can then define what is a “short-range” Hamiltonian as

H =
∑
Z

HZ (2.3)

where every term in the sum has support just over a finite set Z and is zero outside the
set diam(Z) for every Z, assuming diam(Z) bounded by a constant. In this section we
will assume the Hamiltonian to be time-independent in order to have simpler expressions
but it is clear that the following argument can be applied to every Hamiltonian with a
little effort.
Even if this concept seems to be really abstract, Hamiltonian (2.2) can be written simply
in the form of Eq. (4.1). The model we are studying is in one dimension and many
simplifications comes from this fact, for example the Manhattan metrics described before
is equal to the standard Cartesian metrics, dist(i, j) = |i− j|. All the interaction terms
Szi S

z
i+1 are zero outside a region of diameter diam(Szi S

z
i+1) = 1, the interaction between

the spins and the external spins has zero diameter diam(Szi ) = 0 because it involves
just one site. The importance of the metrics arises in the case of periodic boundary
conditions, which can be obtained adding a term to (2.2)

H = −J
N−1∑
j=1

SzjS
z
j+1 − JSzNSz1 +B

N∑
j=1

Sxj . (2.4)

If we compute the range of the new interaction term using the standard distance for open
boundary we obtain diam(SzNS

z
1) = |N − 1| = N − 1 which is clearly a wrong answer.

The problem is due to the fact that the metrics |i − j| describes the distance between
the points just if the system has open boundary condition, see Fig. 2.1. If the boundary
conditions are periodic then two paths connect two points and the correct distance is the
shortest one of them, namely

dPBC(i, j) = min (|i− j|, |i− j ±N |) .

Using this definition we find that all the spin-spin terms have diameter 1 while the field-
spin terms have all diameter 0. In conclusion, the choice of the metric, which means the
way we measure space, has to be compatible with the physical problem we are looking at
and for the phenomenon we want to study. The concept of “short-range” Hamiltonian,
which means that just near sites can interact, is represented by the fact that HZ has to
decay fast with its range, diam (Z). Mathematically, this is written as∑

Z3i
‖HZ‖|Z|eµ(diam(Z)) ≤ s <∞ (2.5)

for all sites i and where µ and s are some finite real constants. The term ‖HZ‖ represents
the operator norm of HZ and it corresponds to its larger eigenvalue. The previous
expression holds if ‖HZ‖ decays at least exponentially in the interaction diameter which
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Figure 2.1: Schematic representation of a spin system with periodic boundary conditions (PBC), where
the N − 1-th spin interacts with the 0-th. It is possible to see how the distance we use in
the case of open boundary conditions (OBC) gives completely wrong results. The distance
between the initial and the last site using OBC distance is d(0, N − 1) = |N − 1|. If we
analyze the problem more physically we understand that this picture is wrong because
the two are just aside. The right definition of distance in this case is d(0, N − 1) =

min(|N − 1|, |N − 1−N |) = 1 which is the right result we see in the picture. Figure from
internet.

defines the slowest interaction decay that satisfies the hypothesis of this theorem.
If the previous condition is satisfied, we take two disjoint sets X and Y , dist(X,Y ) > 0,
and two local operators AX and BY defined over them, we can write the following bound
over the time evolution

‖[AX(t), BY ]‖ ≤ 2|X|‖AX‖‖BY ‖e−µdist(X,Y )
[
es|t| − 1

]
, (2.6)

where we used the time evolved operator AX(t) in the Heisenberg picture

AX(t) = eıHtAXe−ıHt.

The expression (2.6) holds anyway also in the time dependent case, where the time
evolution of the operator has a more complicated expression that the interested reader
can derive by him/herself.
The physical meaning of the bound of Eq. (2.6) is striking: the time evolution of local
observables is constrained inside a region that increases linearly with time. We can then
introduce a useful simplification: If we want to study the time evolution of an operator
as AX(t) we can restrict it to a region of the lattice. The time evolution of the operator
affects in fact the whole system, but it is extremely small outside an effective light-cone.
We can then introduce the restricted operator AlX(t) [213] which differs from the identity
just on a set Xl, which is the set containing all the spins which distance from X is less
than l. Outside this region the operator is equal to the identity. Mathematically is
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defined as
AlX(t) =

1

TrY (IY )
TrY [AX(t)]⊗ IY ,

where Y is the set containing all the spins not in Xl, TrY is the trace over the region
Y , and IY is the identity on the same space. Using the LR bound of Eq. (2.6) it is then
possible to demonstrate that the difference between the AX(t) and AlX(t) is exponentially
small

‖AlX(t)−AX‖ ≤ c|X|e−
l−vt
ξ , (2.7)

where c is a constant, ξ is 1/µ, v = ξs, and |X| is the number of sites in the region X.
We rewrote the previous expression in a slightly different way from Eq. (2.6) to make
the Lieb-Robinson velocity v appears explicitly. We can then see that a generic operator
AX(t) is well approximated by its restricted counterpart AlX(t) during the time evolution.

2.1.3 Bound on the correlation functions

Let us see now how the bound (2.6) affects the time evolution of correlations, in the
following we will follow the computations by Brevyi et al. presented in Ref. [213]. Up to
here we never specified the state of the system: the presence of operator norms in fact
makes the previous statements true for every vector in the Hilbert space. If we want to
study the time evolution of connected correlation functions as

〈AX(t)BY (t)〉c ≡ 〈AX(t)BY (t)〉 − 〈AX(t)〉〈BY (t)〉,

the properties of the state |Ψ0〉 can play a great role in the determination of a bound on
this quantity. In the following, we will assume that the expectation value 〈AX(t)BY (t)〉
computed over the state |Ψ0〉 has an exponential decay for every time t and any local
operators

〈AX(t)BY (t)〉c ≤ c̃e−
L
χ (2.8)

where we normalized the operator norms ‖AX‖ and ‖BY ‖ to be smaller than 1 and L is
the separation between the sets X and Y . We want now to bound the equal-time con-
nected correlation function 〈AX(t)BY (t)〉c, where all the hypotheses of the Lieb-Robinson
theorem are satisfied.
We can then find a bound on the connected correlation function at any time approxi-
mating any operator AX(t) by its restricted AlX(t) constrained into Xl. We can consider
then the difference

〈AX(t)BY (t)〉c − 〈AlX(t)Bl
Y (t)〉c = 〈δAX(t)δBY (t)〉 − 〈δAlX(t)δBl

Y (t)〉

where we used the short-hand notation δAX ≡ AX−〈AX〉 for all the operators to express
connected correlation functions as standard expectation values.
We can then apply Eq. (2.7) to the operator δAXδBY approximating it by δAlXδB

l
Y as

|〈δAX(t)δBY (t)〉−〈δAlX(t)δBl
Y (t)〉| ≤ ‖δAX(t)δBY (t)−δAlX(t)δBl

Y (t)‖ ≤ c (|X|+ |Y |) e−
l−vt
ξ .

69



2 Lieb-Robinson bounds and light-cone-like dynamics

Using the triangular inequality and remembering that 〈δAXδBY 〉 = 〈AXBY 〉c we get

|〈AX(t)BY (t)〉c| ≤ |〈AlX(t)Bl
Y (t)〉c|+ c (|X|+ |Y |) e−

l−vt
ξ .

Using then the hypothesis (2.8) we can bound

|〈AlX(t)Bl
Y (t)〉c| ≤ c̃e−

L−2l
χ ,

where we used the distance dist (Xl, Yl) = dist (X,Y ) − 2l = L − 2l. Finally, we obtain
a bound on the time evolution of the expectation value, as

|〈AX(t)BY (t)〉c| ≤ c̃e−
L−2l
χ + c (|X|+ |Y |) e−

l−vt
ξ .

We can then fix the value of l to

l =
χvt+ ξL

χ+ 2ξ
,

which makes the two exponents equal.
We can then write the final result as

| 〈Ψ0|AX(t)BY (t) |Ψ0〉c | ≤ [c̃+ c (|X|+ |Y |)] e−
L−2vt
ξ′ , (2.9)

comparing it with (2.7), we can see that here we have ξ′ = χ+ 2ξ, instead of χ, and 2v,
instead of v.
Several considerations have to be done on the expression (2.9):

1. It divides the L and t plane in two regions: for t < L/2v the correlation function is
exponentially suppressed and for t > L/2v no bound is present on the correlation
function. It means that there significant correlations can be present

2. For every distance L between the two observables, an activation time t? exists which
is defined as the moment when the correlation function is no longer bounded, i.e

e
−L−2vt?

χ′ ∼ O(1).

t? scales linearly with the distance L and the proportionality constant is vlc = 2v.
Note that it is twice the velocity we found for the commutator, namely v.

3. The information that we get from this expression is universal because this results
holds for all “short-range” Hamiltonian but it is partial because it just specifies
that, for short times and sufficiently large distances, the effect of local operators is
small. It is important to note that it does not tell us more than this.
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2.1.4 Beyond the Lieb-Robinson bound hypothesis

The previous result is exact and extremely powerful but it has some strict hypothesis to be
satisfied: the “short-range” interactions, the exponential decay of the initial expectation
value, the underlying lattice, and the bound on the local Hilbert space. These hypothesis
are exactly satisfied in spin systems and lattice fermions. The theorem assures that the
correlation functions exhibit a horizon in their time evolution, and this horizon scales
linearly in time. Many examples of these works can be found in the literature for different
spin models and for different local observables [220, 221, 215, 222, 223].
The previous hypothesis are all fundamental for a rigorous mathematical application of
the theorem but they are not all physically relevant to find a ballistic horizon. The
first hypothesis that can be relaxed is the bound on the local Hilbert space. Physically,
this is useful when a bosonic lattice system instead of a spin one is studied. While
the number of local states is limited for a spin as well as fermionic models. In the
bosonic case there is no upper bound on the number of bosons occupying a single site
in the thermodynamic limit, the local Hilbert space of the system is then unbounded.
Even if this is theoretically true, the probability of having n bosons in the same site i
decreases exponentially with n. The states violating explicitly the Lieb-Robinson bound
are practically never present. Numerical and analytical results for quantum quenches in
the Bose-Hubbard model find a light-cone in different local observables as the 〈b†ibi+R〉
and the density-density correlation function 〈nini+R〉 [224, 225, 214, 216] in both finite
and infinite systems. Some of the previous references perform quenches in the gapless
phase of the Bose-Hubbard Hamiltonian. In that specific case the initial correlation
function decays algebraically instead of exponentially because of long-range or quasi-
long-range correlations. Even if (2.8) and the bound (2.6) are no longer satisfied, the
presence of a light-cone has been detected [226, 227, 52, 216].
The extension of the theorem to interactions more complicated than the “short-range”
ones breaks completely the picture, as we will see later in this chapter, allowing a faster-
than-linear propagation of information. Surprisingly, some models still exhibit ballistic
propagation of correlations also when extremely long-range interactions are involved [170,
171]. We will discuss the Bose-Hubbard chain with long-range interactions in Chapt. 3
and 4 because it needs a specific discussion.
We can conclude that a short-range interacting many-body quantum system on a lattice
will exhibit a light-cone in the time evolution of expectation values of local observables,
the decay of the initial state and the dimension of the local Hilbert space do not change
drastically this result.

2.2 The quasi-particle approach

In the previous section we presented how short-range interactions on a lattice model give
rise to a linearly increasing light-cone in the time evolution of local observables. The
main result of the previous section is the presence of an activation time proportional to
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the distance between the operators

t? =
R

vlc
. (2.10)

The proportionality constant has the dimension of the inverse of a velocity and it is called
light-cone velocity in analogy to the special relativity.
Even if the Lieb-Robinson theorem fixes the qualitative dependence of the activation
time on the distance R, it does not give a method to compute the light-cone velocity vlc.
This quantity that defines the maximum velocity at which correlations can spread over
long distances is important and it has to be extracted from numerical or experimental
data.
In order to determine this crucial parameter it is then important to change the point
of view: Instead of looking at the time evolution from the macroscopic point of view,
we start from the microscopic one and then we try to extract a physical meaning for
the dynamics of correlations. As we said before, the solution of a quantum many-body
problem cannot be done for all the systems, and we will use then a specific class of
models, namely conformal-invariant ones.
We assume that the system is prepared in an initial state |Ψ0〉 which is the ground state
of an initial Hamiltonian Hi . Then, at t > 0 we let this state evolve under the influence
of another Hamiltonian H. This is exactly the quantum quench protocol described in
Sec. 1.3.4. We will study a particular case of the previous protocol, when the initial
Hamiltonian has a mass gap m0 and the final Hamiltonian is at, or closed to, a critical
point, where the results acquire a great degree of universality. This way, the mass gap
determines an exponential decay of local observables in the initial state, which is one of
the hypothesis for Eq. (2.9).
In an extremely general way, we can write the time evolution of a generic local observable
O (t, {ri}) after a quantum quench as

〈O(t, {ri})〉 = Z−1 〈Ψ0| eıHt−εHO ({ri}) e−ıHt−εH |Ψ0〉 , (2.11)

where the damping factor e−εH, with a small ε, has been included to ensure the absolute
convergence of the integral in the path-integral formulation. The normalization factor Z
is determined fixing to 1 the expectation value of I, which gives

Z = 〈Ψ0| e−2εH |Ψ0〉 .

The expectation value (2.11) can be written using the path-integral formulation of quan-
tum mechanics [228]

〈O(t, {ri})〉 =
1

Z

∫
Dφe−S[φ]O (0, {ri}) 〈Ψ0|φ (τ1, r)〉 〈φ (τ2, r) |Ψ0〉 (2.12)

where we performed a Wick rotation and then the action is computed from an initial
time τ1 = −ε− ıt to a final time τ2 = ε− ıt and it reads

S =

∫ τ2

τ1

dτ L,
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where L [φ] is the lagrangian in imaginary time.
We want to study the expectation value on length and time scales much larger than the
microscopic ones. In this regime it is possible to apply the renormalization group. We can
the use the fact that the Hamiltonian H is at a critical point of the renormalization flow.
The effect of the renormalization group on the state |Ψ0〉 makes it flows to an invariant
state |Ψ∗0〉. In order to evaluate all quantities at the critical point, we can compute
all the expectation values on the invariant state |Ψ∗0〉 instead of the initial one. This
procedure is safe if we rescale the time taking into account the initial mass gap, namely
ε → ε + τ0 where τ0 ∼ 1/m0. We can then take the limit ε → 0+ without encountering
divergences [229]. We can then translate the origin of time by the imaginary plane of
τ0 + ıt, so that τ ′1 = 0 and τ ′2 = 2τ0. The operator O is now inserted at τ = τ0 + ıt.
Written in this way, Eq. (2.12) takes the form of an equilibrium expectation value of
a D + 1 dimensional system with a particular slab geometry and boundary conditions
determined by the initial and final times written before.
The previous argument is valid for every quench from any point to the critical point in
a D-dimensional system. We can now restrict ourselves to the specific case of a one-
dimensional system described at its critical point by a conformal-invariant action in the
limit of large distances. Even if the field of conformal invariant theories is extremely
interesting for its application in condensed matter physics, we do not have space to list
here its main results and we suggest to the interested reader to read Refs. [162, 230].
Conformal invariance is generated by the simultaneous presence of Lorentz invariance
and scale invariance. This symmetry is sufficiently strong to fix exactly the two- and
three-point functions, which are algebraically decreasing, while the four-point function
is known up to a function of the anharmonic ratios, we will define later.
The scale-invariance of the action imposes the theory to be massless. In fact, if our theory
is massive, we could measure distances using the inverse of its mass. The spectrum for a
massless and Lorentz-invariant theory is then simply a linear spectrum

Ek = ck,

where c is the intrinsic velocity of the theory. In the case of photons this is the velocity
of light and in the case of phonons is the velocity of sound for example.
The operators of the theory, as we were saying before, are all defined on a slab geometry
in the (x, t) plane representing the strip 0 < =w < 2τ0 in the complex plane . It can be
mapped in the upper-half plane of the complex plane using the transformation

z = e
π

2τ0
w
.

The change in the coordinates affects the correlation function as described by [162] and
for the simple case of product operators as O =

∏
i Φi(wi) it is simply written as

〈O(ri)〉 = 〈
∏
i

Φi(wi)〉SLAB =
∏
i

|dw
dz
|−∆i〈Φi(zi)〉UHP

where the 〈. . .〉SLAB is computed on the slab geometry, labeled by wi, while the 〈. . .〉UHP
is computed over the upper-half-plane, labeled by zi. The parameters ∆i are the holo-
morphic dimensions of the operator Φi and they are fixed by the scaling properties of
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Figure 2.2: Different geometries involved in the computation of the correlation function. On the right:
the strip geometry 0 < =(w) < 2τ0 where we set τ0 = 1 where the parameter w is defined.
On the left: the space where the variable z is defined, 0 < =(z). These two quantities are
connected through the conformal transformation z = e

π
2τ0

w. In red: the transformation
of a line parallel to the = (w) axis. This line physically represents the world line from
t = 0 to t = 3/2 of the point x = 1. This line is transformed into a circumference arc in
the z-complex plane. Using the polar representation of the complex plane z = |z|eıφ it is
defined by |z| = e

π
2τ0 and φ ∈ [0, π3

4τ0
].

the operator O. An example of how it is possible to extract them in the Ising model can
be found in [126] where a more physical interpretation of this parameters is given.
We can now analyze the specific case of two-point functions, which is the case studied in
the previous section for the equal-time local operators

〈Φ (w1) Φ (w2)〉.
This quantity is defined in the SLAB geometry described before. We can then map it
into the upper half plane using the previous conformal transformation. It yields

〈Φ (w1) Φ (w2)〉 =

(
z12̄z21̄

z12z1̄2̄z12̄z1̄2

)∆

F (η) ,

where we used the definitions zij = zi − zj and zij̄ = zi − z̄j , η = z11̄z22̄/z12̄z1̄2 is the
anharmonic ratio, and F (η) is a model-dependent function.
Writing everything back as a function of r and t in the combination w = r + ıt, the
correlation function in the large time and large distance limit is

〈Φ (0, t) Φ (r, t)〉 u
(
π

2τ0

)2∆
(
e
πr
2τ0 + e

πt
τ0

e
π

2τ0
(r+2t)

)∆

F (η) ,

where

η ∼ e
πt
τ0

e
πr
2τ0 + e

πt
τ0

.
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We can then study two relevant limits for this expression: r − 2t� τ0 and r − 2t� τ0,
where η can be written respectively as a η ∼ e

π
2τ0

(r−2t) � 1 and η ∼ 1.
The first case, determined by the condition r � τ0/2, defines the pre-light-cone zone. In
this region the function F (η) can be written as a power expansion

F (η) ∼
(
A∆
b

)2
η∆b ,

where A∆
b and ∆b are fixed by the boundary conformal field theory [161]. The correlation

function is then written as

〈Φ (0, t) Φ (r, t)〉 =
(
A∆
b

)2
e
−π∆
τ0
t × e−

π∆b
2τ0

(r−2t)
,

which has the same expression of the bound (2.6) with an exponential decay for short
times and long distances determined by the initial decay τ0.
The other case is determined by t > r/2, post-light-cone, where F ∼ 1 where we get

〈Φ (0, t) Φ (r, t)〉 ∼ e−
π∆
2τ0

t

meaning that the correlation function decays in time exponentially on the other side of
the light-cone.
The previous explicit computation shows that it is possible to derive the correlation
function exactly for a general class of theories with conformal invariance. Starting from
a state with a mass gap m0, which defines a time scale τ0 ∼ 1/m0, we can then write
the exact value of the correlation function using results of the boundary conformal field
theory. The correlation function has then two distinct regimes as a function of distance
and time that can be written, restoring the velocity c. The separation line is r = 2ct
which defines the light-cone and where we can recognize Eq. (2.10) with vlc = 2c. The
velocity surprisingly depends just on the final Hamiltonian through c while the details
of the initial Hamiltonian are contained all in the initial mass gap.
This result provides the connection between the general theory exposed in the previous
section for an undetermined light-cone velocity and the microscopic velocity obtained in
this one, i.e. c. The only microscopic quantity we then need is the dispersion relation of
the final Hamiltonian Ek. The effect of the quench is spread around the system by the
fundamental excitations of the final Hamiltonian, with spectrum Ek = ck. These exci-
tations are created by the effect of the final Hamiltonian on the initial state |Ψ0〉, which
is not its eigenstate. The quasi-particles spread inside the system carrying correlations
from a point to another one with velocity c. It is then clear that, in order to create cor-
relation at distance r, we need to wait a time t = r/2c which is the time needed by these
fundamental excitations to meet halfway between the two points at distance r. The same
quasi-particle picture holds in the same way in a more generic final Hamiltonian with a
more complicated spectrum Ek, see Fig. 2.3. In this case, the velocity of the light-cone
will be determined by the fastest quasi-particles responsible for the first enhancement in
the signal. The key quantity is the group velocity defined as Vk = ∂kEk, the light-cone
velocity will be then

vlc = 2 max
k

Vk.
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2 Lieb-Robinson bounds and light-cone-like dynamics

Figure 2.3: Schematic representation of the spreading of quasi-particles in a one-dimensional following
a quantum quench. For different values of k the quasi-particles spread with a velocity ∂kEk
determined by the final Hamiltonian. Figure from the site of the LMU.

It means that the first signal appearing in a generic correlation function is given by the
fastest quasi-particle in the spectrum.
This picture, called the quasi-particle picture, is the key approach used to understand
how the perturbation due to a local observable spreads inside the system following a
quantum quench. Here, what matters is just the final spectrum, and its derivative, while
the initial state just provides a substrate with a non zero overlap with all the modes
of the final Hamiltonian. The light-cone velocity can then be computed through the
spectrum simply taking the maximum of its derivative.
The result and the picture proposed by Cardy and Calabrese are extremely useful to
analyze the data from a quantum quench because they state that all the dynamical
properties of the light-cone, and in particular its velocity and scaling, are determined by
the spectrum of the final Hamiltonian.

2.3 Confirmations of the Lieb-Robinson bounds

In the previous section we described two different approaches to interpret the time-
evolution of local observables following a quantum quench in short-range interacting
quantum systems. A macroscopic one relaying on the bound of the time evolution oper-
ator (Lieb-Robinson bound) and a microscopic one proposed by Cardy and Calabrese.
These two methods predict both a linear spreading of correlations and other local ob-
servables in distance and time. From the microscopic method it is possible to extract the
value of the light-cone velocity as the maximum group velocity of the final Hamiltonian.
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2 Lieb-Robinson bounds and light-cone-like dynamics

2.3.1 Numerical proofs

2.3.1.1 Time Dependent Density Matrix Renormalization Group (t-DMRG)

We start from two numerical approaches: the Density Matrix Renormalization Group
(DMRG) and the Variational Monte Carlo (VMC) which can be used to study both
equilibrium and out-of-equilibrium dynamics for various Hamiltonians. For the DMRG
and the t-DMRG (time dependent DMRG) many reviews are in the literature that can be
of interest to the reader, as Ref. [18]. The DMRG is the most used method to study one-
dimensional lattice models with short-range interactions. The dimension of the Hilbert
space of a lattice model with a finite local Hilbert space grows exponentially in the system
size. For instance, if we use again the Ising chain as an example, a chain with L sites with
one spin 1/2 each has an Hilbert space of size 2L, which grows exponentially in the system
size. The idea behind DMRG is to describe the state of the system in this Hilbert space
just using a fraction of possible states and this fraction grows slower than exponentially.
The DMRG describes the state of the system decomposing it on a basis and erasing the
states with the smaller amount of entanglement in the Schmidt decomposition. This
procedure works at its best when we have a group of states with a large entanglement
and another one which entanglement is negligible compared to the first ones. In this case
the second group is erased during the numerical process and we get a description just as
function of the first group. In the worst case we have a lot of states which contributions
are of the same order of magnitude and it is not possible to erase states without affecting
drastically the final results. Usually this happens when the system has a large amount
of entanglement and, in particular, when it is close to a quantum phase transition due
to the long-range correlations. If the system has short-range correlations, the error is
well controlled because the entanglement entropy is bounded by a constant thanks to the
area laws [231].

Quench in the Fermi-Hubbard model The DMRG can be changed in order to study
time-dependent problems (t-DMRG) with both long- and short-range interactions Ref. [21,
20, 232]. In Ref. [215], Manmana et al. use the t-DMRG algorithm to study the evolu-
tion of correlations following a quantum quench of the spinless Fermi-Hubbard model at
half-filing

H = −J
∑
j

(
c†jcj+1 + h.c.

)
+ V

∑
j

njnj+1.

This system is of the same class of Hubbard Hamiltonians we already discussed in
Sec. (1.3.2). When the system is at half-filling, it is integrable. It can be mapped
into an anisotropic XXZ chain, using the Jordan-Wigner transformation [186] and it can
then be exactly solved via a Bethe ansatz [233]. The phase diagram of the model shows
a phase transition at Vc = 2J . For V < Vc the ground state of the system is described by
the Luttinger liquid theory while for V > Vc it is a charge-density-wave insulator. In this
phase, the translational invariance of the system is broken and two degenerate ground
states appear.
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Figure 2.4: Time evolution of the quantity Gi,j(t) for a quench V0 = 10J → Vf where Vf =

0, 2J, 5J, 20J . The time is measured in units of 1/J , as usual ~ = 1. The “light-cone”
structure in the R and t plane is clear for all the studied final Hamiltonians. Figure from
Ref. [215].

The t-DMRG is then used to follow the time-evolution of density-density correlations

Gi,j (t) = 〈ni(t)nj(t)〉 − 〈ni(t)〉〈nj(t)〉

following different quenches from and to different regions of the phase diagram. The
time-evolution for a propagation time t ≤ 5 and for systems of length L = 49 or L = 50
and N = 25 fermions is shown in Fig. 2.4 for quenches starting from the insulating
phase to several final values of the couplings. The initial state is the ground state of
the Hamiltonian with V = 10J > Vc, which describes a gapped phase. This initial state
has exponentially decaying correlations with distance as required by the result presented
in Sec. 2.1.3. Starting from this state, different quenches are performed to the points
V/J = 0, 2, 5, 20 respectively in the non interacting state, at the critical point, and to
other points in the gapped phase. The time evolution of Gi,j(t) for different distances
and times is presented in Fig. 2.4. For all the studied cases, a “light-cone” appears in
the considered time evolution of Gi,j(t). Indeed, it can be seen on Fig. 2.4, two sites
at distance R = |i − j| remain uncorrelated up to a time tR that is proportional to R.
The proportionality constant is the light-cone velocity vlc = R/tR. These results are
in perfect agreement with the bound on correlations presented in Sec. 2.1.3. We have
a lattice model, with a finite local Hilbert space due to the fermionic statistic, finite-
range interactions and an initial state with exponentially decaying correlations. The
propagation of local operators is then constrained inside a linearly increasing region. At
this point we can focus on the determination of the velocity of the light-cone extracted
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2 Lieb-Robinson bounds and light-cone-like dynamics

from the numerical data. For quenches in the gapless phase, as V = 0 in Fig. 2.4 (a), the
post-quench Hamiltonian describes spinless non-interacting fermions and the maximum
velocity for this system, at half-filling, is the Fermi velocity 2J . The light-cone velocity is
then vlc = 2vmax = 4J as predicted by the Cardy-Calabrese approach. In the same figure
it is possible to notice other fronts with lower velocities appearing at later times inside
the light-cone. While the linear part of the spectrum, located in the phononic branch,
determines the light-cone velocity, the other parts of the spectrum determine these later
fronts which are due to the full spectrum of excitations. The same considerations can
be made at the critical point V = 2J where the same inner structure of the light-cone is
present. The same structure can be found for the quench to the phase transition, Fig. 2.4
(b).
For quenches in the gapped phase, see Fig. 2.4 (c) and (d), the theoretical description is
different because there is no linear part of the spectrum that is described by a conformal
field theory, as in the gapless phase. However, a light-cone in the activation of the
correlation function is present anyway. In this case, the inner structure is completely
different: an alternating pattern is present instead of other slower fronts, see Fig. 2.4 (c)
and (d). In Fig. 2.5 the time evolution of correlations for quenches from V0/J = 1/2 to
V/J = 5 and V/J = 40 are shown. In this case, the initial state contains algebraically
decreasing correlations, typical of the Luttinger liquids, and not all the hypothesis of the
bound presented in Sec. 2.1.3 are satisfied. A light-cone dynamics is anyway still present,
meaning that the exponential decay of correlations in the initial state is not a fundamental
hypothesis from the physical point of view. Comparing Fig. 2.5 with Fig. 2.4, the internal
structure of the light-cone changes due to the different initial states used. After an initial
light-cone due to the creation of correlations at the center of the chain, other slower ones
appear with a velocity which is almost half of the “light-cone” one. These are due to
the open boundary conditions. The inner structure of the light-cone in this case has
a behavior somehow mixed between the two seen before. The authors interpret these
regions as moving domains due to the passage through the phase transition and they are
described by next-to-leading order Kibble-Zurek mechanism [234].
As exemplified by these results, the t-DMRG is a really powerful method to explore
the time-evolution of quantum many body systems. However errors appear due to the
truncation of the density matrix which introduces errors. Because of that, the simulations
are reliable just for t ∼ 10/J even if some pieces of information about the long-time
behavior can be extracted from these data. In addition to this problem, the t-DMRG is
not naturally able to study bi-dimensional system or continuous systems, these have to
be studied using particular adaptation of the one-dimensional algorithm [235, 236].

2.3.1.2 Time-dependent variational Monte Carlo

Another powerful numerical method that is not affected by the problems of the t-DMRG
is the time dependent variational Monte-Carlo (t-VMC) that we discuss in this paragraph.
This method can be used to study the time-evolution of quantum many-body systems
with generic interactions and in generic dimensions. For this method we make an ansatz
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Figure 2.5: Time evolution of the density-density correlations following a quantum quench from the
gapless phase, V = J/2, to the gapped phase, in figure (a) V = 5J and in figure (b)
V = 40J . It is possible to see how a light-cone is present also if the phase transition
is crossed. The internal structure presents a mixed behavior: inner fronts with smaller
velocity and alternating patters typical respectively of the gapless and gapped phases.
Figure from Ref. [215].

on the wave function, taking it of the Jastrow type [24],

|Ψ(t)〉 = eı
∑
α λα(t)Oα |Φ0〉 ,

where the λα(t) are complex functions depending on time, Oα are operators that are
chosen appropriately to describe the wave function, and |Φ0〉 is the initial state. The only
constraint on the operators Oα is that they have to be diagonal in the basis chosen to
describe the time evolution. We can then write a differential equation for the parameters
λα(t) imposing that ‖ (ı∂t −H) |Ψ〉 ‖, where ‖.‖ is the norm in the Hilbert space, is
minimal for every value of time. This corresponds to minimize the distance, in the
Hilbert space, between the real time evolution generated by the Hamiltonian, and the
one of our anstaz. The minimization of the previous expression yields a differential
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equation for the functions λα,∑
α

λ̇α〈OαOβ〉 = −ı〈HOβ〉 ∀β.

The solution of this first-order differential equation involves the computation of the expec-
tation values 〈. . .〉 on the Jastrow wave function. The expectation values are computed
using a basis where the Oα operators are diagonal. This is done using Monte-Carlo
techniques. It is possible to demonstrate that the norm of the wave function is exactly
conserved if the λα parameters respect the previous equation, and also the energy is con-
served if the Hamiltonian is time-independent. Moreover, we do not need any assumption
for the type of interactions and the dimensionality of the system, the Jastrow ansatz is
completely independent on these details. Reliable results heavily rest on the appropriate
choice of the set of diagonal operators Oα. The numerical error of the method is due
to the Monte Carlo errors in the computation of the expectation values, the numerical
resolution of the differential equation, and the choice of Oα.

Quench in the Bose-Hubbard model The t-VMC was used to study the time evolution
of correlations following a quantum quench in the superfluid regime of the Bose-Hubbard
model [216],

H = −J
∑
〈i,j〉

(
a†iaj + h.c.

)
+
U

2

∑
ni (ni − 1) . (2.13)

As discussed in Sec. 1.3.2, the Bose-Hubbard Hamiltonian has a superfluid phase for
J � U and a Mott-insulating phase for U � J . If we study these two regimes from
the point of view of relevant fundamental excitations, the superfluid regime is dominated
by Bogoliubov excitations while the Mott insulator by doblons and holons moving on
a insulating state. In [216], Carleo et al. studied the time evolution of correlations
following a quantum quench inside the superfluid regime. The fundamental excitations
of the system are density-density excitations which are represented by Oα = nkn−k in
the Jastrow wave-function.
From the point of view of the bound on correlations presented in Sec. 2.1.3, the system
does not satisfy all the hypothesis because of the algebraically decreasing correlations in
the initial state and because the local Hilbert space is infinte, due to the bosonic nature
of the particles. This last property violates also the hypothesis of the Lieb-Robinson
bound presented in Sec. 2.1.2.
A linearly increasing light-cone is anyway present in the time evolution of correlations,
as presented in Fig. 2.6(a). In Fig. 2.6(b) the time evolution of the correlation function
for different values of R is shown, and in Fig. 2.6(c) the dynamics of the quantity√

〈H2〉t − 〈H〉2t
〈H2〉0 − 〈H〉20

is presented. This quantity is an indicator of the reliability of the simulation: if it is close
to 1, the simulation is trustable. It is possible to see how this indicator is always close to
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one except for a small amount of time, 0.1 ≤ t ≤ 1, where it is bigger but anyway inside
the 20% of the ideal value.

Figure 2.6: Time-evolution of correlations following a quantum quench Ui = 2 → Uf = 4 in the su-
perfluid regime of the Bose-Hubbard model (2.13). (a) Absolute value of the correlation
function as a function of R and t. A “light-cone” shape is present in this time evolution.
Inset: the instantaneous velocity of the absolute maximum is presented (red points) to-
gether with one point computed using exact diagonalization over a 12-sites system. (b)
Vertical cuts of (a) for different values of R. (c) Log-log plot of the indicator 〈H2〉 − 〈H〉2

normalized at the initial value. It is possible to see that this indicator is maximum the
20 % of the ideal value for a small amount of time and it then goes down rapidly to values
close to 1. It has to be notice that in this last plot the times arrive at t ∼ 100 which is one
order of magnitude larger than the ones of the t-DMRG. Figure from Ref. [216].

Since the system allows long-lived free excitations, it is possible to compare the velocity
extracted numerically from the data with the one computed from the theoretical model.
It has been found that the first is slower than the latter. This arises from the fact that
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the velocity extracted numerically is computed following the absolute maximum of the
correlation function. The absolute maximum of the correlation function is not always the
first maximum, resulting in a measure of the velocity which is slower than the theoretical
one. I demonstrated that the velocity computed following the absolute maximum and
the one computed from the first maximum are not the same and they can be predicted
by the quasi-particle approach [237].
The t-VMC can be used also to simulate the time-evolution of quantum systems in
dimensions higher than one. The time-evolution of correlations following a quantum
quench in a bi-dimensional Bose-Hubbard Hamiltonian has been studied in the same
paper. In Fig. 2.7 the results for the time-evolution of correlations in the bi-dimensional
Bose-Hubbard model are shown.

Figure 2.7: Time evolution of correlations in a 20× 20 sites Bose-Hubbard model following a quantum
quench inside the superfluid regime. (a) Time evolution of correlations as function of x
and y for different times (a1), (a2) and (a3). A propagation of correlation is clear in the
time evolution: correlations at a distance R are activated at a time t? which increases with
the distance. (b) The time t? depends linearly on dman(R) which is the Manhattan metric.
This means that it is possible to define a “light-cone” in this metric because there is a
linear dependence between the distance and the activation time. The slope of this linear
dependence defines the light cone velocity. (c) The figure shows the angular position of the
maximum of the correlation function. They do not follow circles in the Cartesian metric
but circles in the Manhattan does, which is an effect of the underlying lattice. The angular
distribution shows that the signal is enhanced on the bisectrix of the plane de to the fact
that many path on the lattice go on these lines compared with other points. Figure from
Ref. [216].
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Also in this case a causal structure is present in the correlation function where correla-
tions need a time t? to activate. In order to study the dependence of t? on the distance,
it is important to specify which type of distance is compatible with our physical prob-
lem. The cartesian distance is a not good indicator for distances on a lattice. The paths
followed by the particles are different from a straight line. In turn, a more appropriate
distance is defined by the Manhattan metric, which follows the paths of the particles
moving on the lattice. It is defined as

dman(x, y) = |x|+ |y|

If we now plot the activation time t? as function of this distance we see that they are
proportional and the proportionality constant can be defined as the inverse of the light-
cone velocity, see Fig. 2.7 (b).
t-VMC will be used in the next section to study the time-evolution of local observables in
long-range interacting quantum systems. Anyway the t-VMC and t-DMRG are the two
most important methods to simulate the time-evolution of many-body quantum systems
and they are constantly improved to obtain better and more precise results.

2.3.2 Experimental proofs

In this section we want to discuss two of the most important experimental observation of
the light-cone effect in the time evolution of local observables. As we already discussed
in Sec. 1.3.4, cold atomic gases are the perfect systems to study these phenomena. They
allow to engineer different Hamiltonians, to set the system in different initial state, to
drive the system out-of-equilibrium, and to measure different observables during the time
evolution.

2.3.2.1 Light-cone propagation in the Bose-Hubbard model

The first experiment is the one realized by M. Cheneau et al. in the group of I. Bloch [214].
There, several one-dimensional Bose-Hubbard chains are realized in a elongated optical
trap with a ratio U/J compatible with a strong Mott insulator regime with one particle
per site.
The quench protocol is performed changing that ratio to a new one U/J still in the Mott
regime. This is done by lowering the intensity of the lasers creating the lattice and the
change takes place in less than 100µs. This time interval is shorter than any microscopic
time scale of the system and a quantum quench is realized. During the time evolution,
the initial state can be seen as a source of excitations that spread through the chain.
As already mentioned above, the relevant excitations for the Mott state are doblons and
holons, see Fig. 2.8.
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Figure 2.8: Representation of the quasi-particles spreading in a Mott insulator following a quantum
quench. In the upper figure a Mott state with one particle per-site which the initial state
of the system. At the time t = 0, a quantum quench is performed changing the final lattice
depth. The initial state is not an eigenstate of the final Hamiltonian and then a non-trivial
time evolution takes place. The time evolution of local observables is then given by the
spreading of the fundamental excitations of the final Hamiltonian. We can then see in
the lower panel how doblons, represented in red, composed by two particles and holons,
represented in blue, spread in the system with different velocities. Figure from Ref. [214].

We can think at the Mott state as a state composed by 1 particle per site, where the
probability of hopping between the nearest-neighbor site is extremely weak compared to
the on-site energy, see Fig. 1.3.2. If we allow now particle hopping from a site to another,
then one has two particles (a doblon) and the other one zero particles (holon). These
states can be seen as fundamental excitations over a “vacuum” represented by the initial
Mott state. These excitations are responsible for the spreading of correlations in the
post-quench time-evolution, in agreement with the Cardy and Calabrese picture.
The post-quench time-dependent state can be written as a superposition of doblon and
holons with their dispersion relations

|Ψ(t)〉 ≈ |Ψ0〉+ ı
√

8
J

U

∑
k

sin (kalat)
[
1− e− t

~ ı(Eh+Ed)
]
d†kh

†
−k |Ψ0〉

where |Ψ0〉 is the Mott insulating state with 1 particle per site, Eh and Ed are the
dispersion relations of the holons created by h†k and doblons created by d†k.
The observable accessible by the experimental setup is the correlation function of the
parity operator,

Cd(t) = 〈si(t)si+d(t)〉 − 〈si(t)〉〈si+d(t)〉,
where si = eıπ(ni−n̄). The latter measures the parity of the excitations in the site i. If
the site is occupied by a quasi-particle, doblon or holon, then si = 1, if it is not si = 0.

85



2 Lieb-Robinson bounds and light-cone-like dynamics

The initial state is a Mott state with almost 0 excitations, Pi,j(0) ' 0, for all the values
of i and j.
In practice, the system is actually composed by a series of quasi-one-dimensional tubes
due to the splitting of a 3D atom cloud using the same techniques presented in Sec. 1.3.2.
It is realized starting from a degenerate gas of 87Rb atoms which are confined in a bi-
dimensional region using a laser with alat = 532nm along the z- and y-axis. This
splits the initial cloud in 10 nanotubes along the x-axis which are approximately one-
dimensional systems. A lattice is then created along the x-axis using two counter-
propagating lasers and realizing the one-dimensional Bose-Hubbard model. The intensity
of these lasers can be tuned to obtain U/J ≈ 40. For this value of the parameters the
system is in an insulating regime of one atom per site. The temperature of the 1D tubes
can be measured and it gives T = 0.1U/kB where kB is the Boltzmann constant. The
system can then be considered at zero temperature. As we said, a quench to a different
U/J is realized changing the intensity of the lasers. After a variable time t, the system is
then frozen, increasing the lattice depth in all the directions to a value 80Er. A fluores-
cence image with site-resolved precision is then performed, and the parity of the different
sites can be detected directly. This procedure, repeated for different evolution times t,
gives the time evolution of the observable Cd(t).
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Figure 2.9: After the quench, a positive correlation signal propagates with increasing time to larger
distances. Main figure, the experimental values for a quench from U/J = 40 to U/J = 9.0

(open circles) are in good agreement with the corresponding numerical simulation for an
infinite, homogeneous system at zero temperature (continuous green line). Our analytical
model (dashed black line) also qualitatively reproduces the observed dynamics. Inset,
experimental data displayed as a color map (color scale at right), revealing the propagation
of the correlation signal with a well defined velocity. The experimental values result from
the average over the central N sites of more than 103 chains, where N equals 80% of the
length of each chain. Figure from Ref. [214].

The results for the quench U/J = 40 → U/J = 9 are presented in Fig. 2.9. A
clear linearly increasing horizon is present in the time evolution of the parity operators
as function of R and t. The propagation velocity can be extracted from these data.
They are then compared with t-DMRG simulation at T = 0 temperature and to the
theoretical model, finding a good agreement between these three independent approaches.
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Qualitatively, the same results are obtained for the quenches to U/J = 7 and U/J = 5.
For these values of the couplings a larger number of quasi-particles is generated. The
theoretical model is consequently less accurate, but a linear light-cone is anyway present
in the dynamics.
The velocity of the light-cone extracted from the data in the range 2 ≤ R ≤ 6 is in
agreement with the one extracted from the t-DMRG, considering the error-bars. These
velocities are always smaller than the maximum velocity predicted by the theoretical
model.
This experiment has been a milestone in the study of the out-of-equilibrium dynamics
of closed quantum systems. It demonstrates that it is possible to perform a quantum
quench in a strongly interacting quantum system and then follow its dynamics with a
high degree of accuracy. Here, it points out the validity of the Lieb-Robinson theorem
in a real experimental situation. It has then to be noticed how cold atoms are crucial to
perform this experiment because they provide the only experimental setup where a real
closed evolution is possible and it can be used to study length scales comparable to the
numerical and analytic works.

2.3.2.2 Detection of the light-cone using matter-wave interference techniques

Another “light-cone” structure has been found in [238], where the authors study thermal-
ization of a one-dimensional bosonic system following a quench. Even if this light-cone
is not the same as in the previous case, it is anyway an important proof og the quasi-
particle approach.
The experiment is realized this way: A system of thousands 87Rb atoms is trapped in a
1D geometry at a temperature of 30− 110nK. The trapping is obtained by a magnetic
trap realized 100µm under the wires of an atom-chip. The application of an additional
magnetic field changes abruptly the shape of the trap from a single-well to a double-well
geometry dividing the system in two equal parts inside two tubes. This procedure is
the matter-wave analogous of a beam-splitter for photons. The double-well potential
separates the two subsystems for a time t. Then, the two clouds are released from the
trap and they interfere during their expansion. Using time-of-flights measurements it is
possible to access the relative phase φ (z, t) = θ1(z, t)− θ2 (z, t). This out-of-equilibrium
protocol can be seen as a quench because the initial state, the Bose-Einstein condensate
at the bottom of the single-well potential, is not an eigenstate of the time evolution
Hamiltonian, represented by a double-well geometry.
The observable studied in this work is the phase difference between the two clouds,

C(z̄ = z1 − z2, t) = <〈eıφ(z1,t)−ıφ(z2,t)〉

where the measures are repeated 150 for every value of t in order to compute the expec-
tation value.
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2 Lieb-Robinson bounds and light-cone-like dynamics

Figure 2.10: a) Plot of the function C(z̄) as function of z̄ for different times t. It is possible to see how
the function reaches a plateau at different values of z̄? that increase linearly in time. The
green line represents the relaxation value extracted theoretically using a Luttinger liquid
theory, as the time increases the measured C(z̄) approaches this line.
b) Plot of the values z̄? as function of time, the linear dependence between these two
quantities allows to extract the slope with dimensions of a velocity which can be compared
to Luttinger liquid theory. Figure from Ref. [238].

We can see that this observable decays exponentially in z̄ = z1 − z2 towards an equi-
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2 Lieb-Robinson bounds and light-cone-like dynamics

librium value, for examples the ones plotted in Fig. 2.10. The exponential decay stops
at z̄ = z̄c and the function remains then constant, C (z̄ > z̄c, t) = C(z̄c, t), as it is shown
in Fig. 2.10 (b). The analysis of different values of z̄c for different times exhibits a linear
proportionality between the two quantities, z̄c = 2ct, as it is shown in the bottom panel
of the same figure.

Figure 2.11: Comparison between the velocity extracted from the experimental points with error-bars
and the one of the Luttinger liquid lines. The gray line is computed in the case of an
homogeneous system while the red one in the case of a trapped one. The experimental
data and the theory for trapped systems are in agreement taking into account the error
bars due to the experimental conditions and resolution, see Supplementary Material of
Ref. [238]. This confirms that thermalization takes place per quasi-particle spreading in
the system and it is another proof of the validity of this picture in the interpretation of
post-quench dynamics. Figure from Ref. [238].

It is possible to compare the velocity extracted from the experimental data to the one
provided by a Luttinger liquid model. This model has a linear continuum dispersion
relation, ωk = c0k, i.e. all the excitations have a group velocity vk = c0. A good
agreement between the two quantities is found, as shown in Fig. 2.11.
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2 Lieb-Robinson bounds and light-cone-like dynamics

In this case we do not find a standard light-cone in the activation time of local observables.
The Hamiltonian of the system is in fact defined in continuum space, and the Lieb-
Robinson bound does not hold for these systems. Anyway, a “light-cone” structure is
present in the thermalization value of the studied observable. Even if this is not connected
to the Lieb-Robinson bounds, it is anyway connected to the quasi-particle approach
because the “velocity” of the thermalization is given by the velocity of these excitations.

2.4 Extension of the Lieb-Robinson bound to different types
of interactions

As we saw in the previous sections, many-body systems interacting via short-range inter-
actions have to respect some universal bounds on the time evolution. The Lieb-Robinson
bound is completely general and it states that local observables can propagate just inside
a “light-cone” structure. This effect has been observed in several numerical and experi-
mental works.
We want now to focus on a different type of interactions: namely long-range interactions.
Even if it is possible to extend the Lieb-Robinson theorem to different short-range inter-
actions, as exponentially decaying ones, it is not possible to extend it to long-range ones,
as 1/Rα, without drastic changes.

Logarithmic bound for α > D The simplest and most used long-range model is the
long-range Ising chain in transverse field(LRTI). In 1D, its Hamiltonian reads

H =
V

2

∑
i 6=j

Szi S
z
j

|i− j|α +B

N∑
j=1

Sxj ,

where V is the long-range coupling. B is the magnetic field and Sβi = 1
2σ

β
i is the spin-1/2

local operator.

Figure 2.12: Graphical representation of a long-range interacting spin systems such as the LRTI chain.
As it is possible to see, thanks to long-range interactions, all spins are connected and it is
in principle possible to send signals at arbitrary large distances. This is the main reason
why standard Lieb-Robinson bounds may not apply. Figure from Ref. [47].
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2 Lieb-Robinson bounds and light-cone-like dynamics

We can notice that the argument we used in Sec. 2.1.2 for the short-range Ising model
does no longer hold for its long-range version. In fact, if we want to analyze how a local
spin-flip evolves in time, we find that it affects all the sites due to the long-range term∑

i 6=j

Szi S
z
j

|i− j|α .

This means that the simple argument used before is no longer valid and a more technical
discussion is needed.
Following Ref. [163, 164], it is possible to find a bound if interactions decay sufficiently
fast. Intuitively, if the value of α is large we should recover the standard Ising model
with short-range interactions. It is then natural to look for a bound in the region where
interactions decay sufficiently fast. This condition over the long-range interaction is called
the self-reproducibility condition. For a generic long-range potential V (i, j), it reads∑

k

V (i, k)V (k, j) ≤ λV (i, j) , (2.14)

for a given constant λ > 0 and for every sites i and j. For the specific case of V (i, j) =
1/|i− j|α it imposes α > D. The time evolution operator can be written as power series
of t, which involves the summation of terms of the type

eıtH ∼
∑
n

tn

n

∑
i1

∑
i2

. . .
∑
in

V (i1, i2)V (i2, i3) . . . V (in−1, in) .

Terms of this type can be bounded using using (2.14) iteratively, which yields

tn

n

∑
i1

∑
i2

. . .
∑
in

V (i1, i2)V (i2, i3) . . . V (in−1, in) ≤ V (i1, i2)
tnλn

n!
. (2.15)

The bound on the commutator of two local operators comes directly from the previous
inequality summed over n. As we already did in Sec. 2.1.2, we take two operators AX(t)
and BY which are defined over two disjoints sets X and Y . The time evolution of the
operator AX can be expressed as a power series and then it can be bounded using (2.15).
In the specific case of V (i, j) = 1/|i− j|α this bound reads

‖ [AX (t) , BY ] ‖ ≤ CAX ,BY
1

|i− j|α
(
eλt − 1

λ

)
. (2.16)

This bound predicts a finite activation time t?, which becomes evident once the previous
equation is written this way

‖ [AX (t) , BY ] ‖ ≤ CAX ,BY e−α ln(|i−j|)
(
eλt − 1

λ

)
.

The horizon of correlations is then given by

t? =
α

λ
ln (|i− j|) ,
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which increases logarithmically with the distance R. For t < t?(R), the commutator is
algebraically suppressed.

Figure 2.13: Shape of the horizon found in Ref. [163]. The activation time is t? ∝ ln (R) and it divides
the R, t plane into two regions: a region for t < t? where correlations are algebraically
suppressed and another region for t > t?, where they are unbounded.

It has to be noticed that, depending on the value of α, the commutator can be bounded,
α > D, or unbounded, α < D. The fact that no bound is present for extremely long-
range interactions can suggest that in this case the propagation is instantaneous, or that
the result presented before has to be improved mathematically.
We will see in the next section that this logarithmic bound can be improved in different
ways but, anyway, still no bound is present for infinite systems and α < D.

Logarithmic bound in finite systems For finite systems it is possible to find a bound,
dependent on the system size L, for every value of α, as found by Storch et al. in
Ref. [165].
The authors start from the self-reproducibility condition∑

k∈Λ

1

[d (i, k) + 1]α
1

[d (k, j) + 1]α
≤ λ 1

[d (i, j) + 1]α
,

where they used a long-range potential of the form V (R) = [1+dist(i, j)]−α where
dist(i, j) is a generic distance. If α < D the convolution of the two functions on the
left-hand-side can grow more and more with L. In the thermodynamics limit, it is then
impossible to satisfy the self-reproducibility condition.
For finite systems it is possible to overcame the problem multiplying the left-hand-side
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by a size dependent factor NΛ in order to balance its divergence, namely

NΛ

∑
k∈Λ

1

[d (i, k) + 1]α
1

[d (k, j) + 1]α
≤ λ 1

[d (i, j) + 1]α
, (2.17)

where we define
NΛ =

1

sup
∑

k∈Λ [d (i, k) + 1]α
.

We can then determine the scaling of NΛ with the system size as

NΛ =


c1L

α
D−1 0 ≤ α < D

c2 ln(L) α = D

c3 α > D

where ci are all positive and non-zero constants. The function NΛ has also the property
to make the energy of the system extensive.
We can rewrite then rewrite Eq. (2.17) as∑

k∈Λ

1

[d (i, k) + 1]α
1

[d (k, j) + 1]α
≤ λΛ(L)

1

[d (i, j) + 1]α
,

where λΛ(L) ≡ λ/NΛ. This equation has the same form of Eq. (2.14) but with λΛ(L)
instead of λ. We can then write a bound on the commutator between AX(t) and BY as

‖ [AX (t) , BY ] ‖ ≤ CAX ,BY
1

|i− j|α

(
eλΛ(L)t − 1

λ

)
.

We can write the combination λΛ(L)t = λ (t/NΛ) and introduce the rescaled time τ =
t/NΛ. The previous equation takes now the same form of Eq. (2.16) with τ instead of t

‖ [AX (t) , BY ] ‖ ≤ CAX ,BY
1

|i− j|α
(
eλτ − 1

λ

)
.

In conclusion this bound predicts that, for all values of α, the commutator between two
local operator in a finite system is bounded once expressed in a rescaled time variable τ
which depends on the system size. We will come back on this result again in Sec. 3.6.3.

Algebraic bound for α > 2D The logarithmic bound we presented before can be im-
proved. In particular, in Ref. [166] the authors derive a more stringent bound than the
one we discussed before for α > 2D.
The authors study a long-range system of the type

H =
1

2

∑
i,j,µ

Sµ,iVµ(i, j)Sµ,j ,
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where Sµ,i is the component µ of the spin at site i and Vµ(i, j) is the interaction potential,
assumed to decay as 1/d(i, j)α. For α > 2D the authors demonstrate that it is possible
to derive a more stringent bound, namely

‖ [AX(t), BY ] ‖ ≤ K
[
e(vt−r/tγ) +

tα(1+γ)

rα

]
, (2.18)

where K is a positive constant depending on the specific operators, v is a constant
depending on the Hamiltonian, and γ = (D + 1) / (α− 2D) ≥ 0.
The activation time t? can be found imposing the exponent to be zero

vt? − r/t? γ = 0→ r ∼ vt? 1+γ
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Figure 2.14: Comparison between the algebraic bound proposed in [166] and the algebraic one proposed
in [163] it is possible to see how the first one is a more stringent bound that limits the
accessible region of the R and t plane to the time evolution.

From the previous equation we can then derive how the activation time scales with the
distance, finding a faster-than-ballistic dependence

t? ∝ Rβ,

where
β =

1

γ + 1
=

α− 2D

α+ 1−D ≤ 1.

This result is a more stringent bound on the time evolution of local observables than
the one proposed in Ref. [163] and discussed in Eq. (2.16), see Fig. 2.14 for a direct
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2 Lieb-Robinson bounds and light-cone-like dynamics

comparison. The importance of this result lies also in another fact. We expect that,
as α grows, the behavior of the system becomes more and more similar to the one of a
short-range model. For finite values of α the light-cone scales faster-than-ballistic but, if
we take the limit α→∞, we recover the Lieb-Robinson result t? ∝ R.
Recently a new bound of the same form has been proposed in Ref. [167] which derives
it for more general long-range Hamiltonians. If this bound is applied to two-body long-
range interactions, the result of Foss-Feig et al. (2.18) is recovered.

In the next section we will discuss a more important characteristic that these bounds
have to satisfy: they have to be able to predict the correct time evolution. The Lieb-
Robinson bound presented in Sec. 2.1.2 predicts a ballistic scaling of the activation time
with the distance for short-range interacting Hamiltonians. This has found to be true in
experimental and numerical works as the ones presented before and many others.
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3 Long-range Ising model in arbitrary
dimensions

In this chapter we present experimental, numerical and analytic results for the time evo-
lution of spin-spin correlations in long-range interacting quantum spin models. We start
reviewing the most important experimental and numerical results in the literature on
the dynamics of local observables in long-range interacting systems. We then present
our results for the long-range transverse Ising model. We start from the Monte-Carlo
simulations performed by G. Carleo, in collaboration with me, and then we derive in
detail my analytical results based on the quasi-particle approach.
We focus on long-range Hamiltonians describing spin models in generic dimensions, writ-
ten in the form

H =
1

2

∑
R6=R′

σλRJ
λρ
|R−R′|σ

ρ
R′ − h

∑
R

σxR. (3.1)

This describes a system of three dimensional spins, represented by the Pauli matrices
σλi , on a generic D dimensional lattice where the sites are labeled by their distance R,
and |R−R′| is the Cartesian distance between two sites. The labels ρ and λ correspond
to the directions of the spins in the 3D space λ, ρ = x, y, z . We will assume that the
interaction between spins decays algebraically in space as

Jλρ|R−R′| =
Jλρ

|R−R′|α ,

where the constants Jλρ can be positive or negative. The system can then be polarized
using a constant magnetic field of intensity h. We define the direction of the magnetic
field as x-direction for the spins.
This Hamiltonian is of the same type of the one already discussed in Sec. 2.4. We know
then that the commutator between local observables can be bounded for sufficiently
large values of α dependent on the dimensions. If α < D, no bound is known and the
propagation can in principle be instantaneous. For D < α the propagation is bounded
and a finite activation time t?, scaling logarithmically with the distance between the
points [163], is found

t? ∝ α ln(|R|).
This bound can then be improved for α > 2D, where t? takes an algebraic form [166]

t? ∝ Rβ

where β < 1 allows a faster-than-ballistic propagation.
The propagation of correlations induced by Hamiltonians of the type (3.1) has been
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studied numerically and experimentally in different situations. The results obtained
provide a strong dependence on the explicit form of the Hamiltonian used, on the initial
state, and on the value of α. Many of these results cannot be guessed a priori by the
general bounds on long-range interactions presented in Sec. 2.4. It has to be kept in mind
that the bound on the commutator and the bound on the correlations take the same form
just in specific cases. As we see Sec. 2.1.3 for the short-range case, this happens just on
particular states, where correlations decay sufficiently fast.
After an introduction to the main results found in the literature we will focus on my work
on the long-range transverse Ising model (LRTI), which corresponds to Hamiltonian (3.1)
with long-range coupling of the type

Jρλ = V δρ,zδλ,z.

The results we obtain are based on the mapping between the excitations of the Ising
Hamiltonian in the strongly polarized state and bosonic particles. Thanks to this par-
ticular mapping, it is possible to define excitations called magnons and derive their
dispersion relation. Our results can be easily extended to generic interacting bosonic
quantum systems with long- and short-range interactions.
We provide the equations for the time evolution of the spin-spin correlation function,
which can be easily generalized to more generic cases. Then we study the first- and
second-order divergences of the energy spectrum as a function of α and D, and precisely
relate them to the dynamical behavior of the correlations by computing analytically the
dominant contributions.
For strong decay of interactions, α > D+ 1, the group velocity of the quasi-particle exci-
tations is bounded, which yields a linear conic causal region. This behavior is similar to
that found for short-range interactions and corresponds to a dynamics significantly slower
than the known bounds [163, 166]. For weak decay of interactions, α < D, the energy
spectrum diverges in the infrared limit. It provides a vanishing characteristic time, inde-
pendent of the distance R, for the activation of correlations. The latter can be associated
with instantaneous propagation of correlations and the breakdown of causality. This is
compatible with the absence of known finite bound in this regime. Finite-size scaling of
the typical times precisely confirms this behavior. For intermediate decay of interactions,
D < α < D+1, we find a bent-cone causal region determined by a sub-ballistic algebraic
bound, t? ∼ Rβ , where β is some function of the exponent α and the dimension D. This
again corresponds to a dynamics that is significantly slower than the known bounds.
We study the full space-time dynamics of the spin-spin correlations for various values
of α. Taking into account the contributions of all quasi-particles, we confirm the three
regimes. We then characterize each regime in detail. For α < D, we perform finite-size
scaling of the correlation function, which confirms our analytical predictions for both the
bound and the amplitude of the correlations at the propagation front, and the breaking
of causality. For α > D + 1, we find a clear linear cone. We determine the associated
velocity and find excellent agreement with the expected value of twice the maximum
group velocity [161]. For D < α < D + 1, we find a clear algebraic bound, t? ∼ Rβ for
all tested cases and extract numerically the exponent β(α) in dimensions D = 1 and 2.
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3 Long-range Ising model in arbitrary dimensions

Finally we study the shape of the correlation front in dimension D > 1 and discuss its
symmetries which are related to the spectrum.
The theory proposed in this chapter for the specific case of the LRTI can be anyway
extended to more general systems. The Hamiltonian of the magnons is a quadratic
bosonic Hamiltonian, and many different systems can be described by using this class of
operators. We will see in Chap. 4 that the same Hamiltonian can be used to describe
long-range interacting bosons in the superfluid regime.

3.1 Experimental realizations

Various versions of Hamiltonian (3.1) have already been realized in the laboratory using
trapped ion techniques, see Sec. 1.3.3. In ion crystals it is possible to set a specific initial
state and then drive the system out of equilibrium performing a spin-flip. This triggers
a time evolution acting as a local quantum quench.

3.1.1 Innsbruck experiment

Jucevic et al. used this protocol, see Ref. [48], to drive out of equilibrium a long-range
interacting spin chain. The system is realized using 40Ca+ ions. The hyperfine states
of the atomic structures can be used to map it into a spin-1/2 system. The two states
|S1/2,m = 1/2〉 and |D5/2,m

′ = 5/2〉 are in fact coupled using Zeeman fields and they
correspond to |↑〉 and |↓〉. The |↑〉 is a metastable state and it decays into |↓〉 in 1.16 s
thanks to a quadrupole transition of characteristic wavelength λ = 729nm. The crystal
structure is formed naturally once the ions are trapped because of the electric repulsion.
The initial state is set to |↓〉 using optical pumping techniques with a 99, 9% precision.
The presence of the trap slightly changes the energy levels making the system slightly
inhomogeneous. However this effect can be quantified in a difference of 20Hz, which is
negligible compared to the typical energy scales of the Hamiltonian.
Interactions between the two spin states are obtained using a laser shining the chain.
The laser is set to carry two frequencies ω± = ω0 ±∆, where ω0 is the energy difference
between |↑〉 and |↓〉, and ∆ is a positive detuning. The momentum exchange between
the ions and the laser creates an effective potential between the hyperfines states that
can be written as

H =
∑
i,j

Ji,jσ
x
i σ

x
j ,

where the spin-exchange couplings are given by

Ji,j = ΩiΩj
k2

2m

∑
n

bi,nbj,n
∆2 − ν2

n

.

Ωi denotes the Rabi frequencies of the bi-chromatic laser beam on the ions, labeled by
i = 1, . . . , N , k = 2π/λ, n is the wave-number, λ is the laser wavelength, and the mass of
the ions is m. The νn coefficients are the oscillation frequencies of the atoms around their
equilibrium positions. The coefficients bi,n are the Lamb-Dicke factors that depend on
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3 Long-range Ising model in arbitrary dimensions

the displacement of the ions from their equilibrium position [122]. This way it is possible
to map the motion of the ions into an effective interaction at the spin level.
Increasing the detuning ∆ to a value larger than any transition, it is possible to engineer
a long-range anti-ferromagnetic interaction the form

Ji,j ∝
1

|i− j|α ,

where α can be tuned from extremely small α ∼ 0 to quite large α . 3, hence realizing
a fast decaying interaction of the dipolar type.
The local magnetic field is then created using a shift in the frequency of the laser beam
of a value δ = 2B, which creates the requested interaction term

B
∑
i

σzi .

The experiment is carried out in the strongly correlated regime, B � Ji,j , where processes
like

|↑〉 |↑〉 → |↓〉 |↓〉
are suppressed and the only ones still present are

|↑〉 |↓〉 → |↓〉 |↑〉

which conserves the magnetization along the z-axis.
We can then write the Ising Hamiltonian using the σxi = σ+

i + σ−i to obtain an effective
Hamiltonian

σxi σ
x
j =

(
σ+
i + σ−i

) (
σ+
j + σ−j

)
= σ+

i σ
+
j + σ+

i σ
−
j + σ−i σ

+
j + σ−i σ

−
j .

Since the transition of the type |↑〉 |↑〉 → |↓〉 |↓〉 are not allowed, the terms σ+
i σ

+
j and

σ−i σ
−
j can be dropped on this sub-space. The effective Hamiltonian is then of the XY

type

H =
1

2

∑
i,j

Ji,j

(
σ+
i σ
−
j + σ+

j σ
−
i

)
.

From Hamiltonian (3.1), it can be derived taking the limit B → ∞ and using V as the
unit of energy.
The system is made of 15 ions and is prepared in the fully polarized state

|Ψ0〉 = ⊗15
i=1 |↓〉i .

The central spin is then flipped to |↑〉 driving the system out of equilibrium and creating
a non-trivial time evolution. The effect of the local perturbation spreads over the system
thanks the fundamental excitations defined in this system, called magnons. In the weakly-
interacting regime, these excitations are independent and they contribute to the time-
evolution of the magnetization. The observable followed during the time evolution is the
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Figure 3.1: Time evolution of 〈σzi (t)〉 following a local quench at the center of the chain for different
values of α, in red, and a comparison to the short-range case, in white. a) for α = 1.41 the
behavior of the model is extremely close to the one from the dispersion relation of the short-
range model. The model is then approximatively short-range for the regime we are looking
at. b) and c) show the same plot for α = 1.07 and α = 0.75, where the interaction range
becomes larger and larger and consequently the behavior of the model is becoming more
and more long-range. The difference between these two regimes is even more accentuated
in panel d) where the correlation function for α = 0.75 of the spins i = 6 and i = 13 are
shown and they are compared with the Lieb-Robinson bounds for short-range systems. In
the top panel a clear violation of this bound is present for both the set of data, the signal
arises in the region of small times violating the Lieb-Robinson bound. In the bottom panel
the same quantities for α = 1.41 are plotted. It is possible to see how the violation of
the Lieb-Robinson bounds is almost impossible to detect and the system behaves almost
as a short-range interacting system. Finally, in panel e) there is a comparison of the
velocity of the light-cone. The solid line is the maximum velocity of the long-range model
as function of α while the dashed one is the maximum velocity of the short-range model.
The measured velocity, red circles is compatible with the maximum group velocity of the
long-range model and it converges to the one of the short-range interacting increasing the
values of α showing that the model becomes the more and more short-range interacting as
the value α is increased. Figure from Ref. [48].
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mean magnetization along the x-axis, 〈σxi (t)〉, as a function of the distance between the
ion i and the central site, where the local quench occurs. For different values of the decay
α the dynamics is compared with the one of the short-range model, α→∞.
In Fig. 3.1 the time evolution of 〈σzi (t)〉 is plotted as a function of the site i and of

the time t for three different values of α. In panel a) the time evolution for α = 1.41 is
shown with its front in red. It is then compared to the dynamics in the same local quench
protocol for the short range model (white lines). It is possible to see how these two are
close and how the short-range model is able to capture the dynamics of the long-range
one.
If the value of α decreases, panels α = 1.07 b) and α = 0.75 c), a signal appears earlier
and earlier in the long-range model and the difference in the activation time between the
long- and the short-range models become larger. Moreover, the two differ also in the way
the correlation function behaves outside this wave-front signal, i.e. leaks. While in the
short-range case a sharp horizon is present, a more persistent one appears in the long-
range case. This difference in the leaks is perfectly captured by the bounds presented
in Sec. 2.4. For the short-range case the bound is in fact exponential, i.e. the signal
falls off really quick outside the correlated region. For the long-range case it is algebraic,
i.e. it falls down quite slowly outside the region where correlations are created. A clear
violation of the short-range bound presented in Sec. 2.1.3 is present and it points out
that the time-evolution in presence of short- and long-range interactions is very different.
Since quasi-particles are well defined in this model it is possible to check the predictions
of the Cardy-Calabrese argument, see Sec. 2.2. In panel e), the maximum group velocity
of the magnons as a function of α (dashed line) is compared with the one of the short-
range model (solid line). These can then be compared to the velocity extracted from
the experimental data. It is possible to see how the data for small values of α are
consistent with the long-range model and far from the short-range ones. Increasing α
the velocities extracted from the long-range model approach the ones of the short-range
one. Physically, this effect is motivated by the fact that, as α increases, its long-range
behavior disappears.

3.1.2 JQI experiment

The previous experiment proved that a violation of the Lieb-Robinson bound is present
when the interactions are sufficiently long-range. However it does not focus on the shape
of the correlated region. The shape of the correlated region is the key difference between
the long-range and the short-range interactions. In the presence of sufficiently long
interactions, see Sec. 2.4, the shape of the horizon of the correlation function is algebraic

t? ∝ Rβ,

with β ≤ 1. In contrast to the linear ballistic light-cone in the short-range interacting
systems, β = 1, predicted by the Lieb-Robinson bound.
The work of P. Richerme et al presented in Ref. [47] address this question. The procedure
is the same as in the previous experiment but 171Y b+ ions are used. As before, the spin
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model is obtained using two hyperfine states, namely the |2S1/2, F = 0,m = 0〉 and the
|2S1/2, F = 1,m = 0〉, which are the |↑〉 and |↓〉 along the z-axis. The ion crystal is formed
naturally by the Coulomb repulsive force between the ions and the trapping one. After
that the long-range interactions are created using laser fields. These interactions map the
motion of the ions into an effective long-range potential between the spins. The initial
state can be set using optical pumping in the fully polarized state. In the experiment
of Ref. [47], a global quench is performed letting the system time evolve using the LRTI
Hamiltonian

H =
∑
i,j

Ji,jσ
x
i σ

x
j ,

the coupling Ji,j fall down as a power law |i− j|−α with tunable parameter α between 0
and 3.
These long-range interactions are obtained using a dipole laser interaction as described
for the experiment at Innsbruck. The initial state is the product state where all spins
are down

|Ψ0〉 =
⊗
i

|↓〉i ,

obtained using optical pumping. The initial state is not an eigenstate of the Ising Hamil-
tonian and then a non trivial time-evolution appears. In the microscopic picture, every
site of the chain acts now as a source of quasi-particles.
After a time t the interaction Hamiltonian is shut down and the system is probed using
a CCD camera with a single site resolution. This is able to measure the state of every
site and spin-spin correlations, namely

Cij = 〈σzi (t)σzj (t)〉 − 〈σzi (t)〉〈σzj (t)〉, (3.2)

can then be extracted. These measurements are repeated 4000 times for every value of
the evolution time t in order to get the dynamics of the averaged observable.
In Fig. 3.2 it is possible to see the time evolution of the spin-spin correlation function

(3.2) as function of the distance i− j and for different values of α. For all the values of
α an algebraic and faster-than-ballistic light-cone is found. The parameter β extracted
from the data goes to one as the parameter α is increased, in agreement with literature
results [166, 167]. The shape of the light-cone is computed imposing a threshold for
the quantity Cij equal to Cthres = 0.1Cmaxij . It is then possible to extract the local
velocity for these points and see that it is always faster than the Lieb-Robinson one.
The only exception is α = 1.19, where the velocity is constant and it is slower than the
one of the short-range chain. The authors anyway do not repeat the same calculus for
lower values of Cthres, even if it is possible to see, for example in the case α = 1.19,
that a faster signal appears. They explain this faster-than-ballistic light-cone using the
indetermination principle. A process defined by the time scale τ ∼ 1/Eij is determined
by Eij ∼ 1/|i − j|α which determines a bent light-cone τ ∼ |i − j|α. The small size
of the system makes anyway difficult to determine the real velocity of the front. This
measure can be extracted from a fit of the correlation front in a region where Cthres goes
to zero which requires long times and large systems, as we will explain in Sec. 3.6.3 using
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Figure 3.2: Time evolution of the correlation function (3.2) for the Ising chain with different values
of α. for every value of α the light-cone shape is computed, finding a faster-than-ballistic
propagation in every case. The instantaneous velocity is extracted from the numerical data
and compared with the one of the short-range model finding that the first is alway larger
than the latter. Figure from Ref. [47].

analytic computations.
As for a local quench, also for the global one features a violation of the Lieb-Robinson
results when long-range interactions are present between different sites. The violation of
the Lieb-Robinson bound is then important to compute new bounds on the dynamics of
long-range interactions.
In the two cases already discussed, many of the values of the parameter α are extremely
small. They are usually not in the range where a bound on the correlations is present
and where, in principle, correlations can be unbounded. The fact that here they seem to
be bounded may be due to the relatively small size of the system, not enough large to
have a strong violation.
It is then important to study larger systems in order to discriminate from the finite
size effects in the experimental setups. Modern numerical methods can access larger
systems compared to experimental setups. They allow to simulate tens (t-VMC and
DTWA methods) to almost a thousand (t-VMC) sites. Long-range interacting systems
are anyway quite tricky to analyze due to their size effects and the thermodynamic
limit is not always well defined. These numerical methods have to be compared then
to analytical results computed in the regimes where they are available. These analytic
results can be used to find the real behavior of the long-range interacting systems in the
thermodynamics limit.
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3.2 Theoretical results

We are now going to analyze the results on the propagation of correlations following
a quantum quench for one and two dimensional LTRI models using two numerical ap-
proaches.

3.2.1 TDVP in the one-dimensional Ising model

We start discussing Ref. [169], where Hauke et al. study the dynamics of magnetization
and entanglement in a LRTI chain (1D) following a local quench. This study has been
done using the time dependent variational principle (TDVP) algorithm applied to matrix
product states (MPS). A description of the method can be found in Ref. [169] and
references therein. This method is similar to the t-DMRG which has already been used
in [215] and other works for short-range interacting systems and here it is extended for
long-range ones. The numerical results are then compared to the ones obtained by the
quasi-particle picture.
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Figure 3.3: Time evolution of the magnetization following a local quench in the center of a LRTI
chain computed for different values of α using TDVP, upper panel, and the quasi-particles
approach, lower panel. The computations performed using the spin wave approximation
can reach longer times. The regimes are then much clearer in these data compared to the
TDVP ones. Left column: time evolution for α = 3 computed with TDVP (a) and quasi-
particle approach (d). A Clear ballistic light-cone appears in both of them. Central column:
time evolution for α = 3/2 computed using TDVP (b) and quasi-particles approach (e).
In this case the time evolution is not ballistic, but it represents an algebraic increasing
light-cone. Right column: time evolution for α = 0.7 computed using the TDVP (c) and
the quasi-particle approach (f). For this values a clear instantaneous propagation is present
in the quasi-particle data. In the TDVP this instantaneous behavior is present even not so
strong as in the other data. In this case, the analytic approach is fundamental to determine
the right propagation regime. Figure from Ref. [169].

In Fig. 3.3 the time-evolution of 〈σxi 〉(t) values in a one-dimensional LRTI chain follow-
ing a local quantum quench for different value of α is presented. The data are obtained
using the TDVP (upper panel) and a quasi-particle approach (lower panel).
We start from the TDVP results which are computed for α = 3, 1.5, and 0.7. In the
first case Fig. 3.3 (a), a ballistic propagation is found. For α = 1.5, Fig. 3.3 (b), we can
still see a strong signal propagating ballistically. Anyway, outside this region, a smaller
signal is present. This is not propagating ballistically: its front is clearly bent and it
suggests a slower-than-ballistic propagation. For α = 0.7, Fig. 3.3 (c) a signal appears at
small times in a large region of the system following the quench. In the inside, a strong
ballistic propagating signal is still present as in the other cases.
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The TDVP can anyway access relatively small times before that the growth of entangle-
ment in the system is too large and the dynamics for further times cannot be explored.
The authors then compare these numerical results with the ones obtained using a quasi-
particles approach. This is based on the linear spin wave theory and we will describe it
in full detail in Sec. 3.4. These results are presented in the lower panel of Fig. 3.3. In
Fig. 3.3 (d) the propagation for α = 3 is presented and it exhibits again a ballistic prop-
agation of the front. For α = 1.5,Fig. 3.3 (e), the propagation is not completely clear.
It seems to have a faster-than-ballistic spreading for small times, then a linear one and
finally a slower-than-ballistic one when it reaches the border of the system. For α = 0.7,
Fig. 3.3 (f), the propagation is then clearly instantaneous in the system. Magnetization
is activated at the borders of the system right after the quench.
The authors then conclude that three regimes are present in the propagation of correla-
tions depending on the value of α

• an instantaneous regime α < 1, where correlations are activated instantaneously
everywhere in the system right after the quench

• a quasi-local regime 1 < α < 2, where correlations are not instantaneous but they
propagate algebraically. Even if it is not clear if they are faster- or slower-than-
ballistic.

• a local regime α > 2, where the propagation of correlations is ballistic.

The LSWT allows to access the energy spectrum of the fundamental excitations of the
system, which reads

Ek = 2
√
h (h+ V P (k))

where P (k) is the Fourier transform of the long-range potential

Pk =
∑
R

e−ıkR

Rα

which depends on the exponent α.
The three regimes are explained using the different divergences appearing in the disper-
sion relation as a function of α:

• For α < 1 the dispersion relation is divergent around k ≈ 0 corresponding to the
non-local regime.

• For 1 < α < 2 the group velocity ∂kEk is divergent around k ≈ 0 corresponding to
the quasi-local regime.

• For α > 2 both the dispersion relation and the group velocity are finite and the
propagation is ballistic. The light-cone velocity extracted from the numerics can be
compared with the one extracted from the spectrum of excitations finding a perfect
agreement between them. This is presented in Fig. 3.3 (d), where the dashed line
is the maximum velocity of quasi-particles.
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This work identifies then three different regimes in the propagation of correlations de-
termined by the divergences in the excitations spectrum. Just one regime is unbounded,
for α < 1, in agreement with the absence of bounds for these values of α. For α > 1
the propagation is always bounded but a direct comparison to the bounds presented in
Sec. 2.4 is not explicitly carried out.
This perfectly explains the propagation of correlations, it would be possible anyway to
find different observables with a behavior that cannot be explained from the spectrum
alone.

3.2.2 Quench from an initial product state

As we discussed for short-range interacting quantum systems, the bounds on the time
evolution of local observables can be derived from the bounds on the norm of the com-
mutator taking into account the correlations already present in the initial state. The
dependence of the propagation on the initial state has been studied in Ref. [168]. As
we found in Sec. 2.4 it is possible to bound the commutator between local observables
if α > 1. In this work Eisert et al. demonstrated that it is possible to have a lower
bound on the propagation of correlations if the initial state is a product state. They
show analytically that in such a state, the bound applies for α > 1/2 while in the case
of a generic initial state, it applies for α > 1. They set the system in an initial product
state and then they let it evolve under the LRI Hamiltonian

H =
∑
i 6=j

V

|i− j|ασ
z
i σ

z
j . (3.3)

The time evolution of the x− x spins correlations 〈σx0σxδ 〉 − 〈σx0 〉〈σxδ 〉 are then evaluated
using the exact expressions derived in Ref. [239]. In Fig. 3.4 the time evolution of
correlations for different values of α is shown for the Ising model for the case where the
initial state of the system is a product state. For α < 1/2 the propagation of correlations
is instantaneous, the activation of correlations takes place in the same way for all the
values of the distance δ. This result is compatible to the bound on the time evolution
starting from an initial product state. For 1/2 < α < 1, the spreading of correlations
is not instantaneous but an activation time, depending on the distance, t?(R) appears.
For this range of values of α, t? seems to scale faster-than-ballistic. For α > 1 the
propagation is ballistic over some tens of lattice sites and it then becomes slower-than-
ballistic. These three regimes are similar to the ones found in Ref. [169] we briefly
discussed above. Anyway, the fact that in this case the correlations in the initial state
are zero, since we start from a product state, changes the ranges of values of α where
these regimes occur by a factor 1/2.
The importance of the initial state is something that have to be taken into account
carefully. In fact, many times it has been assumed that the bound over the local operators
is the same as the one on the observables. As we motivated in Sec. 2.1 and as it has been
rigorously demonstrated in Ref. [240], the presence of correlations in the initial state
matters in both long- and short-range interacting systems.
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Figure 3.4: Time evolution of the spin-spin correlations for a system prepared in a product state
and evolved in time under the Hamiltonian (3.3) with different values of α. The data are
obtained evaluating the exact expressions of the correlation function presented in Ref. [239].
Left figure: time evolution for α = 1/4. An instantaneous time evolution is found for small
values of α. Correlations activate everywhere right after the application of the Hamiltonian.
Central figure: time evolution for α = 3/4. A faster-than-ballistic propagation is found
for 1/2 < α < 1. This is due to the fact that the initial state is a product state and
no correlations are present at the beginning. Right figure: rime evolution for α = 3/2.
A ballistic propagation is found over some tens of sites and then it becomes slower-than-
ballistic. These three figures point out the dependence of the propagation on the initial
state. Comparing them with the results presented in Fig. (3.3) we can see how the same
three regimes are found but for different values of α depending on the initial state. Figure
from Ref. [168].

3.2.3 Spin models in dimensions higher than one

Schachenmayer et al. in Ref. [172] studied the effect of the dimensionality using the
Discrete Truncated Wigner Approximation (DTWA). An interesting introduction to this
numerical method can be found in the same work and in references therein. The authors
study the time evolution of one and two points correlations. They set the system in a
product state and then let it evolve under the influence of the Ising or XY Hamiltonian.
This is done in one dimensional systems, where a comparison between the results of
DTWA and t-DMRG is possible. Then, they extend their approach to two dimensional
systems, where t-DMRG is not available for long-range systems.
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Figure 3.5: Time evolution of spin-spin correlations along different directions in one-dimensional Ising
model for different values of α, α = 1 upper panel and α = 3 lower panel. For all the studied
observables a comparison between the exact diagonalization and DTWA is presented for bi-
dimensional system of sizes 31×31 finding consistent results between these two approaches.
In this case the authors find a ballistic propagation for all studied cases. Figure from
Ref. [172].

In Fig. 3.5 the time evolution of xx- and yy-spins correlations for a 2D systems are
computed using the DTWA and then compared with the exact solutions for the Ising
model. The two methods are again in agreement for the studied values of α. For α = 1
the correlations show a rapid activation at all distances for both the observables. As
we saw above, for small values of α it is possible to find fast propagating signals in
correlation functions. For α = 3 the situation is different and it is possible to see how
distant spins remain uncorrelated over longer computational times meaning that the
spreading of correlations in this case is bounded in some way.
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Figure 3.6: Time evolution of spin-spin correlations along different directions in bi-dimensional XY
model for different values of α, α = 1 upper panel and α = 3 lower panel. For all the studied
observables a comparison between the exact diagonalization and DTWA is presented for
systems 4×5 finding consistent results between these two approaches. In this case, different
regimes are found for different values of α: a ballistic propagation for α = 3 and a faster-
than-ballistic propagation for α = 1. This becomes clearer looking at the white lines in
all the plots. These represent the points where the correlation function reaches a values of
0.05 and they give information about the activation time t?(R). Figure from Ref. [172].

In Fig. 3.6 the time evolution of the same quantities are plotted for different values
of α in a 2D XY model. Again for the XY model, the agreement between the exact
diagonalization and the DTWA results is perfect. For α = 1, the propagation is fast and
independent on the distance j. This effect is even clearer if we observe the white lines
in the plots. They represent the values of t where the correlation function reaches the
threshold Cthres = 0.05 at fixed j. This is reached at the same time everywhere in the
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system for α = 1, pointing out an instantaneous propagation.
The same plots are shown for α = 3 where, again, a good agreement between the DTWA
and the exact diagonalization data is found. In this case a distance-dependent horizon
is found. As before, the white lines represent the value of time where correlations reach
Cthres = 0.05 for different distances. There, the activation time depends on the distance.
The light-cone is given by the values of τ where the correlation function reaches Cthres at
different j. In Fig. 3.7 (a) the values of τ as function of j are plotted in log-log scale for
one-dimensional and bi-dimensional systems for different α. In all the studied cases, the
authors find a linear proportionality between the logarithm of the two studied quantities.
The same analysis is repeated for the one-dimensional chain using the t-DMRG which
gives results in fair agreement with the DTWAmethod. These both suggest a dependence
of the form

τ ∝ jη, (3.4)

where η depends on α.
Repeating this study for different values of α, it is possible to determine the dependence
of the parameter η on it, which is shown in Fig. 3.7. For one dimensional systems, the
same can be done using t-DMRG. The parameters η extracted from DTWA and t-DMRG
are in agreement, in particular for small values of α in one dimension. In two dimensions
the results are only provided by the DTWA. The (b) and (c) panels show a clear difference
in the behaviors of the horizon between one and two dimensional systems:

• In the one-dimensional case, the propagation is always local with η > 0 also when
α < 1, where we expect to find an instantaneous regime. The value η increases then
as α grows becoming larger than 1 for α ∼ 3. This behavior is slightly different in
the t-DMRG data, where η seems to saturate to 1 for α ∼ 3. The DTWA works
better for small values of α and this explains this discrepancy between the two
approaches in the region 2 . α . 3.

• In the two-dimensional case, three clear regions are found for different values of α.
A region where the propagation is instantaneous, η ≈ 0, for α < 2. A region where
the propagation is local but faster-than-ballistic for 2 < α < 3, where η grows from
0 to a value close to one. For α > 3 a nearly ballistic region, where η ∼ 1 and a
linear light-cone appears.

It remains an open question to see how the dimensionality plays a key role for the XY
model and just two regimes are found forD = 1 (a faster than ballistic and a ballistic one)
while three regimes are found for D = 2. For α . 2 the propagation is instantaneous,
for 2 . α . 3 the propagation is algebraic and faster than ballistic and for 3 . α the
propagation is nearly ballistic.
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Figure 3.7: Study of the parameter η as function of α for the one-dimensional and bi-dimensional XY
model. These values are computed using DTWA approach and forD = 1 they are compared
to the ones extracted from t-DMRG. Upper panel: Log-Log plots of the function τ(R) as
defined in Eq. (3.4) as function of j. It is possible to see how correlations are activated
instantaneously for α = 1/2 in D = 1 and for α = 2 in D = 2. Using the same plots its
is possible to find that for α = 2 in D = 1 and for α = 3 in D = 2 a faster-than-ballistic
light-cone is found, η < 1. The dependence of η on α is computed using DTWA and
t-DMRG for a one-dimensional system and they are presented in Figure (b). It is possible
to see again how the agreement between the two is better for small values of α than for
larger ones. Both of them predict a faster-than-ballistic spreading for all values of . For
larger values the DTWA predicts a slower-than-ballistic propagation while the t-DMRG
a ballistic one. The quantity η as function of α is then computed for a bi-dimensional
system, in this case the DTWA is the only available numerical method. Three regions are
found depending on α: for α . 2 η ∼ 0 which identifies an instantaneous signal appearing
in the system. For 2 . α . 3.5 the parameter η increases almost from 0 to 1 determining a
faster-than-ballistic propagation. For 3.5 . α the value η ∼ 1 correspondent to a ballistic
propagation of correlations. Figure from Ref. [172].
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3.2.4 Conclusion for the literature results

The discussion of these three very important works in the literature aims to point out
the variety of results obtained by different methods for the propagation of correlations
in long-range interacting quantum spin systems. The bounds on these models predict
two different regimes (a bounded and an unbound regime) separated by the critical value
α = D. The numerical results show anyway a richer structure with an unbounded,
an algebraic and a ballistic regimes separated by values of α that depend son different
details. In Ref. [169] these different regimes have been connected to the microscopic
theory through the quasi-particle approach, which shows different divergences.
If the initial state is a product state, these regimes are found for smaller values of α.
Finally, the data from one and two dimensional XY systems, point out that the regimes
found in one dimension are not found in two dimensions. This suggests that the study
of one dimensional systems is not enough to understand the full physics of the out-of-
equilibrium dynamics. It is worth stressing that most of these results were, however
found from dynamics in relatively small systems. Their behavior in the thermodynamic
limit still remains open.
In order to understand and clarify all these results coming from different models, a general
theory valid for every dimension is needed. This will help to connect the different results
from different systems and to connect the microscopic theory with the results of the
different general bounds found in the literature. The development of this theory is the
main topic of this chapter and it is the core of my work. The connection between the time
evolution of correlations and the microscopic quantities, such as the energy spectrum,
will be investigated.

3.3 Monte Carlo results for D = 1

Before to present our analytical work, let us discuss Monte Carlo results for the LRTI
model, which form a basis for our study. These results have been obtained by G. Carleo
in collaboration with me and they are published in a joint work, Ref. [23].
We will focus on the Long-Range Transverse Ising Model (LRTI)

H =
V

2

∑
R6=R′

σzRσ
z
R′

|R−R′|α − h
∑
R

σxR, (3.5)

where σjR with j ∈ {x, y, z} are the local Pauli matrices and |R −R′| is the Cartesian
distance between the two sites R and R′ on the D-dimensional hypercubic lattice. .
We will study the time evolution of the correlations along the z direction

Gσσc (R = |R−R′|, t)−Gσσc (R = |R−R′|, t = 0) = 〈σzR(t)σzR′(t)〉c − 〈σzR(0)σzR′(0)〉c

for different values of α ranging from extremely long-range α ∼ 0 to α→∞.
The t-VMC has already demonstrated to be an accurate method to describe the time-
evolution of short-range interacting many-body quantum systems [22, 216]. We use it to
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study the time-evolution of Hamiltonian (3.5), which is the first time this method has
been used to study the effects of long-range interactions in the time evolution.
As we said, the t-VMC is based on a wave function of the Jastrow type,

|Ψ (t)〉 = e
∑
k λk(t)Ok |Φ0〉 ,

where the operators Ol are the operators taken into account to describe the dynamics.
For the LRTI chain, the operators Ok determining the time evolution are

Ok = σzkσ
z
−k,

already taken into the center of mass reference frame and σzk =
∑

R e
−ıRkσzR.

The equation of motion for the time dependent parameters λk(t) can then be solved using
this specific set of operators and then the time evolution of the wave-function is fully
determined. This can be used to compute time averages and expectation values. The
time evolution of these parameters is in fact given by a first order differential equation
which can be solved using extremely stable tools allowing the exploration of large times.

Figure 3.8: Time evolution of the spin-spin correlations following a quantum quench in a LRTI chain
with different values of α. The initial state is the ground state of (3.5) in one dimension
and we perform a quantum quench at fixed magnetic field. Different regimes are found
for different values of α. For α < 1 the propagation is instantaneous. For 1 < α < 2 the
propagation exhibits a horizon which is algebraic but with a slower-than-ballistic behavior.
Finally for α > 2 the propagation is ballistic. The extremely long computation times
accessible using the t-VMC with the large system sizes make possible to have a clearer
characterization of these regimes than in the results of other methods. The large system
size allows to see that the activation of correlation for α < 1 takes place at the same time
at any length. For 1 < α < 2, the long computation time allow to extract a clear value of
the scaling of the horizon pointing out that it is slower-than-ballistic. For α > 2 a linear
interpolation of the correlation front allows a high precision of the value of the light-cone
velocity that can be compared to analytic methods, see Sec. (3.6.1). Results obtained by
G. Carleo in collaboration with my and published in a joint publication, Ref. [23].

In Fig. 3.8 the results for the time evolution of the spin-spin function

Gσσc (R, t) = 〈σzi (t)σzi+R(t)〉c − 〈σzi (0)σzi+R(0)〉c
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following a global quantum quench in the LRTI chain with different values of α are
presented [23]. For α < 1 the propagation of correlations is instantaneous and the corre-
lations are activated everywhere in the system right after the quench. For 1 < α < 2 the
propagation of correlations is non-instantaneous, but it is not ballistic, i.e. a non-linear
light-cone appears. Finally, for α > 2 a ballistic spreading of correlations is present,
compatible with the fact that for large value of α the model is close to the behavior
expected in short-range counterpart of Hamiltonian (3.5). These results are compatible
with the ones found in [169] using the t-DMRG algorithm for a local quench. These re-
sults, however, significantly extend previous ones because the long computational times
allow to extract more details from the numerical data. In particular, it is possible to see
how the quasi-local regime has a clear slower-than-ballistic propagation of correlations,
see also Fig. 3.9. For the instantaneous regime, a clear violation of locality is present and
correlations are activated at every distance in an extremely short time.
The time scales accessible by these simulations are extremely large, order of hundreds of
time cycles, while the ones accessible by the methods discussed before are of the order
of ten at most. This allows us to extract precise results from these data, such as the
velocity of the light-cone, that will be compared with the maximum group velocity of the
excitations, or the shape of the light-cone for the quasi-local regime.
The initial state of the system is the ground state of the initial Hamiltonian and correla-
tions are already present in the system before the quench. We find that the values of α
separating these regimes are always larger than the ones presented in [168] for an initial
product state.
The large computational times accessible using the t-VMC allow to extract the scaling
of the correlation function in the quasi-local regime, 1 < α < 2, finding that it is slower
than ballistic. The value of the light cone is extracted from the Monte Carlo results
imposing a threshold ε to the correlation function. The activation time t?, defined as the
moment where the correlation function reaches the value ε, depends algebraically on the
distance R

t? ∝ Rβ.
For every value of ε we can then extract the value of β. We then take the limit ε → 0
repeating the previous procedure for smaller and smaller values of ε. We find then that
the function β (ε) takes a finite value in this limit.
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Figure 3.9: Values of the scaling parameter β of the horizon for α = 3 (a1) and for α = 3/2 (b1). These
values are computed fitting the activation time t? obtained imposing different thresholds
ε to the correlation function computed using the t-VMC. For the ballistic case (a2) it
is possible to see how β → 1 as we take smaller and smaller ε. For α = 3/2 (b2), the
same method gives β → 3/2 pointing out that the propagation is slower-than-ballistic. We
will clarify this result using the quasi-particle picture in Sec. (3.6.2). in the same section
we will detail also the ε method to extract the light-cone shape we briefly described here.
Results obtained by G. Carleo in collaboration with me and published in a joint publication
Ref. [23].

In Fig. 3.9 the results for a decreasing values of ε are presented for the α > 2 region
(upper panel) and for 1 < α < 2 region (lower panel). The coefficient β in the first case
decreases to β = 1 as the threshold ε vanishes. It corresponds to a ballistic propagation.
In the second case, the same procedure gives us a value of β = 3/2. It corresponds to a
sub-ballistic propagation of correlations. The last result is quite surprising because the
propagation is slower than ballistic instead of being faster as may be expected from the
extended Lieb-Robinson bound, see Sec. 2.4.
We need then an analytic approach to clarify these questions:

• How is it possible to explain the propagation regimes from the microscopic point
of view?

• How is it possible to characterize better the regimes found in the numerics? In
particular: determining the velocity in the ballistic regime, finding the scaling of
the light-cone in the quasi-local one and determining how locality is broken for
α < 1.

In the next chapter we study these points using the linear spin wave theory (LSWT). A
similar approach is used to analyze the spectral properties in one dimension. Here we
will extend the theory to the D-dimensional case and to include the full contribution of
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the magnons to the correlation function under study. Finally we will extract analytic
results where available characterizing the three regimes found and extending our analysis
to generic dimensions.

3.4 Spin wave approximation

We want to start our discussion presenting a method to diagonalize Hamiltonian (3.5).
From this point to the end of this chapter all the results presented have been derived
directly by the author and published in Ref. [170]. In the case of a large magnetic field,
the state of the system can be visualized as a strongly polarized state along the x-direction
and small oscillations around it due to the long-range potential. These oscillations will
be the fundamental excitations of the model and they are responsible for the spreading
of correlations and other local observables.
Let us first briefly recall the quadratic approximation for the LRTI model, in order to
write Hamiltonian (3.5) into a quadratic form we use linear spin wave theory (LSWT).
We first rotate the reference axes around the free axis y by an arbitrary angle θ in order
to find the minimum of the classical energy. In the rotated frame, the new spin operators
read

σx′R = cos θ σxR − sin θ σzR , σy′R = σyR , and σz′R = sin θ σxR + cos θ σzR,

and the Hamiltonian

H =
V

2

∑
R6=R′

cos2 θ σz′Rσ
z′
R′ + sin2 θ σx′Rσ

x′
R′ − sin θ cos θ

(
σx′Rσ

z′
R′ + σz′Rσ

x′
R′
)

|R−R′|α

−h
∑
R

(
sin θ σz′R + cos θσx′R

)
.

We then use the approximate Holstein-Primakoff transformation [241, 110]

σz′R ≈ a†R + aR and σx′R = 2nR − 1 = 2a†RaR − 1, (3.6)

valid for small bosonic occupation number nR � 1, and expand the Hamiltonian in
the form H =

∑
n≥0Hn where every Hn contains exactly n Holstein-Primakoff particle

operators among aR, aR′ , a
†
R, and a†R′ . The zeroth-order term is the classical energy,

Ecl = LD

 ∑
R6=R′

V

2|R−R′|α

 sin2 θ + h cos θ

 ,
where LD is the total number of lattice sites. The rotation angle θ is chosen to minimize
the classical energy. It yields θ = π for anti-ferromagnetic exchange, V > 0 (The same
result is anyway found for V < 0). The Hamiltonian computed for θ = π reads

H = Ecl +
V

2

∑
R6=R′

(
a†R + aR

)(
a†R′ + aR′

)
|R′|α + 2h

∑
R

a†RaR.
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This Hamiltonian belongs to the class of quadratic Hamiltonians that can be diagonalized
using a Bogoliubov transformations. This procedure is generic and it can be applied to
a large class of different models. In the following, we will describe this procedure for an
operator of the class

Ĥ =
1

2

∑
R,R′

[
AR,R′

(
â†RâR′ + âR′ â

†
R

)
+ BR,R′

(
âRâR′ + â†Râ

†
R′

)]
, (3.7)

whereR andR′ span the sites of a regularD-dimensional hypercubic lattice of unit lattice
spacing. âR and â†R are, respectively, the annihilation and creation operators at site R,
with the usual bosonic commutation relations [âR, â

†
R′ ] = δR,R′ , and the coefficients

AR,R′ and BR,R′ are coupling amplitudes, containing both short- and long-range terms.
For the LRTI model we have

AR,R′ = 2hδR,R′ +
V

|R−R′|α BR,R′ =
V

|R−R′|α

A variety of systems can be described by Hamiltonian (3.7). Examples include weakly-
interacting bosons and spin systems in strongly polarized states, see Refs. [242, 110].
Assuming translation invariance and parity symmetry, the coefficients AR,R′ and BR,R′
only depend on the Cartesian inter-site distance R = |R−R′|. This condition allows us
to write Hamiltonian (3.7) in momentum space as

Ĥ =
1

2

∑
k

[
Ak

(
â†kâk + â−kâ

†
−k

)
+ Bk

(
â−kâk + â†kâ

†
−k

)]
, (3.8)

where Ak, Bk, and âk are the discrete Fourier transforms of AR,R′ , BR,R′ , and âR,
respectively, defined as

fk ≡
∑
R

fR exp (ik ·R), (3.9)

for any field fR. The previous equation defines also the Brillouin zone{
k = (k1, k2, . . . , ki, . . . , kN ) , ki =

2πni
L

, ni = 0, 1, . . . , N − 1

}
.

The annihilation and creation operators âk and â†k fulfill the bosonic commutation rule
[âk, â

†
k′ ] = δk,k′ and, due to parity symmetry, the coefficients Ak and Bk are real-valued.

Hamiltonian (3.8) can now be diagonalized using the standard Bogoliubov transforma-
tion [7],

âk = ukb̂k + vkb̂
†
−k, (3.10)

where the functions uk and vk can be assumed to be real-valued without loss of generality,
and to fulfill condition u2

k − v2
k = 1 to ensure the commutation relation [b̂k, b̂

†
k′ ] = δk,k′ .

Then, provided we choose

uk = sign (Ak)

√
1

2

( |Ak|
|Ek|

+ 1

)
and vk = −sign (Bk)

√
1

2

( |Ak|
|Ek|

− 1

)
, (3.11)
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the Hamiltonian takes the quadratic form

Ĥ = E0 +
∑
k 6=0

Ekb̂
†
kb̂k, (3.12)

where b̂k and b̂†k′ represent the annihilation and creation operators of a quasi-particle of
momentum k, and

Ek = sign (Ak)
√
A2

k − B2
k (3.13)

is the quasi-particle dispersion relation. The quantity E0 is the zero-point energy, i.e.
the energy of the vacuum of quasi-particles. Dynamical stability requires that the quasi-
particle energy Ek is real-valued, i.e. h (h+ Bk) ≥ 0.
For the specific case of the LRTI model we have

Ak = 2h+ V P (k) and Bk = V P (k) , (3.14)

where

P (k) =
∑
R

eık·R

|R|α (3.15)

is the Fourier transform of the long-range potential.
The energy spectrum is found using the Eq. (3.13) and it yields

Ek = 2
√
h (h+ V P (k)).

We now analyze how a quench protocol in the LRTI model can be described using
quadratic Hamiltonians.

3.4.1 Quantum quench and correlation function

We focus our attention on the out-of-equilibrium dynamical properties of the system
induced by a quantum quench. This protocol consists in preparing the system in some
initial state |Ψ0〉 at time t = 0 and let it evolve under the action of some final Hamiltonian
Hf. For instance, |Ψ0〉 may be the ground state of another initial Hamiltonian Hi. Here
we assume that Hi and Hf are both generic quadratic bosonic Hamiltonians as Eq. (3.7).
The quench consists then in an abrupt change of the amplitudes AR and BR from Ai

R

and Bi
R to Af

R and Bf
R. Assuming that the quench Hi → Hf takes place on a time scale

shorter than any characteristic dynamical time, the time evolution of the system for t > 0
is determined by the equation

|Ψ(t)〉 = e−iHft |Ψ0〉 , (3.16)

where we set ~ = 1. Quantum quenches constitute a controlled protocol to study out-of-
equilibrium dynamics of correlated quantum systems and are now experimentally realized
in cold-atom systems [48, 47, 214, 14, 243, 244, 245].
The post-quench dynamical properties of the system can be studied via the correlation
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function of local observables. For the LRTI model, the natural observable operator is
σzR = 1

2

(
a†R + aR

)
even if different choices are possible. This correlation function is

connected trough a multiplying constant to the more general expectation value

G(R, t) = 〈Ψ(t)|(â†R + âR)(â†0 + â0)|Ψ(t)〉. (3.17)

Turning to Fourier space and taking the thermodynamic limit, it reads

G(R, t) =

∫
dDk

(2π)D
e−ik·R〈Ψ0|

[
â†k(t)âk(t) + â−k(t)â†−k(t) + â−k(t)âk(t) (3.18)

+â†k(t)â†−k(t)
]
|Ψ0〉

where the time evolution of the operators is evaluated in the Heisenberg picture. In order
to compute explicitly the correlation function G(R, t), we first substitute the particle
annihilation and creation operators by their expressions in terms of the quasi-particle
ones associated to the final Hamiltonian,

âk(t) = uf
k b̂

f
k(t)− vf

k b̂
f†
−k(t), (3.19)

found from the inverse of the Bogoliubov transform (3.10). We then substitute the quasi-
particle operator at time t by its time evolution

b̂fk(t) = exp(−iEf
kt) b̂

f
k(0). (3.20)

The initial value b̂fk(0) is determined imposing the continuity of the Bogoliubov transfor-
mation (3.10) associated to the initial and final Hamiltonians respectively, it yields

âk = ui
kb̂

i
k(0) + vi

kb̂
i†
−k(0) = uf

kb̂
f
k(0) + vf

kb̂
f†
−k(0), (3.21)

and
â†k = ui

kb̂
i†
k (0) + vi

kb̂
i
−k(0) = uf

kb̂
f†
k (0) + vf

kb̂
f
−k(0). (3.22)

We then find the relation

b̂fk(0) =
(
ui
ku

f
k − vi

kv
f
k

)
b̂ik −

(
ui
kv

f
k − vi

ku
f
k

)
b̂i†−k. (3.23)

This expression allows us to write the correlation function G(R, t) as a function of the
position R and of the time t, and the initial quasi-particle operators b̂ik and b̂i†k . We
then calculate the quantum average over the initial state |Ψ0〉, which we assume to be
the ground state of the initial Hamiltonian Hi, defined by b̂ik |Ψ0〉 = 0 for any k. After
some straightforward algebra we find that the correlation function can be evaluated in
the thermodynamic limit. It reads

Gc(R, t) ≡ G(R, t)−G(R, 0) (3.24)

=
1

2

∫
dDk

(2π)D
F(k)

[
e−ik·R − ei(k·R−2Ef

kt) + ei(k·R+2Ef
kt)

2

]
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where

F(k) =
Ai

kBf
k −Af

kBi
k(

Af
k + Bf

k

)
Ei

k

. (3.25)

This expression can be interpreted using the Cardy-Calabrese picture [161]. It states
that the correlations created following the quench can be understood as waves. Their
spreading is described by the final dispersion relation Efk and the initial state, determining
just the pre-factor F(k), which acts as an integral weight. Following the quasi-particle
picture, the key quantity to understand the propagation of correlations is the group
velocity of these excitations

Vk = ∇kE
f
k .

For the specific case of the LRTI model, we are interested in the time evolution of spin-
spin correlations

Gσσc (R, t) = 〈σzR(t)σzR′(t)〉c − 〈σzR(0)σzR′(0)〉c
Using the transformations (3.6) we find

〈σzR(t)σzR′(t)〉c =
1

4
〈
(
a†R(t) + aR(t)

)(
a†R′(t) + aR′(t)

)
〉 =

1

4
G(R, t)

where G(R, t) is defined in Eq. (3.17). Finally we get

Gσσc (R, t) =
1

4
Gc(R, t) =

1

8

∫
dDk

(2π)D
F(k)

[
e−ik·R − ei(k·R−2Ef

kt) + ei(k·R+2Ef
kt)

2

]
(3.26)

and

F(k) =

(
hiV f − hfV i)P (k)

[hf + V fP (k)]Ei
k

where we used the expressions (3.24) and the values of the amplitudes Ak and Bk for the
LRTI, Eq. (3.25).
These expressions define the time evolution of the spin-spin correlations as functions of
distance and time following a global quantum quench in a generic LRTI model.

3.5 Spectral divergences and propagation of correlations

3.5.1 Divergence properties of the spectrum

Before analyzing the dynamical behavior of the correlation function Gc(R, t) written
above, it is worth discussing the divergences that appear in the various terms of Eq. (3.24)
due to long-range interactions. This is motivated by the known dynamical behavior of
short-range systems. There, the propagation of correlations following a quantum quench
exhibits a light-cone structure in its space-time dynamics [158, 164]. It shows up in the
form of a linearly increasing horizon, which can be interpreted as being generated by the
contribution of the fastest quasi-particles defined by the final Hamiltonian Hf. For that
class of Hamiltonians, the velocity defined by the horizon is then expected to be twice the
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maximum group velocity of the quasi-particles [161]. This is expected to hold in general,
including for long-range systems, whenever the post-quench Hamiltonian has excitations
with well-defined, finite group velocities. In contrast, sufficiently long-range interactions
can make the group velocity diverge and the propagation is not ballistic [23, 170, 169].
Divergences in the energy spectrum, not only in the group velocity, may further affect
the dynamics of correlations. When Ef

k diverges, at a finite k value, the space coordinate
becomes irrelevant and the associated characteristic time τ ∼ 1/Ef

k vanishes. This may
yield instantaneous activation of correlations at arbitrary distance and, consequently the
breaking of locality. Note that this scenario is not incompatible with the quasi-particle
picture, since divergence of the energy Ef

k at finite k implies divergence of the group
velocity Vk = ∇kE

f
k.

It is thus expected that the relevant divergences are those of the quasi-particle en-
ergy (3.13), and group velocity,

Vk = ∇kE
f
k =

h∇kP (k)√
h [h+ P (k)]

∼ ∇kBf
k

Ef
k

. (3.27)

The parameter Bk, which, according to Eq. (3.14) et Eq. (3.15), reads

Bf
k = V f

∑
R6=0

eik·R

|R|α , (3.28)

may diverge in the infrared limit, depending on the value of the exponent α. Approxi-
mating the previous expression around k ≈ 0 we get

Bf
k ∼

∫
dR

∫
dΩ

eikR cos(θ)

Rα−D+1
∼ kα−D and ∇kBk ∼ kα−D−1, (3.29)

in the thermodynamic limit where Ω is the D dimensional solid angle and θ is the
azimuthal angle with respect to k, and k = |k|. Typical behaviors of the energy and
group velocity of the LRTI model for various values of α and dimensions D = 2 are
shown in Fig. 3.10.
For D+ 1 < α (right column in Fig. 3.10), both Bk and ∇kBk converge to a finite value
in the infrared limit. Hence, both the energy and the group velocity are bounded for any
value of the momentum k. Note that the maximum group velocity is not necessary at
k = 0 as for instance in the example shown in the figure. In the same figure it is also
possible to see how there are different maxima present in the structure. One is located in
the infrared region and it is due to the long-range potentials and other two are located at
finite values of the wave-vector. These maxima are located in a region of the spectrum
where the long-range potential is not divergent and their value is always finite. They
do not contribute to the determination of the front of correlations but to the internal
structure of the correlation function.
For D < α < D + 1 (central column in Fig. 3.10), Bk is finite but ∇kBk diverges in the
infrared limit. Hence, the group velocity diverges, giving rise to infinitely fast modes,
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while the energy is finite with a cusp around the origin. Writing Bf
k = Bf

0 + Bf′
0 |k|α−D,

we find

|Vk| ≈
√

hf

hf + Bf
0

(α−D)Bf′
0

|k|D+1−α . (3.30)

For α < D (left column in Fig. 3.10), both Bk and ∇kBk diverge in the infrared limit.
Hence, both the energy and the group velocity go to infinity. Writing Bf

k ≈ Bf
0/|k|D−α,

we find the energy

Ef
k =

2
√
hfBf

0

|k|D−α2

(3.31)

and the group velocity

|Vk| =
(D − α)

√
hfBf

0

|k|D−α+2
2

. (3.32)
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Figure 3.10: Energy (top panels) and modulus of the group velocity V f
k = |Vf

k| (bottom panels) for
a two-dimensional (D = 2) long-range system described by the dispersion relation (3.13)
for a bi-dimensional Ising model for various values of the exponent α. For α < D (left
panels), both the energy and the group velocity diverge in k = 0. For D < α < D + 1

(central panels) the energy is finite but shows a cusp around k = 0, which corresponds to
a divergent group velocity around the same point. For D + 1 < α, both the energy and
the group velocity are finite and well behaved. Note that the absolute maximum of the
group velocity is located close to but not exactly at the origin k = 0. Figure published
in Ref. [170].
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3.5.2 Propagation of correlations
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Figure 3.11: Space-time evolution of the spin-spin correlation function following quantum quenches in
the LRTI model in various dimensions D (rows) and for different values of the exponent
α (columns). For almost all cases, the quenches are from Vi = 1/2 to Vf = 1 for a fixed
magnetic field h = 2. The only exception is for the 3D case with α = 5/2 (left, bottom)
where we used the quench Vi = 1/4 → Vf = 1/2 and hi = hf = 4 in order to avoid
dynamical instabilities. The linear system sizes are L = 212 in 1D, Lx = Ly = 29 in
2D, and Lx = Ly = Lz = 26 in 3D, with periodic boundary conditions. Distances are
measured in units of the lattice constant and times in units of the inverse magnetic field.
Figure published in Ref. [170].

We are now in the position to discuss how these divergences are connected to the spread-
ing of correlations in the LRTI. Fig. 3.11 shows the space-time dynamics of the connected
spin-spin correlation function Gσσc (R, t), defined in Eq. (3.26), for various values of the
exponent α of the long-range exchange term and the different lattice dimensions D = 1,
D = 2, and D = 3. The quench is performed by changing the value of V at fixed h in
a LRTI model described by Hamiltonian (3.5). In particular we used hi = hf = 2 and
Vi = 1/2 → Vf = 1 for almost all the quenches. The only exception is the case α = 5/2
and D = 3, where we use hi = hf = 4 and Vi = 1/2 → Vf = 1/4 in order to ensure
dynamical stability. For these values the dispersion relation Ek is always positive and
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real-valued. Hence, the initial state |Ψ0〉, i.e. the ground-state of the initial Hamiltonian,
is the vacuum of the magnons. We checked that the condition nR � 1 is fulfilled for every
quench, allowing the description of the LRTI model by a quadratic Hamiltonian (3.8).
The results are found by exact numerical integration of Eq. (3.24) using Eq. (3.25) for
the LRTI. In Fig. 3.11, the complete evolution as a function of the position R and the
time t is shown in 1D, while it is plotted along the diagonals R = (R,R) in 2D and
R = (R,R,R) in 3D. The results show different behaviors depending on the respective
values of α and D.
For D + 1 < α, right-hand-side column in Fig. 3.11, a clear evidence of a strong form
of locality, namely a light-cone, is present. While the correlations are significant for
t > R/Vlc, where Vlc is some velocity, they are instead strongly suppressed for t < R/Vlc.
For D < α < D + 1, we still find evidence of locality with correlations appearing for
t > F (R), where F is some finite-valued function. This behavior is clear in 1D and 2D
while, in 3D, finite lattice size effects hardly permits to determine the function F (see
details below). For α < D, the numerical data is compatible with a locality breakdown
and instantaneous activation of the correlations. Still a very thin band with vanishing
correlations is visible at short times. It is due to finite-size effects and their scaling ac-
tually confirms locality breakdown (see details below).
In the next sections we are going to study one by one these regimes and compare the
data extracted from exact numerical integration to theoretical predictions derived from
the analytic expression 3.26.

3.6 Regimes of propagation

3.6.1 Local regime α > D + 1: comparison with Cardy-Calabrese picture.

Consider first the case where both the energy and the group velocity are bounded in the
whole Brillouin zone for the LRTI Hamiltonian described in Sec. 3.4. This occurs for
algebraically decaying interactions of the type Eq. (3.14) with α < D + 1.
To study the evolution of the correlation function, it is worth separating the static and
time-dependent components, and rewrite the correlation function (3.24) as

Gc(R, t) = g(R, t) + g∞(R, t), (3.33)

where

g∞(R) =
1

2

∫
dDk

(2π)D
e−ik·RF(k) (3.34)

is the asymptotic thermalization value, and

g(R, t) = −1

2

∫
dDk

(2π)D
F(k)

[
ei(k·R−2Ef

kt) + ei(k·R+2Ef
kt)

2

]
(3.35)

is the time-dependent part. The latter contains the relevant evolution of the correlation
function given by the post-quench dynamics. This contribution may be interpreted as
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the spreading of two counter-propagating beams of quasi-particles that are represented
by the two oscillating functions ei(k·R∓2Ef

kt). Using the stationary-phase approximation,
the main contribution to Eq. (3.35) is given by the points determined by

∇k

(
k ·R∓ 2Ef

kt
)

= 0. (3.36)

They define the separation and time-dependent condition

R

t
= ±2∇kE

f
k, (3.37)

where the ± sign represents the two directions of the beams. This procedure can be
interpreted as selecting the contribution to the correlation function (3.35) of the modes
with a velocity equal to R/t. Since the group velocity Vk = ∇kE

f
k is bounded for α >

D + 1, it has a maximum value VM. Then Eq. (3.37) has solutions only for |R|/t ≤ VM.
This defines a ballistic (linear) horizon, that is a “light cone”, in the |R| − t plane. Its
slope gives the ”light-cone” velocity Vlc, defined by

Vlc = 2Max(Vk). (3.38)

The presence of a ballistic horizon in the out-of-equilibrium dynamics is thus directly
connected to the presence of a finite maximal group velocity [161]. Equation (3.37)
can also predict what happens for points outside the light-cone. If |R|/t exceeds the
maximum value 2|VM|, then Eq. (3.37) has no solution. In this case the integration
over the oscillating functions has no stationary point and the correlation functions is
suppressed.
More precisely, for |R|/t < 2VM the contribution to the time-dependent part of the
correlation function of the modes with parameter v = R/t is given by the stationary-
phase-approximation expression in generic dimension,

g(R, t) '
∑
λ∈Sv

W (kλ) cos
(
kλ ·R± 2Ef

kλ

)
, (3.39)

where the index λ spans the set Sv of solutions of Eq. (3.37) for a fixed value of R/t.
The dimension-dependent quantity

W (k) =

(
2π

t

)D
2 F(k)

[detL(k)]1/2
, (3.40)

where (LD)ij = ∂ki∂kjE
f
k is the Hessian matrix of the final dispersion relation Ef

k, and
it represents the weight associated to each contributing pair of modes. In practice, some
of the modes with the velocity R/t may be insignificant if they have an extremely small
weight W(kλ) compared to the other modes with the same velocity. This circumstance,
however, does not affect the horizon, as long as at least one mode has a significant weight.
In the opposite case the effective spreading of correlations may be slower than the ex-
pected bound, Eq. (3.38) [23] and we will discuss it in details in the next chapter. The
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Figure 3.12: Dynamics of the spin-spin correlation function in the local regime (D+ 1 < α) in 1D (left
column, α = 5), 2D (central column, α = 7/2), and 3D (right column, α = 13/2). The
quenches are defined by the initial and final values hi = hf = 2 and Vi = 1 → Vf = 1/2

in 1D and 2D, and hi = hf = 5 and Vi = 1/2 → Vf = 1/4 in 3D. The linear system sizes
are L = 29 in 1D, Lx = Ly = 28 in 2D, and Lx = Ly = Lz = 26 in 3D. The top panel
shows the space-time dynamics of the spin-spin correlation function (color plot) together
with the line R = Vlct (dashed red line)), where the light-cone velocity Vlc is fitted to
the boundary of the local region. The lower panel shows the comparison of the fitted
light-cone velocity Vlc with twice the maximum group velocity, 2 max ∂kE

f
k, as computed

from Eq. (3.13). Excellent agreement is found in all cases. Figure published in Ref. [170].

predictions of the theoretical model based on the quasi-particle picture point out that a
linear ballistic light-cone structure have to be found in the propagation of correlations for
α > D+ 1. This is motivated by the fact that the velocity spectrum of the fundamental
excitations is bounded and the maximum group velocity defines the light-cone velocity
of propagations as predicted by the Cardy-Calabrese approach.
This expectation is confirmed by the numerics (see right column of Fig. 3.11). More

precisely, we show in the upper panel of Fig. 3.12 the space-time dynamics of the cor-
relation function, for various values of α > D + 1 and D = 1, 2 or 3. They are similar
to these of Fig. 3.11, except what we used a stronger contrast to enhance the difference
between the correlated and uncorrelated regions. In this way we are sure that the color-
map enhance just the correlation front and not the internal structure. This procedure is
somehow similar to the ε method we will describe in the next section.
All the studied cases show a clear ballistic (light-cone-like) behavior of the correlation
front in all dimensions. Fitting a linear function, R = R0 + Vlct, to the correlation front,
we find the light-cone velocity Vlc. In the lower panels of Fig. 3.12 the values extracted
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3 Long-range Ising model in arbitrary dimensions

numerically are compared to the ones extracted from the spectrum. We find an excellent
agreement for all the studied cases within the error-bars. The width of the error bars
reflects the fact that the leaks outside the light-cone are algebraically decaying, Ref. [213]
ans Sec. 2.1.3, and this makes more complicated to define the exact position of the corre-
lation front. The good quantitative agreement between the numerics and the prediction
of Eq. (3.38) confirms that the correlation front is mainly determined by the propagation
of counter-propagating quasi-particles with the highest velocities, whenever they exist,
as predicted by the Cardy-Calabrese scenario [161].

3.6.2 Quasi-local regime

Let us now turn to the case where the energy is finite but the group velocity diverges due
to a cusp in the energy spectrum around k = 0, which corresponds to D < α < D + 1.
It follows from Eq. (3.13) and the discussion of Sec. 3.5 that the dispersion relation of
the post-quench Hamiltonian may be written

Ef
k = E0 + V0|k|1−χ (3.41)

and the group velocity
|∇kE

f
k| = (1− χ)V0|k|−χ, (3.42)

where χ = D + 1− α.

Quasi-particle results Since the correlation horizon is expected to be determined by
the contributions with largest velocity, namely k = 0 in this case, we can write the
correlation function (3.24) around that point as

Gc(R, t) '
1

2

∫ π

0
dk cos(kR)

[
1− cos(2E0t+ 2V0tk

1−χ)
]

(3.43)

= − cos (2E0t)

∫ π

0
dk cos (kR)

[
cos
(
2V0tk

1−χ)− 1
]

+ sin (2E0t)

∫ π

0
dk cos (kR) sin

(
2V0tk

1−χ) .
We then focus on the first integral and write it as a power series in t∫ π

0 dk cos (kR)
[
cos
(
2V0tk

1−χ)− 1
]

=
∑∞

n=1
(−1)n(2V0t)

2n

2n!

∫ π
0 dk cos (kR) k2n(1−χ).

(3.44)

This new integral can be computed for every value of R. We find

∫ π
0 dk cos (kR) k2n(1−χ) = π1+2n(1−χ) 1F2

[
1
2

+n(1−χ), 1
2
,(1−χ)n+ 3

2
,−π2 R2

4

]
1+2n(1−χ) ,
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where 1F2 is the hypergeometric function defined by the vector (1, 2) [246]. For large
values of R, we use the asymptotic limit of the latter, which yields∫ π

0 dk cos (kR) k2n(1−χ) ' A1
n (R) +B1

n (R) (3.45)

A1
n (R) = π1+2n(1−χ) sin(πR)

πR (3.46)

B1
n (R) = − sin[π(χ−1)n]Γ[1+2n(1−χ)]

R2(1−χ)n+1 . (3.47)

We can evaluate simply the summation over n of the first term, and we find
∞∑
n=1

(−1)n (2V0t)
2n

2n!
A1
n (R) =

[
1− cos

(
2V0π

1−χt
)]

sin(πR)

R
. (3.48)

In the limit of large R and t the last term will go to zero leaving the correlation function
unaffected. Inserting now B1

n in Eq. (3.44), we need to compute the sum over n. This
is analytically possible just for D = 1 and α = 3/2, which corresponds to χ = 1/2. For
these values of the parameters we find

cos (2E0t)

∞∑
n=1

(−1)n (2V0t)
2n

2n!

sin
(
π
2n
)

Rn+1
Γ [1 + n] (3.49)

= (−1)3/4 π
2V0t

R
3
2

cos (2E0t)

[
erf
(

4
√
−1V0t√
R

)
e
ı(2V0t)

2

4R + erfi
(

4
√
−1V0t√
R

)
e−

ı(2V0t)
2

4R

]
.

This function scales as t/R3/2 multiplied by a smooth oscillating function.
The second term in Eq. (3.43) can be studied along the same lines. First we write it as
a power series in t,

sin (2E0t)

∫ π

0
dk cos (kR) sin

(
2V0tk

1−χ)
= sin (2E0t)

∞∑
n=0

(−1)n (2V0t)
2n+1

(2n+ 1)!

∫ π

0
cos (kR) k(2n+1)(1−χ). (3.50)

The integral can again be expressed again as an hypergeometric function for every value
of n ∫ π

0
cos (kR) k(2n+1)(1−χ)

= π1+2n(1−χ)
1F2

[
χ
2 + (n+ 1) (1− χ) , 1

2 , 1 + χ
2 + (n+ 1) (1− χ) ,−π2R2

4

]
1 + (1− χ) (2n+ 1)

.(3.51)

Taking now the asymptotic value of this function in the large R limit we find∫ π
0 cos (kR) k(2n+1)(1−χ) ' A2

n (R) +B2
n (R) (3.52)

A2
n (R) = π1+2n(1−χ) sin(πR)

πR (3.53)

B2
n (R) =

(−1)n+1 cos[πχ2 (2n+1)]Γ[1+(2n+1)(1−χ)]

R1+(1−χ)(2n+1) . (3.54)
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As we demonstrated in Eq. (3.48), the summation of A2
n over n goes to zero as 1/R

and hence does not affect the correlation function in that regime. We can plug B2
n in

Eq. (3.51) and sum over n. As before, it is possible to perform these computations
analytically in the case D = 1 and α = 3/2 where it gives

− sin (2E0t)
∞∑
n=0

cos
[
π
4 (2n+ 1)

]
Γ
[
1 + 1

2 (2n+ 1)
]

(2V0t)
2n+1

R1+ 1
2

(2n+1)(2n+ 1)!

= − sin (2E0t)
V0t

R
3
2

√
π

2

[
cos

(
V 2

0 t
2

R

)
− sin

(
V 2

0 t
2

R

)]
.

Again, this term scales as t/R3/2 and the oscillating functions do not affect this dominant
behavior.
For D = 1 and α = 3/2, the correlation function (3.24) thus scales as

Gc(R, t) ∼
t

R3/2
. (3.55)

Hence, the correlation horizon is algebraic, t ∼ Rβ . Note that the scaling (3.55) is slower
than ballistic, in agreement with the Monte-Carlo results presented in Fig. 3.9. This is
surprising because it may be expected that a divergent group velocity would allow faster-
than-ballistic scaling. This idea is also consistent with extended Lieb-Robinson bounds,
which are faster-than-ballistic see Sec. 2.4. Our exact analysis shows that interference
effects between the contributing divergent modes strongly affect the correlation front and
the known bounds are not saturated.

Numerical results for the scaling of the light-cone We derived the scaling of the
correlation function explicitly for the case D = 1 and α = 3/2. For other cases the com-
putation is not tractable, with the previous approach. It is anyway important to study
the behavior of the correlation horizon for different values of α and different dimensions
D. We will do it here numerically, extracting this quantity from the data presented in
Fig. 3.11. We impose then a threshold ε and we find the value of the activation time t?

when the correlation function reaches ε for every value of R

Ḡ (t?, R) = ε (3.56)

In particular, we consider time-averaged correlation functions, Ḡ (t, R) = 1
t

∫ t
0 dτG

σσ
c (R, t),

in order to minimize the effects of undesirable small time oscillations.
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Figure 3.13: Top panel: t? as function of R for different values of ε in log-log scale (points) with the
fitted function (continuous lines). It is possible to see the algebraic dependence of t? from
R and the agreement between the fit and the numerical data. Bottom panel: Function
β (ε) as extracted from fits to t?(R) = Rβ for different values of ε, the errors are due to
the fit. It is possible to see that as ε becomes smaller β (ε) approaches a constant, black
line. The points in red and blue correspond to the parameters obtained by the fit of the
data of the same colors in the top panel. The data used for this analysis comes from
a quench in a D = 2 model with α = 2.3 and hi = hf = 2, Vi = 1 → Vf = 1/2 and
Lx = Ly = 211. Such system size is necessary to get a good fit in the large R region,
where the algebraic regime is supposed to be found. Figure published in Ref. [170].

In the top panel of Fig. 3.13 the values of t? as a function of R for D = 2 are shown for
different values of ε in log-log scale. From the plot, it is clear that there is an algebraic
dependence between these two quantities in the large R regime, as suggested by the
analytic result for a specific case of D = 1 and α = 3/2. We can then interpolate these
points with a generic algebraic dependence of the type t?(R) = t?0 + m ∗ Rβ for every
values of ε. The limit ε → 0+ will give us the correct and ε-independent scaling of the
horizon, limε→0 β(ε). This limit can be found in the bottom panel of Fig. 3.13, where
the value of the fitted parameter β is traced as function of ε for α = 2.3. The minimal
value of ε accessible is due to finite size of the lattice. We then extract the limit ε→ 0+

extrapolating the data for finite ε.
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Figure 3.14: Values of the fit parameter β as a function of α for systems in dimensions D = 1 and
D = 2. The data are obtained analyzing the time evolution of correlation in systems of
length L = 213 = 8192 and L = 26 = 64 for D = 1 and Lx = Ly = 210 for D = 2. The
inset in the left figure presents the dependence of the parameter β on the system size L
for the case of α = 3/2 and D = 1. Figure published in Ref. [170].

In Fig. 3.14 the value of β as functions of α is plotted for D = 1 chains of different
sizes and D = 2 systems. It is possible to see that β → 1 as α → D + 1(see Ref. [172]).
It means that a continuous crossover between the non ballistic, D < α < D + 1, and
the ballistic, α > D + 1, regimes is present. On the other side, the transition at α = D
between the non-local and the slower-than-ballistic regimes, is discontinuous. From our
data, it is possible to extrapolate the two limits. For D = 1, we find β = 1.52 ± 0.02
for α → 1 and β = 1.01 ± 0.08 for α → 2. For D = 2, we find β = 1.56 ± 0.3 for
α→ 2 and β = 1.1± 0.5 and α→ 3. This can be explained directly from the expression
(3.24) and from the form of the spectrum. In the region α < D the dispersion relation is
explicitly divergent, and this leads to the non-local regime, as discussed in (3.5). For all
the values α > D the dispersion relation itself is not divergent and depends continuously
on α, which means that the function β has to be continuous too. This motivates the
discontinuity of the function β in α = D and its continuity in α = D + 1.
We now discuss finite-size effects, which are important as we will see. In Fig. 3.14, we
show a comparison with the values of the parameter β for two 1D systems of different
sizes, namely L = 213 = 8192 and L = 26 = 64. In spite of corresponding to system
sizes that differ by more than two orders of magnitude, the results are quite close. In
particular, they yield α → 1 and α → 2 limits that are consistent within error bars.
Nevertheless, the results for the largest system are systematically above those found for
the smallest system. In order to get more insight on finite-size effects, we have studied
the behavior of β versus the system size for α = 3/2 and D = 1. The results shown on the
Inset of Fig. (3.14) show a systematic increase up to the largest system size we are able
to compute. It shows that very large systems are necessary to reach the thermodynamic
limit. However, the value of β we find for L = 213 is β ' 1.34, which is in fair agreement
with the analytic prediction β = 1.5 (within 10% of the theoretical value). It is possible
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to see how, increasing the system size, the value of β is increasing. The value expected
value β = 1.5 is found in the Monte-Carlo results presented before.

3.6.3 Non-local regime

We consider finally the case where the quasi-particle energy spectrum (3.5) diverges. As
discussed in Sec. 3.5 this is the case for α < D, owing to the divergence of the Fourier
transform of the potential (3.14). The dispersion relation around k = 0 takes then the
form

Ef
k =

e0

kγ
, (3.57)

where e0 = 2
√
hfBf

0 and γ = D−α
2 . Plugging this expression into Eq. (3.24) we find,

again linearizing around k ≈ 0

Gc(R, t) ∼
∫

Ω
dΩ

∫ π

ε
dkkD−1+γeıkR cos(θ)

[
1− cos

(
2e0tk

−γ)] . (3.58)

The factor kγ comes from the contribution of the weight F ∼ 1/Ei
k. Since the integral is

dominated by the low-k components, the upper bound π of the integral is irrelevant. The
lower bound k = ε holds for finite-size systems of linear length L and scales as ε ∼ 1/L.
Hence, the limit ε → 0 is equivalent to the thermodynamic limit L → ∞. We proceed
by expanding the previous expression in powers of R and find

Gc(R, t) ∼
∑
n

ınRn

n!

∫
Ω
dΩ cosn (θ) lim

ε↘0+

∫ π

ε
dkkD−1+γ+n

[
1 + cos

(
τk−γ

)]
, (3.59)

where we use the dimensionless time τ = 2e0t. We can then integrate this expression
term by term using the transformation k → q = k−γ and find∫ Lγ

1
πγ

dqq
−D+2γ+n

γ [1− cos (τq)]

=
Ea (−iLγτ) + Ea (iLγτ)− Ea(−iτ/πγ)− Ea(iτ/πγ)

2LD+n+γ
, (3.60)

where Ea(x) is the exponential integral function of order a = D+2γ+n
γ [246]. In the above

expression, the last two terms are bounded and the limit L → ∞ can be taken without
any problem after the summation. We thus focus on the first two terms, which contain
the diverging energy contributions affecting locality. In the large L limit, we find

Ea (−iLγτ) + Ea (iLγτ)

LD+n+γ
∼ sin (Lγτ)

τ

1

L2γ+D

1

Ln
. (3.61)

Plugging this expression into Eq. (3.59), we get

Gc(R, t) ∼ lim
L→∞

sin (Lγτ)

τ

∫
dΩeı

R
L

cos(θ)

L2γ+D
. (3.62)
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The last equation shows that an algebraic divergence in the quasi-particles spectrum can
lead to a signal which appears on a time scale 1/Lγ that goes to zero in the thermo-
dynamic limit. Note that this time scale is directly connected to the divergence in the
energy spectrum with the same exponent γ. This parameter depends on the specific
model and the interaction decay exponent α. In our case γ = D−α

2 , notice that for free
fermions, as stated in Ref. [165], we have γ = D

2 − α.
In this regime, the function sin (Lγτ) /τ gives rise to a contribution of the type δ (τ) to
the correlation function at any distance. The same expression can be used to obtain the
scaling of the correlation function itself, which yields to G (R, t) ∼ 1/Lγ+D. Moreover,
these expressions show that the dominant contributions to the correlation function carry
spherical symmetry despite the underlying lattice geometry. This will be important for
our discussion of the correlation front in Sec 3.6.4. In the next section we will check all
the analytic predictions made in this and in the last section.
We can compare our predictions with the ones extracted from our data. In particular
the presence of a size-dependent time scale,

τ ∼ 1

Lγ
∼ 1

L
D−α

2

. (3.63)

can be directly checked. The latter determines the time of the first maximum of the
correlation function for large distances. In Fig. 3.15(a) and (b) we plot the arrival time
τ∗ of the first maximum of the spin-spin correlation function at a distance equal to half
the system size, R = L/2, as a function of L in 1D and 2D. Excellent agreement between
the numerical data (points) and the predicted scaling (3.63) (dashed lines) is found for
various values of α < D in both 1D and 2D. These results confirm the validity of the
previous calculations.
Note that the same scaling can be found from the quasi-particle velocity. For power-law
spectra as considered here, the group velocity scales as Vk ∼ Ek/k, whose maximum is
found for k ∼ 1/L. Hence the time needed to reach half the system size, L/2, scales as
1/max(Ek) ∼ 1/L

D−α
2 .
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Figure 3.15: Activation time (upper panels) and amplitude (lower panels) of the spin-spin correlation
function computed at R = L/2 in the non local regime (α < D) for a 1D (left column) and
2D (right column) systems of different sizes. Note the log-log plot scales. The net decrease
of the time of the first maximum for different values of α and L is the clear signature of
locality breaking. The numerical data (points) are in good agreement with the analytical
predictions (straight lines). The slopes of the straight lines is fixed by Eq. (3.63) and their
intercepts have been found fitting the numerical data. Figure published in Ref. [170].

However, our analytic approach provides in addition the scaling of the amplitude of
the correlation function at t = τ∗. It yields

Gσσc (L/2, τ∗) ∝ τ∗

L2γ+D
=

1

L
3D−α

2

(3.64)

Figures 3.15(c) and (d) compare numerical data (points) to the analytic prediction above
(dashed lines) for the amplitude of the correlation function at R = L/2 and τ∗. Good
agreement is found in both 1D and 2D and it further confirms our analytic predictions.
Note that this result is a direct consequence of the interference between the fastest modes
and cannot be found by the simplest independent quasi-particle approach.
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3.6.4 Correlation front
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Figure 3.16: Correlation front at fixed times for the Spin-Spin correlation functions at fixed time for a
bidimensional system. From left to right we find α = 3/2, α = 5/2 and α = 7/2 in order
to span all the possibles regimes. The correlation front shows clear spherical symmetry.
Figure published in Ref. [170].

In this section we finally discuss the shape of the propagation front during the time
evolution of the correlation function. For simplicity, we consider the two-dimensional case
but the extension to higher dimensions D is straightforward. In Fig. 3.16 the correlation
function Gσσc (R, t), Eq. (3.26), for a quench in a D = 2 LRTI system is plotted as a
function of the position R at various times t and for different values of the exponent
α. In the instantaneous regime, α < D, the correlation function is significantly different
from zero for every value of R at any time t. Conversely, in the causal and quasi-causal
regimes, for α > D, correlations take a finite time to be activated. For α > D + 1, a
sharp edge is visible in the correlations and it evolves ballistically in time. In contrast,
for D < α < D + 1, the correlation front has a different scaling which is the signature
of the quasi-locality. This is consistent with the discussion of Sec. 3.5 which points out
that a non-ballistic propagation is present.
Let us now focus on the correlation pattern. For α < D the correlation function is
spherically symmetric for large values of R while in the region close to the origin this
symmetry is no longer present. This is in perfect agreement with Eq. (3.62) which
predicts the correlation function in the large R region to be spherically symmetric. For
α > D + 1 there is a well-defined correlation front that spreads in the system and its
symmetry is spherical despite the presence of the lattice. The symmetry of the front
is due to the fact that the maximum group velocity is located very close to k = 0,
where the spectrum is spherically symmetric (see Fig. 3.10). The inner structure of
the correlation function is determined by the other two local maxima, which are not in

137



3 Long-range Ising model in arbitrary dimensions

the infrared region and whose contribution to the correlation function is not spherically
symmetric, see Sec. 3.5 and Fig. 3.10. This contrasts with the behavior observed for
the short-range Bose-Hubbard model, where the maximum group velocity is located at
finite k and gives rise to a non spherical correlation front in 2D [216]. For the quasi-local
regime D < α < D + 1 we can use the same arguments used for the other two regimes.
The divergence of the velocity is located at k = 0 and it is not sufficient to destroy
completely locality as discussed in Sec. 3.6.3 and a sort of locality, called quasi-locality,
appears. Still, as for the other two regimes, the modes that dominate the horizon are
located in the infrared region, whose form is dominated by the spherical symmetry of
the long-range potential. This determines the spherical shape of the correlation function
in the large R region. These considerations can be extended straightforwardly to any
dimension higher than one because they only rely on the analysis of the symmetries of
the energy spectrum and in particular around the point where is located the maximum
group velocity.

3.7 Conclusions for the LRTI model

In this chapter we studied the time evolution of correlations in the LRTI model. We
presented my analytical results for the dynamics of correlations and we compared them
to accurate t-VMC data obtained by a collaborator.
The main result of this chapter is the fact that the spreading of correlations, depending
on α, has a richer structure than the one predicted by general bounds [166, 163, 167].
We can then summarize the conclusion for our analysis of the LRTI model:

• For α < D no bound is present. In this case the spreading of correlations is
instantaneous with a non-local propagation regime in the thermodynamic limit.
From the microscopic point of view, this is due to the divergence of the energy
spectrum Ek of the final Hamiltonian located at k ≈ 0. In systems of finite linear
size L this gives rise to a small time scale τ ∼ 1/L

D−α
2 which vanishes as L→∞,

see Sec. 3.6.3.

• For D < α < D + 1 the presence of an algebraic bent light-cone t? ∝ Rβ has been
found and it is connected to a cusp in the energy spectrum Ek located at k ≈ 0, see
Sec. 3.6.2. The shape of the horizon can be analytically computed just for D = 1
and for α = 3/2 but we checked numerically that this is true also for different
values. The value of β as a function of α has been extracted for D = 1 and D = 2,
finding that they are always slower-than-ballistic, β > 1.

• For α > D+ 1 we find a ballistic regime. It is connected to the presence of a finite
maximum group velocity in the spectrum. In this case the propagation is ballistic
and its velocity is given by the maximum group velocity multiplied by two, as
predicted by the Cardy and Calabrese theorem.

• The shape of the light-cone for D ≥ 2 is found to be spherical for α > D, where
a form of locality is present. For α < D no light-cone is present but the large R
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3 Long-range Ising model in arbitrary dimensions

part of the correlation function shows spherical symmetry. This is due to the fact
that the large R region is strongly affected by the infrared behavior of the energy
spectrum. In that region of the k-space, all the quantities get a spherical symmetry
due to the syemmtry of the long-range potential.

The overall comparison between the general bounds presented in Sec. 2.4 and our data is
good: where no bound is present (α < D) the correlations are unbounded and where it is
present (α > D) we find a propagation of correlations restricted to a region of the space-
time plane. The bounds predict anyway a logarithmic propagation for D < α < 2D
and an algebraic faster-than-ballistic propagation from α > 2D. We find a slower-
than-ballistic propagation for D < α < D + 1, confirmed by numerical and analytic
computations [23, 170]. A ballistic spreading from α > D+ 1. Our results do not violate
the general bounds on the long-range interactions. It is anyway impossible to guess
the exact results found starting from the bounds. This points out that the microscopic
analysis is still fundamental to describe the propagation of correlations. In particular:
the spreading can be determined by the divergences in the energy spectrum. The weight
of the quasi-particles in this case is important to characterize better the different regimes,
but it does not change qualitatively the propagation. We will see in the next chapter
that this integral weight can change drastically the time evolution of local observables
despite the energy spectrum of the quasi-particles. This phenomenon appears in long-
range interacting bosons on a lattice. Moreover, since the form of the weight depends
on the observable, it is possible to have different observables with different propagation
regimes pointing out a observable-dependent notion of locality in these systems.

139



4 Long-range Bose-Hubbard model

In this chapter we present my results on the long-range Bose-Hubbard chain. The Monte-
Carlo data presented in Sec. 4.1 have been obtained by G. Carleo in collaboration with
me. They have been published in a joint publication, Ref. [23] together with my ana-
lytical expressions, presented in Sec. 4.3.2. My results in Sec. 4.4 are preliminary and a
deeper discussion will be published later.
In the last chapter we saw that the long-range transverse Ising (LRTI) model (3.5) ex-
hibits three different regimes in its time evolution depending on the value α of long-range
exchange 1/Rα. These three regimes can be predicted from the divergences of the energy
spectrum of the fundamental excitations of the system (Sec. 3.5).
We want to investigate the validity of the previous results for different long-range in-
teracting quantum systems. To do so, we study now the Long-Range Bose-Hubbard
(LRBH) model

H = −J
∑
〈i,j〉

(
a†iaj + aia

†
j

)
+
U

2

∑
i

ni (ni − 1) +
V

2

∑
i 6=j

ninj
|i− j|α , (4.1)

where 〈i, j〉 constraints the hopping to the nearest-neighbor sites, the hopping energy is
J , U is the on-site interaction strength, and V is the long-range interaction strength. The
system is composed by bosonic particles, ai (a

†
i ) is the destruction (creation) operator at

site i. They fulfill the standard bosonic commutation relation[
ai, a

†
j

]
= δi,j

and the number operator is ni = a†iai. This model can be realized in cold atomic
experiments using the tools described in Sec. 1.3.2. This Hamiltonian describes bosonic
particles on a lattice with short-range hopping and interaction potential

V (|i− j|) = Uδij +
V

|i− j|α , (4.2)

composed by a short-range (on-site) part and a long-range part that decays as a power
law of exponent α.
We can briefly compare the form of the LRBH Hamiltonian to the one of the LRTI 3.5.
The difference arises in the physical meaning of the long-range interactions. In the LRTI
it represents a super-exchange term between distant spins. In this bosonic model the
long-range part is a true potential between particles at large distances.
Another important difference between these two models is the dimension of their local
Hilbert spaces. For the spin system this is bounded, while for the Bose-Hubbard model it
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is not, see Sec. 1.3.2. The hypothesis of the local Hilbert space was fundamental for the
rigorous demonstration of the Lieb-Robinson theorem presented in Sec. 2.1.2. From the
mathematical point of view this means that all the bounds we presented for both short-
and long-range interacting systems do not strictly hold for the Bose-Hubbard model.
Anyway, it is clear that even if an infinite number of bosons can occupy the same site,
this is physically impossible. The average number of particles in the ground state is in
fact

〈GS|ni |GS〉 .
The explicit form of this quantity is not known for generic values of the couplings J , U
and V but it can be computed for some specific cases. For the Mott insulating state,
U � J and V = 0, the previous quantity is extremely easy to compute: in every site
there are a number of particles equal to n̄ ∈ N which gives

〈GS|ni |GS〉 = n̄.

The dimension of the local Hilbert space is exactly one. During the time evolution the
situation changes because the fundamental excitations of the systems are doblons, sites
with n̄ + 1 particles, and holons, with n̄ − 1. Even there, the local Hilbert space is
then limited to three states. It is then not unexpected that the Lieb-Robinson bound
could work also in this case, see Sec. 2.3.2. Moreover, in the Mott insulating state, the
correlations between sites are zero, it is a completely classical state. The condition of
the bound 2.1.3 is satisfied for every local observable and, in fact, a ballistic propagation
of correlations has been observed in Ref. [214] (see also Sec. 2.3.2).
For the superfluid phase, J � U and V = 0, the wave-function is composed by completely
delocalized and strong fluctuations of the average number of particles per site are present.
The system in this regime is described as a coherent state

|GS〉 =
∏
i

e−
|α|2

2 eαa
†
i |0〉 ,

where α is defined as
a |GS〉 = α |GS〉

where α ∈ C because a is not a hermitian operator and its eigenvalues are complex. The
modulus of α is fixed by the mean number of particles

〈n〉 = 〈GS| a†iai |GS〉 = |α|2.

We can project this on the Fock space to obtain the probability to have ni particles per
sites obtaining

P (n) = | 〈n,GS〉 |2 =
〈n〉n
n!

e−〈n〉,

which decays rapidly as the average number of particles per sites 〈n〉 grows. We can then
assume that the bounds we presented in 2.1.3 would work since the probability to span
the unbounded Hilbert space during the time evolution is practically zero. The problem
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in this state is the presence of extremely long-range correlations. As we discussed in
Sec. 2.3.1.2, the superfluid has algebraically decaying correlations in its initial state.
This violates explicitly the hypothesis of the theorem presented in Sec. 2.1.3. Despite
that, a light-cone spreading of density-density correlations has been observed using t-
VMC (see again Sec. 2.3.1.2) and it can be explained from the microscopic point of view
using the Cardy-Calabrese approach, Sec. 2.2.
We want now to study the time evolution of different observables following a quantum
quench in the long-range interaction coupling V . We will use a combined approach using
t-VMC to access the time evolution and we compare its results to the quasi-particle
approach. We will see how in this case the regimes of propagation are determined not
just by the dispersion relation but also by the integral weight in k-space. This function
is observable-dependent and we will show how different observables can exhibit different
behaviors even if the dispersion relation of excitations is the same.

4.1 Monte Carlo results

As we did for the LRTI model, we start from the numerical results given by t-VMC, see
Sec. 2.3.1.2. These simulations have been performed by G. Carleo in collaboration with
me. They are published in a joint work, namely Ref. [23]. This algorithm has already
been used to study the propagation of correlations in the standard Bose-Hubbard model,
see Sec. 2.3.1 and Ref. [216], for quenches in the superfluid phase of the Bose-Hubbard
model. It is possible to extend the same method to Hamiltonian 4.1 obtaining the time
evolution of density-density correlations

GC(R, t) = 〈nR(t)n0(t)〉C − 〈nR(0)n0(0)〉C (4.3)

as function of R and t for quenches inside the superfluid regime. The subscript C indi-
cates, as usual, the connected correlation function

〈AB〉C ≡ 〈AB〉 − 〈A〉〈B〉.

As we said, the wave function is of the Jastrow type [24], where we use Oα = nkn−k

|Ψ(t)〉 ∝ e
∑
k λk(t)nkn−k |Φ0〉 ,

This wave function will take into account all the scattering of the type nkn−k and the
explicit time dependence is contained in the function λk(t).
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Figure 4.1: Time-evolution of the density-density correlations following a quantum quench in the LRBH
model for α = 1/2, α = 3/2 and α = 3. It is possible to see how correlations activate
ballistically for every value of α. This is in contrast with the data presented, using the
same numerical method in Sec. 3.2, for the LRTI. There three different regimes appear
for the same values of α. This points out that the propagation is not a function of the
long-range potential itself, defined by α, but a model-dependent microscopic analysis has
to be carried out. Data obtained by G. Carleo in collaboration with me and published in
a joint publication, Ref. [23].

The system is prepared in the ground state of the LRBH Hamiltonian (4.1) with
parameters J = 1, Ui = Vi. A global quench J = 1, Uf = Vf 6= Vi drives then the system
out-of-equilibrium. The post-quench time evolution of the correlation function (4.3) is
then studied for different values of α. In Fig. 4.1 the results are shown for α = 1/2,
α = 3/2 and α = 3. A ballistic propagation is found in all the studied cases for long
times and large distances. The activation time t? is finite and non-zero for every value of
the distance. It is also linearly increasing with the distance, defining a constant light-cone
velocity, t? = R/vlc. This behavior is in contrast to the one found in the Ising model,
where a ballistic spreading was found just for large values of α in both numerics and
analytics.
Comparing now these results with the model-independent bounds discussed in Sec. 2.4
we can conclude that no violation is present. The propagation is in fact ballistic for
small values of α where none of the state-of-the-art bound holds, meaning that every
behavior of the correlation function can be accepted. For larger values of α, the bounds
on the activation time are algebraic, i.e. t? ∝ Rβ , with β ≤ 1. The ballistic propagation
observed in the t-VMC data has exactly β = 1. The propagation is then slower than the
one predicted by the bound and the latter is not violated.
As in the LRTI case, the general bounds are not able to predict the results found in the
numerical data. As we did there, we will use the microscopic theory, i.e. the quasi-particle
approach, to explain the numerical data.

4.2 The model and the excitation spectrum

As for the LRTI model, the analytic expressions and their interpretation are part of my
work. They have been published, together with the t-VMC results, in Ref. [23].
Since the general bounds are unable to predict precisely the time evolution found in the
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numerical data, we use again the microscopic theory. We will study quenches in the
couplings U and V of Hamiltonian (4.1) in the superfluid regime, where U and V are
small. In this regime the Hamiltonian can be approximated by a quadratic Hamiltonian
where the excitations are Bogoliubov quasi-particles [7].

4.2.1 Bogoliubov approximation

The LRBH Hamiltonian describes bosons on a lattice with a nearest-neighbor hopping
term with intensity J and and interaction potential already seen in Eq. (4.2). We can
write the Hamiltonian in Fourier space using the translational invariance of the system.
We define

aR =
1√
L

∑
k

e−ıkRak

a†R =
1√
L

∑
k

eıkRa†k

where L is the length of the chain, in order to preserve the form of the commutation
relation in the k space [

ak, a
†
q

]
= δkq.

We can then write the LRBH Hamiltonian in Fourier space as

H =
∑
k

ηka
†
kak +

1

2L

∑
q,k,p

V(q)a†k+qa
†
p−qapak, (4.4)

where ηk = −2J cos (k) is the nearest-neighbor hopping term where we set the lattice
spacing to one, a = 1, and L is the length of the chain. In the previous equation we
dropped a constant in the energy applying an energy shift. The function

V(q) = U + V
∑
R

e−ıRr

Rα
(4.5)

is the Fourier transform of the interaction potentials and contains a short-range interac-
tion. The Fourier transform of the long-range potential depends on α.
As we discussed in Sec. 1.3, the ground state of a bosonic system with no interactions
is the Bose-Einstein condensate. In the case where interactions are small we can then
assume, as usually done, that the majority of the particles occupy the state at k = 0
and a small amount of them the other modes. The occupation of k = 0 mode is the
macroscopic, we can write Hamiltonian (4.4) separating the different terms

a†0 ' a0 '
√
N0 ∼

√
N,

where N0 is the number of particles in the condensate.
The first term in Hamiltonian (4.4) will give a constant contribution becauseηk=0 = −2J∑

k

ηka
†
kak = η0a

†
0a0 +

∑
k 6=0

ηka
†
kak = 2JN0 +

∑
k 6=0

ηka
†
kak.
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The same expansion can be computed for the long-range potential
1

2L

∑
k,q,p

V(q)a†k−qa
†
p+qapak ≈ N0

2L

∑
k 6=0

[
V (k)

(
a†kak + a−ka

†
−k + a−kak + a†ka

†
−k

)
.(4.6)

+2V(0)a†kak
]

+
V(0)N2

0

2L
(4.7)

where we summed over k instead of over q in order to have the same label for the wave-
vectors in both the one- and the two-body parts. We can then express the previous
equation using the total number of particles N instead of the condensate one N0 using
the identity

N = N0 +
∑
k 6=0

a†kak → N2
0 ≈ N2 − 2N

∑
k 6=0

a†kak.

Substituting this into Eq. (4.6) we obtain a quadratic Hamiltonian where now we have
εk = 2J + ηk = 4J sin2 (k/2)

H ' 1

2
V(0)nN +

1

2L

∑
k 6=0

{
[εk + nV(k)]

(
a†kak + a−ka

†
−k

)
+ nV(k)

(
a†ka
†
−k + a−kak

)}
.

As we said in Sec. 1.3.1.1, the ground state of a non-interacting bosonic system is a
condensate where all the particles occupy the zero mode. Hamiltonian (4.4) can then be
rewritten in a general way as

H = E0 +
1

2

∑
k

[
Ak
(
a†kak + a−ka

†
−k

)
+ Bk

(
a†ka
†
−k + a−kak

)]
, (4.8)

where the quantities Ak and Bk are real-valued, and even functions of k, and the ak(a
†
k)

are bosonic annihilation (creation) operators.
For the specific case of the LRBH we have

Ak = εk + nV(k) (4.9)

and
Bk = nV(k).

As before
εk = 4J sin2

(
k

2

)
is the free-boson dispersion relation, and the interaction potential in Fourier space is
given in Eq. (4.5).
The Hamiltonian can then be diagonalized again using a Bogoliubov transformation
ak = ukbk + vkb

†
−k [7] where

uk =

√
1

2

(
Ak/

√
A2
k − B2

k + 1

)
,

vk = −sign(Bk)
√

1

2

(
Ak/

√
A2
k − B2

k − 1

)
.
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The excitation spectrum is then given by

Ek =
√
A2
k − B2

k =
√
εk [εk + 2nV(k)],

and the Hamiltonian takes then the form of a free Hamiltonian for the operators bk

H = EGS +
∑
k

Ekb
†
kbk,

where EGS is the vacuum energy of quasi-particles bk |GS〉 = 0 and the sum can be
extended to all the values of k because for k = 0 the dispersion relation is zero. As we
did in Sec. (3.4.1) for the LRTI model, which Hamiltonian takes the same form as this,
the time evolution of different observables can be computed.

4.2.2 Time-evolution of observables

The system is prepared in the ground state of an initial Hamiltonian Hi, defined by two
functions Aik and Bik, which corresponds to the vacuum of quasi-particles

bik |0〉 = 0 ∀k.

The system is then driven out of equilibrium using a quantum quench. This is obtained
using a sudden change Hi → Hf , which triggers the time evolution

|Ψ (t)〉 = e−ıHf t |0〉 ,

where we set ~ = 1 as everywhere else. The quantum quench protocol, at the microscopic
level, is obtained by a sudden change in the set of functions Aik, Bik → A

f
k , B

f
k . The final

Hamiltonian is then diagonalized by a different set of quasi-particle operators bfk
(
bf †k

)
.

The time evolution of post-quench operators is straightforward

bfk (t) = bfk (0) e−ıE
f
k t

bf †k (t) = bf †k (0) eıE
f
k t.

The initial conditions are bfk (0) and bf †k (0) are fixed by the continuity of the operators
ak (t) and a†k (t) at t = 0

uikb
i
k (0) + vikb

i †
k (0) = ufkb

f
k (0) + vfk b

f †
k (0) = ak (0)

uikb
i †
k (0) + vikb

i
k (0) = ufkb

f †
k (0) + vfk b

f
k (0) = a†k (0)

which defines a relation between the initial and final quasi-particle operators. The pre-
vious relations allow to compute the time-evolution of the expectation value of every
two-body observable.
The density-density correlation function is defined as

Gddc (R, t) = 〈nR(t)n0(t)〉C − 〈nR(0)n0(0)〉C .
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In the Bogoliubov approximation we presented before, density-density correlation func-
tion takes the form

〈nR(t)n0(t)〉C = 2n
1

N

∑
k

e−ıkR〈
[
a†k(t)ak(t) + a−k(t)a

†
−k(t) + a†k(t)a

†
−k(t) + a−k(t)ak(t)

]
〉.

This observable has the same form of spin-spin correlations once expressed as a function
of magnons (see Sec. 3.4.1).
Rewriting all the particle operators as functions of quasi-particle ones, it is possible to
explicit the time evolution

Gddc (R, t) = 2n0

∫ π

−π
dk
F2(k)

2π
cos(kR) sin2

(
Efk t

)
(4.10)

where

F2(k) =

(
AfkBik −AikB

f
k

)
(
Afk + Bfk

)
Eik

=
nεk

(
Vf (k)− V i(k)

)
(εk + 2nVf (k))Eik

.

We used the short-hand notation for the potential

Vλ(k) = Uλ + V λ
∑
R

e−ıRk

Rα
,

where λ = i, f for pre- or post-quench values of the couplings.
The function F2 depends explicitly on the observable studied. If we study the one-body
correlation function, g1(R, t), defined as

g1(R, t) = 〈a†R (t) a0 (t)〉C − 〈a†R (0) a0 (0)〉C ,

we encounter a new function F1.
The time-evolution of particle operators can be written explicitly using the quasi-particle
ones defined in the final Hamiltonian. The form taken by the dynamics of this observable
makes clear that its spreading is still connected to the spreading of Bogoliubov particles,

g1(R, t) = 〈a†Ra0〉C =

∫ π

−π
dk
F1(k)

2π
cos(kR) sin2(Efk t), (4.11)

where the pre-factor takes the observable-dependent form

F1(k) =

(
AfkBik −AikB

f
k

)
Bfk(

Efk

)2
Eik

.

In conclusion, the LRBH model has two natural observables: density-density and the one-
body correlation function. Both these observables can be interpreted in the same way:
two counter-propagating beams of quasi-particles of phase Efk spread in the system after
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a quantum quench. The difference between the two observables is the integral weight,
F2(k) for the density-density correlations, and F1(k) for the function g1(R, t). These
functions take into account the contribution to the specific observable of the different
modes. These different weights represent the fact that not all the parts of the spectrum
contribute at the same way to different observables. We will see in full details how this
applies to locality and its breakdown in the LRBH model.

4.3 Correlation function and protection of locality

Let now discuss in full detail the time-evolution of the density-density correlations.

4.3.1 Comparison with Monte Carlo results.
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Figure 4.2: Time evolution of the density-density correlations following a quantum quench for the
LRBH Hamiltonian with different values of α. The time evolution for all the studied
values of the long-range couplings is ballistic in agreement with the results found in the
t-VMC.

We start our microscopic analysis from the time evolution of the density-density corre-
lations following a quantum quench. We study the time evolution for the same values
of α already studied using Monte Carlo calculated by computing Eq. (4.10) using exact
numerical integration. As in the t-VMC data, a ballistic spreading of correlations is
found for every value of α, see again Fig. 4.2.
We can then take rewrite Eq. (4.10) as

Gddc (R, t) = n

∫ π

−π
dk
F2(k)

(2π)

cos (kR)−
cos
(
kR+ 2Efk t

)
+ cos

(
kR− 2Efk t

)
2

(4.12)
= g∞(R) + ḡ(R, t). (4.13)

We can then interpret this expression in the same way as we did for the LRTI model.
The time-independent function g∞(R) is the equilibration value and ḡ(R, t) is the time
dependent part responsible for the dynamics of the observable.
The interpretation based on the quasi-particle picture can give us useful hints on the
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4 Long-range Bose-Hubbard model

regime of propagation of correlations, as we saw in Sec. 3.5. We need now to analyze the
energy spectrum of the model and its derivative, the group velocity, for different values
of α.

4.3.2 Energy spectrum of excitations

We can start our microscopic analysis from the energy spectrum of the Bogoliubov exci-
tations, which reads

Ek =
√
εk [εk + 2nV(k)].

εk is the short-range hopping part and V(k) is the Fourier transform of the interaction
potential containing both short- and long-range part are written in Eq. (4.5). For α < 1,
the Fourier transform of the long-range potential is divergent around k ≈ 0

V(k) = U +
∑
R

1

Rα
≈
∑
R

1

Rα
.

The sum has to be computed from R = 1 to R = L and it gives a divergent value in the
thermodynamic limit,

V(k) ∼ L1−α.

We can then express this values as a function of k = 2π
L and obtain

V(k) ∼ 1

k1−α .

The pole of the long-range potential is not sufficient to have a divergent energy spectrum.
In fact, the short-range hopping part goes to zero as

εk = 4J sin2 (k/2) ∼ k2,

and the dispersion relation is finite in the infrared limit

Ek =
√
εk (εk + 2nV(k)) ≈

√
k2
(
k2 + 2nV0k−(1−α)

)
∼
√
k22nV0k−(1−α) ∼ k 1+α

2 .

(4.14)
In contrast, the group velocity of the excitations is divergent

Vk = ∂kEk ∼ ∂kk
1+α

2 ∼ k α−1
2 =

1

k|
1−α

2
| .

In Fig. 4.3 the group velocity of the Bogoliubov quasi-particles is plotted for α = 1/2. It
is possible to see the divergence of this quantity in the infrared limit.
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Figure 4.3: Group velocity of the Bogoliubov excitations for α < 1. It is possible to see how the long-
range interactions make it divergent around k ≈ 0. The function is also non monotone
as due to the shape of the short-range hopping εk which contributes to the local finite
maximum locate at finite k.

This explains why a ballistic propagation is found for this observable for α > 1. In
see Sec. 3.6.1 we showed how a finite maximum velocity forces the correlation front to
spread ballistically with a finite velocity.
For α < 1 anyway a ballistic propagation is found in the t-VMC data and in the exact
evaluation of Eq. (4.12). This cannot be explained considering just the energy spectrum.
This quantity has in fact a divergent derivative around k ≈ 0 which does not affect the
propagation of correlations.
This very last observation is a key difference between the two models: in the LRTI model
different regimes of propagation are determined by different divergences in the spectrum.
In the LRBH model, the same ballistic propagation regime is found despite the changes in
the quasi-particles spectrum. This points out that the analysis of the dispersion relation
alone is not enough to explain the spreading of local observables.
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4.3.3 Protection of locality

In this section we will explain in full detail why the density-density correlation function
exhibits a linear light-cone even for α < 1, i.e. where the group velocity is not bounded.
This ballistic propagation is thus present even if the excitation spectrum contains modes
with infinite velocity and this has been demonstrated to be sufficient to break locality in
the LRTI model (see Sec. 3.6.2). To explain why the infinite velocities do not affect the
propagation, we look at Eq. (4.10) which defines the density-density correlations. As we
known, the effect of long-range interactions is stronger in the infrared region (k → 0+).
A key ingredient that is not contained in the properties of the spectrum is the behavior
in the infrared limit of the weight of the modes, namely the function

F2(k) =

(
AikB

f
k −A

f
kBik

)
(
Afk + Bfk

)
Eik

=
n
[
Vf (k)− V i(k)

]
εk

[εk + 2nVf (k)]Eik
.

where we used again the short-hand notation

Vλ(k) = Uλ + V λ
∑
R

e−ıRk

Rα
,

where λ can be i for the pre-quench values of the couplings and f for the post-quench
values of the couplings.
For α < 1 which is the case of interest in this section, we know that the long-range
potential is divergent

V(k) ∼ 1

k1−α ,

where we are interested just in its scaling in the infrared region.
In the same region, the function F2(k) goes rapidly to zero due to the divergence in the
long-range interactions

Fα<1
2 (k) =

n
[
Vf (k)− V i(k)

]
εk

[εk + 2nVf (k)]Eik
≈
(
V f − V i

)
J

2
√

2nJV i
k

3−α
2 , (4.15)

where V f 6= V i 6= 0 in order to have a non-zero leading order of the expansion.
If we compute the same quantity for α > 1, we find that it goes to zero slower

Fα>1
2 (k) ∼ k.

This result can be easily obtained simply recalling that the potential Vλ(k) ∼ Vλ0 takes
a finite value for α > 1 because the mean value of the potential is finite. The previous
result is then simply given by the ratio between εk ∼ k2 and Eik ∼ k. The comparison
between the two cases α < 1 and α > 1 points out that long-range interactions reduce
the contribution coming from the modes in the infrared region, the ones supposed to
break locality. This can be used to motivate the fact that the contribution to the value
of the observable coming from some parts of the spectrum is suppressed.
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4 Long-range Bose-Hubbard model

We are now going to make this argument more quantitative. We can study the time-
dependent part ḡ(R, t) of Eq. (4.12) in the limit where R→∞ and t→∞, keeping their
ratio constant, R/t = v. In this limit, the integral in Eq. (4.12) can be evaluated using
the stationary phase approximation, which gives

gv(R, t) ≈
∑
λ

1√
t
W2(k?λ) cos

(
k?λR− 2Efk?λ

t
)
. (4.16)

The values k?λ are the solutions of the equation

R

t
= 2∂kEk

for a fixed ratio R/t, labeled by λ. In this case, multiple solutions appear for specific
values of v because the spectrum is not monotonous. Physically, Eq. (4.16) represents
the contribution of the modes with a defined velocity v = R/t to the full correlation
function. The weight of every k?λ is given by

W2(k) =
F2(k)√
∂2
kEk

. (4.17)

The function W2(k) controls the contribution given by the different parts of the spec-
trum to the observable. The study of the variations of this function will be the key to
understand the propagation of correlations.
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Figure 4.4: Plot of the function W2(k) as function of k and as function of v. It is possible to see how a
strong peak at finite velocity is present due to the finite maximum attained at finite values
of k of the group velocity. The modes in the infrared region have an infinite velocity but
their weightW is extremely small compared to the other modes. Since these modes do not
affect the propagation we can neglect them in the time evolution and we can then say that
the light-cone velocity is given by the maximum at finite velocity.

In Fig. 4.4 the function W2 is plotted as function of k (left panel) and as function of
v = 2∂kEk (right panel). The letter is important in order to understand which group
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velocity in the spectrum gives the larger contribution to the observable. In all the plots,
we present in red the part of the spectrum located at k ≈ 0, in this way it is possible to
identify the contribution of the long-range potential.
From the previous plots it is possible to see how the contribution of the modes in the
infrared region is extremely small. We can compute its scaling using the asymptotic we
found before for the function F2(k) and the dispersion relation in the infrared region

F2(k) ∼ k 3−α
2 ,

Ek ∼ k
1+α

2 ,

∂2
kEk ∼ k−

3−α
2 .

We can then plug these expressions into the definition (4.17) to obtain the scaling

W2(k) ∼ k
3−α

2√
k−

3−α
2

= k
3
2( 3−α

2 ). (4.18)

The contribution of the modes located in the infrared region is then suppressed. Thanks
to the divergence in the energy spectrum, the function W2(k) goes to zero much faster
than F2(k).
Since the quantity we are interested in is the velocity of the light-cone, the best choice is
to express the function W2 as a function of the velocity instead of the momentum. This
can be done analytically in the infrared region. We know the solution of the stationary
phase equation in that limit, namely

R

t
= v = 2∂kEk = 2∂kk

1+α
2 ∼ k− 1−α

2 → k ∼ v− 2
1−α .

We can then plug the last relation into Eq. (4.18) to get the dependence of W2 on the
velocity

W2(v) ∼ [k(v)]
3
2( 3−α

2 ) ∼ v− 3
1−α( 3−α

2 ).

The last equation points out that the contribution of the modes with a large velocity
goes to zero as the velocity increases.
The analysis of the function W2(k) outside the infrared region has two peaks. They
correspond to the extremal points of the group velocity, where the second derivative of
the dispersion relation goes to zero

∂kvk = ∂2
kEk → 0.

This makes the denominator of Eq. (4.17) vanishing, giving to these extremal points a
large contribution to the studied observable

W2(k) ∼ 1√
∂2
kEk

� 1.
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LRTI α = 3

vt-VMC
c 0.3(7) h

vqp
c 0.3928 h

LRBH α = 1/2 α = 3/2 α = 3

vt-VMC
c 3.(6) J 3.(5) J 3.(1) J

vqp
c 3.7408 J 3.3893 J 3.1772 J

Table 4.1: In this table we compare the velocity of the light-cone extracted from the Monte Carlo
results with the one extracted from the quasi-particles approach. All the cases studied are
one dimensional systems. For the LRTI model with α = 3 and for the LRBH model for
α = 3/2 and α = 3, the excitations have a finite group velocity. It is then possible to check
how the velocity of the light-cone extracted from the numerics is compatible with the one
computed with the quasi-particle picture. For the case α = 1/2 in the LRBH a ballistic
propagation is found in the Monte Carlo data. For the quasi-particles infinite velocity are
present in the energy spectrum. Using the stationary phase approximation it is possible to
find that the velocity that contributes to the observable is a finite group velocity located
outside the infrared region. It is then possible to see how for this particular case the results of
the quasi-particle picture and of the Monte Carlo can be compared. The difference between
the two is compatible with the differences in the other cases, where the Cardy-Calabrese
principle hold. This table can be found in the supplementary material of Ref. [23].

We can then see from Fig. (4.4) that the contribution of modes with large velocity is
much smaller than the contribution coming from the modes located outside the infrared
region. The difference between the contribution of the infrared region and the one of
the extremal point, at least some orders of magnitude, makes the one of infinitely fast
modes negligible in the summation of Eq. 4.16. The light-cone velocity observed in the
numerical data is then given by

vlc = 2 max ∂kE
f
k ,

where the maximum is taken outside the infrared-region, blue line in Fig. 4.3. Since
the contribution of the fast-modes in the long-range potential is negligible, compared to
the rest of the spectrum, the velocity of the light-cone will be given by the finite maxi-
mum velocity located outside the infrared region. In Tab. (4.1), the comparison between
the light-cone velocity extracted from the Monte Carlo data and the one obtained by
the quasi-particle approach are presented. It is possible to see how the quasi-particles
picture is able to predict the velocity of the light-cone with good accuracy where the
Cardy-Calabrese works, LRTI and LRBH with α > 1, and also where the analysis of the
integral weight has to be taken into account, LRBH α < 1.
Another interesting fact has to be pointed out now: the form of the function F2 is de-
termined also by the initial state. The choice of a particular initial state can have then
drastic changes in the dynamics. For example, in the case of a quench from a non-
interacting Hamiltonian we get F2 ∼ const. In this case, the infinite velocities present in
the spectrum have a finite contribution and the propagation is faster-than-ballistic.

The study of the density-density correlation function points out a dramatic difference
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4 Long-range Bose-Hubbard model

between the LRTI and LRBH model. In the LRTI model, the propagation is completely
determined by the dispersion relation. In the LRBH model the analysis of the energy
spectrum is not enough to infer the dynamics. In this case the pre-factor F2(k) plays
a crucial role to determine the regime of propagation itself. In this case the presence
of infinite velocities in the spectrum is not enough to destroy the ballistic propagation,
because the contribution of these modes is negligible. The final result is then a protec-
tion of locality: not only long-range interactions are not sufficient to destroy locality, but
neither modes with infinite velocity are.
The result we presented points out another fact: the time-evolution have a dependence
on the observable. The function W2(k) is in fact proportional to the amplitude F2(k),
which form depends strictly on the specific observable. In the last section, we will try to
investigate the time propagation of a different local operator, namely the g1(R, t) func-
tion, see Eq. (4.11). This is a natural observable for bosonic lattice models and it can be
measured in standard cold atomic setups, see Sec. 1.3.2. This observable takes the same
structure as the density-density correlations, with the same quasi-particles spreading
giving the time evolution. The amplitude in the integral is anyway a different function
F1(k) which will determine a drastic change in the dynamics.

4.4 Time evolution of the one-body correlation function

We are now going to study the behavior of the g1(R, t) function following a quantum
quench. At the present moment this is an ongoing work. The results presented here are
just preliminary and they will be the topic of my next publications.
The function g1(R, t), see Eq. (4.11), takes the same form as the density-density corre-
lation function in terms of quasi-particles. It can be written as two counter-propagating
beams spreading with the dispersion relation of the final Hamiltonian. The contribution
of every mode to the specific observable is encoded in the function F1(k). This is different
from the function F2(k) of density-density correlations and it reads

F1(k) =

(
AfkBik −AikB

f
k

)
Bfk(

Efk

)2
Eik

,

where the amplitudes Ak and Bk are the same as those defined in Eq. (4.9). As we did
in the previous section for the density-density correlations, we can interpret the time
evolution of the one-body correlation function using the quasi-particles approach. The
quasi-particle spectrum is left unchanged: it has an unbounded maximal group velocity
for α < 1 and finite maximum group velocity for α > 1.
For α > 1 the propagation has to be bounded: the fact that the fundamental excitations
of the system spread with a finite velocity forces local observables to be bounded by a
light-cone.
For α < 1 an infinite velocity appears in the infrared region due to the divergence of the
Fourier transform of the long-range potential. The fundamental excitations responsible
for spreading of the g1(R, t) and of the density-density correlations are the same. The
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weights F1 is completely different from F2 and this changes the dynamics. This can be
again quantifies studying the correlation function in the stationary phase approximation.
For g1(R, t), it can be written in the same general form as before

g1(R, t) ≈
∑
λ

1√
t
W1(k∗λ) cos

(
k?λR− 2Efk?λ

t
)
,

where now
W1(k) =

F1(k)√
∂2
kE

f
k

. (4.19)

It has to be noticed how the functions W2(k) and W1(k) depend specifically on the
observable studied through the pre-factors F2(k) and F1(k). In Sec. 4.3.3 we described
how the behavior of W2(k) is able to protect locality suppressing the contribution to the
density-density correlations coming from infinitely fast modes. We are going to do the
same study for g1(R, t) demonstrating that this observable does not protect the locality.
We need to evaluate Eq. (4.19) in the infrared limit. To do so, we expand the pre-factor
F1(k) for α < 1 and k ∼ 0 using the asymptotic formula Vλ(k) ∼ V λk−(1−α)

F1(k) =
n2εk

(
Vf (k)− V i(k)

)
Vf (k)(

Efk

)2
Eik

∼
√
V(k)

εk
∼ k− 3−α

2 .

Remarkably, it turns out to be the inverse of F2(k). The divergence of the dispersion
relation is the same as before and its derivative is

∂2
kEk ∼ k−

3−α
2

We can then put all these pieces together to obtain the scaling of W1(k) in the infrared
limit,

W1(k) =
F1(k)√
∂2
kE

f
k

∼ k−
3−α

2

k−
1
2( 3−α

2 )
∼ k− 1

2( 3−α
2 ).

This function diverges as k → 0 and then quasi-particles in that region will affect strongly
the time evolution. We can then compare this scaling with the one of the W2(k) ∼
k

3
2( 3−α

2 ) which gives completely different behaviors. The one coming from the density-
density correlations are strongly suppressed in the density-density correlations, while
these are extremely large in the g1(R, t).
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Figure 4.5: Upper panel: plots of the functionW1(k) for the g1(R, t) found for different cases: α = 1/2,
α = 3/2 and a short-range model. Lower panel: the same quantities as before are plotted
as function of the velocity of the quasi-particles. It is possible to see how the branch
containing the infinite velocity, k ≈ 0 region, has a huge weight for this observable. The
effect of the different weight is faster-than-ballistic spreading of correlations in the time
evolution of the observable.

In Fig. 4.5 the weights W1(k) for the g1(R, t) are presented as function of k (upper
row) and as function of v = 2∂kE

f
k (lower row) for α = 1/2, right column, α = 3/2,

central column, and a short-range model Vi = Vf = 0, left column. It is possible to see
how, for α = 1/2 and α = 3/2, the function W1(k) diverges in the infrared region for
the long-range interactions. This means that the modes located in the k ≈ 0 region give
a large contribution to the observable. For α > 1 and for the short-range model, the
infrared region has an extremely large contribution to the observable, but in these cases
no infinite velocity is present.
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Figure 4.6: Time evolution of the function g1(R, t) for different values of α = 1/2, α = 3/2 and for
a short-range model. In the α = 1/2 case, a faster-than-ballistic propagation is found
compatible with the presence of infinite velocities in the excitation spectrum. For α = 3/2,
where the velocity has a finite maximum group velocity attained at k ≈ 0, the time evolu-
tion if ballistic as in the short-range case represented on the right, even if their velocities
are different. This figure points out, how different observables can have different behaviors
even if the quasi-particles have the same group velocity.

In Fig. 4.6 it is possible to see the time evolution of the g1(R, t) for α = 1/2, α = 3/2,
and for the short-range version of the Hamiltonian, V f = V i = 0. While in the two
figures on the right (α = 3/2 and short-range case) it is possible to see a linear structure
in the time evolution, on the figure on the left (α = 1/2) this structure is absent. The
correlation functions in this case is not bounded by a linearly increasing light-cone due
to the divergent group velocity of some excitations. If we compare this case to the one
already discussed in Sec. 3.6.2 for the LRTI model we can find some analogies. In both
cases the presence of a cusp in the energy spectrum, finite dispersion relation and infinite
velocity, leads to an algebraic light-cone t? ∝ Rβ . The main difference is anyway in the
values of β: for the LRTI model the propagation was slower-than-ballistic, β > 1, while
for the LRBH model it is faster-than-ballistic β < 1 (at least qualitatively). The param-
eter β is anyway extremely model dependent, as we saw in Sec. 3.1 3.2. The difference
between the behaviors of the two models is not completely surprising.

This is an important point. In the derivation of the general bounds on the time evolution
of local observables the explicit form of these operators has always been neglected. The
operators are requested to be bounded in order to approximate them as constants

A ≤ ‖A‖I.

This is a rather brutal bound and it completely destroys all the physical information
to the dynamics coming from the operator. Using this argument, the only meaningful
quantity used to describe the time evolution is the energy spectrum of the excitations.
For short-range interactions the approximation was enough to describe the right behavior
of the dynamics of the expectation values. This is anyway not surprising: short-range
interactions impose clearly a bound over the propagation of correlations that cannot be
nothing but linear.
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When the long-range interactions come into play the situation drastically changes. In this
case the spreading of correlations can take different shapes, from slower-than-ballistic to
instantaneous. In the studied models, the bounds are not enough to describe the right
propagation and the microscopic approach is still fundamental to predict the correct
dynamics of correlations. In particular the microscopic analysis outlines a characteristic
of the time evolution which is completely absent in the general bounds: the dependence
on the observable. Two observables as the density-density correlations and the one-
body correlation have different behaviors even if the quasi-particles responsible for their
propagation have the same spectrum for both the observables.
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In this manuscript we presented the results for the time evolution of correlations in
long-range interacting quantum systems following a quantum quench. We compared two
models: a spin model and a lattice boson model. Both of them are described by Hamil-
tonians containing long-range terms of the type 1/Rα. The spin model has a long-range
spin exchange term while the bosonic one has long-range standard interactions. In the
limits where these two Hamiltonians can be mapped onto quadratic bosonic Hamiltonians
the time evolution could be solved analytically. Using these results we compute the exact
time evolution of different observables and we compare it to the general Lieb-Robinson
bounds extended to long-range interacting lattice Hamiltonians. In all the cases studied
there, the real time evolution exhibits a more complex behavior than the one presented
in these bounds.
For the spin system, we compare the results obtained in one dimension using the time-
dependent variational Monte Carlo (t-VMC) algorithm to the ones obtained using the
linear spin wave theory (LSWT), and an excellent agreement is found. We then extend
this approach to arbitrary dimensions D. The time evolution of spin-spin correlations
following a quantum quench takes different regimes depending on the value of α.
For α < D, the dynamics is instantaneous: correlations are activated everywhere in the
system right after the quench. This result can be described perfectly using the quasi-
particle approach. The dispersion relation of the fundamental excitations of the system is
divergent and it determines a characteristic activation time that vanishes in the thermo-
dynamic limit. This vanishing activation time can be found also analytically integrating
the modes with a divergent dispersion relation or using the indetermination principle.
Computing the activation time in a finite system we are able to determine the finite-size
scaling of this time and check it using the numerical results. Instantaneous propagation
is in perfect agreement with the general bounds: for α < D no bound is present allowing
for arbitrary fast propagation.
ForD < α < D+1, the time evolution follows an algebraically increasing horizon t? ∝ Rβ
with β > 1 which identifies a slower-than-ballistic propagation. In this case, the energy
spectrum of the excitations is finite but its derivative, defining the group velocity of the
excitations, is infinite. Using the quasi-particle approach it is possible to compute the
contribution of these modes to the correlation function in some cases and to compute the
scaling of the light-cone analytically. This exact computation confirms that the propa-
gation is slower-than-ballistic even if infinite velocities are presents in the spectrum.
For α > D + 1, the propagation of correlations is ballistic. The spectrum of excitations
shows a finite maximum group velocity. This velocity determines the velocity of the
light-cone of correlations in the same way as short-range interacting systems.
These results point out that the time evolution can be predicted simply looking at the
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energy spectrum of excitations. This is an important fact: the energy spectrum of the
quasi-particles can be determined in different ways, also experimentally. An analysis of
the divergences in this case is reliable to determine qualitative and quantitative predic-
tions on the time evolution.
The results obtained by the microscopic approach do not violate the general bounds for
long-range interacting quantum systems found in the literature. Anyway, these bounds
describe correctly the time evolution just for the case α < D, where no bound is present
and the time evolution observed is instantaneous. In the other two cases, the general
bounds are respected but they are far from the results obtained by the real time evolution.
The exact dynamics is then fundamental and our work provides a huge simplification in
this sense: we determine the main quantity to describe the time evolution, the dispersion
relation. It, however, assumes that it can be derived analytically.
We then switch to the interacting bosons. Mathematically, the interaction potential here
takes the same form as the long-range spin-exchange previously studied, they both re-
spect the same general bounds. However the physical meaning is completely different: in
the previous case the spin exchange was representing a sort of “kinetic term” while here
it is a real interaction potential.
We find both in Monte Carlo and analytic results, based on the Bogoliubov approach,
a ballistic propagation of density-density correlations for any value of α. We can then
try to interpret these results using the spectrum of the fundamental excitations. We find
that the energy spectrum contains infinite velocities just if α < 1. Despite these fast
moving quasi-particles, the propagation of the density-density correlations is ballistic.
We explain that observation by studying the contribution to the observable coming from
different modes. This naturally arises from the general form of the two-body correlations
in the stationary phase limit. We find that the contribution coming from the modes
with an infinite velocity is strongly suppressed due to long-range interactions. The time
evolution is then completely unaffected by the presence of infinite velocities, which would
determine non-ballistic propagation.
The importance of the previous results is that, for the first time, something different from
the energy spectrum alone determines the time evolution. In this case, an observable-
dependent quantity is crucial to determine the correct dynamics beyond the simple quasi-
particle method based on the group velocity. The previous results is also sensible to the
initial state, that can be chosen to enhance the presence of these infinite velocities break-
ing locality.
We then decide to study another observable, namely the one-body correlation function.
The energy spectrum of the excitations is the same as before, it contains infinite group
velocities for α < 1. What changes from the two-body (density-density) correlations is
the contribution of these modes: In the previous case it was vanishing while in this case
it diverges. The effects of the infinite velocities are then not negligible for this specific
observable and we then find an algebraic faster-than-ballistic propagation of correlations
for α < 1 and a ballistic propagation for α > 1.
We demonstrated the presence of an observable-dependent dynamics which was not con-
tained in the general bounds and it is still not taken into account by other methods than
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the microscopic one presented here. This determines the need to use the microscopic
approach to understand the real time evolution.
In the case of the bosonic system, as before, the dynamics does not violate the gen-
eral bounds. Anyway, they are not just overestimating the time evolution, as in the
spin model. Here the bounds seem to not be able to take into account the observable-
dependence locality explained using the microscopic theory. This new dependence is well
described by the microscopic approach which is, as before, the only way to explain the
spreading of correlations in a precise way.

Many different directions can be considered to continue the exploration of the effects
of long-range interactions on the time evolution. The first involves the ongoing work
on the one-body correlation function in long-range bosonic systems. This work involves
the correct understanding of the time evolution and the difference from density-density
correlations for α < 1. At the same time, it would be interesting to work directly on
the bounds, trying to introduce the dependence on the observables we see in the quasi-
particle picture.
From a more general point of view, we are working on the spreading of correlations in
long-range interacting many body systems. We want to demonstrate that different struc-
tures with particular scalings appear during the dynamics. These structures have already
been detected in numerical works on dynamics with short-range interactions. Using the
quasi-particle picture it is possible to demonstrate that generic correlations have two or
more structures with different parameters, velocities if they are linear and even scaling if
they are algebraic. The presence and correct description of these structures may lead to
a classification of these phenomena and a more precise understanding of the differences
that appear in the numerical and experimental data.
After these works it would be interesting to explore the effect of long-range interactions
on all the phenomena where the characteristic velocity of quasi-particles is important.
Long-range interactions can in fact make this velocity divergent and this can change some
phenomena as the relaxation of observables. These effects have already been measured
in trapped ions experiments and they would open a new research line.
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