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Abstract

Long-range interacting quantum systems have attracted considerable attention in recent years both
from an experimental and theoretical perspective. The class of long-range systems considers the
all-to-all interaction of any two constituents whereas the interaction strength falls off algebraic-
ally with distance 𝑅 between them as 𝑅−𝛼. Latest experimental and technological progress made it
possible to realise long-ranged systems on several quantum simulation platforms, including artifi-
cial ion crystals, dipolar quantum gases, and other systems where the Coulomb interaction is not
completely screened. In the theoretical framework of quantum many-body systems, long-range
interactions break various fundamental concepts and theorems with far-reaching consequences.
Among those are Lieb–Robinson bounds which guarantee the emergence of causality in short-
ranged non-relativistic lattice systems, as well as the Mermin–Wagner–Hohenberg theorem stating
that continuous symmetries in short-ranged one dimensional quantum systems cannot be spon-
taneously broken by the ground state.
In this thesis, we study the effects of long-range interactions on out-of-equilibrium and equilib-

rium features of lattice spin models in one spatial dimension. To this end, we employ complement-
ary analytical calculations based on linear spin-wave theory, and state-of-the-art tensor-network
simulations while particularly focusing on the feature unique and central to many-body quantum
systems: entanglement.
First, in the long-range transverse-field Ising model, we show the emergence of a weak form of

causality characterised by non-universal dynamical exponents. On the one hand, local magnetisa-
tion and correlations have an emergent sub-ballistic causal cone while the marked features in the
interior of it propagate super-ballistic or ballistic, respectively. On the other hand, the emergent
causal cone for all entanglement entropies is shown to be ballistic irrespective of the interaction
range and the interior is without marked features.
Second, we determine the equilibrium quantum phase diagram of the long-range XXZ model

in terms of the anisotropic coupling and the long-range interaction exponent through studying a
representation of the spectrum of the reduced density matrix following a half-chain bipartition,
the so-called entanglement spectrum. We show it exhibits a remarkable self-similarity within the
critical phase where the system is described by a Luttinger liquid while the self-similarity extends
to the geometric entanglement and the Luttinger parameter. The transition away from a Luttinger
liquid is consistent with the breakdown of self-similarity and a renormalisation group analysis.
The combination of the two latter allows us to locate the corresponding phase transitions which
we corroborate by numerical simulations. Furthermore, we show the Entanglement Hamiltonian,
the Hermitian operator whose spectrum is the entanglement spectrum, follows the form of the
Bisognano–Wichmann theorem in large regions of the phases which include the short-range limit,
while such a form can be excluded in the phase where genuinely long-ranged effects are relevant.
More precisely, this manuscript is organised as follows.
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Chapter 1 introduces the basic concepts of many-body physics in one dimension (1D).We discuss
equilibrium properties as well as out-of-equilibrium features of many-body systems, before cover-
ing long-range interacting systems. We then dedicate a section to the experimental realisation of
such systems. The final section in this chapter briefly discusses the role of quantum information
in condensed matter physics.
InChapter 2, we introduce thenecessary concepts to simulate 1D long-range interacting quantum

systemswith tensor-network techniques. We beginwith introducing a graphical notation of tensors
and their contractions, and continue explaining through the singular value decomposition how to
constructMatrix Product States (MPS).Matrix Product Operators (MPO) are then introducedwhile
particularly focusing on the construction of Hamiltonian operators in the formof sums of both local
and long-range interacting operators. We then explain the densitymatrix renormalisation group al-
gorithm for determining the ground state of a gapped Hamiltonian. Finally, we explain the central
concepts to the time-dependent variational principle algorithm which takes an MPS and evolves it
in time given some Hamiltonian.
In Chapter 3, we study the effects of long-range interactions on the spreading of information

and correlation related to the emergence of causality in out-of-equilibrium dynamics in the long-
range transverse Ising model (LRTI). We introduce and discuss relevant aspects in existing liter-
ature about short-range and long-range interacting systems. Then our main results are presented
obtained by complementary analytical computationswithin linear spin-wave theory and numerical
simulations through tensor-network methods. We conclude that a weak form of causality emerges
in the quasi-local regime of the LRTI, contrarily to the short-range regime where all observables
spread ballistically as in the short-range limit.
Chapter 4 is dedicated to the study of the quantum phase diagram of the long-range interacting

XXZ model in terms of the anisotropic coupling in the spin-𝑧 direction and the long-range interac-
tion exponent 𝛼. To this end, we study the entanglement spectrum defined as a representation of
the eigenvalues of the half-chain bipartite reduced densitymatrix obtained through tensor-network
simulations. We find it not only contains sufficient information to characterise the entire quantum
phase diagram, but it also exhibits a remarkable self-similarity in the critical phase mapping its
low-entanglement-energy part in the long-range model onto its short-range counterpart. Further-
more, we study the Entanglement Hamiltonian and show that it takes on a form compatible with
the Bisognano–Wichmann theorem in large regions in the phase diagram including the short-range
limit. Contrarily, such a form can be excluded in the phase with genuinely long-range interactions.
Finally, inChapter 5, we drawour conclusions and give an outlook on further research directions.
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Résumé

Les systèmes quantiques avec interaction à longue portée ont attiré une attention considérable ces
dernières années, tant d’un point de vue expérimental que théorique. La classe des systèmes de
longue portée considère l’interaction totale de deux constituants quelconques alors que l’amplitude
d’interaction décroît algébriquement avec la distance relative 𝑅 comme 𝑅−𝛼. Les derniers progrès
expérimentaux et technologiques ont permis de réaliser des systèmes de longue portée sur plu-
sieurs plateformes de simulation quantique, dont les cristaux d’ions artificiels, les gaz quantiques
dipolaires, et d’autres systèmes où l’interaction de Coulomb n’est pas complètement écrantée. D’un
point de vue théorique, les interactions à longue portée rendent caduques certains concepts et théo-
rèmes fondamentaux avec des conséquences considérables. Parmi ceux-ci figurent les bornes de
Lieb–Robinson qui garantissent l’émergence de la causalité dans les systèmes non-relativistes de
courte portée sur réseau, ainsi que le théorème deMermin-Wagner-Hohenberg, selon lequel les sy-
métries continues des systèmes quantiques unidimensionnels à courte portée ne peuvent pas être
spontanément brisées par l’état fondamental.
Dans cette thèse, nous étudions les effets des interactions à longue portée sur les propriétés hors

équilibre et à l’équilibre des modèles de spin sur réseau en une dimension spatiale. À cette fin, nous
utilisons des calculs analytiques complémentaires basés sur la théorie linéaire des ondes de spin,
et des simulations de réseaux tensoriels de pointe tout en nous concentrant particulièrement sur la
caractéristique unique et centrale des systèmes quantiques à plusieurs corps : l’intrication.
Premièrement, dans le modèle d’Ising en champ transverse de longue portée, nous montrons

l’émergence d’une forme faible de causalité caractérisée par des exposants dynamiques non uni-
versels. D’une part, la magnétisation et les corrélations locales présentent un cône causal émergent
sub-balistique tandis que les structures marquées à l’intérieur de celui-ci se propagent de manière
super-balistique ou balistique, selon l’observable considérée. D’autre part, le cône causal émergent
pour toutes les entropies d’intrication s’avère être balistique indépendamment de la portée des in-
teractions et l’intérieur est sans structures marquées.
Deuxièmement, nous déterminons le diagramme de phase quantique d’équilibre dumodèle XXZ

à longue portée en termes de couplage anisotrope et d’exposant d’interaction de longue portée en
étudiant une représentation du spectre de lamatrice de densité réduite suivant une bipartition àmi-
chaine, appelée spectre d’intrication. Nousmontrons qu’il présente une autosimilarité remarquable
dans la phase critique où le système est décrit par un liquide de Luttinger, et que l’autosimilarité
s’étend à l’intrication géométrique et au paramètre de Luttinger. La transition hors du liquide de
Luttinger est cohérente avec la rupture de l’autosimilarité et une analyse par groupe de renormali-
sation. La combinaison de ces deux dernières nous permet de déterminer les transitions de phase
correspondantes que nous corroborons à l’aide de simulations numériques. De plus, nousmontrons
que le Hamiltonien d’intrication, l’opérateur hermitien dont le spectre est le spectre d’intrication,
suit la forme du théorème de Bisognano–Wichmann dans les grandes régions des phases incluant
la limite à courte portée, tandis qu’une telle forme peut être exclue dans la phase où les effets à
longue portée sont véritablement pertinents.
Plus précisément, le manuscrit est organisé comme suit.
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Le chapitre 1 présente les concepts de base de la physique à plusieurs corps en une dimension
(1D). Nous discutons des propriétés d’équilibre ainsi que des caractéristiques hors équilibre des sys-
tèmes à plusieurs corps, avant d’aborder les systèmes en interaction à longue portée. Nous consa-
crons ensuite une section à la réalisation expérimentale de tels systèmes. La dernière section de
ce chapitre aborde brièvement le rôle de l’information quantique dans la physique de la matière
condensée.
Dans le chapitre 2, nous introduisons les concepts nécessaires pour simuler des systèmes quan-

tiques 1D en interaction à longue portée avec des techniques de réseaux tensoriels. Nous commen-
çons par présenter une notation graphique des tenseurs et de leurs contractions, puis nous expli-
quons, par le biais de la décomposition en valeurs singulières, comment construire des états de
produits matriciels (MPS). Nous présentons ensuite les opérateurs de produits matriciels (MPO) en
nous concentrant particulièrement sur la construction d’opérateurs hamiltoniens sous la forme de
sommes d’opérateurs interagissant à la fois localement et à longue portée. Nous expliquons ensuite
l’algorithme du groupe de renormalisation de la matrice de densité pour déterminer l’état fonda-
mental d’un hamiltonien gappé. Enfin, nous expliquons les concepts centraux de l’algorithme du
principe variationnel dépendant du temps qui prend un MPS et le fait évoluer dans le temps étant
donné un certain hamiltonien.
Dans le chapitre 3, nous étudions les effets des interactions à longue portée sur la propagation

de l’information et la corrélation liée à l’émergence de la causalité dans la dynamique hors équi-
libre dans le modèle d’Ising transverse à longue portée (LRTI). Nous introduisons et discutons les
aspects pertinents de la littérature existante sur les systèmes d’interaction à courte et longue portée.
Nous présentons ensuite nos principaux résultats, obtenus par des calculs analytiques complémen-
taires dans le cadre de la théorie linéaire des ondes de spin et des simulations numériques par des
méthodes de réseaux tensoriels. Nous concluons qu’une forme faible de causalité émerge dans le
régime quasi-local de la LRTI, contrairement au régime à courte portée où toutes les observables se
propagent de manière balistique comme dans la limite à courte portée.
Le chapitre 4 est dédié à l’étude du diagramme de phase quantique du modèle XXZ en inter-

action à longue portée en termes de couplage anisotrope dans la direction spin-𝑧 et de l’exposant
d’interaction à longue portée 𝛼. À cette fin, nous étudions le spectre d’intrication défini comme
une représentation des valeurs propres de la matrice de densité réduite bipartite de la demi-chaîne
obtenue par des simulations de réseaux tensoriels. Nous constatons qu’il contient suffisamment
d’information pour caractériser l’ensemble du diagramme de phase quantique. De plus, il présente
une autosimilarité remarquable dans la phase critique qui fait correspondre sa partie à faible éner-
gie d’intrication dans le modèle à longue portée avec sa contrepartie à courte portée. En outre, nous
étudions l’hamiltonien d’intrication et montrons qu’il adopte une forme compatible avec théorème
de Bisognano–Wichmann dans de larges régions du diagramme de phase, y compris dans la limite
de courte portée. Par contre, une telle forme peut être exclue dans la phase avec des interactions
véritablement à longue portée.
Enfin, dans le chapitre 5, nous résumons nos principaux résultats et tirons nos conclusions avant

de donner une perspective sur les futures directions de recherche.
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1 Introduction

“Sometimes science is more art than science. A lot of
people don’t get that.”

— Rick Sanchez, in Rick potion #9, Rick and Morty

1.1 The Many-Body Problem

The many-body problem is a categorical term concerning the study of many—from three up to
infinite—interacting quantum particles. With such a broad definition, it encompasses a plethora
of different fields of modern physics, from the largest energy scales to the smallest. Although the
recent past has witnessed an immense success of understanding the phenomena coming to play
when considering many interacting quantum particles, exact analytical solutions are very rare, and
inmany cases they have been obtained through approximations. Arguably one of themost frequent
and successful approximation techniques in the theory of many quantumparticles are perturbation
theory and mean-field approaches. A prime example of this success is Lev Landau’s Fermi liquid
theory of interacting electrons inside a metal in three spatial dimensions. As its core idea, Fermi
liquid theory adiabatically connects the free, i.e. non-interacting, fermion system to the fully inter-
acting fermion system. Landau established a correspondence of the free single particle states to the
fully interacting ones. Another example of a successful mean-field approximation is the theoretical
explanation of low-temperature superconductivity, first discovered in solidmercury byH. K. Onnes
in 1911, put forward by Bardeen, Cooper, and Schrieffer.
Many systems of interacting quantum particles are however not amenable to mean-field approx-

imations, for some of which the predictions of the latter are entirely contradicting observation.
Such systems exhibit quantum entanglement and are sufficiently correlated that the central idea of
mean-field theory breaks down, and the physics of the ensemble of particles cannot be described
by a single particle picture in which a particle interacts with a constant mean-field background.
Entanglement is a property unique to quantum systems and present whenever a many-body state
is not a product of the states of its constituents but rather in a superposition. Most of these correl-
ated systems are at the heart of ongoing research in condensed matter physics, arguably the most
consequential being high-temperature superconductors.
Recent years have witnessed unprecedented experimental progress in ultracold atomic physics

which lead to new possibilities of pristine precision and extremely wide control of light–matter in-
teractions. By virtue of these developments, almost perfectly isolatedmany-body quantum systems
have been experimentally realised, i.e. they are very weakly coupled to the environment. These
almost closed quantum systems are thus subject to very little decoherence and therefore evolve

5



1 Introduction

under unitary time evolution following the Schrödinger equation. Furthermore, these devices are
prime candidates for universal quantum simulators [1, 2], and their development has ushered in
the era of Noisy Intermediate-Scale Quantum (NISQ) technologies [3]. Envisioned by Feynman
in the 1980s, quantum simulation and more generally quantum information theory makes use of
the laws of quantum mechanics at the very smallest scales technologically accessible to process
information and perform computations more efficiently [1]. Nowadays, the burgeoning field of
quantum information theory has profited as greatly from the experimental success of recent years
as it has contributed to the theory of phases of matter and their understanding. Particularly, the
field of topological quantum matter begot promising candidates for system that may be utilised
for fault-tolerant quantum computing [4] thereby closing the mutually beneficial circle. Essential
to the study of quantum information is the concept of entanglement, i.e. the fact that many-body
quantum systems may be in a non-factorisable state.
Alongside the impressive experimental progress in recent years, novel numerical methods based

on tensor networks have shed new light on the role of entanglement in phases of matter. Moreover,
they revel the pivotal role of quantum information and the holographic principle in the field of
condensed matter, especially in 1𝐷 systems [5].

1.2 One dimensional quantum systems

Quantum systems in 1𝐷 are endowed with particular properties thanks to interactions between
particles [6]. Clearly, in one dimensionalmany-body systems, a single electron cannotmove through
its neighbour without any effort in pushing it away since there is no dimension available to move
around it. Moving a single electron therefore always excites neighbouring ones, and the element-
ary excitations (i.e. quasiparticles) of a 1D system become collective in nature, or they separate spin
and charge of an electron [6]. Fermi liquid theory therefore fails in the one-dimensional quantum
case albeit immensely successful in higher dimensions. Fermionic particles in one dimension are
successfully described by so called Luttinger liquid theory introduced by Haldane [7, 8]. Hence,
1𝐷many-body quantum systems most often provide examples where particles are sufficiently cor-
related such that they do not admit a mean-field solution. Our main focus within this thesis are
spin-1/2models. These spins may be transformed into spinless fermions by means of the Jordan–
Wigner transform. However, the low energy collective excitations of a fermionic system in 1𝐷may
also be described by bosonic degrees of freedom. Indeed, the fermionic and bosonic degrees of free-
dom can be effectively translated into each other depending on the interaction regime as has been
first shownbyColeman in the context of the fermionicThirringmodel and the bosonic sine-Gordon
model [9]. The fermionic theory can therefore be bosonised and the bosonic theory fermionised. In
Chapter 4, we will discuss Luttinger liquid theory and the bosonisation technique in the context of
a long-range interacting spin chain. There, we see the benefit of bosonisation lies in the fact that
one can describe some interactions of fermions in terms of free bosons.
Providing an exact analytical solution to the problem of strongly interacting quantum systems

is most often impossible with rare exceptions to this in 1𝐷 called integrable. Bethe published the
first exact solution to the Heisenberg model with his elaborate ansatz for the eigenvectors of the
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Hamiltonian endowing his name to the technique [10]. Today, Bethe’s ansatz allows to solve the
anisotropic generalisation of the Heisenberg model (the XXZmodel), the Hubbard model, and sev-
eral other interacting quantum models, both discrete and in the continuum. However, within the
Bethe ansatz solution, the computation of observables like correlation functions involves a signific-
ant amount of effort [11]. On the other hand, a particularity of 1𝐷 quantum systems is that there are
numerical methods at our disposal which efficiently tackle the quantum many-body problem and
help unravel their properties. Exact diagonalisation approaches are regarded highly for their simu-
lations up tomachine precision, however they suffer strong finite-size effects as state-of-the-art im-
plementations have only up to≃ 40 sites since the exponential scaling of theHilbert space prohibits
further progress on modern high-performance computer architectures. The physics of systems in
thermal equilibrium, i.e. a system which has no thermodynamic properties whose statistical aver-
age depends on time, may be simulated with a scalable numerical method in the form of Monte
Carlo sampling of the Gibbs ensemble. In the quantum case, equilibrium properties are accessible
through Monte Carlo sampling when the corresponding quantum version of the Gibbs ensemble
does not suffer the so-called sign problem of rapidly oscillating integrals [5]. Fermionic and spin
systems are particularly ill-suited for Monte Carlo methods since one encounters the sign problem
which are formally NP-hard [12]. Within the framework of this thesis, we are interested in both the
equilibrium and out-of-equilibrium properties of spin systems regarding entanglement and correl-
ations. Contrarily, 1𝐷 systemsmay be numerically simulated efficiently, as well as tractably realised
in state-of-the-art experiments. Indeed, the class of states of matter in which the system has a spec-
trum of energies with a gap between the ground state and the first excited state has an efficient
representation as tensor networks (TN). They provide a representation of the wave function in real
space coordinates in a variational class of states forming a low-dimensional manifold inside the
exponentially large Hilbert space which is characterised by a finite amount of entanglement. TNs
can be understood as a crucial tool linking a wide variety of theoretical and computational tech-
niques to solve the many-body problem. To name a view [5], numerical algorithms on TNs have
granted access to the ground states of gapped Hamiltonians via the density-matrix renormalisation
group (DMRG), as well as time-dependent information (TDVP) by applying the time-dependent
variational principle on the TN manifold. The physics of critical, i.e. gapless, systems has been in-
ferred through finite-entanglement scaling. Theoretical insights have shed light on the coordinate
and algebraic Bethe ansatz through respective reformulations in terms of TNs which allow then
for a systematic exploration beyond integrable systems and 1𝐷 quantum systems. Furthermore,
TNs allow for the complete classification of all possible symmetry protected topological phases of
matter in one dimension. In Chapter 2, we will introduce a TN representation of a quantum wave
function in 1𝐷 and discuss the algorithms to obtain the zero-temperature equilibrium ground state
through DMRG, as well as a time-evolved wave function through TDVP.

1.3 Equilibrium many-body physics

Equilibrium many-body physics is characterised by the description of thermodynamic ensembles.
An ensemble is an idealisation that consists of many (often infinite) virtual copies of the system of
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interest each of which representing a possible state of the system one seeks to describe. Mathem-
atically, an ensemble is the probability space of the random process that describes the state of the
physical system at hand. One speaks of equilibrium when the ensemble is stationary and the time
evolution of all its virtual copies does not affect any average macroscopic physical observable in the
ensemble. Note that while any single physical system certainly evolves over time, equilibrium im-
plies that the statistical properties of the ensemble do in fact not evolve over time. Gibbs introduced
several thermodynamic ensembles in equilibrium characterised by different macroscopic variables
and their constraints [13]; we shall introduce three prominent examples,

• Microcanonical ensemble—it is characterised by the conservation of energy and particle num-
ber. All virtual copies of the system have equal energy and particle number. To keep being
in equilibrium, the system can neither exchange energy nor particle number. It therefore
describes physical systems that are completely isolated.

• Canonical ensemble—it is characterised by a fixed number of particles and a fixed temper-
ature. As such, it naturally describes a system in thermal contact with a heat bath with a
stationary energy exchange without exchanging any particles.

• Grand canonical ensemble—characterised by fixed temperature and fixed chemical potential.
As such, it describes an open system being in thermal contact with a heat bath.

In quantum many-body systems, the equilibrium state is described by the density matrix 𝜌. A
densitymatrix is defined as a bounded linear, hermitian, positive semi-definite, trace-class operator
(with trace normed to 1) acting on the Hilbert space given by the Hamiltonian 𝐻. Any statistical
average of an observable 𝑋 of the quantum system is then given by,

⟨𝑋⟩ = tr(𝜌 𝑋) . (1.1)

In the simple case of a pure state |𝜓⟩, the density matrix is given by,

𝜌 = |𝜓⟩⟨𝜓| , (1.2)

while the more general mixed state has a density matrix,

𝜌 = ∑
𝑗
𝑝𝑗||𝜓𝑗⟩⟨𝜓𝑗|| , (1.3)

where ∑𝑗 𝑝𝑗 = 1, such that tr(𝜌) = 1. In the case of a quantum canonical ensemble in thermal
equilibrium at temperature 𝑇, the density matrix is given by,

𝜌 = 1
𝑍 e

−𝛽(𝑇)𝐻 , (1.4)

where 𝐻 is the Hamiltonian operator of the quantum model, 𝛽 = (𝑘𝐵𝑇)−1, 𝑘𝐵 is the Boltzmann
constant, and 𝑍 = tr(exp[−𝛽𝐻]) the normalisation of the trace.
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1.3.1 Quantum Phase Transitions

The lowest-energy physics of many-body systems has ever since the beginning of quantum phys-
ics attracted plenty of attention. Interesting phenomena in strongly correlated quantum systems
can give rise to superconductivity, superfluidity, Bose–Einstein condensation, andmanymore phe-
nomena which lack an intuitive counterpart in a classical realm. There are also more mondaine
transitions like the one from liquid to solid, or a transition of the magnetic susceptibility. The
most prevalent and successful theoretical framework to explain above phase transitions is the one
provided by Landau and Ginzburg [14, 15] based on spontaneous symmetry breaking. Landau pos-
tulated the microscopic equations of motion of the particles in a system respect the symmetries
of it when crossing from one phase into another. However, the lowest energy configuration of the
system transitions from respecting the very same symmetries as the equations of motion into break-
ing it. Such a change that occurs only in the lowest-energy configuration is said to ‘spontaneously
break’ the symmetry of the system, i.e. equations of motion. The spontaneous-symmetry breaking
occurs due to the nature of the interactions rendering the lowest-energy configuration not to obey
the symmetries of the equations of motion. According to Landau’s theory, different orders of mat-
ter therefore correspond to different symmetries of its lowest-energy configuration. As an example,
one may consider the transition from a liquid to a solid similar to the one from water to ice. The
equations of motion are translational invariant; they are symmetric under any continuous transla-
tion in space. At large enough temperatures, the state of matter follows the same symmetry in that
its description as a liquid is also symmetric under continuous translations in space. Generally it
is considered to be disordered. However, below some critical temperature, the energetically most
favourable state does not obey this symmetry any more but rather spontaneously breaks it as form
a regular crystal. As such, it is only symmetric under discrete translations in space (multiples of
the lattice spacing), and the state of matter is now in an ordered phase. The transition from liquid
to crystal therefore breaks the continuous translation symmetry and reduces it to a discrete trans-
lation symmetry whereas the equations of motion are on both sides of the transition symmetric
under continuous translations.

Within the framework of this thesis, we are interested in the phase transitions that occur at zero
temperature where the system is always in its ground state, so-called quantum phase transitions.
There, thermal fluctuations are zero and thus cannot account for a phase transition and instead
quantum fluctuations due to the uncertainty principle drive the loss of order across a transition
into a disordered state. Therefore, we are always discussing a transition where the ground state
changes its type of order when one changes a physical microscopic parameter of the Hamiltonian
𝐻 = 𝐻(𝜆). Suppose we are inspecting discrete quantum many-body systems on finite regular lat-
tices. We speak of a quantum phase transition when the ground state as a function of this phys-
ical parameter 𝜆 has a point where it is non-analytic, henceforth labelled 𝜆𝑐. This nonanalyticity
has as its origin either a true level-crossing on all finite lattice sizes and the infinite lattice limit,
or an avoided level-crossing in the finite case which approaches a nonanalytic point in the ther-
modynamic, i.e. infinite volume, limit. It has been long thought that Landau’s theory of phase
transitions also holds for all quantum phases of matter, i.e. the order in the ground state of phys-
ical systems. Within the recent past, new phases of matter have been discovered whose transitions
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cannot be explained by a broken symmetry, most prominently topological phases. Landau theory
covers so-called continuous (or second-order) phase transitions. These are transitions at which the
characteristic energy scale of the spectrum of elementary excitations relative to the ground state
approaches 0 and vanishes identically at the critical point 𝜆0 as,

Δ ∼ 𝐽|𝜆 − 𝜆𝑐|
𝑧𝜈 , (1.5)

where 𝐽 is the microscopic coupling energy, and 𝑧𝜈 is the critical exponent [16]. Furthermore, in
continuous phase transitions, the characteristic length scale (e.g. correlation length) of the ground
state diverges as,

𝜉−1 ∼ Λ|𝜆 − 𝜆𝑐|
𝜈 , (1.6)

where Λ is the inverse length scale and momentum cutoff given by the lattice spacing 𝑎.

quantum
critical

classically
critical

ordered
state

disordered
state

T

0
λλc

Figure 1.1: Phase diagram of temperature 𝑇 and a Hamiltonian parameter 𝜆 where the quantum critical
point (𝜆 = 𝜆𝑐) marks the quantum phase transition at zero temperature. The brown line marks a
classical phase transition and the purple ribbon indicates the onset of features of criticality.

Above considerations are made only at absolute zero 𝑇 = 0. Since reaching absolute zero is
impermissible by the third law of thermodynamics, any experimental setup necessarily has a non-
zero albeit possibly very small temperature 𝑇 > 0. This begs the question if one can ever measure
signals of quantum phase transitions. The answer is in the affirmative and the argument follows
this logic: At any finite temperature 𝑇 > 0, the characteristic energy scale of thermal fluctuations
is 𝑘𝐵𝑇. Quantum fluctuations however have a typical energy scale of ℏ𝜔 ∝ ℏ/𝜉 with 𝜔 a charac-
teristic frequency and 𝜉 a characteristic (correlation) length scale of the quantum oscillations. In a
regionwhere ℏ𝜔 ≫ 𝑘𝐵𝑇 (called quantum critical) one therefore expects to observe quantum critical
behaviour even in the case of finite temperatures, as quantum fluctuations dominate over thermal
fluctuations. Figure 1.1 is an illustration of these considerations. In a region around the thermal
phase transition (solid brown line with purple region), one finds the onset of thermal or classical
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critical behaviour. There, the correlation length diverges with temperature approaching the phase
transition point as,

𝜉 ∼
|𝑇 − 𝑇𝑐|

𝜈

𝑇𝑐
, (1.7)

analogously to the zero temperature case. This region decreases in size around the phase transition
as thermal fluctuations decrease in energy when decreasing temperature. On the other hand, when
one approaches 𝜆 → 𝜆𝑐 and the condition ℏ𝜔 ≫ 𝑘𝐵𝑇 is fulfilled, one expects quantum fluctuations
to dominate over thermal ones. In this ‘quantum critical’ regime at finite temperatures, one expects
to find signals of the quantum phase transition at zero temperature.

1.4 Out-of-equilibrium many-body physics

The problem of describing the dynamics of many particles of a generic quantum system is truly for-
midable, especiallywhen the system is not in equilibrium. Thehistory of studying out-of-equilibrium
dynamics is rich as most physical phenomena in our ever-changing universe are not static but
driven by dynamics. Particularly in recent years, they have been studied across different tradi-
tional fields. After all, out-of-equilibrium dynamics of quantum many-body systems describe, for
example, the ultrarelativistic collisions of atomic nuclei in giant particle accelerators, as well as ex-
periments with ultracold quantum gases far from equilibriumwhich typically fit on a table. Despite
the vastly different energy scales of these systems, they can show very similar dynamical properties
and are amenable to similar theoretical frameworks. Here, we will focus on the lower energy scales
where relativistic effects can be safely ignored.

1.4.1 Quantum quenches

A quantum system can be thrown out of equilibrium by a sudden modification being realised on
a negligible timescale compared to all relevant time scales of the system. We thus consider the
quench to be instantaneous.

1.4.1.1 Global quenches

Global quenches, or sometimes also called homogeneous, are defined by a sudden change of a
global system parameter in the Hamiltonian. We consider this change to occur at time 𝑡 = 0 such
that 𝐻i → 𝐻f, while the state describing the system is unchanged. The initial state is therefore
identical to the pre-quench state |𝜓0⟩ = |𝜓(𝑡 ≤ 0)⟩, while the post-quench state—assuming an isol-
ated quantum system with no further time dependence of the post-quench Hamiltonian—is given
by the unitary time evolution according to the post-quench Hamiltonian 𝐻f,

|𝜓(𝑡 > 0)⟩ = e−i𝐻f𝑡 |𝜓0⟩ . (1.8)

The conservation of energy 𝐸f = ⟨𝜓(𝑡)|𝐻f|𝜓(𝑡)⟩ = ⟨𝜓0|𝐻f|𝜓0⟩ immediately follows from said re-
strictions. Here, we consider such changes to the parameters of the Hamiltonian that the final
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Hamiltonian does not have the initial many-body state as an eigenstate, yet the parameter change
does not cross a first-order phase transition. The initial state is consequently a complex superposi-
tion of eigenstates over the entire energy spectrum. Henceforth, we consider only ground states of
initial Hamiltonians as an initial state, |𝜓0⟩ = |𝜓𝐺𝑆(𝐻i)⟩.

1.4.1.2 Local quenches

A local quench, sometimes referred to as inhomogeneous, are defined by the sudden application
of a local linear operator at time 𝑡 = 0 on the initial state. Contrarily to a global quench, the
Hamiltonian within this protocol stays unchanged (𝐻i = 𝐻f). Denoting the local operator applied
at 𝑡 = 0 as 𝐴, the dynamics of the initial state |𝜓i⟩ is given by the unitary time evolution,

|𝜓(𝑡)⟩ = e−i𝐻𝑡|𝜓𝑖⟩ = e−i𝐻𝑡𝐴|𝜓𝐺𝑆⟩ . (1.9)

We consider such local operators that the initial state |𝜓i⟩ = 𝐴|𝜓𝐺𝑆⟩ is not an eigenstate of the
Hamiltonian.
Immense technological and scientific progress in the experimental condensedmatter communit-

ies in recent decades have made it possible that these types of protocols can be realised in state-of-
the-art experiments, see Ref. [17] for a review. For a brief overview, see Section 1.6. Quantum
quenches are being widely considered in theoretical works due to their straightforward and com-
mon experimental realisation. Moreover, there are some analytical results in conformal field the-
ories in 1D [18] and integrable models like the Luttinger model [19, 20].

1.4.2 Lieb–Robinson bounds

In non-relativistic quantummodels, causality is an emergent property. It manifests when the inter-
action range of the constituent particles is short-ranged, but also emerges in long-range interacting
systems when the interaction range is not too long [21]. Lieb and Robinson showed in 1972 in their
seminal work [22] that the spreading of any perturbation in a generic lattice quantum system with
short-range interactions is bounded. Given a quantum model defined by a Hamiltonian 𝐻 with
degrees of freedom on a regular lattice Γ where each lattice point has a finite dimensional Hilbert
space, and given two arbitrary local operators1 𝑋𝐴(𝑡) at time 𝑡 and region of support 𝐴 ⊂ Γ, as well
as 𝑌𝐵(0) at time 𝑡 = 0 with region of support 𝐵 ⊂ Γ, then the following operator norms obey the
inequality [22],

‖[𝑋𝐴(𝑡), 𝑌𝐵(0)]‖ ≤ 𝑐 ⋅ e−𝑎(𝑑(𝐴,𝐵)−𝑣⋅|𝑡|) , (1.10)

for some constants 𝑎, 𝑐, 𝑣, and where we define the distance between the subsets𝐴 and 𝐵 as 𝑑(𝐴, 𝐵),
‖⋅‖ indicates the operator norm, and [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is the commutator. It is particularly note-
worthy that the inequality proven by Lieb and Robinson does not depend on a state but only on the
Hamiltonian𝐻 governing the dynamics whichmust have short-ranged interactions. Moreover, the
values of the constants 𝑎, 𝑐, and 𝑣 is not predicted and rather challenging to obtain ab initio given a

1Local operators are those whose supported region is finite and constant independent of the system size.
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generic latticemodel. Of particular interest is the constant 𝑣which has dimension of a velocity thus
generally called Lieb–Robinson bound velocity. Equation (1.10) implies, among others, that the ef-
fect of any operator in one region 𝐴 has negligible effect, i.e. exponentially small, on a separate and
distant region 𝐵 if 𝑑(𝐴, 𝐵) > 𝑣 ⋅ |𝑡|. Contrarily, a causal cone emerges when the time reaches values
such that 𝑑(𝐴, 𝐵) ≃ 𝑣 ⋅ |𝑡|. This means all significant signals are travelling within a region whose
boundary has a linear relation between its time and space coordinate, 𝑡 ∝ 𝑅, while any other signal
outside this ‘light cone’ is decaying exponentially in distance to that boundary. These statements
can be generalised to expectation values of correlation functions in gappedHamiltonians [23]. Note
that Lieb and Robinson providedmerely a proof of upper bounds which are strictly not informative
about the physical velocity with which information and correlations actually spread.
A physical explanation where this Lieb–Robinson velocity comes from, and more generally a

comprehensive picture of this ballistic spreading of information was later proposed by Calabrese
and Cardy [18]. They provided a quasiparticle picture explaining the bounded propagation of in-
formation in the case of conformal field theories (CFT) and suggested this picture is applicable in
more general settings. The established interpretation of correlation and information spreading in
short-range interacting quantum systems, which are accurately approximated by a quasi-particle
picture, is to date provided by the Calabrese–Cardy quasiparticle picture. It concisely explains the
bounded speed with which any information is at most propagating, as defined in Eq. (1.10) by the
constant 𝑣, and it is given by themaximal group velocity of quasiparticles. Läuchli and Kollath cor-
roborated the Calabrese–Cardy–quasiparticle picture in the Bose–Hubbard model with both Exact
Diagonalisation (ED) and the time-dependent Density Matrix Renormalisation Group (t-DMRG)
after using a strong quench, i.e. a global parameter change that crossed a phase boundary [24]. Fur-
thermore, they found the general quasiparticle interpretation to hold even outside the critical phase
space described by a CFT. The first experimental observations of emergent light cones was done in
Ref. [25] in the Bose–Hubbardmodel inside theMott insulating phase. Furthermore, Ref. [26] stud-
ied the isotropic Heisenberg model corroborating the Calabrese–Cardy picture, and in Bose gases
described by a Luttinger liquid [27].
An emergent light conewas also numerically confirmed in spinless fermions at half-filling [28], in

the Bose–Hubbardmodel both inside theMott insulating phase [29] and inside the superfluid phase
at unit filling [30], and both inside the superfluid and Mott-insulating phase of the Bose–Hubbard
model in Ref. [31]. The latter employed additionally to numerical t-DMRG techniques also a generic
analytic quasiparticle picture built on earlier works [32–34], which extends the Calabrese–Cardy
quasiparticle picture beyond the conformal field theory framework.

1.5 Long-range interactions

Long-range interacting many-body systems, both classical and quantum, can be found throughout
many disciplines of modern physics. The uniting paradigm is the all-to-all interaction of constitut-
ing particles whereas the amplitude decays as a power-law over the relative distance as 1/𝑅𝛼 with
𝛼 being the long-range interaction exponent. Systems with this type of interactions are found in
anywhere Newtonian gravity plays the central role of interaction, or in systems with electrically
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charged particles where the Coulomb interaction is not completely screened. Such systems are
present in astrophysics, nuclear physics, plasma physics, ultracold atomic physics, and also hydro-
dynamics [35]. Since many fundamental concepts and theorems of many-body theory are based on
the assumption of short-range interactions, long-range interactions can break them, often resulting
in profound and far-reaching consequences. Among those dramatically altered behaviours are the
equivalence of thermodynamic ensembles [36, 37], negative heat capacities, anomalous response
functions [38], the dynamics of correlated systems [35]. Compared to standard approaches found
throughout many-body physics, long-range interactions often necessitate fundamentally new ap-
proaches as profound theorems at the heart of many-body theory are sometimes rendered invalid.
In the framework of this thesis, we are interested in quantum systems whose microscopic inter-

actions are described by so-called long-range interactions. To bemore specific, we assume there are
countably many degrees of freedom on a regular lattice, and they are all-to-all interacting with an
amplitude that decays like a power law over distance as∼ 1/𝑅𝛼. In the context of condensedmatter
theory, long-range interactions render theMermin–Wagner–Hohenberg theorem invalid [39–41], as
well as the area law of entanglement entropy for large enough values of 𝛼 [42–46].
The effects of long-range interactions on the dynamics of many-body quantum systems are dra-

matic. Thanks to the pristine precision and extremely wide control of light-matter interaction and
the experimental progress thereof, the study of this field has dramatically accelerated and grown in
recent years. Particularly whether and how a form of causality, reminiscent of the Lieb–Robinson
bounds in short-range systems (cf. Section 1.4.2), emerges in long-range systems continues to be
a central outstanding question. The emerging causal cone in short-range interacting systems has
been demonstrated for various models in both experiments [25–27] and numerics [24, 28–31, 47,
48]. Moreover, it has been shown that sufficiently long-ranged interactions break causality, and
information spreads arbitrarily fast [49, 50] in accordance with no known upper bounds in long-
range systems analogous to those of Lieb and Robinson [21, 23, 51] and the vanishing characteristic
dynamical timescale in the thermodynamic limit [33]. On the other hand, when the long-range in-
teraction exponent is large enough and the interaction strength decays fast enough over space, one
recovers the ballistic propagation of information [52–54]. Of particular interest, especially within
the framework of this thesis, is the intermediate regime. Known upper bounds for long-range in-
teracting systems allow, in principle, for super-ballistic propagation of information [21, 23, 51]. On
the other hand, numerical simulations for various models and observables do not saturate those
upper bounds, hinting at tighter bounds and slower propagation laws [32, 45, 49, 55–58].

1.6 Experimental realisation of quantum simulators

Above, we have discussed the relevance of long-range interacting models, in particular in the con-
text of condensed matter physics. Here, we continue in this vain and discuss the relevance of
quantum systems with long-range interactions in the study of condensed matter. First, long-range
interactions occur naturally in systems such as artificial ion crystals [59–64], Rydberg gases [65–
68], magnetic atoms [69–73], polar molecules [74–76], nonlinear optical media [77], and solid-state
defects [78–80]. These systems are free of effects which completely screen the electrical charges
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such that the Coulomb interaction is truly long-range. Secondly, long-range systems can now be
emulated in quantum simulators [1, 2, 63, 81–92] with some of the very same systems thanks to the
pristine precision and range of control of, among others, the interaction exponent 𝛼 [59, 68].

Quantum simulators A quantum simulator is a technological device imitating quantum models
which is equipped with precise and wide control of the relevant parameters, and with the means
to prepare, manipulate, and detect the relevant quantum states of interest. Crucially relevant to
a quantum simulator is the fact that any simulation on classical computers would constitute an
unreasonable challenge in terms of memory and timescale at which the problem can currently be
solved [93]. Currently, there are several experimental platforms at one’s disposal for implementing
quantum simulator devices. They are broadly split in two categories: analogue quantum simulat-
ors, and digital quantum simulators. The former describe devices in which the physical degrees of
freedom in a system are in one-to-one analogy to the physical degrees of freedom in themodel of in-
terest. These devices form a ‘miniature’ of the physical model one seeks to observe and understand.
On the other hand, digital quantum simulators are devices that use the Lie–Trotter product formula,
e𝐴+𝐵 = lim𝑁→∞(e𝐴/𝑁e𝐵/𝑁)𝑁, and factor the time evolution operator𝑈(𝑡, 𝑡0) = exp(−𝑖 ∫𝑡

𝑡0
𝐻(𝑡′) d𝑡′)

of the quantum system in a sequence of countably many steps, as was first proposed by Lloyd [94].
The countable steps to simulate the effect of the Hamiltonian which generates the time evolution
is decomposed in quantum gates.

Trapped ion quantum simulators In the following, we briefly address the particularly fruitful
platform trapped ions offer, cf. Ref. [63] for a review. In particular, we discuss the quantum gates
necessary to simulate an 𝑛-body interaction [95, 96]. Thewide and precise control in these platforms
allows to variably change the long-range interaction exponent. The experimental progress and tech-
nological possibilities allow for very low temperatures at which these platforms offer high control
over single and two-site control. Heavily paraphrased, cold ion experiments start by trapping ions
with the attractive force of light–ion interaction of laser beams while the Coulomb repulsion com-
petes such that a stable lattice is formed. Two internal electronic states are used as an effective qubit
simulating a spin degree of freedom. Alkaline earth metals are typically used for these applications
since their valance electron is naturally in a spin-1/2 state.

The relevant degrees of freedom for an ion chain are the spin-1/2 degrees of freedom on a regular
1𝐷 lattice, the relative motional, and the single motional degrees of freedom—the centre-of-mass
mode [95]. The Hamiltonian thus reads as [95, 97],

𝐻int = Ω
𝑁−1
∑
𝑛=0

{𝜎+𝑛 e−i(Δ𝑡−𝜙) + 𝜎−𝑛 ei(Δ𝑡−𝜙) + 𝑖𝜂(𝜎+e−i(Δ𝑡−𝜙) − 𝜎−ei(Δ𝑡−𝜙))(𝑎e−i𝜔𝑡𝑡 + 𝑎†ei𝜔𝑡𝑡)} , (1.11)

where Ω is the Rabi frequency, 𝜎± the qubit raising and lowering operators, 𝑎 and 𝑎† the phonon
annihilation and creation operators, respectively. Furthermore, 𝜙 is the phase of the field with
respect to the qubit polarisation, Δ is the laser-atom detuning, and 𝜔𝑡 is the laser frequency. Note
that one applies several approximations including the rotating wave approximation which assumes
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both laser detuning Δ and Rabi frequency Ω to be much smaller than any other optical relevant
frequency.

Single-qubit gate Single sitemanipulations, i.e. single-qubit gates, are simple rotations of the spin
on the Bloch sphere, and are realised by single-site applications of laser light. Theoretically, they
are described by the rotation matrix,

𝑅𝑖(𝜃, 𝜙) = exp{𝑖𝜃2(e
𝑖𝜙𝜎+𝑖 + e−𝑖𝜙𝜎−𝑖 )} (1.12)

= 𝟙𝑖 cos(
𝜃
2) + 𝑖[𝜎𝑥𝑖 cos(𝜙) − 𝜎𝑦𝑖 sin(𝜙)] sin(

𝜃
2) , (1.13)

where 𝜙 specifies the azimuthal angle of the axis of rotation and 𝜃 describes the amount of rotation.
Rotations around the 𝑧-axis are either decomposable in rotations around the 𝑥 and 𝑦 axis or it might
be realised via far detuned laser beam which shifts the energies due to an AC-Stark effect [95].

2-qubit gate Finalising the qubit manipulation toolbox, we briefly discuss the two-qubit gate pro-
posed by Mølmer and Sørensen (MS gate) [97] which uses a dichromatic laser field to irradiate
all qubits at once. The two frequencies of the dichromatic laser are close and symmetrically de-
tuned from the qubit transition frequency 𝜔0 ± (𝜔𝑒𝑔 + Δ). The detuning is chosen such that an
effective second-order coupling between pairs of ions is generated by off-resonantly coupling the
blue-shifted and red-shifted phonon side bands [98]. The MS gate thus uses the collective motional
degree of freedom and is particularly favourable as it does not require the ions to be in themotional
ground state at ultracold temperatures [95, 97, 98]. Figure 1.2 shows an illustration of the energy
level scheme in an MS gate. The blue and red detuned laser beams (blue and red arrows) drive the
system via the virtual levels (marked by dashed lines) between the states |𝑛⟩ ⊗ |𝑔𝑔⟩ and |𝑛⟩ ⊗ |𝑒𝑒⟩.
Note that |𝑛⟩marks the state with phonon number 𝑛 and |𝑔⟩, |𝑒⟩, the ground and excited state, re-
spectively. This figure applies to cases where the detuning is much smaller than the Rabi frequency
such that the latter is in fact independent of the phonon number 𝑛. This is because the effect of
the phonon state destructively interferes due to the symmetric paths and the opposite sign of the
detuning, allowing the application of the MS gate without cooling to the motional ground state.
Consequently, by applying the MS gate to two qubits of one’s liking, the transition they undergo
reads as,

|𝑔𝑔⟩ → cos(Ω̃𝑡2 )|𝑔𝑔⟩ + 𝑖 sin(Ω̃𝑡2 )|𝑒𝑒⟩ , (1.14)

|𝑒𝑒⟩ → cos(Ω̃𝑡2 )|𝑒𝑒⟩ + 𝑖 sin(Ω̃𝑡2 )|𝑔𝑔⟩ , (1.15)

|𝑔𝑒⟩ → cos(Ω̃𝑡2 )|𝑔𝑒⟩ − 𝑖 sin(Ω̃𝑡2 )|𝑒𝑔⟩ , (1.16)

|𝑒𝑔⟩ → cos(Ω̃𝑡2 )|𝑒𝑔⟩ − 𝑖 sin(Ω̃𝑡2 )|𝑔𝑒⟩ , (1.17)

and as such forms the essential part of the digital quantum simulator toolkit.
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1.6 Experimental realisation of quantum simulators

Figure 1.2: Illustration of the energy levels (horizontal bars) and optical wavelengths (arrows) involved in
the two-qubit Mølmer–Sørensen (MS) gate. Note the two-qubit states are written as |𝑔⟩ (ground)
and |𝑒⟩ (excited) while the phonon state is written as |𝑚⟩with phonon number𝑚. Energies of the
state correspond to Hamiltonian (1.11).

a) b)

Figure 1.3: Illustration of digital quantum simulator of long-range interacting. a) Time evolution scheme
of the long-range interacting Ising model. The initial state is locally quenched by flipping the
centre spin (top row). Elementary excitations (spin waves) mediate the excitation and spread
outwards (centre row)whereas some exemplary interactions in real space are shown in the bottom
row. Figure from Ref. [99]. b) (1) sketches the initial state where all spins on the chain are
optically pumped into the fully polarised state |↓⟩𝑧. (2) The system is then globally quenched by
allowing it to freely evolve under a newHamiltonian (both long-range interacting Isingmodel and
XY model) via laser-induced ion–ion interactions. (3) The time-evolved state is measured with
respect to the connected two-point correlation function in spin-𝑧 direction𝐶𝑖,𝑗(𝑡) = ⟨𝑆𝑧𝑖 (𝑡)𝑆𝑧𝑗 (𝑡)⟩−
⟨𝑆𝑧𝑖 (𝑡)⟩⟨𝑆𝑧𝑗 (𝑡)⟩. Figure from Ref. [100].
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With single site resolution, the state can be read out by fluorescencemeasurements which couple
one of the two internal states to a third, short-lived excited state. Above tools have been success-
fully used to experimentally realise usual long-range interacting spin chains, for instance the exper-
iments on the long-range interacting Ising model by Jurcevic et al. [99] and Richerme et al. [100].
Figure 1.3 shows sketches of the experimental realisation of both experiments. Lastly, we wish
to briefly mention that Rydberg atoms in optical tweezers nowadays offer a scalable and highly
controllable quantum simulator platform [101–103].

1.7 Quantum information in condensed matter physics

In this section, we briefly introduce and discuss the new paradigm of entanglement entropy in
condensed matter physics and the new insights that quantum information theory offers on the
phases and states of matter in as well as out of equilibrium. Here, we mainly follow the lines of
Refs. [4, 5, 104, 105].
The science of quantum information considers the understanding, processing, and possibly the

transmission of information harnessing the effects and principles of quantum physics. Its funda-
mental entity of manipulation is the information content in a quantum-mechanical states which is
measured by the family of Rényi entropies. Given a quantum state described by the density matrix
𝜌, the Rényi entropy of order 𝑛 is defined as,

𝒮𝑛 =
1

1 − 𝑛 log(tr(𝜌)
𝑛) , (1.18)

where 0 < 𝑛 < ∞. In the special case of 𝑛 → 1, the entropy of entanglement is called the von
Neumann entropy which may also be written as 𝒮𝑛=1 = − tr(𝜌 log(𝜌)). When considering the re-
duced density matrix after tracing out some subsystem, Rényi entropies measure the amount of
entanglement present in a quantum state given by its density matrix 𝜌, and allow to quantify the
information content one may store inside the state. Otherwise, 𝑟ℎ𝑜may describe a thermal state in
which case Rényi entropies also measure the thermal entropy present in the state. Entanglement
originates in the principle that a quantum state can be in a non-factorisable superposition, in par-
ticular a many-body state, and as such it has no classical counterpart allowing for a conglomerate
of classically unparalleled phenomena in the quantum realm.
In the context of condensedmatter physics, of main interest is the bipartite entanglement entropy

especially since one typically inspects pure states, such as ground states of Hamiltonians, which
have no entanglement entropy on their own. It is constructed from the reduced density matrix of
a subsystem after parting the entire system in two complementary subsystems, say 𝐴 and 𝐵. The
reduced density matrix 𝜌𝐴, which contains all information in subsystem 𝐴, is then given by the
partial trace over all degrees of freedom in 𝐵 of the density matrix of the entire system,

𝜌𝐴 = tr𝐵(𝜌) = ∑
𝑖
⟨𝑖𝐵|𝜌|𝑖𝐵⟩ , (1.19)

where {|𝑖𝐵⟩} is an orthonormal basis on 𝐵. The bipartite von Neumann entanglement entropy is
hence given by 𝒮𝐴 = − tr[𝜌𝐴 log(𝜌𝐴)]. Noteworthy is that the entanglement entropy of subsystem
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1.7 Quantum information in condensed matter physics

𝐵 is the same as that of 𝐴when the systems are complementary. Bipartite entanglement entropy in
condensedmatter systems has developed into a new paradigm to view, classify, and understand the
behaviour of many-body states in an out of equilibrium [104]. Wewish to emphasise that the bipart-
ite entanglement entropy necessarily introduces a geometric interface by choosing a cut through
the system, while this may also happen in momentum space. The latter is however not part of our
focus within this thesis.

Equilibrium case In the case of equilibrium condensed matter physics, the systematic study of
the bipartite entanglement entropy with a bipartition in real space such that the complementary
subsystems are connected—arguably the most prevalent bipartition—has lead to new profound
insights in the representation of relevant degrees of freedom of ground states of gapped Hamilto-
nians through the celebrated area law of entanglement [5, 42], as we will further discuss below in
Chapter 2. The proportionality constant of the area law, let that be 𝑎, has been shown to have crit-
ical behaviour when a quantum phase transition is approached [104, 106–110], with the prefactor
behaving like 𝑎(𝜆𝑐)−𝑎(𝜆) ∝ |𝜆 − 𝜆𝑐|

𝜈(𝑑−1) where 𝜈 is the critical exponent for the correlation length
at that critical point. Reference [111] argues the singularity of that coefficient has been proposed
to have a natural origin since the entanglement entropy of a bipartition may be interpreted as a
dimensionless free energy. Moreover, we want to strongly emphasise that the scaling of bipartite
entanglement entropy with system size including subleading corrections—to the area law if the
system is gapped, and to the logarithmic scaling of a CFT if the system is gapless—have been suc-
cessfully identified as unique signatures for different phases of matter, see review [104] for a detailed
list.

Entanglement spectrum Anatural generalisation of Rényi entropies is the so-called entanglement
spectrum (ES) studied in the seminal work by Li and Haldane [112]. The ES is formed by the set of
all entanglement energies 𝜉𝑗 which are defined in terms of the eigenvalues of the (reduced) dens-
ity matrix 𝜆𝑗 as 𝜉𝑗 = − log(𝜆𝑗). Li and Haldane showed in their seminal work [112] that the ES
signals topological order in the fractional quantum Hall state which cannot be observed by any
local measurement [113, 114]. Given a topologically ordered ground state, the Li–Haldane conjec-
ture states that the low-entanglement-energy ES is isomorphic to the low-energy spectrum of the
conformal field theory (CFT) describing the critical states on the boundary of the topological state.
Furthermore, the ES has been shown to signal quantum phase transition when it exhibits singular
behaviour [115–117], as well as level-crossings [118]. In particular the latter has been shown for
quantum spin chains in the short-range case. Below in Chapter 4 we will study how this paradigm
of identifying phase transitions holds when long-range interactions are introduced.
Furthermore, the low-lying ES for the short-range interacting spin chain (XXZ model) as well as

for the Bose–Hubbard chain, both in their respective critical regime and in open boundary condi-
tions, and for subsystem length 𝑙𝐴 have been shown to correspond to the energy spectrum of the
Luttinger liquid as a function of magnetisation with the same Luttinger parameters as the full sys-
tem [104, 119–121]. In 1𝐷 one expects to approximate the low-energy physics of a critical lattice
model in terms of a Luttinger liquid—a quadratic CFT with central charge 𝑐 = 1, as we will further
detail in Chapter 4.
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EntanglementHamiltonian Wemay put the above-mentioned bulk–edge correspondence,mean-
ing the ES is a feature of the edge described by the bipartition and the bulk is described by the
effective CFT, in a wider context by briefly introducing the reader to the remarkable Bisognano–
Wichmann (BW) theorem [122, 123]. It establishes a connection of the system Hamiltonian𝐻with
the Entanglement Hamiltonian (EH) �̃�𝐴 being defined in terms of the reduced density matrix 𝜌𝐴
as,

𝜌𝐴 = ∑
𝑗
e−𝜉𝑗||𝜓𝐴

𝑖 ⟩⟨𝜓𝐴
𝑖 || ≕ e−�̃�𝐴 . (1.20)

The BW theorem states that the EH of a bipartite (in real space) ground state of a quantum field
theory in 𝑑 spatial dimensions with Lorentz invariance and local interactions is given by [122–124],

�̃�𝐴 = ∫ d𝑑𝑥𝛽𝐴(𝑥)ℋ(𝑥) + 𝐶 , (1.21)

where 𝐶 is a constant fixing tr(𝜌𝐴) = 1,ℋ(𝑥) is the Hamiltonian density, i.e. 𝐻 = ∫ d𝑑𝑥ℋ(𝑥), and
𝛽𝐴(𝑥) = 2𝜋𝑥 may be interpreted as a local inverse temperature whereas 𝑥 here measures the dis-
tance to the bipartition. The EH constitutes a generalisation of the ES in that the ES is the spectrum
of the hermitian EH2. The BW theorem thus connects the EH to the Hamiltonian of the system by
weighting the Hamiltonian densityℋ(𝑥)with linear ‘local inverse temperature’. Note that the ‘lin-
ear inverse temperature’ 𝛽𝐴(𝑥) = 2𝜋𝑥 = 1/(𝑘𝐵𝑇) implies a diverging ‘local temperature’ at the
bipartition suggesting the degrees of freedommost relevant regarding entanglement are located on
and close to the bipartition. We emphasise the BW theorem holds in any dimension, and for any
type of degree of freedom, as it only requires Lorentz invariance and local interactions. Relativistic
QFTs with conformal symmetry allow to extend the BW theorem to finite-volume subsystems and
even finite-temperature, see review [124] and Refs. therein. Complementary to the BW theorem,
CFTmay be used to predict the EH in the case of finite volume and open boundary conditions [125,
126] to read as,

�̃�𝐴 = 𝐶∫
𝐿

0
sin(𝜋𝑥2𝐿 )ℋ(𝑥) , (1.22)

where 𝐶 is some constant fixing tr(𝜌𝐴) = 1. One notices that the weighting of the Hamiltonian
density is well-approximated by a linear function when considering position close to the bipartition
site𝑥 = 0, as is the case in the BWtheorem. Furthermore, in several integrablemodels (both gapped
and gapless), the EH can be constructed in the thermodynamic limit through the corner transfer
matrix (CTM) method [127–129]. Predicted by the CTMmethod, the EH reads [124],

�̃�𝐴 ∝
∞
∑
𝑛=1

𝑛ℎ𝑛 , (1.23)

2Note that the EH always exists since the reduced density matrix is a hermitian and trace-class operator. However, in
general onemay not trivially infer that the EH is indeed a local operator intimately linked to the systemHamiltonian.
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with ℎ𝑛 as the discrete version of the Hamiltonian density defined by 𝐻 = ∑𝑛 ℎ𝑛. Thus, the EH,
here too, follows the paradigm of the BW theorem although some of these integrable lattice models
do not recover Lorentz invariance in the thermodynamic limit. Summarising, several lattice mod-
els, either gapless, gapped, integrable, or non-integrable, have been shown to host an EH that is
well described by a discrete version of the BW theorem [105, 124, 130–135], although the lattice evid-
ently breaks Lorentz invariance rendering the BW theorem formally inapplicable. Among those
integrable models is the short-range XXZmodel, for which the CTM predicts the EH in the gapped
antiferromagnetic phase, while CFT predicts it in the gapless critical phase.

In Chapter 4, we study the EH and its operator form answering how long-range interactions alter
the applicability of a discretised version of the BW theorem in the long-range XXZ model.

Out-of-equilibrium case Lastly, we wish to mention that entanglement and quantum informa-
tion offer a new paradigm also in the study of out-of-equilibriummany-body systems as tools from
quantum information theory found their way into this field.

The celebrated eigenstate thermalisation hypothesis (ETH) aims to explain when and how an isol-
ated quantum system thermalises implying the physically well extended system acts as its own
heat bath [104, 136]. The ETH states that the stationary, i.e. thermalised, reduced density matrix,
following a bipartition into a local and connected region 𝐴 and its complement 𝐵, is almost indis-
tinguishable from a microcanonical thermal ensemble3 (cf. Section 1.3),

lim
𝑡→∞

lim
𝑁→∞

𝜌𝐴(𝑡) =
1
𝑍 tr𝐵(e

−𝛽𝐻) , (1.24)

where the order of the thermodynamic limit of the system size 𝑁 to infinity comes before the long-
time limit. If the ETH applies, one speaks of the ergodic regime. After a quantum quench as
described in Section 1.4.1, the system’s energy is determined as,

𝐸 = {
⟨𝜓0|𝐻f|𝜓0⟩ for a global quench

⟨𝜓i|𝐻|𝜓i⟩ for a local quench
, (1.25)

where in case of a global quench, |𝜓0⟩ is the initial state of a global quench and𝐻f is the post-quench
final Hamiltonian, and in case of a local quench 𝜓i is the post-quench initial state and 𝐻 is the
(unchanged)Hamiltonian. After the stationary state is approached, and given the system conserved
energy, it is according to ETH indistinguishable from a high energy eigenstate. The reduced density
matrix of such a high energy eigenstate is thus expected to have an entanglement entropy very close
to the thermodynamic entropy of the subsystem at the temperature corresponding to the energy of
the system. The post-quench temperature is defined by

𝐸 = tr(𝐻e
− 𝐻
𝑘𝐵𝑇

1
𝑍) , (1.26)

3Indistinguishable heremeans that any generic operator with support only in the subsystem𝐴 has an expectation value
that is given by ⟨𝑂𝐴⟩ = tr(𝑂𝐴 𝜌𝐴(𝑡 → ∞)). Almost here allows for small random fluctuations.
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where 𝐸 is given by Eq. (1.25), and 𝐻 describes the post-quench Hamiltonian 𝐻f in case of a global
quench. Furthermore, the scaling of that entanglement entropy is expected to be extensive, i.e.
volume law. Such scaling has successfully been verified to identify the ergodic phase of both dis-
ordered and non-disordered quantum spin chains, see e.g. Refs. [104, 137].
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2 Tensor network simulations

for long-range interacting quantum systems

“All models are wrong, but some are useful”

— George E. P. Box

2.1 Introduction

This chapter is dedicated to introducing the reader to the basic notions and algorithms of tensor
network techniques which we employ for the numerical computations throughout the rest of this
thesis. This chapter is by no means an exhaustive introduction to all fields and applications of
tensor networks. It is rather tailored to introduce all necessary notions and methods to simulate
long-range interacting spin systems defined on a lattice. We will closely follow the notions and
definitions of Refs. [5, 138–140].

The size of the Hilbert space of a quantum system consisting of 𝑁 indistinguishable particles
which have 𝑝 degrees of freedom scales exponentially with the size like 𝑝𝑁 implying it can grow
spectacularly large. In particular, it renders the naive computation of such systems formidably
challenging. Let us consider the simplest choice of 𝑁 spin-1/2 particles on a chain for which the
Hilbert space scales as 2𝑁. A chain of for example 𝑁 = 40 is described by 240 ≃ 1012 different
complex numbers for which we typically need 64 bit each. We are thus immediately faced with the
impracticability of saving the state of such a system on a hard drive since they tally to an incredible
total of 8.8TB of data. Things get totally out of hand when we reach scales of our every day life.
Considering 𝑁 ≃ 1023 particles (order of magnitude of Avogadro’s number), we end up with a Hil-
bert space of dimension ≃ 21023 ≫ Number of atoms in the observable universe [141]. Simulating
quantum systems is therefore notoriously difficult.

To our rescue comes a perhaps surprising fact that not all states in Hilbert space are created
equal1. Indeed, it is today known that all physically relevant states occupy a subspace being expo-
nentially small compared to the size of the Hilbert space [142]. We will discuss in the following
that a certain class of states has much more practical relevance when considering certain physical
phenomena, namely the ground states of gapped Hamiltonians.

1…neither do they have certain unalienable Rights.
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𝐵
𝐴

𝜕𝐴 ∝ 𝒮(𝐴|𝐵)

Figure 2.1: Area law of entanglement. 𝐴 and 𝐵 are complementary subsystems of a closed quantum system
governed by a gapped Hamiltonian. When biparting the ground state in subsystem 𝐴 and 𝐵, the
bipartite entanglement entropy 𝒮(𝐴|𝐵) grows with the boundary between them, 𝒮 ∝ 𝜕𝐴.

2.2 Area laws of entanglement

In classical statistical mechanics, entropy quantifies an uncertainty or ignorance about the specific
microstate that corresponds to an observed macrostate. It is larger in cases we need more inform-
ation in order to identify the exact microstate of a system. In this classical context, the uncertainty
of the exact microstate is generated by thermal fluctuations. Consequently, at zero temperature,
where no thermal fluctuations occur, the entropy is identically zero and no uncertainty of the mi-
crostate arises. Furthermore, thermodynamic entropy constitutes an extensive quantity, i.e. it is
proportional to the volume of the system, 𝒮therm ∝ 𝑉. In a stark contrast to this classical behaviour,
quantum systems can display non-vanishing entropy even at zero temperature. This entropy of en-
tanglement however does not arise in the pure, non-degenerate ground state |𝜓0⟩ [42]. However, it
only arises when considering two complementary subsystems, 𝐴 and 𝐵. To see this, let us consider
the entropy of entanglement quantified by the family of Rényi entropies,

𝒮𝑛(𝜌) =
1

1 − 𝑛 log(tr(𝜌)
𝑛) , (2.1)

with real positive order parameter 𝑛 ≥ 02. The closed quantum system at zero temperature is
described by the density matrix of the ground state 𝜌 = |𝜓0⟩⟨𝜓0|. When consider two comple-
mentary subsystems, 𝐴 and 𝐵, we describe the state of subsystem 𝐴 by the reduced density matrix
𝜌𝐴 = 𝑡𝑟𝐵(𝜌) = ∑𝑖𝐵

⟨𝑖𝐵|𝜓0⟩⟨𝜓0|𝑖𝐵⟩where {𝑖𝐵} is a basis of subsystem𝐵. In general, the reduced density
matrix 𝜌𝐴 does not correspond to a pure state (unless the ground state is e.g. a product state), and
the subsystem𝐴will therefore have non-vanishing entropy of entanglement. In contrast to thermal
entropy, this entropy does not arise from a lack of knowledge of the exact microstate [42]. Indeed,
we just gave an example of a precise microstate and how it may have non-vanishing entropy. This
non-zero entropy, and the accompanied uncertainty in the exactmicrostate given themeasurement
on subsystem 𝐴, arises due to the fundamental property of quantum systems; entanglement [42].
The question of how this non-vanishing entanglement entropy of a bipartite ground state scales
with the system size has now been answered considering quantum Hamiltonians with an energy
gap between the ground state and the first excited state, henceforth called ‘gapped’ Hamiltonians.
In this context, we shall call it the area law of entanglement, and it states that the ground state of
gappedHamiltonians have a bipartite entanglement entropy which is proportional to the surface of

2For 𝑛 → 1 we obtain the von Neumann entanglement entropy 𝒮1 = − tr(𝜌 log𝜌).
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the bipartition [5, 42, and Refs. therein]. This applies to both short-range interacting gappedHamilto-
nians [143], and long-range interacting gapped Hamiltonians [46]. This principle of entropy being
proportional to the surface of a region in space is in line with important results from other fields
of physics where entropy has been shown to scale with the area rather than the volume [5, 42]. Ex-
amples include the seminalworks byBekentein andHawking on entropy of a blackwhole [144, 145].
More generally, they are part of the holographic principle [146], or bulk–boundary correspondence,
which have profoundly influenced modern theoretical physics [5, 42]. Critical, i.e. gapless, spin
Hamiltonians are described by Conformal Field Theories, e.g. a Luttinger liquid in the one dimen-
sional case, and the entropy of entanglement of the ground state scales logarithmically with the
system size, 𝒮 ∝ 𝒪(log(𝑁)) [5].

In case of gapped systems in one spatial dimension, the area law straightforwardly implies that
entanglement entropy is actually a constant as a function of system size. This has, together with
the slow scaling of entanglement entropy in Luttinger liquids, important implications for the com-
putability of spin models in one spatial dimension, as we will discuss in the following section.

2.3 Matrix product states

Previous discussion of the area law of entanglement entropy suggests that the degrees of freedom
that characterise entanglement are located on the interface of the two bipartitions. In one dimen-
sional systems with open boundary conditions, this is clearly a single point on the line and two
points on the circle when considering periodic boundary conditions. We shall see that matrix
product states (MPS) represent these degrees of freedom in their matrix product and thus form
a natural representation of the entanglement description of a quantum state [139].

Tensors are the fundamental building blocks for thoseMPS. For the purpose of this thesis, a tensor
of rank 𝑛 is a multilinear function that maps 𝑛 vectors onto the complex numbers ℂ. Therefore,
a rank-0 tensor is a scalar number 𝑧 ∈ ℂ, a rank-1 tensor is a vector 𝑥𝑎, and a rank-2 tensor is a
matrix 𝐴𝑖,𝑗. In the following, we employ a summation convention which implies that the repeated
use of the same symbol as an index of a tensor is implicitly assumed to be contracted over,

𝐶𝑖𝑗 = 𝐴𝑖𝑠 𝐵𝑠𝑗 =
𝐷𝑠

∑
𝑠=1

𝐴𝑖𝑠 𝐵𝑠𝑗 , (2.2)

where we contracted over all possible values of 𝑠 ∈ {1,… ,𝐷𝑠}. Furthermore, we adopt Penrose’s
graphical notation for tensor networks and their contractions [147], which represents an 𝑛-rank
tensor as a node with 𝑛 open legs coming out of it, representing the 𝑛 indices. For an illustration,
see Fig. 2.2. The graphical notation allows for intuitive illustration of contractions and factorisation
of tensors and matrices. For example, Fig. 2.3 shows the graphical equation of a singular value
decomposition (SVD). The newly introduced index which is being contracted over between the
diagonal matrix 𝑆 and its two neighbours is generally called the bond index, or link index in the
context of tensor networks.
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(a) 𝑧 (b) 𝑥

(c) 𝑀 (d) 𝐴

Figure 2.2: Penrose graphical tensor representation. (a) a scalar 𝑧, (b) a vector 𝑥, (c) a matrix 𝑀, and (d) a
rank-3 tensor 𝐴.

𝑀 = 𝑈 𝑆 𝑉𝑙 𝑙

Figure 2.3: Graphical notation of the Singular Value Decomposition (SVD) theorem. Any matrix 𝑀 can be
factorised in the product of three matrices, 𝑀 = 𝑈 ⋅ 𝑆 ⋅ 𝑉, whereas 𝑈†𝑈 = 𝟙, 𝑉𝑉† = 𝟙, and
𝑆 = diag(𝜆1, 𝜆2,… , 𝜆𝑟), with 𝑟 thematrix rank of𝑀 counting the non-zero singular values 𝜆𝑛 (not
to be confused with the tensor rank). Note that 𝑈 is right-orthogonal and highlighted in green,
while 𝑉 is left-orthogonal and highlighted in red. We labelled the internal contracted index 𝑙,
which is called the bond or link dimension in the context of tensor networks, and display the
diagonal matrix as a circle.

2.3.1 Quantum states as tensor networks

Let us now turn towards a graphical representation of a quantum state in a tensor network. To
this end, we consider an arbitrary many-body pure state |𝜓⟩, defined on a lattice of local degrees of
freedom (degrees of freedom) {𝜎𝑖}, with dim(𝜎𝑖) = 𝑑, 𝑖 ∈ [1,… ,𝑁]. Henceforth, we will restrict all
considerations to the case of open boundary conditions (OBC). The local degrees of freedommay be
spin-1/2 but indeed need not be specified for the purpose of this explanation. The full many-body
wave function reads as,

|𝜓⟩ = ∑
𝜍1,…,𝜍𝑁

𝑐𝜍1,…,𝜍𝑁|𝜎1⟩ ⊗… |𝜎𝑁⟩ , (2.3)

where 𝑐𝜍1,…,𝜍𝑁 is a set of 𝑑
𝑁 complex numbers3—a direct consequence of the exponential growth

of the size of theHilbert space. Note now that 𝑐𝜍1,…,𝜍𝑁 fully describes thewave function in a chosen
basis. Furthermore, it can be thought of as a tensor of rank𝑁with indices {𝜎𝑖}which take 𝑑 different
values, thus recovering 𝑑𝑁 different entries.

As explained above, following this exponential growth and keeping track of all coefficients is
an entirely un-resourceful way to describe a many-body state. The aim of MPS is to reduce the
computational complexity efficiently to a scale which is computable on modern state-of-the-art
computer systems. This goal is achieved by replacing this 𝑁-rank tensor with a product of lower
ranked tensor, a product of rank-3 tensors, to be precise. To see how such a product of tensors
is constructed, let us turn towards the SVD decomposition depicted in Fig. 2.3. As a necessary
prerequisite for the SVD to work out, we must construct a matrix, or rank-2 tensor, to apply it to.
For this, we start with 𝑐𝜍1,…,𝜍𝑁 and consider 𝜎1 to be the first index of the new matrix while taking
𝜎2,… , 𝜎𝑁 as a super-index over all other degrees of freedom (note this matrix is not square). We

3Up to a normalisation constraint
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2.3 Matrix product states

consequently write 𝑐𝜍1,…,𝜍𝑁 = Ψ𝜍1,(𝜍2,…,𝜍𝑁), and apply the SVD decomposition to Ψ, which yields
both in an explicit tensor notation and a graphical notation,

𝑐𝜍1,…,𝜍5 = Ψ𝜍1,(𝜍2,…,𝜍𝑁) = 𝐴1
𝜍1
𝑙1 𝑆𝑙1,𝑙2𝑉𝑙2,(𝜍2,…𝜍𝑁) = 𝐴1

𝜍1
𝑙1 Ψ𝑙1,𝜍2,…𝜍𝑁 (2.4)

⇔ Ψ𝜍1,(𝜍2,…,𝜍𝑁)

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5

= 𝐴1

𝜎1
Ψ𝑙1,𝜍2,…𝜍𝑁

𝜎2 𝜎3 𝜎4 𝜎5

. (2.5)

Here, we use the SVD decomposition graphically depicted in Fig. 2.3 with the right-orthogonal
tensor 𝐴1

𝜍1
𝑙1 and the left-orthogonal tensor 𝑉𝑙2,(𝜍2,…𝜍𝑁) in Eq. (2.4). We then continue with contract-

ing the diagonal matrix 𝑆 into 𝑉 to obtain the ‘remaining’ coefficients Ψ𝑙1,𝜍2,…𝜍𝑁. Note that we use
the shorthand notation 𝐴𝑖 = 𝐴𝜍𝑖𝑙𝑖−1,𝑙𝑖 which hides all explicit indices of the rank-3 tensor (rank-2
at the boundaries) and only notes its spatial position 𝑖. Furthermore, note that we henceforth de-
note any left-orthogonal tensor 𝐴𝑖 as a green arrow pointing right (cf. Eq. (2.15) for more details
on the orthogonality properties), and that we do not differentiate between 𝐴𝑖 and 𝑈𝑖 when 𝐴𝑖 is
left-orthogonal. We continue with an SVD decomposition on the ‘remaining’ coefficient tensor by
interpreting the indices (𝑙1, 𝜎2) as the left super-index and decompose Ψ𝑙1,𝜍2,…𝜍𝑁 as,

𝐴𝜍1𝑙1 Ψ𝑙1,𝜍2,…𝜍𝐿 = 𝐴1
𝜍1
𝑙1 𝐴

𝜍1
𝑙1,𝑙2𝑆𝑙2,𝑙′2𝑉𝑙′2,(𝜍3,…𝜍𝑁) (2.6)

= 𝐴𝜍11,𝑙1𝐴
𝜍2
𝑙1,𝑙2Ψ𝑙2,𝜍3,…𝜍𝐿 (2.7)

⇔ 𝐴1

𝜎1
Ψ𝑙1,𝜍2,…𝜍𝑁

𝜎2 𝜎3 𝜎4 𝜎5

= 𝐴1

𝜎1

𝐴2

𝜎2
Ψ𝑙2,𝜍3,…𝜍𝐿

𝜎3 𝜎4 𝜎5

. (2.8)

This procedure can be iterated over consecutive sites and one then ends up with,

𝐴𝜍11,𝑙1𝐴
𝜍2
𝑙1,𝑙2Ψ𝑙2,𝜍3,…𝜍5 = 𝐴𝜍11,𝑙1𝐴

𝜍2
𝑙1,𝑙2 …𝐴𝜍5𝑙5,1 (2.9)

⇔ 𝐴1

𝜎1

𝐴2

𝜎2
Ψ𝑙2,𝜍3,…𝜍𝐿

𝜎3 𝜎4 𝜎5

= 𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5

. (2.10)

Note that we abuse the symbol Ψ on both sides of the equation for different tensors which differ in
rank and in composition. Above procedure, Eq. (2.4) to Eq. (2.10), has an asymmetric bias in that
we started on the left endwith our SVDs and proceeded rightwards with our sweep. Naturally, there
is no reasonwhy not to (also) start on the right endwith an SVD. Considering the intermediate state
of Eq. (2.8), also ‘sweeping’ with an SVD from the right yields,

𝐴𝜍11,𝑙1𝐴
𝜍2
𝑙1,𝑙2Ψ𝑙2,𝜍3,…𝜍𝐿 = 𝐴𝜍11,𝑙1𝐴

𝜍2
𝑙1,𝑙2𝑈𝑙2,𝜍3,𝜍4,𝑙4𝑆𝑙4,𝑙′4𝑉

𝜍5
𝑙′4,1

(2.11)

= 𝐴𝜍11,𝑙1𝐴
𝜍2
𝑙1,𝑙2Ψ𝑙2,𝜍3,𝜍4,𝑙4𝑉

𝜍5
𝑙4,1 (2.12)

⇔ 𝐴1

𝜎1

𝐴2

𝜎2
Ψ𝑙2,𝜍3,…𝜍𝐿

𝜎3 𝜎4 𝜎5

= 𝐴1

𝜎1

𝐴2

𝜎2
Ψ𝑙2,𝜍3,𝜍4,𝑙4

𝜎3 𝜎4

𝐴5

𝜎5
, (2.13)
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2 Tensor network simulations for long-range interacting quantum systems

where we again contracted the diagonal matrix into the ‘remaining’ coefficient tensor. Note also
that we henceforth mark a right-orthogonal matrix 𝐴𝑖 as a red arrow pointing left (cf. Eq. (2.16) for
more details on the orthogonality properties), and note that wemake no difference between𝐴5 and
𝑉5 when 𝐴5 is right-orthogonal. Similarly to above, we continue decomposing from the right via
SVDs such that a single tensor somewhere in the bulk on site 𝑖 remains without any well-defined
orthogonality properties. This may be visualised as,

𝐴1

𝜎1

𝐴2

𝜎2
Ψ𝑙2,𝜍3,𝜍4,𝑙4

𝜎3 𝜎4

𝐴5

𝜎5
= 𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
, (2.14)

where we mark any tensor without special orthogonality features as a blue box. Furthermore, we
denote the type of configuration as in Eq. (2.14) henceforth the mixed canonical form of an MPS,
and we refer to 𝐴3 as the ‘orthogonality centre’. By construction through the SVD, we have certain
orthogonality features of the constituent left- and right-orthogonal tensors of the MPS, highlighted
by the colour coding as well as their orientation, see e.g. Eq. (2.14). These orthogonality properties
are defined by the singular value decomposition they originated from, cf. Fig. 2.3, and they can be
graphically represented in the following relations,

𝐴1

𝐴†1

𝑎

𝑏
=

𝑎

𝑏
= 𝑈𝜍1

1𝑎
†
𝑈𝜍1
1 𝑏 = 𝛿𝑎𝑏 = (𝟙)𝑎𝑏 = 𝑈𝜍𝑛

𝑙𝑛 𝑎
†
𝑈𝜍𝑛
𝑙𝑛 𝑏 =

𝐴𝑛

𝐴†𝑛

𝑎

𝑏
, (2.15)

𝑉𝑁

𝑉†
𝑁

𝑎

𝑏
=
𝑎

𝑏
= 𝑉𝜍𝑁

𝑎,1 𝑉
𝜍𝑁 †
𝑏 1 = 𝛿𝑎𝑏 = (𝟙)𝑎𝑏 = 𝑉𝜍𝑛

𝑎 𝑙𝑛𝑉
𝜍𝑛 †
𝑏 𝑙𝑛 =

𝑉𝑛

𝑉†
𝑛

𝑎

𝑏
, (2.16)

where 𝑎 and 𝑏 are the explicit labels of the indices of the corresponding tensor, and on the left-
hand side of both equations we graphically represent the boundary tensors of an MPS, while the
bulk tensors are depicted on the right-hand side. Furthermore, the solid line without any box rep-
resenting a tensor is the symbol for the identity matrix 𝟙, i.e. the Kronecker symbol 𝛿𝑎𝑏. Thus, the
contractions of right- and left-orthogonal matrices, respectively, yields by definition the identity
over the remaining indices. Keeping track of the orthogonality of all tensors constituting an MPS
is highly advantageous as it allows one to compute significant parts of a tensor-network contrac-
tion trivially and analytically. Surely, any numerical simulation may then profit from the reduced
numerical effort it has to perform. As an example, consider the norm of any MPS given by,

⟨𝜓|𝜓⟩ =
𝐴1

𝐴†1

𝐴2

𝐴†2

𝐴3

𝐴†3

𝐴4

𝐴†4

𝐴5

𝐴†5
=

𝐴2

𝐴†2

𝐴3

𝐴†3

𝐴4

𝐴†4
=

𝐴3

𝐴†3
= 1 , (2.17)

which benefits greatly from the analytical contraction. We can immediately normalise the entire
state by simply rescaling only a single tensor in the orthogonality centre without changing any of
the other 𝑁 −1 tensors. This holds also should the orthogonality centre be comprised of 𝑛-tensors.
One then encounters a higher computational cost for computing the norm but one still may rescale
any tensor in the orthogonality centre.
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2.3 Matrix product states

Shifting the orthogonality centre Since the orthogonality centre plays an important role for the
efficient computation of tensor-network contractions, we wish to briefly introduce the reader how
to alter and shift it. One can swiftly move the orthogonality centre iteratively to the right or left
with an SVD on the current orthogonality centre. To this end, the physical degree of freedom on
the current orthogonality centre, 𝜎𝑛, is considered as part of the left super index,

𝐴𝜍𝑛𝑙𝑛−1 𝑙𝑛 = 𝑀(𝜍𝑛 𝑙𝑛−1),𝑙𝑛 = 𝑈(𝜍𝑛 𝑙𝑛−1),𝑙′𝑛 𝑆𝑙′𝑛𝑙′𝑛 𝑉𝑙′𝑛 𝑙𝑛+1 (2.18)

𝐴𝑛 = 𝑈𝑛 𝑆𝑛 𝑉𝑛 (2.19)

to translate the orthogonality centre to the right. Note that we depict the diagonal tensors, e.g. 𝑆𝑛
above, with a circle. Similarly, one interprets 𝜎𝑛 as part of the right super index,

𝐴𝜍𝑛𝑙𝑛−1 𝑙𝑛 = 𝑀𝑙𝑛−1,(𝜍𝑛 𝑙𝑛) = 𝑈𝑙𝑛−1 𝑙′𝑛−1𝑆𝑙′𝑛−1𝑙′𝑛−1𝑉𝑙′𝑛−1 (𝜍𝑛𝑙𝑛) (2.20)

𝐴𝑛 = 𝑈𝑛 𝑆𝑛 𝑉𝑛 (2.21)

in order to shift the orthogonality centre to the left. In both cases the twomatrices without physical
index 𝜎𝑛 are contracted into the left or right tensor, respectively, to form the new orthogonality
centre. Graphically, this shift of the orthogonality centre can be represented as follows. One shifts
the orthogonality centre to the right as,

𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
= 𝐴1

𝜎1

𝐴2

𝜎2

𝑈3

𝜎3

𝑆3 𝑉3 𝐴4

𝜎4

𝐴5

𝜎5

= 𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
, (2.22)

and similarly, one shifts it to the left as,

𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
= 𝐴1

𝜎1

𝐴2

𝜎2

𝑈3

𝜎3

𝑆3 𝑉3 𝐴4

𝜎4

𝐴5

𝜎5

= 𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
(2.23)

In the context of entanglement, one can make use of another form of mixed-canonical MPS
where the orthogonality centre is located on the link 𝑗 between two tensors with physical indices 𝑗
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2 Tensor network simulations for long-range interacting quantum systems

and 𝑗 + 1. To this end and to nobodies surprise, we utilise the SVD on the orthogonality centre but
follow a different contraction as in,

𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
= 𝐴1

𝜎1

𝐴2

𝜎2

𝑈3

𝜎3

𝑆3 𝑉3 𝐴4

𝜎4

𝐴5

𝜎5

= 𝐴1

𝜎1

𝐴′2

𝜎2

𝑆3 𝐴3

𝜎3

𝐴4

𝜎4

𝐴5

𝜎5
, (2.24)

where we have contracted the right-orthogonal tensors 𝐴3 and 𝑈3 into a single right-orthogonal
tensor 𝐴′3 = 𝐴3 ⋅ 𝑈3. Similarly to above, one can shift the orthogonality centre on the link 𝑗, left
and rightwards by contracting it into the respective neighbouring tensor and a subsequent SVD
restores the orthogonality centre on a neighbouring link. We shall leave the graphical equations
out for brevity.

2.3.2 Entanglement and geometry

In this subsection, we briefly introduce the reader to the concept that entanglement present in an
MPS induces an effective lattice geometry in which the state has an efficient and effective repres-
entation [139, 148]. In the context of this work, we only consider MPS in open boundary conditions
(OBC). Here, we examine how this presumption implies a geometric shape onto entanglement,
and observe how an MPS is particularly suited for this geometry. There are other types of tensor
networks whose geometry are better suited for different entanglement properties (1𝐷, 2𝐷, critical
systems, etc.). Figure 2.4 displays a non-exhaustive list of different tensor networks used in practice
to represent quantum many-body wave functions. We briefly recite the descriptions of Ref. [148]
for a rough overview of their properties and applications.
MPS, as depicted in Fig. 2.4(a), are 1D chains of tensorswhich generally represent the low-energy

eigenstates of a gapped 1𝐷 Hamiltonian [143, 149]. They satisfy the 1𝐷 area law of entanglement.
Moreover, expectation values of local operators can be efficiently computed albeit they can only
represent states with finite correlation length [139]. Therefore, they are nominally not suited for
representing quantum critical states. However, their comparatively high efficiency, and ease of use
have lead to an extensive body of research including finite-size scaling and finite-entanglement
scaling aiming to study 1𝐷 quantum critical phenomena through MPS [148].
PEPS, as in Fig. 2.4(c) for the particular case of a square lattice, are 2𝐷 arrays of tensors. They are

known to capture the correct correlation structure of low-energy eigenstates of 2𝐷 local Hamilto-
nians satisfying the 2𝐷 area law, as well as of 2𝐷 thermal states[148]. UnlikeMPS, PEPS can handle
critical, i.e. diverging correlation lengths. However, since they cannot be contracted both efficiently
and exactly, approximate methods have been developed for manipulating them. They can also
represent topologically order states of matter, both chiral and non-chiral. However, they are still
actively being researched and whether they support chiral topological order with gapped bulk ex-
citations is an open question [148].
Multiscale entanglement renormalization ansatz (MERA) structures are tensor networks exem-

plary depicted in Fig. 2.4(d). They are tree-like structures of isometric and unitary tensors whereas
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b
a

...

c

d

… … … …

… …

… …

… …

e

Figure 2.4: a: The coefficients 𝑐𝑖1,𝑖2,…,𝑖𝑁 of a quantummany-body wave function with𝑁 sites, where each de-
gree of freedom has local dimension of 2, can be thought of as a tensor with exponentially many
coefficients in the system size 𝑁. One can account for the internal structure and the amount
of entanglement by a suitable graph of interconnected tensors (a tensor network) with ancillary
indices. The tensor network in a is supposed to be generic. b–e: concrete examples of tensor net-
works used in practice to represent quantummany-body states. b: Matrix product state (MPS), c:
projected entangled pair state for a square lattice (PEPS), d: multiscale entanglement renormal-
ization ansatz (MERA), e: branching MERA. Figure copied and adapted from Ref. [148].
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2 Tensor network simulations for long-range interacting quantum systems

the unitary operators account for entanglement between neighbouring sites, and have a number
of remarkable properties. First, they can exhibit the entanglement entropy of critical 1D systems.
Moreover, they are efficiently contractable for the purpose of expectation values. They have an extra
holographic dimension that encodes a renormalization scale, related to the ‘entanglement renor-
malization’. Finally, MERA structures are believed to be linked to the AdS/CFT correspondence in
quantum gravity [148, 150, 151].

A branching MERA (bMERA) is illustrated in Fig. 2.4(e). Being similar to MERAs with the
addition that at every renormalisation scale a bMERAdecouples into several copies. They therefore
exhibit an arbitrary scaling of block entanglement entropy thus allowing the representation of the
entanglement structure of systems that violate the area law. Physically speaking, this structure
accounts for the decoupling of degrees of freedom at different renormalisation scales (e.g. spin–
charge separation in electronic solid-state systems) [148]

Henceforth, we focus exclusively on 1𝐷 matrix product states with open boundary conditions.
We have seen above in Section 2.3.1 how one can construct an MPS from any set of coefficients
describing a many-body wave function. To understand how entropy is shaped by the geometry of
such a tensor network, let us consider an exemplary quantum state |𝜓⟩, as well as a bipartition of
the 1𝐷 chain into subsystem 𝐴 and 𝐵. The state on the entire system and its two subsystems is then
naturally described by the Schmidt decomposition of |𝜓⟩,

|𝜓⟩ = ∑
𝜍1,…,𝜍𝐿

𝑐𝜍1,…,𝜍𝑁|𝜎1,… , 𝜎𝐿⟩ =
𝑟
∑
𝑙=1

𝜆𝑙 ||𝜓𝐴
𝑙 ⟩ ⊗ ||𝜓𝐵

𝑙 ⟩ , (2.25)

where {|𝜓𝐴,𝐵
𝑙 ⟩} is an orthonormal basis of subsystem𝐴,𝐵. The Schmidt decomposition of a quantum

state can then be readily computed by its MPS representation when using SVDs to place the diag-
onal matrix of singular values on the link of the bipartition as in Eq. (2.24),

|𝜓⟩ = 𝐴1

𝜎1

𝐴2

𝜎2

𝐴3

𝜎3

𝑆3 𝐴4

𝜎4

𝐴5

𝜎5

||𝜓𝐴
𝑙3 ⟩ ||𝜓𝐵

𝑙4⟩
𝜆𝑙3𝛿𝑙3,𝑙4

, (2.26)

where we identify the elements of the Schmidt decomposition Eq. (2.25) by coloured braces be-
low. Therefore, any mixed canonical form where the orthogonal centre is located on the link, one
finds an associated Schmidt decomposition of the quantum state represented by theMPS. Note that
the orthogonal centre on the link may be readily shifted following the instructions in Eqs. (2.22)
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and (2.23) thereby moving the bipartition of the associated Schmidt decomposition. The reduced
density matrix on subsystem 𝐴may then be written as,

𝜌𝐴 = tr𝐵(|𝜓⟩⟨𝜓|) =
𝑟
∑
𝑙=1

|𝜆𝑙|
2 ||𝜓𝐴

𝑙 ⟩⟨𝜓
𝐴
𝑙 || (2.27)

= tr𝐵
𝐴1

𝐴†1

𝐴2

𝐴†2

𝐴3 𝑆3 𝑉3

𝐴†3 𝑆3

𝐴4

𝐴†4

𝐴5

𝐴†5

(2.28)

=
𝐴1

𝐴†1

𝐴2

𝐴†2

𝐴3 𝑆3 𝑉3

𝐴†3 𝑆3

𝐴4

𝐴†4

𝐴5

𝐴†5

(2.29)

=
𝐴1

𝐴†1

𝐴2

𝐴†2

𝐴3
(𝑆3)2

𝐴†3

. (2.30)

We hence find for the trace of 𝜌𝑛𝐴 the expression,

tr(𝜌𝑛𝐴) = tr

⎛
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎜
⎝

𝐴1

𝐴†1

𝐴2

𝐴†2

𝐴3
(𝑆3)2

𝐴†3

⎞
⎟
⎟
⎟
⎟
⎠

𝑛
⎞
⎟
⎟
⎟
⎟
⎠

= ( (𝑆3)2 )
𝑛

(2.31)

= (𝑆3)2𝑛 = ∑
𝑖
((𝑆3)𝑖,𝑖)

2𝑛 , (2.32)

and thus conclude the entanglement entropy is given by,

𝒮𝑛 =
1

1 − 𝑛 log(tr 𝜌
𝑛
𝐴) , (2.33)

= 1
1 − 𝑛 log( (𝑆3)2𝑛 ) . (2.34)

In above calculation, we made use of the orthogonality relations, Eqs. (2.15) and (2.16), to simplify
the expression of the reduced density matrix. Our analytic computation elevates the numerical one
as we can simply skip the contraction over the orthogonal matrices knowing the contractions over
those tensors yields a trivial identity. This is of course equivalent to the tensor notation of Eq. (2.25)
and Eq. (2.27). Furthermore, we can see in Eq. (2.30) the visual depiction of Eq. (2.27), showing
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2 Tensor network simulations for long-range interacting quantum systems

the entanglement in the state being encoded in the singular values 𝑆𝑗 ‘living on’ the bipartiton link
𝑗 (in the graphic 𝑗 = 3). In tensor notation, we may compute the Rényi entropy explicitly yielding,

𝒮𝑛 =
1

1 − 𝑛 log(tr(𝜌𝐴)
𝑛) = 1

1 − 𝑛 log(
𝑟
∑
𝑖=1

(𝑆)𝑖𝑖
2𝑛) , (2.35)

from which we follow that max(𝒮) = 𝒪(log(𝑟)). Note that given the bipartition that defines 𝐴,
the matrix rank 𝑟 (not the tensor rank) determines the maximum amount of entropy the tensor
network can represent. One can now see how the geometry of entanglement is induced through
the geometry of the tensor network. Observe in Eq. (2.30) and subsequent calculation of the en-
tanglement entropy that an MPS precisely relates any interface of different regions in space to a
tensor product structure whose characteristics define the entanglement properties of the state at
that interface. The fact that such an interface in an MPS is always of a dimension smaller than the
original space is a manifestation of the area law for the entanglement entropy [5].

Let us now consider a quantum system in open boundary conditions and observe that an MPS
are naturally suited for these types of systems. Since we impose open boundary conditions, the
first, leftmost tensor has obviously no left neighbouring degree of freedom. The single degree of
freedom on site 1 is described by a 𝑑×𝑑 reduced density matrix (𝑑 being the local dimension) when
taking the partial trace over the remainder of the system. The dimension of the link from site 1 to 2
represents the number of non-zero eigenvalues of the reduced densitymatrix of the single, leftmost
degree of freedom, cf. Eqs. (2.27) and (2.30). Therefore, the link 𝑙1 has dimension at most the local
dimension 𝑙1 ≤ 𝑑. Continuing and considering a bipartiton on the second link, we find the two
leftmost degrees of freedom left being described by a 𝑑2 × 𝑑2 density matrix. Thus, the dimension
of the link 𝑙2 is atmost 𝑑2, etc. Clearly, this argument applies due to reflection symmetry to the right
end of the open chain as well. We therefore conclude that the local link dimension 𝑙𝑛 is maximum
in the centre of the chain and decreases towards the boundaries,

𝑙1 ≤ 𝑑 ≤ 𝑙2 ≤ 𝑑2 ≤ ⋯ ≤ 𝑙𝑁/2 ≤ 𝑑𝑁/2 , (2.36)

𝑙𝑁 ≤ 𝑑 ≤ 𝑙𝑁−1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑙𝑁/2 ≤ 𝑑𝑁/2 (2.37)

𝜒𝑚 ≔ max
𝑛=1,…,𝑁

{𝑙𝑛} (2.38)

In the following, we shall refer to 𝜒𝑚 = max𝑛{𝑙𝑛} as the maximum link dimension. Note the ex-
ponential increase in subsystem size of theoretically possible entanglement. The endeavour of de-
scribing a many-body wave function more efficiently as a tensor network therefore hinges on the
relation betweenmaximum entanglement in the state we want to describe as anMPS and the ‘reas-
onable’, i.e. not exponential, scaling of maximum link dimension𝜒𝑚with system size. As described
above in Section 2.2, to our rescue comes the area law of entanglement. Ground states of gapped
Hamiltonians actually do not fill out above bounds Eq. (2.36), and their entanglement entropy does
not scale exponentially with system size. Furthermore, note that periodic boundary conditions
(PBC) would not allow for above consideration and instead naturally induce more entanglement
since there is a second interface (in 1𝐷) such that entanglement entropy in PBC is for all interfaces
of the order 𝒪(𝑑𝑁/2).
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𝑁–body Hilbert spaceℋ

𝜒𝑚 = 10

𝜒𝑚 = 100
𝜒𝑚 = 200

𝜒𝑚 = 10𝑁/40

𝜒𝑚 = 10𝑁/20

1D area-law states

Figure 2.5: Onion-like growth of the submanifold of MPSwith link dimension𝜒𝑚 inside an𝑁-particlemany-
body Hilbert spaceℋ in 1 spatial dimension. With larger link dimension, the MPS submanifold
covers more of the many-body Hilbert space, including the area-law states in 1D, and when 𝜒𝑚
scales exponentially also the entire Hilbert space eventually. Note the concrete numbers are ex-
emplary, and the corresponding areas are not to scale. Adapted from [139].

In the following, we denote it as 𝜒𝑚 and view it as a numerical parameter characterising the size
of the submanifold of Hilbert space we approximate with the given tensor network, as well as a
quantitative estimate of our numerical effort. Figure 2.5 is a sketch of this growth of the submani-
fold with maximum link dimension 𝜒𝑚. Crucially, the entanglement entropy of a gapped Hamilto-
nian is a constant not diverging with system size. Thus, wemay not only represent the ground state
of a finite system with finite link dimension (i.e. computational effort) but instead may represent
the ground state of an infinite system in 1D with finite but sufficiently large link dimension!

2.3.3 Compression of a Matrix Product State

In this subsection, we detail the two approaches for an approximate compression of an MPS fol-
lowing Ref. [138]. Either, we compress an MPS via SVD or we use a variational approach. In the
following, we are advertising for the subsequent order of first compression via SVD and then tak-
ing this result as the initial starting point for a variational optimisation. Later, we will discuss how
to use this method to measure the entanglement witness called geometric entanglement (cf. Sec-
tion 2.A.1). Compressing anMPS to obtain an approximate yetmore resourcefulMPS is an essential
technique when using tensor networkmethods. It is particularly useful after adding twoMPS since
the bond dimension of their sum is the product of each bond dimension [138]. More importantly for
the study that follows, we will use these techniques to construct the observable of geometric entan-
glement [152, 153], a novel entanglement witness that measures the geometric distance in Hilbert
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2 Tensor network simulations for long-range interacting quantum systems

space of a given state to its closest product state. To this end, we consider for both approaches an
MPS in the Schmidt decomposition with the bipartition on link 𝑝,

|𝜓⟩ = 𝐴1

𝜎1
… 𝐴𝑝

𝜎𝑝

𝑆𝑝 𝐴𝑝+1

𝜎𝑝+1
… 𝐴𝑁

𝜎𝑁
(2.39)

= 𝐴𝜍11,𝑙1 ⋯𝐴
𝜍𝑝
𝑙𝑝−1,𝑙𝑝 𝑆

𝑝
𝑙𝑝,𝑙′𝑝

𝐴
𝜍𝑝+1
𝑙′𝑝,𝑙𝑝−1

⋯𝐴𝜍𝑁𝑙𝑁,1 (2.40)

=
𝜒𝑚

∑
𝑙𝑝
𝑠𝑙𝑝||𝜓

𝐴
𝑙𝑝 ⟩ ⊗

||𝜓𝐵
𝑙𝑝⟩ , (2.41)

where 𝑠𝑖 = (𝑆)𝑖,𝑖 and the {𝑙𝑛} have a maximum link dimension 𝜒𝑚. We now seek to find the best
approximate MPS || ̃𝜓⟩ of the given MPS |𝜓⟩ whereas || ̃𝜓⟩ has maximum link dimension ̃𝜒𝑚 < 𝜒𝑚.

2.3.3.1 Compressing an MPS via SVD

Here, we wish to detail the algorithm how to compress an MPS through repeated application of an
SVD. The singular values of this bipartition Eq. (2.41) can be readily read off to be the diagonal (and
only) entries of 𝑆𝑝 (labelled 𝑠𝑙𝑝) of which there are 𝜒𝑚 many. This prescription lends itself to a nat-
ural truncationmethod: simply retaining only ̃𝜒𝑚 < 𝜒𝑚 of all stored singular values and discarding
the corresponding orthonormal basis states |𝜓𝐴,𝐵

𝑙𝑝 ⟩ of subsystem 𝐴 and 𝐵. In the language of tensor
networks, this corresponds to discarding the 𝜒𝑚 − ̃𝜒𝑚 last rows and columns of the corresponding
tensors left and right tensors, respectively. To see this, consider the transformation following the
compression detailed above,

… 𝐴𝑝

𝜎𝑝

𝑆𝑝
𝑙𝑝 𝐴𝑝+1

𝜎𝑝+1
…

𝑙′𝑝 ⟶ … ̃𝐴𝑝

𝜎𝑝

̃𝑆𝑝
𝑙𝑝 ̃𝐴𝑝+1

𝜎𝑝+1
…𝑙′𝑝 (2.42)

𝜒𝑚

∑
𝑙𝑝,𝑙′𝑝=1

𝐴
𝜍𝑝
𝑙𝑝−1,𝑙𝑝 𝑆

𝑝
𝑙𝑝,𝑙′𝑝

𝐴
𝜍𝑝+1
𝑙′𝑝,𝑙𝑝−1

⟶
�̃�𝑚

∑
𝑙𝑝,𝑙′𝑝=1

̃𝐴
𝜍𝑝
𝑙𝑝−1,𝑙𝑝

̃𝑆𝑝𝑙𝑝,𝑙𝑝 ̃𝐴
𝜍𝑝+1
𝑙𝑝,𝑙𝑝−1 , (2.43)

where we indicated the larger link dimension as a wider line between the diagonal matrix of sin-
gular values and its two neighbouring tensors. Note that we collect the uncompressed tensors
(𝐴1,… , 𝐴𝑁) in the vector A = (𝐴1,… , 𝐴𝑁) while we denote the compressed versions with a tilde
as ̃A = ( ̃𝐴1,… , ̃𝐴𝑁) Once the information is discarded, one has to rescale the remaining singular
values such that the state is normalised to unity again. This procedure rest on a single Schmidt
decomposition with orthogonality centre on site 𝑝 (or 𝑝 − 1); we therefore reduce the link dimen-
sion on all sites by starting say on the left at link 𝑝 = 1 and shift the orthogonality centre to the
right as described above (cf. Eq. (2.22)) while reducing the link dimension. A notable disadvantage
of this method is that the compression is not symmetric with respect to parity. When shifting the
orthogonality centre the new orthogonality centre is constructed with an already compressed �̃�
( ̃𝑉), i.e. �̃� ( ̃𝑉) with fewer rows (columns), when shifting to the left (right), cf. Eqs. (2.22) and (2.23).
Therefore, the sweep from left to right generally yields a different result for the compressedMPS as
the sweep from right to left considering the same constituent matrix 𝐴𝜍𝑛.
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2.3.3.2 Compressing an MPS via iterative variation

As a variational approach, the optimal iterative compression happens when one starts with a good
guess on what a close MPS with lower link dimension might look like. Then, one varies each of the
constituent matrices 𝐴𝜍𝑛 in the MPS iteratively to approach the best approximation in the lower
link dimension manifold. The weight function to be minimised is naturally the two norm of the
difference vector in Hilbert space𝑊 = ‖ |𝜓⟩ − | ̃𝜓⟩‖2. This implies the minimisation of

𝑊( ̃A, ̃A†) = ⟨𝜓(A†)||𝜓(A)⟩ − ⟨ ̃𝜓( ̃A†)|𝜓(A)⟩ − ⟨𝜓(A†)| ̃𝜓( ̃A)⟩ + ⟨ ̃𝜓( ̃A†)| ̃𝜓( ̃A)⟩ , (2.44)

with respect to || ̃𝜓⟩. Again, we note the uncompressed original tensors as (𝐴𝜍1,… , 𝐴𝜍𝑁) while we
mark its compressed counterpart with a tilde as, ( ̃𝐴𝜍1,… , ̃𝐴𝜍𝑁). Note that as we have seen above
in the SVD compression approach in Section 2.3.3.1, varying the matrices ( ̃𝐴𝜍1,… , ̃𝐴𝜍𝑁) = ̃A that
make up the MPS of || ̃𝜓⟩ will break its normalisation. Thus, it is indeed meaningful to include the
respective norms in the minimisation process. Considering the constituent matrices ̃𝐴𝜍𝑛, the min-
imisation of Eq. (2.44) is a highly non-linear optimisation problemwhichwe are tackling iteratively
site by site from left to right or vice versa. This one-sided sweep is then repeated an even number
of times until desired convergence of the Hilbert-space distance is reached. The updated ̃𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛
is given by the point where𝑊( ̃𝜓) is minimal with respect to a change in ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛 since we consider
|𝜓⟩ = |𝜓(A)⟩ and ⟨𝜓| = ⟨𝜓(A†)|| independently. Obviously, only two terms in Eq. (2.44) contain 𝐴†

explicitly, implying

0
!
= 𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

𝑊(𝜓) = 𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

(⟨ ̃𝜓( ̃A†)| ̃𝜓( ̃A)⟩ − ⟨ ̃𝜓( ̃A†)|𝜓(A)⟩) , (2.45)

⇔ 𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

⟨ ̃𝜓( ̃A†)| ̃𝜓( ̃A)⟩ = 𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

⟨ ̃𝜓( ̃A†)|𝜓(A)⟩ (2.46)

We therefore find after performing the derivative,

̃𝐴𝜍1†𝑙′1
̃𝐴𝜍1𝑙1 ⋯ ̃𝐴𝜍𝑛−1†𝑙′𝑛−2,𝑙′𝑛−1

̃𝐴𝜍𝑛−1𝑙𝑛−2,𝑙𝑛−1 ⋅ ̃𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛 ⋅ ̃𝐴𝜍𝑛+1†𝑙′𝑛,𝑙′𝑛+1
̃𝐴𝜍𝑛+1𝑙𝑛,𝑙𝑛+1 ⋯ ̃𝐴𝜍𝑁†𝑙′𝑁

̃𝐴𝜍𝑁𝑙𝑁
= ̃𝐴𝜍1†𝑙′1

𝐴𝜍1𝑙1 ⋯ ̃𝐴𝜍𝑛−1†𝑙′𝑛−2,𝑙′𝑛−1
𝐴𝜍𝑛−1𝑙𝑛−2,𝑙𝑛−1 ⋅ 𝐴

𝜍𝑛
𝑙𝑛−1,𝑙𝑛 ⋅ ̃𝐴𝜍𝑛+1†𝑙′𝑛,𝑙′𝑛+1

𝐴𝜍𝑛+1𝑙𝑛,𝑙𝑛+1 ⋯ ̃𝐴𝜍𝑁†𝑙′𝑁
𝐴𝜍𝑁𝑙𝑁 . (2.47)

In case of mixed canonical orthogonality where the centre is located on site 𝑛, wemay immediately
and trivially contract the left ( ̃𝐴†1,…,𝑛−1 ̃𝐴1,…,𝑛−1) and right-orthogonalmatrices ( ̃𝐴𝑛+1,…,𝑁 ̃𝐴†𝑛+1,…,𝑁)
on the left-hand side of Eq. (2.47) yielding,

̃𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛 = 𝐿𝑙𝑛−1,𝑙′𝑛−1 ⋅ 𝐴
𝜍𝑛
𝑙′𝑛−1,𝑙′𝑛

⋅ 𝑅𝑙′𝑛,𝑙𝑛 , (2.48)
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where we introduced the contracted tensors 𝐿𝑙𝑛−1,𝑙′𝑛−1 = ̃𝐴𝜍1†𝑙′1
𝐴𝜍1𝑙1 ⋯ ̃𝐴𝜍𝑛−1†𝑙′𝑛−2,𝑙′𝑛−1

𝐴𝜍𝑛−1𝑙𝑛−2,𝑙𝑛−1 and 𝑅𝑙′𝑛,𝑙𝑛 =
̃𝐴𝜍𝑛+1†𝑙′𝑛,𝑙′𝑛+1

𝐴𝜍𝑛+1𝑙𝑛,𝑙𝑛+1 ⋯ ̃𝐴𝜍𝑁†𝑙′𝑁
𝐴𝜍𝑁𝑙𝑁 . We may represent these equations graphically as,

𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

⟨ ̃𝜓(Ã†)| ̃𝜓( ̃A)⟩ = 𝜕
𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛

⟨ ̃𝜓( ̃A†)|𝜓(A)⟩ (2.49)

⇔
̃𝐴1

̃𝐴†1

̃𝐴2

̃𝐴†2

̃𝐴3 ̃𝐴4

̃𝐴†4

̃𝐴5

̃𝐴†5
=
𝐴1

̃𝐴†1

𝐴2

̃𝐴†2

𝐴3 𝐴4

̃𝐴†4

𝐴5

̃𝐴†5
(2.50)

⇔ ̃𝐴3 =

𝐴3

𝐿 𝑅 , (2.51)

where the compressed unknown matrix ̃𝐴𝑛 is highlighted as yellow, and the higher uncompressed
link dimension is marked with a wider line. Note that when the orthogonality centre is located on
site 𝑛 while we take the partial derivate 𝜕/𝜕 ̃𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛 , the computation simplifies dramatically due
to the convenient orthogonality conditions on the left-hand side of the equation. Contrarily, on the
right-hand side we obtain the expressions for the contracted tensors 𝐿 and 𝑅, which are nothing but
the first part of the overlap ⟨ ̃𝜓|𝜓⟩ starting from the left and right, respectively:

𝐿𝑙𝑛−1,𝑙′𝑛−1 = ̃𝐴𝜍1†𝑙′1
𝐴𝜍1𝑙1 ⋯ ̃𝐴𝜍𝑛−1†𝑙′𝑛−2,𝑙′𝑛−1

𝐴𝜍𝑛−1𝑙𝑛−2,𝑙𝑛−1 , (2.52)

𝐿 =
𝐴1

̃𝐴†1

…

…

𝐴𝑛−1

̃𝐴†𝑛−1
, (2.53)

and respectively for 𝑅,

𝑅𝑙′𝑛,𝑙𝑛 = ̃𝐴𝜍𝑛+1†𝑙′𝑛,𝑙′𝑛+1
𝐴𝜍𝑛+1𝑙𝑛,𝑙𝑛+1 ⋯ ̃𝐴𝜍𝑁†𝑙′𝑁

𝐴𝜍𝑁𝑙𝑁 (2.54)

𝑅 =
𝐴𝑛+1

̃𝐴†𝑛+1

…

…

𝐴𝑁

̃𝐴†𝑁
. (2.55)

This equips us with all details to update the tensor ̃𝐴𝑛 for arbitrary 𝑛 inside the chain according to
Eqs. (2.48) and (2.51). This update procedure is now repeated from say left end 𝑛 = 1 to the right
end 𝑛 = 𝑁 and backwards until a satisfactory convergence is achieved. To this end, one assesses
the convergence by inspecting the weight function𝑊( ̃𝜓) (2.44) andmonitor its convergence. While
updating, one must not forget to rescale the new compressed matrix to unit norm.

2.4 Matrix product operators

Matrix product operators (MPO) relate to operators defined on vectors in Hilbert space analogously
to howMPSs relate to pure quantum states. AnMPO is a tensor network that when contractedwith
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an MPS has another MPS as its output. In the following section, we lay out the foundations of an
MPO looks like both in tensor notation and graphical representation. We particularly emphasise
the construction of the MPO representing the Hamiltonian of a long-range power law interacting
operator, which we shall make use of later.

2.4.1 Single-site matrix product operator

Arguably, the simplest version of anMPO is a single-site operator. In the context of spin-1/2 chains,
we may think of the Pauli matrices 𝜎𝑥,𝑦,𝑧, which read as,

𝜎𝑥 = (
0 1
1 0

) , 𝜎𝑦 = (
0 −i
i 0

) , 𝜎𝑧 = (
1 0
0 −1

) , 𝜎0 = 𝟙 = (
1 0
0 1

) , (2.56)

as the basis of any single site operator, in particular of the spin operators 𝑆𝑥,𝑦,𝑧 = 𝜎𝑥,𝑦,𝑧/2.

Graphically, an application of a single site MPO can be represented,

𝐴1 …

𝑆𝜇𝑛

𝐴𝑛 … 𝐴𝑁 = 𝐴1 … 𝐴′𝑛 … 𝐴𝑁 , (2.57)

where 𝑆𝜇𝑛 = 𝑆𝑥,𝑦,𝑧𝑛 acting on site 𝑛. Note that the mixed canonical form of an MPS is particularly
useful when evaluating an 𝑛-point function, e.g. the two-point correlation function ⟨𝑆𝜇𝑛𝑆𝜈𝑚⟩, when
the orthogonality centre is located at site 𝑗 and 𝑛 ≤ 𝑗 ≤ 𝑚 assuming without loss of generality that
𝑛 ≤ 𝑚. To see this, let us first consider the graphical representation of the expectation value of a
one-point function which reads as,

⟨𝑆𝜇𝑛⟩ =

𝐴1

𝐴†1

…

…

𝑆𝜇𝑛

𝐴𝑛

𝐴†𝑛

…

…

𝐴𝑁

𝐴†𝑁

= 𝑆𝜇𝑛

𝐴𝑛

𝐴†𝑛

, (2.58)

which trivially equates due to orthogonality to only the contractions on the spatial site 𝑛 in the
sense depicted above. This evidently saves a dramatic amount of necessary contractions. Similarly,
the two-point function reads as,

⟨𝑆𝜇𝑛 , 𝑆𝜈𝑚⟩ =

𝐴1

𝐴†1

…

…

𝑆𝜇𝑛

𝐴𝑛

𝐴†𝑛

𝐴𝑛+1

𝐴†𝑛+1

…

…

𝐴𝑚

𝑆𝜈𝑚

𝐴†𝑚

…

…

𝐴𝑁

𝐴†𝑁

(2.59)

= 𝑆𝜇𝑛

𝐴𝑛

𝐴†𝑛

𝐴𝑛+1

𝐴†𝑛+1

…

…

𝐴𝑚−1

𝐴†𝑚−1

𝑆𝜈𝑚

𝐴𝑚

𝐴†𝑚

, (2.60)
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2 Tensor network simulations for long-range interacting quantum systems

where you can see that it naturally includes the contraction of all tensors in between the two points
𝑛 and𝑚. Note that this has profound implications on the scaling of the two-point correlation func-
tion as the correlation length is always finite, and they decay exponentially over long distances
𝑚 ≫ 𝑛 [139].

2.4.2 Matrix product operators of Hamiltonians

In this section, we introduce and discuss the construction of matrix product operators (MPO) given
a many-body Hamiltonian. Firstly, we will discuss the short-range interacting case before translat-
ing it to the long-range case.

Having previously discusses single site MPOs, we now turn towards many-body operators pos-
sibly acting on all sites. Analogously to how we argued that one may write any quantum state as,

|𝜓⟩ = ∑
𝜍1…𝜍𝑁

𝑐𝜍1…𝜍𝑁|𝜎1⋯𝜎𝑁⟩ (2.61)

= ∑
𝜍1…𝜍𝑁

𝐴𝜍1𝐴𝜍2 ⋯𝐴𝜍𝑁−1𝐴𝜍𝑁|𝜎1⋯𝜎𝑁⟩ , (2.62)

we may write any linear operator on Hilbert space as,

�̂� = ∑
𝜍1…𝜍𝑁𝜍′1…𝜍′𝑁

𝑐𝜍1…𝜍𝑁,𝜍′1…𝜍′𝑁
||𝜎′1⋯𝜎′𝑁⟩⟨𝜎1⋯𝜎𝑁|| (2.63)

= ∑
𝜍1…𝜍𝑁𝜍′1…𝜍′𝑁

𝑊 𝜍1,𝜍′1𝑊 𝜍2,𝜍′2 ⋯𝑊 𝜍𝑁−1,𝜍′𝑁−1𝑊 𝜍𝑁,𝜍′𝑁||𝜎′1⋯𝜎′𝑁⟩⟨𝜎1⋯𝜎𝑁|| , (2.64)

where the 𝑊𝑛 in the bulk are rank-4 tensors (and rank-3 at the boundary). Graphically we may
represent an MPO analogously to an MPS as,

�̂� = 𝑊1 … 𝑊𝑛 … 𝑊𝑁 (2.65)

2.4.2.1 MPOs of short-range interacting Hamiltonians

Although formally existing, one might naively expect the quest of constructing an explicit MPO
from a given Hamiltonian to be a hopeless endeavour since the latter is usually given in terms of
sums of local few-body interaction operators while the former is a product of tensors. Consider for
example the short-range XXZ spin-1/2model, defined by the Hamiltonian,

𝐻𝑋𝑋𝑍 = −𝐽
𝑁−1
∑
𝑛=1

1
2(𝑆

+
𝑛 𝑆−𝑛+1 + 𝑆−𝑛 𝑆+𝑛+1) + Δ𝑆𝑧𝑛𝑆𝑧𝑛+1 − ℎ

𝑁
∑
𝑛=1

𝑆𝑧𝑛 (2.66)
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2.4 Matrix product operators

where the sum is of course shorthand notation for the addition of large tensor product operators
acting on the full many-body Hilbert space,

𝐻𝑋𝑋𝑍 = −ℎ𝑆𝑧1 ⊗ 𝟙2 ⊗ 𝟙3 ⊗ 𝟙4 ⊗…𝟙𝑁

+ 𝐽
2𝑆

+
1 ⊗ 𝑆−2 ⊗ 𝟙3 ⊗ 𝟙4 ⊗…𝟙𝑁

+ 𝐽
2𝑆

−
1 ⊗ 𝑆+2 ⊗ 𝟙3 ⊗ 𝟙4 ⊗…𝟙𝑁

+ 𝐽Δ𝑆𝑧1 ⊗ 𝑆𝑧2 ⊗ 𝟙3 ⊗ 𝟙4 ⊗…𝟙𝑁
+ 𝟙1 ⊗−ℎ𝑆𝑧2 ⊗ 𝟙3 ⊗ 𝟙4 ⊗…𝟙𝑁

+ 𝟙1 ⊗
𝐽
2𝑆

+
2 ⊗ 𝑆−3 ⊗ 𝟙4 ⊗…𝟙𝑁 (2.67)

+ …

However, McCulloch introduced an efficient way of constructing anMPO corresponding to a given
Hamiltonian with low link dimension and only upper or lower triangular form [154]. The con-
struction recipe may be best explained as follows; consider only lines of single field operators in
Eq. (2.67), i.e. consider the Hamiltonian 𝐻 = ℎ∑𝑁

𝑛=1 𝑆
𝑧
𝑛. Such a Hamiltonian can be constructed

as a product of tensors when the bulk MPO tensor reads,

𝑊𝑛 = (
𝟙 0
ℎ𝑆𝑧 𝟙

) , (2.68)

where the entries of this 2×2matrix are operator valued, i.e. itself 𝑑×𝑑matrices. For the first and
last sites the MPO tensor reads as the row and column, respectively,

𝑊1 = (ℎ𝑆𝑧 𝟙) , 𝑊𝑁 = (
𝟙
ℎ𝑆𝑧

) , (2.69)

which can be confirmed bymultiplicating everything out. This procedure can be readily generalised
to two-body terms of the nearest neighbouring interacting Hamiltonian (2.66) by introducingmore
link dimensions for each operator term. This yields for the bulk MPO tensor,

𝑊𝑛 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑛 0 0 0 0
𝑆+𝑛 0 0 0 0
𝑆−𝑛 0 0 0 0
𝑆𝑧𝑛 0 0 0 0

−ℎ𝑆𝑧𝑛 𝐽𝑆−𝑛 /2 𝐽𝑆+𝑛 /2 𝐽Δ𝑆𝑧𝑛 𝟙𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.70)
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2 Tensor network simulations for long-range interacting quantum systems

and for the boundary tensors,

𝑊 𝑋𝑋𝑍
1 = (−ℎ𝑆𝑧1 𝐽𝑆−1 /2 𝐽𝑆+1 /2 𝐽Δ𝑆𝑧1 𝟙1) , 𝑊 𝑋𝑋𝑍

𝑁 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑁
𝑆+𝑁
𝑆−𝑁
𝑆𝑧𝑁

−ℎ𝑆𝑧𝑁

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.71)

As mentioned above, any non-nearest neighbour interaction term requires the introduction of a
newMPO link dimension as well as an intermediate identity operator 𝟙 as can be seen for example
when including next-nearest neighbour interactions,

𝐻 = 𝐻𝑋𝑋𝑍 + 𝐽2∑
𝑛
𝑆𝑧𝑛𝑆𝑧𝑛+2 , (2.72)

whose MPO bulk tensor is given by,

𝑊𝑛 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑛 0 0 0 0 0
𝑆+𝑛 0 0 0 0 0
𝑆−𝑛 0 0 0 0 0
𝑆𝑧𝑛 0 0 0 0 0
0 0 0 𝟙𝑛 0 0

−ℎ𝑆𝑧𝑛 𝐽𝑆−𝑛 /2 𝐽𝑆+𝑛 /2 𝐽Δ𝑆𝑧𝑛 𝐽2𝑆𝑧𝑛 𝟙𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.73)

2.4.2.2 MPOs of exponentially decaying long-range interacting Hamiltonians

Before turning towards the desired power-law long-range interacting Hamiltonians, at least in the
context of this thesis, let us first discuss how to construct an MPO corresponding to Hamiltoni-
ans with interactions that decay exponentially in space. To this end, consider the exponentially
decaying interacting Hamiltonian

𝐻 = 𝐽
𝑁−1
∑
𝑛=1

∑
𝑑≠1

𝜆𝑑𝑆𝑧𝑛𝑆𝑧𝑛+𝑑 , (2.74)

and note that between any pair of 𝑆𝑧𝑛 and 𝑆𝑧𝑛+𝑑 there are implicitly identity matrices also in between
the two positions 𝑛 and 𝑛+𝑑 compared to the sum in Eq. (2.67). That goes to say we have operators
additionally operators of the form,

𝐽𝜆𝑑𝑆𝑧1 ⊗ 𝟙2 ⊗⋯⊗ 𝟙𝑑−1 ⊗ 𝑆𝑧𝑑 ⊗ 𝟙𝑑+1 ⊗⋯𝟙𝑁 . (2.75)
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2.4 Matrix product operators

These operators are then ingeniously incorporated without the need of any extra link dimension
by using the MPO,

𝑊𝑛 =
⎛
⎜⎜
⎝

𝟙𝑛 0 0
𝑆𝑧𝑛 𝜆𝟙𝑛 0
0 𝐽𝜆𝑆𝑧𝑛 𝟙𝑛

⎞
⎟⎟
⎠

, (2.76)

as can be verified by multiplying out all constituent tensors of this MPO. Again, the first and last
MPO are given by the row and column vector, respectively.
With this technique at hand, we may consider the exponentially interacting XXZ model,

𝐻 = −𝐽
𝑁−1
∑
𝑛=1

∑
𝑑≠1

𝐽𝜆𝑑[12(𝑆
+
𝑛 𝑆−𝑛+𝑑 + 𝑆−𝑛 𝑆+𝑛+𝑑) + Δ𝑆𝑧𝑛𝑆𝑧𝑛+𝑑] − ℎ

𝑁
∑
𝑛=1

𝑆𝑧𝑛 , (2.77)

and find it described by the bulk MPO tensor,

𝑊𝑛 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑛 0 0 0 0
𝑆+𝑛 𝜆𝟙𝑛 0 0 0
𝑆−𝑛 0 𝜆𝟙𝑛 0 0
𝑆𝑧𝑛 0 0 𝜆𝟙𝑛 0

−ℎ𝑆𝑧𝑛 𝐽𝜆𝑆−𝑛 /2 𝐽𝜆𝑆+𝑛 /2 𝐽Δ𝜆𝑆𝑧𝑛 𝟙𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.78)

and the standard row and column vectors corresponding to the first and last MPO tensor. This
indeed reproduces the exponentially decaying all-to-all interaction when multiplied out. We wish
to stress again that the link dimension does not increase through this type of interaction.

2.4.2.3 MPOs of long-range power-law interacting Hamiltonians

In this subsection, we are constructing the MPO of a power-law interacting Hamiltonian. As we
have seen above, theMPO link dimension increases by one for each interaction term in theHamilto-
nian, in particular for each two-body interaction on different sites. Naively, one expects that the
MPO link dimension corresponding to a Hamiltonian with power-law all-to-all interaction as,

𝐻 = 𝐽
𝑁
∑
𝑛≠𝑚

𝑆𝑧𝑛𝑆𝑧𝑚
|𝑛 − 𝑚|𝛼

, (2.79)

scaleswith system size. This is obviously impractical aswewant to ideally scale the system size large
enough to extrapolate results in the infinite volume. To our rescue come two tricks. Firstly, we ap-
proximate the power-lawdecay𝑓(𝑥) = 𝑥−𝛼 as a sumof decaying exponentials𝑓(𝑥) ≈ ∑𝑀

𝜇=1 𝑎𝜇𝑏
−𝑥
𝜇 [155,

156]. Secondly, we use a surprising fact that exponentially decaying interactions of the form 𝐽(𝑟) =
𝐽𝜆𝑟 with 𝑟 > 0may be realised at the same MPO link dimension as the short-range nearest neigh-
bour interacting system [138, 156].
The approximation of the interaction potential 𝑅−𝛼 in terms of sums of exponential has already

been explored including in the context of MPOs [138, 155–157] The prescription is straightforward;
oneuses numericalmethods to approximate𝑓(𝑥) = 𝑥−𝛼 for𝑥 ≥ 1—whichmeansnoUVdivergence—
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2 Tensor network simulations for long-range interacting quantum systems

and approximates the IR divergence of 𝑓 in terms of a sum of non-diverging exponentials. The
divergence then occurs in the coefficients of the sum. We note that the sum of up to𝑀 ≤ 10 terms
yields sufficiently satisfying approximationswith an average (integrated) absolute error 1

𝑁
∑𝑁

𝑛=1
||𝑥−𝛼 −∑𝑀

𝜇=1 𝑎𝜇𝑏
−𝑥
𝜇
|| ≈

10−5 when considering quite large system sizes (for instance up to𝑁 = 200) and static ground state
properties (see Chapter 4). Contrarily, out-of-equilibrium dynamics necessitate higher accuracies
since they probe not only low energy properties. We therefore use also𝑀 = 10 terms to approxim-
ate the long-range interaction potential however at about half and a quarter of the system size at
𝑁 = 48 and 𝑁 = 98 (see also Chapter 3).
In conclusion, we can approximate the long-range power-law interacting transverse Ising model

studied in Chapter 3,

𝐻𝐿𝑅𝑇𝐼 = 𝐽 ∑
𝑛≠𝑚

𝑆𝑥𝑛𝑆𝑥𝑚
|𝑚 − 𝑚|𝛼

− 2ℎ
𝑁
∑
𝑛=1

𝑆𝑧𝑛 , (2.80)

by the bulk MPO tensor,

𝑊 𝐿𝑅𝑇𝐼
𝑛 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑛
𝑆𝑥𝑛 𝑏1𝟙𝑛
𝑆𝑥𝑛 𝑏2𝟙𝑛
⋮ ⋱
𝑆𝑥𝑛 𝑏𝑀𝟙𝑛

−ℎ𝑆𝑧𝑛 𝐽𝑎1𝑏1𝑆𝑥𝑛 𝐽𝑎2𝑏2𝑆𝑥𝑛 ⋯ 𝐽𝑎𝑀𝑏𝑀𝑆𝑥𝑛 𝟙𝑛

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.81)

where we indicate the bulk of the coefficients corresponding to the exponentials as ellipses (…) and
left out all other vanishing entries. The boundary MPO tensors are again given by the projection to
the last row vector and first column vector of𝑊 𝑛; i.e.𝑊 𝑛=1

𝑙2 = 𝛿𝑀+2,𝑙1𝑊
𝑛
𝑙1,𝑙2 and𝑊

𝑛=𝑁
𝑙1 = 𝑊 𝑛

𝑙1,𝑙2𝛿𝑙2,1,
respectively.
Similarly, the Hamiltonian of the XXZ model we study in Chapter 4 is defined by the Hamilto-

nian,

𝐻𝐿𝑅𝑋𝑋𝑍 = −𝐽
𝑁−1
∑
𝑛=1

∑
𝑑≠0

1
|𝑑|𝛼

[12(𝑆
+
𝑛 𝑆−𝑛+𝑑 + 𝑆−𝑛 𝑆+𝑛+𝑑) + Δ𝑆𝑧𝑛𝑆𝑧𝑛+𝑑] − ℎ

𝑁
∑
𝑛=1

𝑆𝑧𝑛 , (2.82)

and it can be approximated with the MPO bulk tensor,

𝑊 𝐿𝑅𝑋𝑋𝑍
𝑛 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝟙𝑛
−ℎ𝑆𝑧𝑛 𝟙𝑛 𝐽Δ𝑎1𝑏1𝑆𝑧𝑛 𝐽𝑎2Δ𝑏2𝑆𝑧𝑛 … 𝐽Δ𝑎𝑀𝑏𝑀𝑆𝑧𝑛 𝐽𝑎1𝑏1𝑆+𝑛 /2 …
𝑆𝑧𝑛 𝑏1𝟙𝑛
𝑆𝑧𝑛 𝑏2𝟙𝑛
⋮ ⋱
𝑆𝑧𝑛 𝑏𝑀𝟙𝑛
𝑆−𝑛 𝑏1𝟙𝑛
⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(2.83)
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where only non-vanishing entries are written explicitly. See Eq. (2.93) for a more detailed and lar-
ger bulk MPO tensor. The boundary terms are as per usual given by the projections onto the row
and column vectors𝑊 𝑛=1

𝑙2 = 𝛿2,𝑙1𝑊
𝑛
𝑙1,𝑙2 and𝑊

𝑛=𝑁
𝑙1 = 𝑊 𝑛

𝑙1,𝑙2𝛿𝑙2,1, respectively. We have furthermore
permuted the last row vector in Eq. (2.78) with the second row, and we permute the last and second
to last column vectors with the second and third column, and then iterated over the exponential
interaction terms. Note that this permutation is entirely equivalent to the previous triangular shape
of the bulkMPO tensor. However, this form is suitable for implementation in the software package
ITensors.jl [158] for the Julia programming language [159] in case one wants to use the con-
served quantum number functionality. This functionality rests on the fact that the Hamiltonian
𝐻𝐿𝑅𝑋𝑋𝑍 (2.82) conserves the total quantum number 𝑆𝑧 = ∑𝑛 𝑆

𝑧
𝑛. Therefore, the Hamiltonian

can be written as a block-sparse matrix with unique local quantum number flux (local change of
globally conserved quantum number). Note that 𝐻𝐿𝑅𝑋𝑋𝑍 (2.82) contains terms that translate in
three different groups of operators with different quantum number flux in the bulk MPO tensor.
Firstly, 𝑆𝑧𝑛𝑆𝑧𝑚 does not change the conserved quantum number locally on 𝑛 and𝑚. Secondly, 𝑆+𝑛 𝑆−𝑚
has a net flux of +2 by convention of ITensors.jl (counting change of half-integer spin), while
thirdly 𝑆−𝑛 𝑆+𝑚 has a net flux of −2. Due to our rearrangement, notice that all entry tensors in blue
are diagonal in the local physical spin degrees of freedom and do therefore not change the local
magnetisation. Contrarily, the red terms change the local spin degrees by net−1while green terms
change it by net+1. Taking advantage of this functionality greatly improves the numerical runtime
as the software can make use of modern multithreaded CPU architectures and run code in parallel
for each of the respective blocks.

2.5 Density matrix renormalisation group

The density matrix renormalisation group (DMRG) algorithm was devised by Steve White in his
seminal work in 1992 [160, 161], and has since profoundly changed the field of condensed matter
physics. It is considered themost established algorithm in the numerical study of one-dimensional
quantum systems [138, 139, 162, 163] and its intimate relation to tensor networks—which form the
natural language of the algorithm—have lead to new theoretical understandings and the complete
classification of all phases of matter in 1D [5]. In its essence, the DMRG algorithm is a real-space
variational renormalisation scheme in the space of matrix product states [5, 162], that searches the
MPS with the lowest energy (eigenvalue) of a hermitian Hamiltonian operator.

This objective naturally corresponds to minimising the energy function 𝐸,

𝐸(𝜓) = ⟨𝜓|𝐻|𝜓⟩
⟨𝜓|𝜓⟩

. (2.84)
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2 Tensor network simulations for long-range interacting quantum systems

As it turns out, a ground state search algorithm can be mademore efficient than an imaginary time
evolution starting with some random initial guess [138]. Let us first discuss the approach in prose.
Firstly, we introduce a Lagrangian multiplier 𝜆, and minimise the cost function,

𝐸(𝜓, 𝜆) = ⟨𝜓|𝐻|𝜓⟩ − 𝜆⟨𝜓|𝜓⟩ (2.85)

=

𝐴1

𝐴†1
𝑊1

…

…

… 𝑊𝑛

𝐴𝑛

𝐴†𝑛

…

…

…

𝐴𝑁

𝐴†𝑁
𝑊𝑁 − 𝜆 ⋅

𝐴1

𝐴†1

…

…

𝐴𝑛

𝐴†𝑛

…

…

𝐴𝑁

𝐴†𝑁
(2.86)

which yields 𝜓 as the minimised ground state and 𝜆 as its ground state energy [162]. The minim-
isation has to be performed over all variables, being all elements of all tensors 𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛, which in
turn appear in Eq. (2.86) in many products, rendering the optimisation an extremely non-linear
problem. The crucial step to taming the minimisation problem is analogous to our variational min-
imisation approach; we shall take only the tensor 𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛 for given 𝑛 as variable while considering
all others fixed. Consequently, the highly non-linear problem turns into a favourable linear algebra
problem where the degrees of freedom appear in quadratic form. The optimisation then yields an
improved local tensor of the MPS, which slightly decreases the energy but will obviously not yield
the optimal state. The same step is then simply repeated on the next local site 𝑛+1 iterating through
the entire MPS multiple times until the total energy is sufficiently converged to a minimal value.
For all details and necessary steps in the DMRG algorithm acting on an MPS, we refer the reader
to Appendix 2.C.

2.6 Time-dependent variational principle

This section introduces the time-dependent variational principle (TDVP) as a means to compute
the time-evolution of a quantum state, and it is based on the excellent review of Ref. [164].

TDVP [165, 166] is amethod to approximately solve the initial value problemof the time-dependent
Schrödinger equation,

𝜕|𝜓⟩
𝜕𝑡 = −i𝐻|𝜓⟩ , (2.87)

given an initial quantum state |𝜓⟩ as an MPS and the Hamiltonian operator 𝐻 as an MPO.

The approach TDVP takes may be phrased as follows: Central to the ideas of the algorithm is a
specificmanifold of matrix product states characterised by a given bond dimension. To see why this
manifold plays a crucial role, consider the state 𝐻|𝜓⟩ in terms of an MPO 𝐻 and an MPS |𝜓⟩. It is
lying in a different MPS manifold than the original |𝜓⟩ since the application of an MPO to an MPS
generically increases the link dimension. The Schrödinger evolution is therefore not closed inside
a single MPS manifold. To remedy this, the TDVP algorithm introduces the pull-back projector
which takes an arbitrary state and projects it onto a given tangent space to the MPSmanifold. Con-
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2.6 Time-dependent variational principle

Figure 2.6: Illustration of TDVP and the relations between theMPSmanifoldℳMPS (colourised surface) em-
bedded in the entire Hilbert (enclosing box), and the tangent space𝒯MPS (flat red plane) anchored
on the tangent point given by |𝜓⟩. One finds 𝐻|𝜓⟩ outside the MPS manifold as indicated by the
orange arrow, while the projector associated to the state |𝜓⟩ projects it onto the tangent space
𝒯MPS. The purple arrow is then the projected tangent vector indicating the optimal direction of
time evolution.

sequently, wewrite the time-dependent Schrödinger equation in a formprojected into thismanifold
as,

𝜕
𝜕𝑡 |𝜓⟩ = −i𝑃𝑇(𝜓)𝐻|𝜓⟩ , (2.88)

where we have introduced the single-site projection operator 𝑃𝑇(𝜓) which projects a state—in the
case of the Schrödinger equation the state 𝐻|𝜓⟩—onto the tangent space of the manifold at the
point (tangential to) |𝜓⟩. The TDVP algorithm transforms the Schrödinger equation from a linear
differential equation defined on the full Hilbert space into a set of nonlinear symplectic differential
equations in the parameter space of the variational MPS manifold [167]. The challenge of solving
the many-body Schrödinger equation is therefore reposed in this set of nonlinear equations. If one
could solve these equations exactly, the only source of error would be the variational MPS approx-
imation of themany-body quantum state. TDVP then prescribes the optimal direction in which the
quantum state has to evolve given the restriction to the manifold [140]. Figure 2.6 gives an illustra-
tion of these relations and ideas in a simplified graphical representation. For the detailed steps and
equations necessary to perform the TDVP algorithm, we refer the reader to the Appendix 2.D.

A salient feature of the TDVP algorithm is that it arrives at the Lie-Trotter decomposition (Trot-
terisation) of the time-evolution operator 𝑈(𝑡),

𝑈(𝑡) = ei𝐻𝑡 Lie–Trotter
⟶ 𝑈(𝑡) ≃ lim

𝑁→∞
(𝑈(𝛿𝑡))𝑁𝑡 with 𝛿𝑡 = 𝑡/𝑁𝑡 (2.89)
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2 Tensor network simulations for long-range interacting quantum systems

with a single approximation, namely the projection onto the tangent space as opposed tomost other
time evolution algorithms for MPS. Then, one applies repeatedly the time evolution operator with
a small time step 𝑈(𝛿𝑡) such that one may evaluate the state at any desirably late time considering
the error per time step of order 𝒪(𝛿𝑡3) [164]. TDVP is agnostic to the form of interactions of the
Hamiltonian, and in particular, therefore one of the few algorithms suitable for the time-evolution
of systems with long-range interactions [164, 168].

48



Appendix

2.A Some entanglement observables on an MPS

In this appendix, we wish to briefly discuss two entanglement witnesses which are observables
on a quantum many-body state readily accessible by the means explained above; the geometric
entanglement (GE) and the entanglement spectrum (ES).

2.A.1 Computation of Geometric entanglement

The above compression procedures explained in Section 2.3.3 can be readily adapted to measure
the geometric entanglement 𝐸𝑔(𝜓). Measuring the geometric distance in Hilbert space between a
given state |𝜓⟩ and its closest product state |𝜙⟩, it is defined as [152, 153],

𝐸𝑔(𝜓) = − log2( max
𝜙∶ prod. state

|⟨𝜙|𝜓⟩|2) . (2.90)

Note that a product state as a tensor network is simply anMPS with constant link dimension 𝑙𝑛 = 1
on every link; then and only then can it be written as a product |𝜙⟩ = ⨂𝑁

𝑗=1
||𝜑𝑗⟩ and is therefore not

entangled anywhere.
Consequently, we are aiming at finding the closest MPS ( ̃𝐴1,… , ̃𝐴𝑁) with fixed link dimension
̃𝑙𝑛 = 1 to a given MPS (𝐴1,… , 𝐴𝑁). The previous two algorithms—compression via SDV and com-
pression via variation—naturally lend themselves to perform this task. Firstly, we take a copy of
the input state (𝐴1,… , 𝐴𝑁) and decimate the link dimension of the copy to only 1 according to the
compression via SVDdetailed in Section 2.3.3.1. This compressed copy of the input state is now con-
sidered as the initial guess for the compression algorithm via variation explained in Section 2.3.3.2.
The resulting compressed state is considered the closest product state when the geometric distance
converged sufficiently. In practice for the results in Section 4.4.1, we consider a difference of 10−9

before and after a complete sweep from the left end to the right end as sufficient.

2.A.2 Entanglement spectrum

Since the seminal work by Li and Haldane [112], recent years have seen an increasing interest in
the so-called entanglement spectrum, which has been proven useful in distinguishing topological
order [104, 112, 124]. The entanglement spectrum is given by the distribution of singular values
associated to a given bipartition of a quantum state. Entanglement entropy contains a lot of in-
formation about the bipartite state, as well as the distribution of singular values, especially when
considering many Rényi entropies. These hold information on the typical width of the distribu-
tion of singular values Surely though, each Rényi entropy does not contain the entire distribution.
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2 Tensor network simulations for long-range interacting quantum systems

The fundamental idea to the entanglement spectrum is therefore to contain this information and
simply map all singular values 𝑠𝑖 onto entanglement energies 𝜉𝑖 as 𝜉𝑖 = − log(𝑠𝑖). Note that they are
related to the eigenvalues 𝜆𝑖 of the reduced density matrix 𝜌𝐴 (2.30) by squaring, 𝑠2𝑖 = 𝜆𝑖. Indeed,
Li and Haldane conjecture that for topologically ordered ground states |0⟩—describing for example
a quantum Hall state—have an entanglement spectrum whose low-lying excitations are in one-to-
one correspondence with the low-lying spectrum of critical edge modes described by an effective
conformal field theory (CFT) [104, 112, 124, 169, 170]. We follow their convention and define the en-
tanglement spectrum {𝜉𝑗} from the Schmidt values, i.e. the singular values, 𝑠𝑗 = (𝑆)𝑗,𝑗 of the mixed
canonical orthogonality in Eq. (2.26) as,

𝜉𝑗 = − log(𝑠2𝑗 ) = − log(𝜆𝑗) , (2.91)

where we call 𝜉𝑗 the entanglement energy since it takes values 𝜉𝑗 ∈ [0, +∞), and it is the 𝑗-th spectral
value of the entanglement Hamiltonian �̃�𝐴,

𝜌𝐴 ≕ 1
𝑍𝐴

exp(−�̃�𝐴) , (2.92)

where �̃�𝐴 is a hermitian operator, and 𝑍𝐴 = Tr(exp(−�̃�𝐴)) is the normalisation.
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2.B Long-range bulk MPO tensors for the LRXXZ model

2.B Long-range bulk MPO tensors for the LRXXZ model

In this appendix, we shall display the bulk MPO operator for the long-range interacting XXZ model in
landscape such that it fits on an A4 page. We nevertheless have to choose an abbreviated form in which
we indicate the sum of exponentially decaying interactions over terms 𝑗 = 1,… ,𝑀 by the ellipses ‘…’.
Furthermore, we sort and label all interaction terms in their corresponding flux of the conserved quantity
𝑆𝑧tot = ∑𝑛 𝑆

𝑧
𝑛, Φ(𝑆𝑧tot) = 0, +2, −2, such that the bulk MPO operator may be written as a block sparse

operator for the ITensors software library.

𝑊 𝐿𝑅𝑋𝑋𝑍
𝑛 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝟙𝑛
−ℎ𝑆𝑧𝑛 𝟙𝑛 𝐽Δ𝑎1𝑏1𝑆𝑧𝑛 𝐽𝑎2Δ𝑏2𝑆𝑧𝑛 … 𝐽Δ𝑎𝑀𝑏𝑀𝑆𝑧𝑛 𝐽𝑎1𝑏1𝑆+𝑛 /2 … 𝐽𝑎𝑀𝑏𝑀𝑆+𝑛 /2 𝐽𝑎1𝑏1𝑆−𝑛 /2 … 𝐽𝑎𝑀𝑏𝑀𝑆−𝑛 /2
𝑆𝑧𝑛 𝑏1𝟙𝑛
𝑆𝑧𝑛 𝑏2𝟙𝑛
⋮ ⋱
𝑆𝑧𝑛 𝑏𝑀𝟙𝑛
𝑆−𝑛 𝑏1𝟙𝑛
⋮ ⋱
𝑆−𝑛 𝑏𝑀𝟙𝑛
𝑆+𝑛 𝑏1𝟙𝑛
⋮ ⋱
𝑆+𝑛 𝑏𝑀𝟙𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

link indices in block with 𝑆𝑧tot fluxΦ(𝑆𝑧tot) = 0, in Φ(𝑆𝑧tot) = +2, in Φ(𝑆𝑧tot) = −2, in

Φ(𝑆𝑧tot) = 0,
out

Φ(𝑆𝑧tot) =
+2, out

Φ(𝑆𝑧tot) =
−2, out

(2.93)
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2.C DMRG algorithm

In this appendix, we detail the steps necessary to follow the DMRG algorithm which is only para-
phrase in Section 2.5. Central to the efficiency of the entire computation is the orthogonal centre
being at the same spot as the optimisation, as can be seen in Eq. (2.86) where the computation
of the second term, the overlap, is simplified to the single orthogonal centre site. This yields the
simplification for the second term in Eq. (2.86) as,

⟨𝜓|𝜓⟩ =
𝐴1

𝐴†1

…

…

𝐴𝑛

𝐴†𝑛

…

…

𝐴𝑁

𝐴†𝑁
=

𝐴𝑛

𝐴†𝑛
. (2.94)

On the other hand, the first term in the energy function can be evaluated efficiently by a similar
approach as discussed in the section of expectation values of MPOs;

⟨𝜓|𝐻|𝜓⟩ =

𝐴1

𝐴†1
𝑊1

…

…

… 𝑊𝑛

𝐴𝑛

𝐴†𝑛

…

…

…

𝐴𝑁

𝐴†𝑁
𝑊𝑁 ≕ 𝐿𝑊 𝑊𝑛

𝐴𝑛

𝐴†𝑛

𝑅𝑊 , (2.95)

where we define 𝐿𝑊 and 𝑅𝑊 simply as the entire contraction left or right of the orthogonality
centre at site 𝑛, respectively.

We may now find the optimising tensors with the extremal condition of Eq. (2.86) that is,
𝜕𝐸(𝜓, 𝜆)/𝜕𝐴

𝜍𝑛†
𝑙𝑛−1,𝑙𝑛 = 0 while keeping all other tensors 𝐴𝜍𝑚†𝑙𝑚−1,𝑙𝑚 (𝑚 ≠ 𝑛) fixed. This yields in

case of mixed canonical orthogonality,

0
!
=
𝜕𝐸(𝜓, 𝜆)
𝜕𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛

(2.96)

=

𝐴1

𝐴†1
𝑊1

…

…

… 𝑊𝑛

𝐴𝑛 …

…

…

𝐴𝑁

𝐴†𝑁
𝑊𝑁 − 𝜆 ⋅

𝐴1

𝐴†1

…

…

𝐴𝑛 …

…

𝐴𝑁

𝐴†𝑁
(2.97)

= 𝐿𝑊 𝑊𝑛

𝐴𝑛

𝑅𝑊 − 𝜆 ⋅ 𝐴𝑛 , (2.98)

where we highlighted the tensor to be optimised as yellow, and again shorten the entire contrac-
tion to the left (right) of the centre site 𝑛 by the rank-3 tensor 𝐿𝑊 (𝑅𝑊). Above equation is clearly
an eigenvalue equation of the form

𝐻𝑛𝑣 = 𝜆𝑣 , (2.99)
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2.C DMRG algorithm

if we define 𝐻𝑛 and 𝑣 in Eq. (2.99) by means of the entities in Eq. (2.98) as,

𝐻𝑛
𝜍′𝑛𝑙′𝑛−1𝑙′𝑛, 𝜍𝑛𝑙𝑛−1𝑙𝑛

= 𝐿𝑊𝑙𝑛−1,𝑙′𝑛−1,𝑝𝑛−1𝑊
𝜍𝑛,𝜍′𝑛
𝑝𝑛−1,𝑝𝑛𝑅

𝑊
𝑙𝑛,𝑙′𝑛,𝑝𝑛

= 𝐿𝑊 𝑊𝑛 𝑅𝑊 , (2.100)

𝑣𝜍𝑛𝑙𝑛−1𝑙𝑛 = 𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛 = 𝐴𝑛 . (2.101)

The ‘vector’ 𝑣 has 𝑑⋅𝜒2𝑚 degrees of freedom corresponding to all entries is𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛, and the ‘matrix’
𝐻𝑛 crucially is hermitian as can be checked through its definition. This allows for approximate
diagonalisation algorithms which find the lowest eigenvalues and eigenvectors since 𝑑 ⋅ 𝜒2𝑚 is
generally too large to be diagonalised exactly. A typical and established approximate algorithm
is the Lanczos eigensolvers for large sparse matrices. As a result, we find the minimal 𝐴𝜍𝑛𝑙𝑛−1,𝑙𝑛,
while keeping all other 𝐴𝜍𝑚𝑙𝑚−1,𝑙𝑚 fixed. Surely, the energy of the entire state is not minimal after a
single optimisation of a single site, instead one incrementally minimises the energy variationally.
This minimisation step is then repeated starting from say 𝑛 = 1 and moving rightwards while
also changing the orthogonality centre as described in Eq. (2.23) until 𝑛 = 𝑁where we repeat the
iteration leftwards until we find ourselves back at 𝑛 = 1 (again changing the orthogonality centre
after each local optimisation). This procedure going from one end to the other and back again
is generally called a (symmetric) DMRG sweep. We shall repeat sweeping over the updated MPS
until convergence of the energy is reached. To this end, one may also verify that the variance of
the energy var(𝐸) = ⟨𝜓|𝐻2|𝜓⟩ − (⟨𝜓|𝐻|𝜓⟩)2 approaches zero sufficiently close since |𝜓⟩ should be
an eigenvector of 𝐻.

Here, it should be mentioned that the above detailed algorithm is generally called the single-
siteDMRG algorithm since the optimisation condition 𝜕𝐸(𝜓, 𝜆)/𝜕𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛 = 0 is given with respect
to the degrees of freedom on a single physical site. As explained above, this has the immense
advantage of rendering the problem an eigenvalue problem from linear algebra. Alternatively,
one may define the minimisation problem with respect to the degrees of freedom on two physical
sites, defined as,

0
!
=

𝜕𝐸(𝜓, 𝜆)

𝜕(𝐴𝜍𝑛†𝑙𝑛−1,𝑙𝑛𝐴
𝜍𝑛+1†
𝑙𝑛,𝑙𝑛+1)

. (2.102)

As you can see in Eq. (2.102), the link dimension between site 𝑛 and 𝑛+1 (𝑙𝑛) is itself now variable
and subject to the eigensolver result of the generalised linear algebra problem with 𝑑2𝜒2𝑚 degrees
of freedom. We then split the two-site optimal result with an SVD and move the orthogonality
centre further. Compared to the singe-site algorithm, the two-site algorithm may increase the
link dimension given somemaximum cutoff criteria. Assuming both algorithms act onMPS with
the samemaximum link dimension, the difference between the two is that the two-site algorithm
necessarily needs to perform a truncation in the SVD since there are more degrees of freedom
in the two-site algorithm (𝑑2𝜒2𝑚) compared to 𝑑𝜒2𝑚 in the single site algorithm. This may ‘mix’
degrees of freedom corresponding to different conserved quantum numbers since they are being
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ordered and then possibly omitted simply on the basis of their singular value. Consequently,
the two-site algorithm may be more practical since the initial ansatz for the ground state does
not matter as much and one may get less often stuck in a local minimum in a given conserved
quantumnumber sector that the (possibly random) initial state occupies [138]. Nevertheless, Steve
White proposed in Ref [171] a single-site algorithm that further advances the protection against
the problem of ‘getting stuck’ in a local minimum of the energy landscape.

2.D TDVP algorithm

In this appendix, we turn towards explicit equations and detail the paraphrased TDVP algorithm
mentioned in Section 2.6. Asmentioned above, one has to introduce the concept of the single-site
tangent space of |𝜓⟩which is defined by the space spanned by all MPS that vary from |𝜓⟩ only on a
single site 𝑛 [140, 164]. The projector into this tangent space reads inmixed canonical orthogonality
as [164–166],

𝑃𝑇(𝜓) =
𝑁
∑
𝑛=1

𝑃𝐿𝑛−1(𝜓) ⊗ 𝟙𝑛 ⊗ 𝑃𝑅𝑛+1(𝜓) −
𝑁−1
∑
𝑛=1

𝑃𝐿𝑛 (𝜓) ⊗ 𝑃𝑅𝑛+1(𝜓) , (2.103)

where we have defined the left (right) projectors 𝑃𝐿(𝑅)𝑛 that project onto the left (right) part of the
state up to (from) and including site 𝑛,

(𝑃𝐿𝑛 (𝜓))𝜍′1,…,𝜍′𝑛,𝜍1,…,𝜍𝑛
= 𝐴𝜍1†𝑙′1

𝐴𝜍2†𝑙′1,𝑙′2
⋯𝐴𝜍𝑛†𝑙′𝑛−1,𝑙𝑛

⋅ 𝐴𝜍
′
𝑛
𝑙𝑛−1,𝑙𝑛𝐴

𝜍′𝑛−1
𝑙𝑛−2,𝑙𝑛−1 ⋯𝐴𝜍

′
1
𝑙1 (2.104)

=
𝐴1

𝜎1

𝐴†1

𝜎′1

…

…

𝐴𝑛

𝜎𝑛

𝐴†𝑛

𝜎′𝑛

, (2.105)

(𝑃𝑅𝑛 (𝜓))𝜍′𝑛,…,𝜍′𝑁,𝜍𝑛,…,𝜍𝑁
= 𝐴𝜍𝑁†𝑙′𝑁−1

𝐴𝜍𝑁−1†
𝑙′𝑁−2,𝑙

′
𝑁−1

⋯𝐴𝜍𝑛†𝑙𝑛−1,𝑙′𝑛
⋅ 𝐴𝜍

′
𝑛
𝑙𝑛−1,𝑙𝑛𝐴

𝜍′𝑛+1
𝑙𝑛,𝑙𝑛+1 ⋯𝐴𝜍

′
𝑁
𝑙𝑁 (2.106)

=
𝐴𝑁

𝜎𝑁

𝐴†𝑁

𝜎′𝑁

…

…

𝐴𝑛

𝜎𝑛

𝐴†𝑛

𝜎′𝑛

(2.107)
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We can write the projector Eq. (2.103) by the following graphical representation,

𝑃𝑇(𝜓) =
𝑁
∑
𝑛=1

𝐴1

𝜎1

𝐴†1

𝜎′1

…

…

𝐴𝑛−1

𝜎𝑛−1

𝐴†𝑛−1

𝜎′𝑛−1

𝜎𝑛

𝜎′𝑛

𝐴𝑛+1

𝜎𝑛+1

𝐴†𝑛+1

𝜎′𝑛+1

…

…

𝐴𝑁

𝜎𝑁

𝐴†𝑁

𝜎′𝑁

(2.108)

+
𝑁−1
∑
𝑛=1

𝐴1

𝜎1

𝐴†1

𝜎′1

…

…

𝐴𝑛

𝜎𝑛

𝐴†𝑛

𝜎′𝑛

𝐴𝑛+1

𝜎𝑛+1

𝐴†𝑛+1

𝜎′𝑛+1

…

…

𝐴𝑁

𝜎𝑁

𝐴†𝑁

𝜎′𝑁

, (2.109)

where the free, uncontracted indices are highlighted in blue. We shall call the projector inEq. (2.108)
the single-site map since it maps into the single site 𝑛 in the context of the given state |𝜓⟩ (hence
𝑁 different terms in the sum) while the projector in Eq. (2.109) maps into the link (hence 𝑁 − 1
different terms) andwe shall call it the centre linkmap. Let us now plug Eq. (2.103) into Eq. (2.88)
and obtain an explicit Schrödinger evolution equation inside the MPS manifold,

𝜕
𝜕𝑡 |𝜓⟩ = −𝑖𝑃𝑇(𝜓)𝐻|𝜓⟩ (2.110)

= −i
𝑁
∑
𝑛=1

𝑃𝐿𝑛−1(𝜓) ⊗ 𝟙𝑛 ⊗ 𝑃𝑅𝑛+1(𝜓)𝐻|𝜓⟩ + i
𝑁−1
∑
𝑛=1

𝑃𝐿𝑛 (𝜓) ⊗ 𝑃𝑅𝑛+1(𝜓)𝐻|𝜓⟩ . (2.111)

Note that Eq. (2.111) contains two sums with opposite sign which we consequently interpret as
forward time evolution and backwards time evolution, respectively. Moreover, Eq. (2.111) is still
not solvable and needs to be approximated further by solving each term in the respective sum
individually and iteratively. To this end, wemay consider each term in the sum individually while
keeping all others fixed similarly to the approach in theDMRGalgorithm. To this end, we consider
the forward-evolving differential equations for 𝑁 different 𝑛,

𝜕
𝜕𝑡 |𝜓⟩ = −i𝑃𝐿𝑛−1(𝜓) ⊗ 𝟙𝑛 ⊗ 𝑃𝑅𝑛+1(𝜓)𝐻|𝜓⟩ , (2.112)

and analogously the 𝑁 − 1 backward-evolving equations,

𝜕
𝜕𝑡 |𝜓⟩ = +i𝑃𝐿𝑛 (𝜓) ⊗ 𝑃𝑅𝑛+1(𝜓)𝐻|𝜓⟩ , (2.113)
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and subsequently apply the single-site map (projector in Eq. (2.108)) to Eq. (2.112) and the centre
link map (projector in Eq. (2.109)) to Eq. (2.113) to solve those equations locally for each 𝑛 and
then iterate over 𝑛. The corresponding single-site Schrödinger equations read,

𝜕
𝜕𝑡𝐴𝑛 = −i𝐻eff

𝑛 𝐴𝑛 (2.114)

= −i ⋅
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, (2.115)

and respectively,

𝜕
𝜕𝑡𝐶𝑛 = +i𝐻eff

𝑛 𝐶𝑛 (2.116)

= +i ⋅
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𝐴†𝑁
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𝐴†𝑁

𝑊𝑁

𝐴𝑁

, (2.117)

wherewe colourised open indices (legs) in blue and highlighted the tensor to be updated in yellow.
Above differential equations only consider a single site and may therefore be numerically solv-

able. This can be achieved with standard techniques, for example Krylov methods with Lie–
Trotter decomposition which is the only necessary step where one has to use Trotterisation. We
have now laid out all necessary steps to detail the TDVP algorithm;

1. Starting with a mixes canonical form with the orthogonality centre at say the very first site
𝑛 = 1, we update the site 𝐴𝑛 according to Eq. (2.115) with its forward-evolved version ̃𝐴𝑛 =
e−i𝐻eff

𝑛 𝛿𝑡/2𝐴𝑛.

2. Perform an SVD decomposition ̃𝐴𝑛 = 𝑈𝑛𝐶𝑛𝑆𝑛 and obtain the centre link matrix 𝐶𝑛.

3. Update 𝐶𝑛 according to Eq. (2.117) with its backward-evolved version ̃𝐶𝑛 = e+i𝐻
eff
𝑛 𝛿𝑡/2𝐶𝑛.

4. Lastly, the updated centre link matrix is absorbed into it its right neighbour to define an
update ̂𝐴𝑛+1 = ̃𝐶𝑛𝐴𝑛+1 which then forms our new orthogonality centre bringing us back to
point 1 but only for the next site.
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2.D TDVP algorithm

The algorithm is then (twice) symmetrically iterated over all sites from say right to left end and
vice versa with a time step of 𝛿𝑡/2 for each direction such that the total time step after a symmetric
sweep is 𝛿𝑡.
Noteworthy about the single-site TDVP algorithm is that projection into theMPSmanifold hap-

pens before the time-evolution equations are solved. Therefore, the norm and the energy, as well
as all conserved quantum numbers that commute with the Hamiltonian and with the projection
operator are identically conserved during the time evolution.
Furthermore, we emphasise that the TDVP algorithm explained above can be readily gener-

alised to the two-site problem analogously to the generalisation of the DMRG algorithm to the
two-site version. The two-site TDVP then contains a tensor 𝐴𝑛,𝑛+1 which needs to be split by an
SVD into two physical sites. At this point a truncation occurs adapting the current link dimen-
sion. Advantage if this method is that it adapts the link dimension on the fly, disadvantages are
that the norm and the energy of the state are not necessarily exactly conserved but subject to the
truncation. In fact, the analogy of the TDVP algorithm and the DMRG algorithm are much more
profound than we mentioned so far. The TDVP algorithm can be formulated also with imaginary
time steps such that one may converge towards a ground state. Taking the imaginary time step to
infinity, one recovers the dominating eigenvectors that the DMRG algorithm for an MPS finds [5,
140, 164, 166].
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3 Information and Correlation Spreading

This chapter is based on our publication, J. T. Schneider et al., “Spreading of correlations and en-
tanglement in the long-range transverse Ising chain”, Phys. Rev. Research 3:1, L012022 (2021) [172].

3.1 Introduction

Here, we build on our discussion of Lieb–Robinson bounds in Section 1.4.2. We mentioned above
that the quasiparticle picture originally proposed by Calabrese and Cardy in the context of con-
formal field theories is indeed applicable to other cases outside the strict requirement of conform-
ally symmetric Hamiltonians. In the following, we introduce the extension of this quasiparticle
picture put forward by Cevolani et al. [34].

3.1.1 Extension of the Calabrese–Cardy Quasiparticle Picture

Cevolani et al. [34] propose a generic form of a two-point correlation function

𝐺(r, 𝑡) = 𝐺0(r, 𝑡) − 𝐺0(r, 0) , (3.1)

𝐺0(r, 𝑡) = ⟨𝐴𝑋(𝑡)𝐵𝑌(𝑡)⟩ − ⟨𝐴𝑋(𝑡)⟩⟨𝐵𝑌(𝑡)⟩ , (3.2)

for systems in 𝐷 spatial dimensions, with translation invariance, and (possibly non-local) two-site
interactions as,

𝐺(r, 𝑡) = 𝑔(r) −∫
𝜋

−𝜋

dk
(2𝜋)𝐷

ℱ(k) 12(e
ik⋅r+2i𝜀f(k) 𝑡 + eik⋅r−2i𝜀f(k) 𝑡) (3.3)

where 𝐴𝑋(𝑡), 𝐵𝑌(𝑡) are local operators with support in region 𝑋, 𝑌 at time 𝑡 and 𝑋 and 𝑌 are spa-
tially separated by r. Equation (3.3) is derived in a microscopic mean-field model and interprets
the spreading correlations as a weighted superposition—with ℱ(k) as weight—of two waves with
energy 𝜀f(k) depending only on the final state after quenching, and travelling in opposite direction
with wave vector±k. Here, we wish to emphasise that the dispersion relation 𝜖(k) plays the central
role in the quasiparticle picture which approximates the Hamiltonian of the many-body system in
diagonal form as𝐻 = ∑k∈BZ 𝜀(k) 𝑏

†
k𝑏k, where 𝑏

†
𝑘 is the creation operator for a quasiparticle occupy-

ing mode k in the Brillouin zone (BZ). We call this type of approximation scheme linear spin-wave
theory (LSWT). Let us now discuss the physical interpretation of Eq. (3.3) in the quasiparticle pic-
ture for which Fig. 3.1.1 serves as an illustration. A global quench introduces energy into the system
by creating quasiparticles everywhere. Any correlation of the form Eq. (3.1) vanishes identically by
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(a) (b)

x

Figure 3.1.1: Quasiparticle interpretation of two-point correlation spreading following a global quench. (a)
The earliest correlation between 𝑥 = 0 and 𝑥 = 𝑅 is due to a pair of counter-propagating quasi-
particles with the fastest group velocity 𝑉∗

𝑔 originating at half-distance 𝑅/2. (b) Quasiparticles
around the correlation edge are in a coherent superposition forming a wave packet. The correl-
ation edge (CE) propagates with 𝑉CE related to the quasiparticles moving with the fastest group
velocity 𝑉CE = 2𝑉∗

𝑔 . Conversely, the maxima close to the front (m) propagate with 𝑉m related
to the quasiparticles with the fastest phase velocity as 𝑉m = 2𝑉∗

𝜑 . Figure adapted from [31].

definition at time 𝑡 = 0. Correlations at any later time are then mediated through pairs of counter-
propagating quasiparticles originating at themidway point between the two locations probed by the
correlation function. Suppose we are interested in the correlation between site 0 and site 𝑅. The
earliest correlation between the two sites is 𝑡∗ when the pair of counter-propagating quasiparticles
with the fastest group velocity 𝑉∗

𝑔 = max𝑘 𝑉𝑔(𝑘) = max𝑘 𝜕𝑘𝜀(𝑘) arrive from the centre site 𝑅/2, see
Fig. 3.1.1(a). This means that the correlation edge (CE), i.e. the correlation signal front, propagates
with 𝑉𝐶𝐸 = 2𝑉∗

𝑔 . On the other hand, all local extrema (maxima and minima) immediately behind
the correlation edge are formed by the pair of counter-propagating quasiparticle travelling with the
fastest phase velocity 𝑉∗

𝜙 = max𝑘 𝑉𝜙(𝑘) = max𝑘 𝜀(𝑘)/𝑘 and originating from the centre site. The
local extrema therefore propagate with velocity 𝑉𝑚 = 2𝑉∗

𝜙 . Note however that the maxima can
never exceed the CE, albeit they may have a greater velocity, because the quasiparticle close to the
CE form a coherent superposition, i.e. a wave packet, see also Fig. 3.1.1(b). The CE thus encloses
all signals while local maxima may propagate faster but decay beyond the former.
Thus, the expression for the correlation function Eq. (3.3) at asymptotically large 𝑅 and 𝑡 but

constant 𝑅/𝑡 may be expressed in terms of the group velocity 𝑉𝑔 = 𝜕𝑘𝜀(𝑘) and the phase velocity
𝑉𝜙 = 𝜀(𝑘)/𝑘 of quasiparticle. The weight function ℱ(k) depends on the specific observable as well
as the model therefore hiding the non-universal behaviour of out-of-equilibrium dynamics. For
certain models and suitable observables, ℱ(k) can be analytically approximated. An example of
such an analytic treatment in the short-range interacting Bose-Hubbard model is given in Ref. [34].
Figure 3.1.2 shows the numerical behaviour of Eq. (3.3) as time (vertical) versus space (horizontal)
plotted in linear scales for the short-range interacting Bose–Hubbard model. We observe an in-
tricate interference pattern in both the (a) weakly interacting regime (super phase) and (b) in the
strongly interacting regime (Mott insulator). We distinguish two independent marked features re-
garding the spreading of signals. Firstly, there is a signal edge that encloses all significant signals
beyond which only rapidly vanishing contributions can be observed. This signal is associated with
the Lieb–Robinson bounds and marks the spreading of information in this model. We mark the
signal edge as a solid green line in both subplots of Fig. 3.1.2. Secondly, we observe local maxima
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Figure 3.1.2: Computation of Eq. (3.3) with 𝐺(𝑅, 𝑡) = ⟨𝑎†𝑅(𝑡)𝑎0(𝑡)⟩ − ⟨𝑎†𝑅(0)⟩⟨𝑎0(0)⟩ in the short-range in-
teracting Bose-Hubbard model (a) 𝐺(𝑅, 𝑡) after a global quench in the superfluid phase from
(𝑈 ̄𝑛/𝐽)i = 1 to (𝑈 ̄𝑛/𝐽)f = 0.5, and (b) 𝐺(𝑅, 𝑡) in the strongly interacting Mott Insulator phase
after a global quench from (𝑈/𝐽)i = ∞ to (𝑈/𝐽)f = 18 at ̄𝑛 = 1. Figure from [34].

propagating independently with respect to the velocity of the signal edge. Local maxima may have
a faster or slower propagation velocity than the signal front. They are however always contained in
the light-cone-like signal edge and decay rapidly beyond the latter.
In accordance with Lieb–Robinson bounds, a causal cone, similar to the intrinsic light-cone of

theories obeying Lorentz invariance, i.e. relativistic theories, is hence an emergent feature of the
dynamics of non-relativistic short-range interacting lattice models.
Contrarily, for systems with long-range interactions, where the interaction strength is decaying

like 1/𝑅𝛼 with 𝑅 the distance between two particles and 𝛼 the long-range interaction exponent, the
breakdown of this emergent causality is theoretically permitted [21, 23, 51]. Accordingly, the break-
down and the accompanying arbitrarily fast information spreading has been numerically observed
when interactions are sufficiently long-ranged [49, 50]. On the other hand, when the interaction
exponent is large enough, the interaction strength decays fast enough rendering the interaction
effectively short-ranged, and one recovers ballistic propagation of information as theoretically pre-
dicted by Refs. [52–54].
However, the intermediate regime, where the interaction exponent is neither too small to cause

instantaneous propagation of correlations nor too large to recover ballistic propagation as in the
short-range case, is strongly debated. Whether a form of causality emerges there remains an open
question and is the subject of this investigation. Theoretically known bounds permit super-ballistic
(𝑡 ∝ 𝑅𝛽, 𝛽 < 1) propagation of correlations [21, 23, 51]. Yet several numerical studies have not filled
out those bounds thereby challenging them and pointing towards significantly slower propaga-
tion [32, 45, 49, 55–58]. These simulations, however, reported different propagation scaling laws.
Experiments performed with trapped ions have reported bounded propagation [99, 100], but they
are limited to very small system sizes which impedes the extraction of scaling laws leaving the con-
tradictions unsettled.
Cevolani et al. [34] attribute these apparent contradictions to the coexistence of above described

two-fold dynamical scaling laws where a signal front bounds all correlations, but local signal max-
ima close to the edge propagate independently within the signal front. Furthermore, they extend
the quasiparticle picture to the long-range interaction case and distinguish three different generic
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but non-universal dynamical regimes. Firstly, the local regime is defined by the range of 𝛼 > 𝛼𝑐 in
which the quasiparticle dispersion relation 𝜀(𝑘) is once differentiable. Here, all observables behave
qualitatively like in the short-range limit 𝛼 → ∞. Secondly, the quasi-local regime is defined by the
range of 𝛼𝑐 > 𝛼 > 𝛼′𝑐 in which the quasiparticle dispersion relation 𝜀(𝑘) is finite but not differen-
tiable everywhere in the thermodynamic limit. Thirdly, when the quasiparticle dispersion relation
itself has some divergence and is not differentiable everywhere in the thermodynamic limit, we
enter the instantaneous regime marked by the breakdown of causality and arbitrarily fast propaga-
tion of information. In Ref. [34], the authors also inspect the non-universal form of ℱ(k) in the
one dimensional long-range XXZ (LRXXZ) model as well as the long-range transverse Ising (LRTI)
model within their generic analytical mean-field approach, and confirm the two-fold correlation
spreading for the intermediate case. Figure 3.1.3 displays the quantitative behaviour of Eq. (3.3)
with 𝐺𝜇(𝑅, 𝑡) = 𝐺0(𝑅, 𝑡) − 𝐺0(𝑅, 𝑡 = 0), 𝐺0(𝑅, 𝑡) = ⟨𝑆𝜇𝑅(𝑡) 𝑆

𝜇
0 (𝑡)⟩ − ⟨𝑆𝜇𝑅(𝑡)⟩⟨𝑆

𝜇
0 (𝑡)⟩ 𝑆

𝜇
𝑛 (𝜇 = 𝑥, 𝑦, 𝑧)

in the above-mentioned long-range spin models. Note the logarithmic scale for both the time (ver-
tical) and space (horizontal) axis. We observe a complex interference pattern whosemain feature is
again the qualitatively same twofold structure close to the propagation edge; the propagation of the
signal front (marked as a green solid line) as well as local maxima (marked as blue dashed lines).
Both features trace out straight lines in the log-log plot whichmeans that the signals propagate with
a power law 𝑡 ∝ 𝑅𝛽.

Figure 3.1.3: Computation of Eq. (3.3) displayed in a log-log-plot of time and space. We take 𝐺𝜇(𝑅, 𝑡) =
𝐺0(𝑅, 𝑡)−𝐺0(𝑅, 𝑡 = 0),𝐺0(𝑅, 𝑡) = ⟨𝑆𝜇𝑅(𝑡) 𝑆

𝜇
0 (𝑡)⟩−⟨𝑆

𝜇
𝑅(𝑡)⟩⟨𝑆

𝜇
0 (𝑡)⟩with 𝑆

𝜇
𝑛 (𝜇 = 𝑥, 𝑦, 𝑧) the spin-1/2

operator. (a) 𝐺𝑧(𝑅, 𝑡) in the LRXXZ model with 𝛼 = 2.3 after a global quench from Δi to Δf =
0, and (b) 𝐺𝑥(𝑅, 𝑡) in the LRTI model with 𝛼 = 1.7 connected correlation. Figure adapted
from [34].

This analytical framework, however, has a generic but non-universal form, i.e. the dynamical
regimes differ for different models, and it does not capture interactions beyond quadratic terms in
the Hamiltonian. Nevertheless, the consistency and excellent agreement of these linear spin-wave
theory (LSWT) predictions with numerics including beyond mean-field effects has been shown in
Ref. [31] in the case of short-range interactions for the Bose-Hubbard chain utilising state-of-the-art
tensor network simulations.
Here, we extend this research to systems with long-range interactions and study their dynamical

propagation laws beyondmean-field theory bymeans of numerical, state-of-the-art tensor network
techniques. Moreover, we extend the analytic approach to not only cover the far-from-equilibrium

62



3.2 Model and Approach

dynamics induced by quenching a global parameter in theHamiltonian but also inducing dynamics
via a local quench on the ground state of the respective system.
Lastly, we wish to mention complementary studies following Cevolani et al. [34]. There, the

two-fold structure close to the propagation front—consisting in a signal edge and local maxima—
is explained by virtue of the model-dependent group velocity 𝜕𝜀(𝑘)/𝜕𝑘 and phase velocity 𝜀(𝑘)/𝑘,
respectively, with quasiparticle dispersion relation 𝜀(𝑘). It is therefore natural to ask whether this
framework can be extended and more information about the dispersion may be extracted. The
answer is affirmative as the authors Villa et al. showed in their Quench Spectroscopy framework as
it is possible to extract the entire dispersion relation from equal time correlation functions [47, 48].

3.1.2 Outline of this chapter

In this chapter, we aim to characterise the spreading of quantum information and correlations in the
intermediate (quasi-local) regime of a long-range interacting spin model in one spatial dimension
by applying the aforementioned state-of-the-art numerical techniques, and furthermore extend the
analytical framework of Refs. [31, 33, 34], which indicate an emergence of causality bound in time
and space by a generic algebraic scaling 𝑡 ∝ 𝑅𝛽, to the spreading of local magnetisation and Rényi
entropies when the out-of-equilibrium dynamics is induced by a local quench. Specifically, we de-
termine the scaling laws for the propagation of a variety of observables in the long-range transverse
Ising (LRTI) chain using matrix product state simulations. We find that a form of weak causality
emerges, characterised by generic algebraic scaling laws 𝑡 ∼ 𝑅𝛽, where the specific value of the
exponent 𝛽 depends on the observable and the quench protocol. This warrants us to ascribe to this
form of causality the attribute weak.

3.2 Model and Approach

The LRTI is defined by the Hamiltonian,

𝐻LRTI = ∑
𝑅≠𝑅′

𝐽
|𝑅 − 𝑅′|𝛼

𝑆𝑥𝑅𝑆𝑥𝑅′ − 2ℎ∑
𝑅
𝑆𝑧𝑅 , (3.4)

where 𝑆𝑗𝑅 (𝑗 = 𝑥, 𝑦, 𝑧) are the spin-1/2 operators on lattice site 𝑅 ∈ [0, 𝑁 − 1], 𝑁 is the system size,
𝐽 > 0 is the coupling energy, and ℎ is the transverse field.
At equilibrium, the phase diagram of the LRTI chain comprises two gapped phases separated by

a second-order quantum phase transition, see Fig. 3.2.1 and Ref. [43]. For low fields ℎ and rather
short-range couplings (high values of 𝛼), the nearest-neighbour anti-ferromagnetic coupling dom-
inates, and the system forms an ordered phase along the 𝑥 direction (called 𝑥–Néel in Fig. 3.2.1)
whereas the one-point function ⟨𝑆𝑥𝑖 ⟩ ∝ (−1)𝑖 is alternating (staggered). For a large field ℎ and
long-range couplings (low values of 𝛼), the spin–field interaction is favoured, and an ordered phase
is formed (called 𝑧-polarized phase in Fig. 3.2.1) where the state is polarized and the one-point
function in 𝑧-direction is ⟨𝑆𝑧𝑖 ⟩ ∝ 1.
Out of equilibrium, LSWT predicts, as mentioned above, three dynamical regimes (shaded by

different colours in Fig. 3.2.1) [32, 49]which are characterised by non-analytic features of the quasi-
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Figure 3.2.1: Phase diagram and dynamical properties of the LRTI chain in the (ℎ/𝐽, 𝛼) plane. The 𝑥-Néel
phase (shades of blue) is separated from the 𝑧-polarized phase (shades of orange) by a critical
line in black. The three dynamical regimes are shaded differently. As shown in the insets,
the local and quasi-local regimes are characterised by distinct algebraic scaling laws for the
correlation and spin edges (CE and SE, respectively), their maxima in space-time (max), and
the entanglement edge (EE) after a global or local quench. Figure from [172].

particle (spin-waves) dispersion relation. For𝛼 ≥ 2 (local regime), the spin-wave dispersion relation
(i.e. excitation spectrum) 𝜀(𝑘) is bounded and differentiable thus the group velocities 𝑉g(𝑘) = 𝜕𝑘𝜀𝑘
(𝑘 is the momentum) exists and is finite for all 𝑘. This regime is qualitatively the same as the
short-range case where the energy of the quasiparticle Hamiltonian is an analytic function of the
quasiparticle momentum. In the local regime, correlations spread at a finite speed, giving rise to
a linear causal cone [22, 23]. For 𝛼 < 1 (instantaneous regime), 𝜀𝑘 features an algebraic, infrared
(thermodynamic limit 𝑁𝑠𝑦𝑠 → ∞) divergence. This divergence is accompanied by the breakdown
of causality, the lack of a characteristic timescale, and correlations spread arbitrarily fast. Lastly,
for 1 < 𝛼 < 2 (quasi-local regime), 𝜀𝑘 is finite in the thermodynamic limit but not differentiable,
i.e. 𝑉g(𝑘) diverges as 𝑉g(𝑘) ∼ 1/𝑘2−𝛼.

3.3 Results

3.3.1 Linear spin wave theory

In this subsection we discuss the analytical approach to the out-of-equilibrium dynamics of the
LRTI via linear spin wave theory working along the lines of Refs. [33, 34], and elaborate its implica-
tions on the dynamics of spin-spin correlation functions after a global quench (Section 3.3.1.1). We
then extend this analytic framework to the out-of-equilibrium dynamics following a local quench
predicting the scaling of localmagnetisation (Section 3.3.1.2) and all Rényi entropies (Section 3.3.1.3).
Subsequently, we compare these predictions with the findings via tensor network simulations in
Section 3.3.2 and Section 3.3.3, respectively. There, our approach always starts by preparing the
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ground state of the Hamiltonian (3.4) through the density matrix renormalisation group (DMRG)
algorithm, which yields a faithful representation as a matrix product state (MPS). We then use the
TDVP algorithm to evolve the MPS in time, see also Chapter 2.

The Hamiltonian (3.4) in the 𝑧-polarised phase (generally for ℎ/𝐽 ≫ 1) is amenable to an approx-
imate diagonalisation. Firstly, a Holstein–Primakoff transformation [173],

𝑆𝑥𝑅 ≃
1
2(𝑎

†
𝑅 + 𝑎𝑅) , (3.5)

𝑆𝑦𝑅 ≃ − 1
2i(𝑎

†
𝑅 − 𝑎𝑅) , (3.6)

𝑆𝑧𝑅 ≃
1
2 − 𝑎†𝑅𝑎𝑅 , (3.7)

where 𝑎𝑅 is the annihilation operator of a boson on site 𝑅, approximates the Hamiltonian (3.4)
as a bosonic quadratic one [33, 49]. This approximation is formally exact in the limit of very high
transverse field strength ℎ/𝐽 → ∞. We subsequently apply a Fourier transform, which we define
here as

̃𝑓𝑘 =
𝑁−1
∑
𝑅=0

ei𝑅𝑘𝑓𝑅 , 𝑓𝑅 =
1
𝑁

2𝜋(𝑁−1)/𝑁
∑
𝑘=0

e−i𝑅𝑘 ̃𝑓𝑘 , (3.8)

with 𝑘 ∈ [0, 2𝜋/𝑁,… , 2𝜋(𝑁 − 1)/𝑁]. Note that we assume periodic boundary conditions such
that 𝐻 obeys translation invariance on the lattice. The Hamiltonian then reads in terms Holstein–
Primakoff bosons as [33],

𝐻 ≃ 1
2 ∑𝑘

[𝒜𝑘(𝑎
†
𝑘𝑎𝑘 + 𝑎−𝑘𝑎

†
−𝑘) + ℬ𝑘(𝑎−𝑘𝑎𝑘 + 𝑎†𝑘𝑎

†
−𝑘)] , (3.9)

with 𝒜𝑘 = 𝐽𝑃𝛼(𝑘) + 2ℎ, ℬ𝑘 = 𝐽𝑃𝛼(𝑘), and 𝑃𝛼(𝑘) = ∑𝑁−1
𝑅=1

cos(𝑅𝑘)
𝑅𝛼

the Fourier transform of the
long-range interaction potential |𝑅 − 𝑅′|−𝛼. Applying a Bogolyubov transformation [174], where
we define the quasiparticle creation and annihilation operators 𝑏†, 𝑏, as

(
𝑏𝑘
𝑏†−𝑘

) = (
𝑢𝑘 −𝑣𝑘
−𝑣𝑘 𝑢𝑘

)(
𝑎𝑘
𝑎†−𝑘

) , (3.10)

we find that the transformation diagonalises the Hamiltonian (3.9) if and only if

𝑢𝑘 = sign(𝒜𝑘)√
1
2(
|𝒜𝑘|
𝜀𝑘

+ 1) , 𝑣𝑘 = sign(ℬ𝑘)√
1
2(
|𝒜𝑘|
𝜀𝑘

− 1) , (3.11)

The Hamiltonian is then cast into diagonal form in terms of quasiparticle spin wave excitations
(magnons) as,

𝐻 = ∑
𝑘
𝜀𝑘𝑏

†
𝑘𝑏𝑘 , 𝜀𝑘 = √𝒜2

𝑘 − ℬ2
𝑘 = 2√ℎ[ℎ + 𝐽𝑃𝛼(𝑘)] . (3.12)
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3.3.1.1 Spin–Spin correlations after a global quench

In the following, we consider the sudden change of a global parameter of the Hamiltonian (3.4)
within the 𝑧-polarised phase, cf. Fig. 3.2.1. In such a case, the correlation function 𝐺𝑥(𝑅, 𝑡) as
defined in Eq. (3.1) takes the form [34],

𝐺(𝑟, 𝑡) = 𝑔(𝑟) −∫
𝜋

−𝜋

d𝑘
(2𝜋)𝐷

ℱ(𝑘) 12(e
i𝑘⋅𝑟+2i𝜀f(𝑘) 𝑡 + ei𝑘⋅𝑟−2i𝜀f(𝑘) 𝑡) , (3.13)

with ℱ(𝑘) =
ℎ(𝐽i − 𝐽f)𝑃𝛼(𝑘)

8[ℎ + 𝐽f𝑃𝛼(𝑘)]√ℎ[ℎ + 𝐽i𝑃𝛼(𝑘)]
. (3.14)

We recover the generic form for the two-point correlation function as discussed above while the
non-generic weight function ℱ(𝑘) depends on the observable and the quench protocol. We aim
to extract the asymptotic scaling behaviour of Eq. (3.13) in the sense of 𝑅 → ∞, 𝑡 → ∞, and
𝑅/𝑡 = 𝑐𝑜𝑛𝑠𝑡. To this end, we employ the stationary phase approximation which yields,

𝐺𝑥(𝑅, 𝑡) ∼
ℱ(𝑘sp)

√|𝜕2𝑘𝜀𝑘sp|𝑡
cos(𝑘sp𝑅 − 2𝜀𝑘sp𝑡 + 𝜙), (3.15)

where 𝜙 is a for us irrelevant constant, 𝑘sp is the quasi-momentum at which the complex phase of
Eq. (3.13) is stationary. It is defined by the solution to

2
𝜕𝜀𝑘
𝜕𝑘

|||
𝑘=𝑘sp

= 2𝑉𝑔(𝑘sp) = 𝑅/𝑡 > 0 , (3.16)

for given 𝑅/𝑡 = 𝑐𝑜𝑛𝑠𝑡.

Quasi-local regime 1 < 𝛼 < 2 In the quasi-local regime, 𝜀𝑘 is bounded over the entire Brillouin
zone but not differentiable everywhere implying an IR divergence of the group velocity 𝑉𝑔(𝑘 →
0) → ∞. Hence, for any given ratio 𝑅/𝑡, the signal is dominated by the quasiparticles propagating
withmomentum 𝑘sp such that𝑉𝑔(𝑘sp) = 𝑅/𝑡. Since the group velocity has an IR divergence, only the
low momentum limit of 𝜀𝑘 and 𝑉𝑔(𝑘) for 𝑘 → 0 are relevant to their behaviour for asymptotically
large 𝑅 and 𝑡. We hence expand those in terms of 𝑘 keeping only the zero and first order terms
to extract the asymptotic behaviour of Eq. (3.15). The long-range interaction potential reads as
𝑃𝛼(𝑘) ≃ 𝑃𝛼(0) + 𝑃′𝛼|𝑘|

𝛼−1, with 𝑃𝛼(0) > 0 and 𝑃′𝛼 < 0 as the expansion coefficients. The excitation
energy expands as 𝜀𝑘 ≃ Δ − 𝑐|𝑘|𝑧, with Δ = 2√ℎ[ℎ + 𝐽𝑃𝛼(0)] > 0 is the gap, 𝑧 = 𝛼 − 1 ≥ 0 is
the dynamical exponent, and 𝑐 = √ℎ/[ℎ + 𝐽𝑃𝛼(0)]𝐽|𝑃′𝛼| > 0 is a prefactor. For given 𝑅/𝑡, we obtain
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3.3 Results

𝑘sp = (2𝑐𝑧𝑡/𝑅)
1

1−𝑧 through Eq. (3.16) and insert it in Eq. (3.15) to obtain the IR limit of the 𝐺𝑥(𝑅, 𝑡)
correlation function. It yields,

𝐺𝑥(𝑅, 𝑡) ∝
𝑡𝛾
𝑅𝜒 cos(𝐴𝑧(

𝑡
𝑅𝑧 )

1
1−𝑧 − 2Δ𝑡 + 𝜙) , (3.17)

𝐴𝑧 = 2𝑐(2𝑐𝑧)𝑧/(1−𝑧)(1 − 𝑧) , (3.18)

𝛾 = 𝜈 + 1/2
1 − 𝑧 , (3.19)

𝜒 = 𝜈 + (2 − 𝑧)/2
1 − 𝑧 , (3.20)

where we defined 𝜈 ≥ 0 as the scaling exponent of the weight function ℱ(𝑘) in the infrared limit
ℱ(𝑘 → 0) ∼ |𝑘|𝜈. From its definition (3.14) and from the expansion of 𝑃𝛼(𝑘) in the IR limit follows
that 𝜈 = 0 for the 𝐺𝑥(𝑅, 𝑡) correlation function. The spin correlation signal edge (CE) is now found
by imposing that the amplitude of the oscillations in Eq. (3.17) shall be constant thereby defining
a curve in spacetime 𝑡 ∝ 𝑅𝛽 given by,

const. = 𝑡𝛾
𝑅𝜒 ⇒ 𝑡 ∝ 𝑅𝛽CE , 𝛽CE = 𝜒/𝛾 = 3 − 𝛼 . (3.21)

On the other hand, the spreading of local extrema (in particular maxima) is dictated by a constant
phase of the oscillations in Eq. (3.17),

const. = 𝐴𝑧(
𝑡
𝑅𝑧 )

1
1−𝑧 − 2Δ𝑡 + 𝜙 ⇒ 𝐴𝑧(

𝑡
𝑅)

𝑧
1−𝑧 − 2Δ = const.

𝑡
𝑡→∞
⟶ 0 ⇒ 𝑡 ∝ 𝑅 , (3.22)

thus local extrema propagate ballistically 𝑡 ∝ 𝑅𝛽𝑚 with 𝛽𝑚 = 1. Note that this applies when the
system has a gap Δ ≠ 0. Otherwise, one finds for a gapless system Δ = 0 in the quasi-local regime,
𝑡 ∝ 𝑅𝛽𝑚 with 𝛽𝑚 = 𝑧 = 𝛼−1 < 1. In such a case, localmaxima of the correction function propagate
super-ballistically.

Local regime 𝛼 > 2 Contrarily to the quasi-local regime, in the local regime the quasiparticle
energy 𝜀𝑘 as well as the quasiparticle group velocity are bounded over the entire Brillouin zone, i.e.
there exists a finite maximum group velocity 𝑉𝑔(𝑘∗) = max𝑘∈BZ 𝑉𝑔(𝑘) even in the thermodynamic
limit. Therefore, the stationary phase condition Eq. (3.16) has only a solution for 𝑅/𝑡 ≤ 2𝑉𝑔(𝑘∗), as
opposed to any ratio 𝑅/𝑡 as it is the case in the quasi-local regime. Consequently, the CE—given
by the fastest moving quasiparticles—is determined by the spreading of quasiparticles with and
close to the stationary quasi-momentum 𝑘𝑠𝑝 ≃ 𝑘∗. The CE thus spreads ballistically with velocity
𝑉CE = 2𝑉𝑔(𝑘∗). Moreover, the spacetime curve of local maxima close to the edge is determined by
the condition that the phase of the oscillations in Eq. (3.15) with 𝑘 = 𝑘∗ shall be constant. Hence,
the local maxima, too, spread ballistically in the local regime with velocity 𝑉𝑚 = 2𝑉𝜙(𝑘∗) where
𝑉𝜙(𝑘) = 𝜀𝑘/𝑘 is the quasiparticle phase velocity.
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3.3.1.2 Local magnetisation after a local quench

In the following, we consider the sudden change of the ground state of the Hamiltonian (3.4) deep
in the 𝑧-polarised phase by applying a spin flip to the centre site of the spin chain; |𝜓0⟩ ∝ 𝑆−𝑁/2|𝜓𝐺𝑆⟩.
The resulting state breaks translation invariance and is therefore suitable for studying the propaga-
tion of local one-point functions (magnetisation in the LRTI) as well as the bipartite entangle-
ment entropies with variable bipartition location. Since we inspect the ground state deep in the
𝑧-polarised phase, ℎ ≫ 𝐽, we can very well approximate it as the fully polarized product state
|↑ … ↑⟩. Following the diagonalisation in Section 3.3.1 we therefore obtain the time dependence of
the initial state in Heisenberg picture as,

|Ψ0(𝑡)⟩ = �̃�𝑆−0 (𝑡)|ΨGS⟩ = �̃�𝑎†0(𝑡)|0𝑏⟩ = �̃�
2𝜋(𝑁−1)/𝑁

∑
𝑘=0

𝑢𝑘ei𝜀𝑘𝑡 𝑏
†
𝑘(𝑡 = 0)|0𝑏⟩ , (3.23)

where 𝑆−0 = 𝑆𝑥0 − 𝑖𝑆𝑦0 is the spin lowering operator at the central site (labelled by 𝑗 = 0), 𝑎†0 is the
bosonic Holstein–Primakoff creation operator (cf. Eq. (3.5)), 𝑏𝑘(0) is the quasiparticle annihilation
operator, 𝑢𝑘 is defined in Eq. (3.11), |0𝑏⟩ is the quasi-particle vacuum, and �̃� = (∑𝑘 𝑢

2
𝑘)−1/2 is the

normalisation of the state.

To compute the one-point function𝑀𝑧(𝑅, 𝑡) = 1/2−⟨𝑆𝑧𝑅(𝑡)⟩, we use Eq. (3.23) as well as Eq. (3.5).
This yields,

𝑀𝑧(𝑅, 𝑡) ≔ 1
2 − ⟨𝑆𝑧𝑅(𝑡)⟩ ≃

|
|
|
∫

𝜋

−𝜋

d𝑘
2𝜋

ℱ1(𝑘)
2 (ei(𝑘𝑅+𝜀𝑘𝑡) + e−i(𝑘𝑅−𝜀𝑘𝑡))

|
|
|

2

+
|
|
|
∫

𝜋

−𝜋

d𝑘
2𝜋

ℱ2(𝑘)
2 (ei(𝑘𝑅+𝜀𝑘𝑡) + e−i(𝑘𝑅−𝜀𝑘𝑡))

|
|
|

2

. (3.24)

Here, ℱ1(𝑘) and ℱ2(𝑘) are weight functions which read as,

ℱ1(𝑘) =
1
2(
𝒜𝑘
𝜀𝑘

+ 1) = 1
2(

2ℎ + 𝐽𝑃𝛼(𝑘)
2√ℎ[ℎ + 𝐽𝑃𝛼(𝑘)]

+ 1) , ℱ2(𝑘) = −
ℬ𝑘
2𝜀𝑘

= −
𝐽𝑃𝛼(𝑘)

4√ℎ[ℎ + 𝐽𝑃𝛼(𝑘)]
. (3.25)

For large transverse fields, ℎ ≫ 𝐽, we find ℱ1(𝑘) ≃ 1 ≫ ℱ2(𝑘) ∼ 𝐽/ℎ. Thus, we neglect the term
proportional to ℱ2(𝑘) in Eq. (3.24) in the following.

Quasi-local regime 1 < 𝛼 < 2 Paralleling the discussion of the global quench dynamics, the
spreading of 𝑀𝑧(𝑅, 𝑡) in the quasi-local regime is dominated by the IR behaviour 𝑘 → 0 of its
constituting functions as the quasiparticle group velocity diverges in the thermodynamic limit, yet
the energy is bounded everywhere in the Brillouin zone. We expand the long-range interaction
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potential in powers of 𝑘 as 𝑃𝛼(𝑘) ≃ 𝑃𝛼(0) + 𝑃′𝛼|𝑘|
𝛼−1, and the quasiparticle energy as 𝜀𝑘 ≃ Δ− 𝑐|𝑘|𝑧,

cf. Section 3.3.1.1 for the expansion coefficients. Inserting these into Eq. (3.24) yields,

1
2 − ⟨𝑆𝑧𝑅(𝑡)⟩ ≃

|
|
|
eiΔ𝑡∫

𝜋

−𝜋

d𝑘
2𝜋

ℱ1(𝑘)
2 (ei(𝑘𝑅−𝑐|𝑘|

𝑧𝑡) + e−i(𝑘𝑅+𝑐|𝑘|
𝑧𝑡))

|
|
|

2

(3.26)

=
|
|
|
∫

𝜋

−𝜋

d𝑘
2𝜋

ℱ1(𝑘)
2 (ei(𝑘𝑅−𝑐|𝑘|

𝑧𝑡) + e−i(𝑘𝑅+𝑐|𝑘|
𝑧𝑡))

|
|
|

2

. (3.27)

The gap is therefore irrelevant to the local magnetisation since it is in the exponential contribut-
ing as an oscillating prefactor of the integral which is thus identically unity in the absolute value
squared. This is in direct contrast to the behaviour of the spin-spin correlation function Eq. (3.17).
There, the gap plays a crucial regarding the scaling laws for the local maxima. This is equivalent
to our earlier observation that the initial state after the local quench Eq. (3.23) is a state in the first
excited submanifold of the bosonic quasiparticle Hilbert space. Similarly to above, we employ the
stationary phase approximation to Eq. (3.27) whose stationary phase quasi-momentum is given by
the solution of the equation 𝑉𝑔(𝑘sp) = 𝑅/𝑡 > 0. This yields,

1
2 − ⟨𝑆𝑧𝑅(𝑡)⟩ ∼

𝑡𝜆
𝑅𝜇 cos(𝐵𝑧

𝑡2𝜆

𝑅𝜉
+ 𝜙) , (3.28)

where 𝜆 = 1
2(1−𝑧)

, 𝜇 = 2−𝑧
2(1−𝑧)

, 𝜉 = 𝑧
1−𝑧

, and 𝐵𝑧 = 𝑐(𝑐𝑧)𝑎′𝑅 − (𝑐𝑧)2𝜆. Consequently, the spin mag-
netisation edge (SE) is determined by lines of constant amplitude of the oscillations of Eq. (3.28)
yielding 𝑡 ∝ 𝑅𝛽SE with 𝛽SE = 3−𝛼, while the magnetisation maxima trace out the curve of constant
phase yielding 𝑡 ∝ 𝑅𝛽m with 𝛽m = 𝛼 − 1. Thus, the SE propagates sub-ballistically while the local
maxima contained inside propagate super-ballistically in the quasi-local regime.

Local regime 𝛼 > 2 In the local regime, both quasiparticle energy 𝜀𝑘 and group velocity are finite
over the entire Brillouin zone in the thermodynamic limit. Analogously to the CE, the SE is thus
determined by the maximum group velocity 𝑉𝑔(𝑘∗), and the stationary phase approximation has a
solution only for 𝑉𝑔(𝑘∗) ≥ 𝑅/𝑡 > 0 as opposed to any ratio 𝑅/𝑡. Note that for the magnetisation a
factor of 2 is absent compared to the CE. Consequently, the spin edge propagates ballistically with
velocity 𝑉SE = 𝑉𝑔(𝑘∗) as opposed to the correlation edge’s velocity 𝑉CE = 2𝑉𝑔(𝑘∗). To estimate the
propagation of local maxima, we employ the stationary phase approximation to Eq. (3.24) yielding,

1/2 − ⟨𝑆𝑧𝑅(𝑡)⟩ ∼
|
|
|
|
|

ℱ1(𝑘∗)

√||𝜕2𝑘𝜀𝑘∗||𝑡
[cos(𝑘∗𝑅 − 𝜀𝑘∗𝑡 + 𝜙) − i sin(𝑘∗𝑅 − 𝜀𝑘∗𝑡 + 𝜙)]

|
|
|
|
|

2

, (3.29)

with 𝜙 a constant phase. We thus obtain in absolute value squared a sum of two terms proportional
to the sin and cos, respectively. These two terms have evidently a relative phase of 𝜋/2, which
mutually cancels the local maxima under the absolute value squared. Therefore, no oscillations
with local maxima inside the SE are expected in the local regime as opposed to the quasi-local
regime.
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3.3.1.3 Density matrix and Rényi entanglement entropy dynamics after a local quench

In this subsection, we aim at computing the bipartite Rényi entanglement entropies defined as,

𝒮𝑛(𝑅, 𝑡) =
1

1 − 𝑛 log(tr[𝜌
𝑛(𝑅, 𝑡)]) , (3.30)

with 𝑛 > 0 the Rényi entropy order and 𝜌(𝑅, 𝑡) = 𝜌𝐴 = tr𝐵(|Ψ(𝑡)⟩⟨Ψ(𝑡)|) the reduced density matrix
at time 𝑡 of the subsystem 𝐴 = [𝑅, 𝑅 + 1,… ,𝑁/2]. The position 𝑅 is measured from the flipped
central spin and 𝐵 denotes the complementary subsystem. We employ the exact knowledge of the
quadratic quasiparticle excitation spectrum and its relation to the microscopic Hamiltonian (3.4)
through theHolstein–Primakoff (Eq. (3.5)) and Bogolyubov transformations (Eq. (3.10)) to infer the
time dependence of the density matrix of the entire system. Crucially, the initial state for ℎ/𝐽 ≫ 1
after a local spin flip, Eq. (3.23), is a superposition of single-quasiparticle excitations allowing us to
proceed analytically. Defining 𝑆 as the entire system and𝐴 and𝐵 as complementary subsystems, we
may decompose the initial state Eq. (3.23) into the cases where the excitation is in either subsystem
𝐴 or 𝐵 and decompose any single excitation state |1⟩ as,

∑
𝑚∈𝑆

|1𝑚⟩ = ∑
𝑚∈𝐴

|1𝑚⟩ ⊗ |0𝐵⟩ + ∑
𝑚∈𝐵

|0𝐴⟩ ⊗ |1𝑚⟩ , (3.31)

where ||0𝐴,𝐵⟩ is the unique vacuum of the subsystems 𝐴 and 𝐵, respectively. The state of the entire
system thus reads as

|Ψ0(𝑡)⟩ = �̃� ∑
𝑚∈𝐵

𝜋
∑

𝑘=−𝜋
𝑢𝑘ei(𝜀𝑘𝑡+𝑚𝑘)|0𝐴⟩ ⊗ |1𝑚⟩ + �̃� ∑

𝑚∈𝐴

𝜋
∑

𝑘=−𝜋
𝑢𝑘ei(𝜀𝑘𝑡+𝑚𝑘)|1𝑚⟩ ⊗ |0𝐵⟩ (3.32)

≔ √𝜆1ei𝜃1|0𝐴⟩ ⊗ |𝜒𝐵⟩ + √𝜆2ei𝜃2|𝜒𝐴⟩ ⊗ |0𝐵⟩ , (3.33)

where 𝜆1 and 𝜆2 are real-valued functions,

𝜆2(𝑅, 𝑡) ≔ �̃�2 ∑
𝑚∈𝐴

|
|
|

𝜋
∑

𝑘=−𝜋
ei(𝜀𝑘𝑡+𝑚𝑘)||

|

2

(3.34)

such that 𝜆1 + 𝜆2 = 1, 𝜃1 and 𝜃2 are some phases, and ||𝜒𝐴,𝐵⟩ is the complex single-particle state in
subsystem 𝐴, 𝐵 the first excited submanifold of the Hilbert space. The density matrix of the entire
system thus contains four terms,

𝜌(𝑡) = 𝜆1|0𝐴⟩⟨0𝐴| ⊗ |𝜒𝐵⟩⟨𝜒𝐵| + 𝜆2|𝜒𝐴⟩⟨𝜒𝐴| ⊗ |0𝐵⟩⟨0𝐵|

+ √𝜆1𝜆2e𝑖(𝜃1−𝜃2)|0𝐴⟩⟨𝜒𝐴| ⊗ |𝜒𝐵⟩⟨0𝐵| + √𝜆1𝜆2e𝑖(𝜃2−𝜃1)|𝜒𝐴⟩⟨0𝐴| ⊗ |0𝐵⟩⟨𝜒𝐵| , (3.35)

while the reduced density matrix of subsystem 𝐴 contains two terms,

𝜌𝐴(𝑡) = tr𝐵(𝜌(𝑡)) = 𝜆1(𝑡)|0𝐴⟩⟨0𝐴| + 𝜆2(𝑡)|𝜒𝐴⟩⟨𝜒𝐴| , (3.36)

whereas 𝜆1 and 𝜆2 are its two eigenvalues.
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At this stage it is worthwhile to discuss Eq. (3.34). Since the two eigenvalues are constrained
to add to unity and have the same functional form, we may without loss of generality restrict our
analysis to one of them. The eigenvalue 𝜆2 = 𝜆2(𝑅, 𝑡) is a function of 𝑅 through the boundary of
the subsystem 𝐴 and a function of time through the coherent superposition of quasiparticles form-
ing the spin-lowering operator. Moreover, it is a non-local quantity since it contains contributions
from all space coordinates inside the subsystem 𝐴. The reduced density matrix Eq. (3.36) is a di-
agonal 2 × 2 matrix. This has the noteworthy consequence that any entropy of entanglement is
bounded from above by the maximally entangled state 𝜆1 = 𝜆2 = 1/2, implying all Rényi entrop-
ies are bounded by 𝒮𝑛 = log(2) ≈ 0.693. We will later see, cf. Fig. 3.3.3 and Appendix 3.B, that
this bound is indeed confirmed by our simulation of the out-of-equilibrium dynamics of the exact
microscopic Hamiltonian (3.4) thereby a posteriori confirming our approximations made within
LSWT. Furthermore, Eq. (3.34) constitutes an explicit solution of one of the two eigenvalues of the
reduced density matrix in a finite system and within LSWT approximations. In particular, it con-
tains two sums each proportional to the size of the system since the subsystem 𝐴 evidently scales
with the system size𝑁 ∝ ‖𝐴‖, as does the sum over the Brillouin zone𝑁 = ‖𝐵𝑍‖. The complexity of
Eq. (3.34) and thus Eq. (3.36) is therefore only 𝑁2 instead of the naive exponential scaling 2𝑁. This
is a direct consequence of the fact that the initial state Eq. (3.23), within the Holstein–Primakoff
approximation, is a superposition of first-excited states implying that it can be decomposed in the
case of the excitation being in subsystem 𝐴 or 𝐵, respectively. This can also be read off the expres-
sion of the density matrix of the entire state, Eq. (3.35). The advantageous scaling of the complexity
of 𝜆2 renders the numerical computation of it in a very large system size, here e.g.𝑁 = 512, entirely
feasible without the need of a High-performance Computing Clusters. We therefore proceed in a
double approach. Firstly, we proceed to approximate Eq. (3.34) in an analytic form allowing us to
extract the asymptotic scaling behaviour of the eigenvalue 𝜆2 and therefore of all Rényi entropies.
Secondly, we shall numerically compute Eq. (3.34) in a large system size. We hence may verify
our approximations made a posteriori within LSWT, as well as with the beyond mean field theory
numerics discussed in the following section.

In the limit of ℎ/𝐽 ≫ 1 the Bogolyubov coefficient approaches unity, 𝑢𝑘 ≃ 1. The 𝑡 → ∞,
𝑅 → ∞, 𝑅/𝑡 = const. behaviour of the second eigenvalue of the reduced density matrix in the
infinite volume limit using the stationary phase approximation is given by

𝜆2 ≃ �̃�2 ∑
𝑚∈𝐴

|
|
|

𝜋
∑

𝑘=−𝜋
ei(𝜀𝑘𝑡+𝑚𝑘)||

|

2
𝑁→∞
∝ �̃�2 ∑

𝑚∈𝐴

1
𝑡||𝜕2𝑘𝜀𝑘sp||

cos2[𝜀(𝑘sp)𝑡 − 𝑘sp𝑚+ 𝜙] (3.37)

where 𝑘sp is defined by the stationary phase condition 𝑉𝑔(𝑘sp) = 𝑚/𝑡 with 𝑉𝑔(𝑘) = 𝜕𝜀𝑘/𝜕𝑘. We
obtain an expression of the reduced density matrix which is the superposition of stationary phase
approximations—each with their own stationary phase condition—summed over all spatial co-
ordinates 𝑚 in subsystem 𝐴. While in principle arbitrary, in the following we consider the bi-
partitions 𝐴 = {𝑅, 𝑅 + 1,… ,𝑁/2} and 𝐵 = {−𝑁/2, −𝑁/2 + 1,… , 𝑅 − 1} and compute an analytic
expression for Rényi entropies 𝒮𝑛.
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Quasi-local regime 1 < 𝛼 < 2 The quasiparticle energy spectrum in the quasi-local regime is
bounded but its first derivative 𝑉𝑔(𝑘) diverges in the infrared limit (𝑘𝑠𝑝 → 0) as 𝑉𝑔(𝑘) ∼ 1/𝑘2−𝛼

dominating the eigenvalues of the reduced density matrix Eq. (3.37). Inserting the stationary phase
quasi-momentum for each term in the sum yields,

𝜆2 ∝ �̃�2 𝑡
1

1−𝑧

∞
∑
𝑚=0

1

(𝑚 + 𝑅)
2−𝑧
1−𝑧

cos2[𝐶𝑧(
𝑡

(𝑚 + 𝑅)𝑧 )
1

1−𝑧
+ 𝜙] , (3.38)

with 𝐶𝑧 = (𝑐𝑧)
1

1−𝑧 (1 + 𝑐𝑧+1𝑧𝑧) and 𝜙 = const. Owing to the superposition of all contributions from
all sites𝑚 in the subsystem𝐴, the scaling behaviour cannot be extracted for each term individually,
and we instead have to consider all terms in the sum. This means that we cannot a priori simply
inspect the scaling of the coefficient without taking into account the oscillatory cosine term. How-
ever, in both our TDVP and LSWT numerical results, cf. Fig. 3.3.3, we find no significant internal
oscillations of the Rényi entanglement entropies, implying that the oscillatory term does not con-
tribute significantly to the observed behaviour of the entanglement edge. Additionally, we find the
frequency 𝐶𝑧 to be very large such that the cosine term varies rapidly compared to the algebraically
decaying amplitude. We therefore argue a posteriori to substitute the oscillating cosine term with
its average value of 1/2 in the sum. We subsequently find,

𝜆2 ∝ �̃�2 2𝜋(𝑐𝑧)𝜅

|𝑐𝑧(𝑧 − 1)|
𝑡

𝜅
2−𝑧 𝜁(𝜅, 𝑅) , (3.39)

where 𝜁(𝑠, 𝑞) = ∑∞
𝑚=0 (𝑚 + 𝑞)−𝑠 is the Hurwitz zeta function [175, 176] and 𝜅 = 𝑧−2

𝑧−1
= 𝛼−3

𝛼−2
. Using

the series representation of the Hurwitz zeta function in the limit of large 𝑅 and positive 𝜅, this may
be written as

𝜆2 = �̃�2 2𝜋(𝑐𝑧)𝜅

|𝑐𝑧(𝑧 − 1)|
𝑡

𝜅
2−𝑧[ 𝑅

1−𝜅

𝜅 − 1 +
𝑅−𝜅
2 +

∞
∑
𝑗=1

𝐵2𝑗
(2𝑗)!

Γ(𝜅 + 2𝑗 − 1)
Γ(𝜅)

𝑅1−𝜅−2𝑗] , (3.40)

where 𝐵𝑛 are the Bernoulli numbers, and Γ(𝑠) = ∫∞
0 e−ᵆ𝑢𝑠−1 d𝑢 is the gamma function [176]. In

the quasi-local regime, we have 𝜅 > 2 and so in the limit of large 𝑅 we may neglect the second and
third terms which contain contributions of the order equal to 𝑅−𝜅 and higher, and only consider
the leading term of order 𝑅1−𝜅. It yields

𝜆2 ≈ �̃�2 2𝜋(𝑐𝑧)𝜅

|𝑐𝑧(𝑧 − 1)|
1

𝜅 − 1(
𝑡
𝑅)

1
1−𝑧 (3.41)

which scales in 𝑅 and 𝑡 with the same power. Note that the stationary phase approximation is not
valid when taking 𝑡 → ∞ alone, and the above equation does not hold in this limit. Consequently,
any analytic function of 𝜆2, particularly Rényi entropies, will scale in 𝑅 and 𝑡with the same power,
such that

𝒮𝑛(𝑅, 𝑡) ≃
1

1 − 𝑛 log[(𝜆1(𝑅/𝑡))
𝑛 + (𝜆2(𝑅/𝑡))𝑛] =

1
1 − 𝑛 log[(1 − 𝜆2(𝑅/𝑡))𝑛 + (𝜆2(𝑅/𝑡))𝑛] . (3.42)
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This yields a dynamical exponent of the entanglement entropy edge (EE) of unity, 𝛽𝑛𝐸𝐸 = 1 ∀𝑛,
in close agreement with our numerical results using both TDVP and LSWT (i.e. Eq. (3.34)). Ad-
ditionally, the finite-size corrections neglected in the step from Eq. (3.40) to Eq. (3.41) are likely
responsible for the deviation from ballistic behaviour seen in our simulations on small system sizes.
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3 Information and Correlation Spreading

Figure 3.3.1: Spreading of spin correlations in a global quench, with system size 𝑁 = 48. (a) TDVP results
for 𝐺𝑧 and a quench from (ℎ/𝐽)i = 50 to (ℎ/𝐽)f = 1 in the quasi-local regime at 𝛼 = 1.7. The
solid green and dashed blue lines are fits of the CE and the extrema, respectively. (b) Dynamical
exponents 𝛽CE (green diamonds) and 𝛽m (blue disks), fitted form results as in panel (a) for 𝐺𝑧
(empty symbol) and 𝐺𝑥 (full symbol), and comparison to the LSWT predictions (solid green
and dashed blue lines). (c) Spreading velocities 𝑉CE (green diamonds) and 𝑉m (blue disks), in
the local regime and comparison to the LSWT predictions (solid green and dashed blue lines).
Figure from [172].

3.3.2 Global quench dynamics

In this subsection, we present the numerical results by means of the time-dependent variational
principle (TDVP) of the out-of-equilibrium dynamics of the LRTI induced by a global quench. We
start with an initial ground state of Hamiltonian (3.4) at (ℎ/𝐽)𝑖 = 50. The state is then thrown out
of equilibrium by a sudden change of a global transverse field parameter ℎ of the Hamiltonian (3.4)
to a lower value by evolving it in time with the Hamiltonian at (ℎ/𝐽)𝑓 = 1, both in the 𝑧-polarised
phase. This global quench produces out-of-equilibrium dynamics as the timescale of this change
is shorter than any timescale in the system, and the previous ground state is in general not an
eigenstate of the new, post-quench Hamiltonian. We consider the resulting dynamics of the two-
point spin correlation function,

𝐺𝑗(𝑅, 𝑡) = 𝐺0
𝑗 (𝑅, 𝑡) − 𝐺0

𝑗 (𝑅, 0) , (3.43)

𝐺0
𝑗 (𝑅, 𝑡) = ⟨𝑆𝑗𝑅(𝑡)𝑆

𝑗
𝑁/2(𝑡)⟩ − ⟨𝑆𝑗𝑅(𝑡)⟩⟨𝑆

𝑗
𝑁/2(𝑡)⟩ , (3.44)

where 𝑡marks the time, 𝑅 the distance to the central lattice site 𝑁/2, and we focus along the spin-
direction 𝑗 = 𝑥. Subsequently, we are interested in the scaling of those observables with different
values of 𝛼 in the quasi-local (1 < 𝛼 < 2) and local regime (𝛼 > 2). The numerical result of 𝐺𝑧(𝑅, 𝑡)
after a global quench in the quasi-local regime (𝛼 = 1.7) is displayed in Fig. 3.3.1(a) (note the log-log
plot). The asymptotic long time and space behaviour of 𝐺𝑧(𝑅, 𝑡) can be well fitted by the scaling law
𝑡 ∝ 𝑅𝛽. Here, it is important to distinguish the scaling of the marked maxima (dashed blue lines in
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Figure 3.3.2: Spreading of the local magnetisation for a local quench, with system size 𝑁 = 48. (a) Log-log
spacetime plot of TDVP results for 𝑀𝑧(𝑅, 𝑡) (3.24) versus the time and the distance from the
flipped spin for ℎ/𝐽 = 50 and 𝛼 = 1.8. (b) Dynamical exponents 𝛽SE (green diamonds) and 𝛽m
(blue disks), fitted form results as in panel (a) and comparison to the LSWT predictions (solid
green and dashed blue lines). (c) Spreading velocity 𝑉SE (green diamonds) and comparison to
the LSWT prediction in the local regime (solid green line). Figure from our paper [172].

Fig. 3.3.1(a)), and the envelope or edge of all correlations (CE) beyond which the signal falls below
a constant threshold (solid green line). Correspondingly, we show the fitted dynamical exponents
𝛽𝑚 and 𝛽CE for the quasi-local regime in Fig. 3.3.1(b). There, the LSWT prediction of the dynamical
exponents in the asymptotic space and time limit for the CE is plotted by the solid green line, and
the dynamical exponents for the maxima is plotted by the dashed blue line, respectively. We find a
good agreement between the numerical fits and the LSWT prediction confirming the characteristic
two-fold spreading scenario of the latter with sub-ballistic spreading of the correlation edge and
super-ballistic spreading of local maxima.
In the local regime (𝛼 > 2), we find that the correlation edge and the maxima in the correlation

function spread ballistically 𝛽𝑚 ≃ 1 ≃ 𝛽CE. The two velocities are however different from each
other, which is characteristic of a non-linear dispersion relationship 𝜀(𝑘). The velocity of the CE is
𝑉CE = 2𝑉𝑔(𝑘∗), that is twice the maximum group velocity 𝑉𝑔(𝑘) = 𝜕𝜀/𝜕𝑘 of the spin-waves. Fur-
thermore, themaxima are spreading with 𝑉𝑚 = 2𝑉𝜙(𝑘∗), that is twice the phase velocity 𝑉𝜙(𝑘) = 𝜀/𝑘
at quasi-momentum 𝑘∗ where the group velocity is maximum. Note that in the LRTI, 𝑘∗ < 0 and
𝑉𝑚 = 2𝑉𝜙(𝑘∗) = 2𝜀𝑘∗/𝑘∗ < 0. In Fig. 3.3.1(c), we find the LSWT predictions for the two spreading
velocities match the numerical fits with good agreement confirming the twofold spreading beha-
viour also in the local regime.

3.3.3 Local quench dynamics

We now consider inducing out-of-equilibrium dynamics by a local quench on the ground state of
Hamiltonian (3.4) at large values of ℎ/𝐽 = 50 deep in the 𝑧-polarised phase by applying a sudden flip
to the central spin at site𝑁/2. Consequently, the initial state is not an eigenstate of theHamiltonian,
and the resulting dynamics are far from equilibrium. The ground state at such large field values is
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(a)

(b)

(c)

AB

Figure 3.3.3: Spreading of the von Neumann entanglement entropy 𝒮𝑛=1(𝑅, 𝑡) for the same quench as in
Fig. 3.3.2(a). (a) TDVP results for ℎ/𝐽 = 50, 𝛼 = 1.8, and a system size 𝑁 = 96. The solid green
line marks a power law fit to the EE with 𝜖 = 0.5, yielding 𝛽𝑛𝐸𝐸 = 0.899 ± 0.005. (b) Dynam-
ical exponents for the EE obtained via TDVP (cyan downwards triangles) and LSWT (magenta
upwards triangles, Eq. (3.34)), with error bars corresponding to the variations concerning the
threshold 𝜖. (c) Dynamical exponents obtained via LSWTEq. (3.34) for a larger system,𝑁 = 512.
Figure from [172].

well approximated by ΨGS ≃ |↑ … ↑⟩. The initial state can thus be written as Ψ0 ≃ |↑ … ↑↓ ↑ … ↑⟩.
It is consequently orthogonal to the ground state and lives in the first excited manifold.
The dynamics induced by this local quench is examined in two observables. Firstly, we inspect

the local magnetisation, 𝑀𝑧(𝑅, 𝑡) = 1/2 − ⟨𝑆𝑧𝑅(𝑡)⟩ as defined in Eq. (3.24), where 𝑅 is the distance
from the centre flipped spin. Secondly, we inspect the dynamics of the Rényi entropies, Eq. (3.30),
and we choose the bipartition of the system in subsystem 𝐴 and 𝐵 at time 𝑡 such that 𝐴 = [𝑅, 𝑅 +
1,… ,𝑁/2] (𝐵 denotes the respective complementary subsystem). In the following paragraph, we
focus on the local magnetisation (3.24) before we turn to the Rényi entropies (3.30) below.

Local magnetisation Figure 3.3.2(a) shows a typical TDVP result for the quantity𝑀𝑧(𝑅, 𝑡) (3.24)
versus time 𝑡 and distance 𝑅 from the flipped spin, in the quasi-local regime. The result again dis-
plays an algebraic twofold structure. Fitting the maxima (dashed blue line) and the spin edge (SE,
solid green line), we extract the dynamical exponents 𝛽m and 𝛽SE plotted in Fig. 3.3.2(b) (blue disks
and green diamonds, respectively). The SE follows the sub-ballistic scaling law 𝛽SE ≃ 3 − 𝛼 (solid
green line) obtained from LSWT closely [34]. In contrast, the maxima of the local magnetisation
spread faster than the SE, and here we find 𝛽m < 1 corresponding to a super-ballistic propagation.
Quantitatively, the local maxima match the LSWT prediction (𝛽m = 𝛼 − 1) [34], see Fig. 3.3.2(b).
In the local regime (𝛼 > 2), not displayed in the figure, we find that 𝑀𝑧 (3.24) propagates ballist-
ically. Both this property and the SE velocity extracted from the TDVP calculations are in good
agreement with the LSWT analysis, see Fig. 3.3.2(c). Note that in this regime, we do not observe
maxima propagating at a different velocity. This is also consistent with the LSWT analysis as the
local magnetisation ⟨𝑆𝑧𝑅(𝑡)⟩ is the sum of contributions, each with their internal twofold structure.
However, those terms have a relative phase (𝜋/2) such that they are in quadrature and cancel out
any internal maxima, cf. end of Section 3.3.1.2.
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Entanglement entropies Finally, we study the spreading of quantum information via the Rényi
entropies Eq. (3.30) of the reduced density matrix of a block 𝐴 of the total chain, see inset in
Fig. 3.3.3 (a). The main part of Figure 3.3.3(a) shows a typical TDVP result for the von Neumann
entropy, 𝑛 → 11, and the same local quench as in Fig. 3.3.2 (a). We find 𝒮𝑛(𝑅, 𝑡) to be a monotonic
function of both position and time, and no local maxima such as those found previously for the
correlation function and the magnetisation are observed. The entanglement edge (EE) is clearly
visible in Fig. 3.3.3(a) and fitting the algebraic scaling law 𝑡 ∼ 𝑅𝛽𝑛EE allows us to extract the dynam-
ical exponent. We find 𝛽𝑛EE ≈ 1within error bars, regardless of the interaction range, see cyan points
in Fig. 3.3.3(b). This implies the propagation of entanglement is close to ballistic in both the local
and quasi-local regimes. The error bars correspond to the variation of 𝛽𝑛EE with threshold 𝜖, which
is due to finite-size effects. We conclude this from our analytical computation of the entanglement
entropy within LSWT, cf. Eq. (3.34). As discussed in Section 3.3.1.3, LSWT allows to solve the ei-
genvalues of the reduced density matrix following the local quench described above. This equation
is numerically solvable in a finite but very large system size due to its favourable scaling of com-
plexity as∼ 𝑁2. Furthermore, its only approximation is made in the linearised Holstein–Primakoff
transformation. Equation (3.34) constitutes an integral equation that is valid beyond the asymp-
totic behaviour found through the stationary phase approximation. The fitted EE to the simulation
of Rényi entropies through Eq. (3.34) (EE through LSWT) is shown in Fig. 3.3.3(c)–(b) in purple
diamonds. The LSWT results are in good agreement with those extracted via TDVP for the same
system sizes, see Fig. 3.3.3(b) and even for larger systems, see Fig. 3.3.3(c).

The bipartite entanglement entropy is a highly non-local quantity, which takes into account all
pairs of entangled particles separated by the bipartition 𝑅 [18, 177–179]. As a direct consequence
of this non-locality, the quasiparticle contributions to the Rényi entropy from either side of the
bipartition neither regard the quasiparticle’s origination nor its velocity. Furthermore, we show
that the sum of those contributions adds up to a ballistic propagation, cf. Section 3.3.1.3, in the
asymptotic limit in both the local and quasi-local regimes. We have found by analytic computa-
tion that the reduced density matrix 𝜌𝐴(𝑅, 𝑡) has only two non-vanishing eigenvalues, 𝜆1(𝑅, 𝑡) and
𝜆2(𝑅, 𝑡) = 1 − 𝜆1(𝑅, 𝑡), cf. Eq. (3.36). This is consistent with our TDVP results at all times and the
observation that entanglement entropies saturate at 𝒮𝑛(𝑅, 𝑡 → ∞) ≃ log(2) ≃ 0.69, see Fig. 3.3.3(c).
We demonstrated in the asymptotic limit of 𝑅 and 𝑡, 𝑅/𝑡 = 𝑐𝑜𝑛𝑠𝑡, and not too small values of 𝑅/𝑡,
cf. Section 3.3.1.3,

𝜆2(𝑅, 𝑡) ∼ (𝑡/𝑅)
1

2−𝛼 . (3.45)

Crucially, the 𝑛-order Rényi entropy is a function of the ratio 𝑅/𝑡 only,

𝒮𝑛(𝑅, 𝑡) ≃
1

1 − 𝑛 log[(𝜆1(𝑅/𝑡))
𝑛 + (𝜆2(𝑅/𝑡))𝑛] , (3.46)

which confirms the ballistic propagation of the entanglement entropy (𝛽𝑛EE = 1) consistent with the
results of Fig. 3.3.3 for 𝑛 = 1 and other Rényi orders 𝑛, cf. Appendix 3.B.

Determining the EE emerges as a challenge due to the absence of a sharply defined edge in the
quasi-local regime. In practice, we chose a large range and average over it to find a value for 𝛽𝐸𝐸,𝑛 in

1The von Neumann entropy also reads as 𝒮vN = 𝒮𝑛→1(𝑅, 𝑡) = −Tr{𝜌(𝑅, 𝑡) log(𝜌(𝑅, 𝑡))}
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Fig. 3.3.3(b) and (c). For all Rényi entropies 𝒮𝑛 obtained from TDVP and LSWT in all system sizes,
the threshold range is 𝜖 ∈ [20%, 80%]. The associated error is taken to be the difference between the
maximal andminimal value for the dynamical exponent within this range of thresholds. Although
we find ballistic spreading of all entanglement entropies, we do not find consistent spreading ve-
locities associated to the entanglement edge independently of the threshold chosen. Instead, the
fitted velocity depend greatly on the chosen threshold. We therefore not consider these fitted velo-
cities.

3.4 Discussion

In this chapter, we have investigated the spreading behaviour of spin–spin correlation functions,
local magnetisation, and Rényi entropies in the long-range interacting transverse Ising chain in
both the local and quasi-local regime. The dynamics is induced by a global quench during which
we inspect the correlation functions. The spreading behaviour of local magnetisation and Rényi
entropies is studied in the dynamics following a local quench. This investigation is performed in a
complementary approach of analytic approximations within linear spin wave theory (LSWT) and
state-of-the-art tensor network simulations.
By virtue of state-of-the-art numerics we find that in the quasi-local regime, the causal edges of

spin-correlations and the local magnetisation are both sub-ballistic, with the same dynamical expo-
nent (𝛽CE = 𝛽SE > 1). In the vicinity of the edge, however, the local maxima propagate differently,
i.e. ballistically (𝛽m = 1) for spin-spin correlations and super-ballistically (𝛽m < 1) for local mag-
netisation. On the other hand, Rényi entanglement entropies always propagate ballistically, irre-
spective of the range of interactions, in both the local and quasi-local regimes. In the local regime,
all signals propagate ballistically recovering the same qualitative behaviour as in the short-range
limit. The analytic quasiparticle picture, based on linear spin-wave theory, accurately reproduces
the numerical predictions and provides a clear interpretation of its results. The different algebraic
space-time patterns of correlation functions and localmagnetisation provide a unique fingerprint of
the dynamical regimes of the LRTImodel suggesting the emergence of a dynamical phase-diagram.
These correlation patterns can be directly measured in state-of-the-art experiments.
Our results show the emergence of a weak form of causality in the intermediate regime of the

long-range Ising model, characterised by algebraic propagation laws with exponents that depend
on the observables and the range of interactions. While local spins and spin correlations both have
a sub-ballistic propagation edge, 𝑡 ∝ 𝑅𝛽, with 𝛽 > 1, the causal region is characterised by local
maxima propagating super-ballistically and ballistically, respectively. The distinction between the
causal edge and the local maxima, which can show drastically different dynamical behaviours, is
thus pivotal in the characterization of causality in long-range quantum systems. In contrast, the
propagation of entanglement is ballistic in both the local and quasi-local regimes, and the causal
region is featureless.
These results call for future experimental and theoretical work. On the one hand, our predictions

are directly relevant to quantum simulators using for instance trapped ions, where the interaction
range can be controlled. While analysis of spin and correlation spreading in first experiments [99,
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100] have been limited by finite-size effects due to system sizes of 𝑁 = 15 and 𝑁 = 11, respectively,
systems withmore than 50 ions, comparable to the system size used in our simulations, are now ac-
cessible [96] and Rényi entanglement entropies can now bemeasured in trapped ion platforms [180,
181] and noisy intermediate-scale quantumdevices [182]. On the other hand, it would be interesting
to further test the robustness of the observed algebraic scaling laws by quantitatively investigating
the dependence (if any) of the exponents on the strength of the quenches, the phases of the model
and their values in different models, such as the long-range XY [34, 45], Heisenberg [183, 184], and
Hubbard [28, 32]models, as well as in dimensions higher than one. This extended analysis could al-
low the identification of dynamical universality classes, i.e. models which share the same algebraic
laws for correlations out-of-equilibrium.
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Appendix

3.A Determination of the edge

Figure 3.A.1: Spreading of the 𝐺𝑧 spin correlation function in the quasi-local regime (𝛼 = 1.7 < 2), for a
global quench from (ℎ/𝐽)i = 50 to (ℎ/𝐽)f = 1, both in the 𝑧 polarized phase [same data as
in Fig. 3.3.1(a)]. The squares, disks, and diamonds indicate points where 𝐺𝑧(𝑅, 𝑡) reaches a
fraction 𝜖 of its maximum value for various values of 𝜖. The corresponding lines are linear fits
to these points in log-log scale, consistently with Eq. (3.47). The brown squares correspond to
𝜖 = 2.6% forwhichwe find 𝛽CE ≃ 1.27, the green disks to 𝜖 = 6.5% forwhichwe find 𝛽CE ≃ 1.23,
and the white diamonds to 𝜖 = 11.2% for which we find 𝛽CE ≃ 1.22. Figure from [172].

For all the data reported in the main text, we have determined the spin-correlation, local mag-
netisation, and entanglement edges by tracking the ensemble of points in the 𝑅–𝑡 plane where the
signal reaches a fraction 𝜖 of its maximal value. Since this threshold line depends on the value of 𝜖,
we have systematically scanned 𝜖, e.g. from 0.01 to 0.12 for𝐺𝑧(𝑅, 𝑡) and from 0.20 to 0.80 for 𝒮𝑛(𝑅, 𝑡).
In all the cases considered in this work, we find that the edge is well-fitted by the algebraic law

𝑡 = 𝑎 ⋅ 𝑅𝛽. (3.47)

While the coefficient 𝑎 fundamentally depends on 𝜖, the scaling law exponent 𝛽 is nearly inde-
pendent of 𝜖. An example of such an analysis, plotted in log-log scale, is shown in Fig. 3.A.1 where
the various lines correspond to different values of 𝜖. The fact that they are parallel straight lines
validates the scaling law 𝑡 ∼ ×𝑅𝛽CE with an exponent 𝛽CE nearly independent of 𝜖.
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3.B Rényi entropies after a local quench

In this appendix we present complementary numerical results for different Rényi entropies in the
local and quasi-local regimes obtained via TDVP simulations and LSWT calculations.

In Fig. 3.B.1(a) and (b), the counterparts of Fig. 3.3.3(b) and (c), dynamical exponents 𝛽𝑛𝐸𝐸 are
shown for the different values of the Rényi parameter considered (𝑛 = 1/2, 𝑛 = 1, 𝑛 = 2) obtained
viaTDVPandLSWTwith system size𝑁 = 96 and𝑁 = 512, respectively. The dynamical exponent of
the EE remains close to unity almost independently of the order of the Rényi entropy, both in TDVP
and LSWT. Each of the 𝒮𝑛(𝑅, 𝑡) considered displays a linear causal structure fully characterised by
an entanglement edge (EE) and its behaviour is very similar to Fig. 3.3.3(a).

We have also computed the entanglement entropy onmuch larger system sizes using LSWT. This
allows us to obtain a better estimate of the spreading exponent 𝛽𝑛EE in the thermodynamic limit. The
results are shown in Fig. 3.B.1(c)–(h) for three values of the Rényi order 𝑛 = 1/2, 1, and 2 and two
values of 𝛼 for a chain of length𝑁 = 512. The results of the fits to the EE are shown in Fig. 3.B.1(b),
where we see that the error bars of the von Neumann entanglement entropy are much smaller and
give a more precise indication of ballistic spreading of the EE.

The determination of the EE emerges as a challenge, due to the absence of a sharply defined
edge in the quasi-local regime. In practice, we chose a large range and average over it to find a
value for 𝛽𝐸𝐸,𝑛 in Fig. 3.3.3(b) and (c). The threshold ranges for all Rényi entropies 𝒮𝑛 obtained
from TDVP and LSWT in all system sizes is 𝜖 ∈ [20%, 80%]. The associated error is taken to be the
difference between the maximal and minimal value for the dynamical exponent within this range
of thresholds.

3.C Spreading of the 𝐺𝑥 spin correlation function

In this Appendix, we discuss analytic and numerical results of the spreading of spin correlations
along the spin-𝑥 direction, measured by the correlation function

𝐺𝑥(𝑅, 𝑡) = 𝐺0
𝑥(𝑅, 𝑡) − 𝐺0

𝑥(𝑅, 0) with 𝐺0
𝑥(𝑅, 𝑡) = ⟨𝑆𝑥𝑅(𝑡)𝑆𝑥0 (𝑡)⟩ − ⟨𝑆𝑥𝑅(𝑡)⟩⟨𝑆𝑥0 (𝑡)⟩, (3.48)

where 𝑆𝑥𝑅(𝑡) is the spin operator along 𝑥 at position 𝑅 and time 𝑡.

To this end, we quench the hopping amplitude 𝐽 from 𝐽i to 𝐽f, after which the 𝐺𝑥(𝑅, 𝑡) correlation
function can be cast in the form [34],

𝐺𝑥(𝑅, 𝑡) ≃ 𝑔(𝑅) −∫
𝜋

−𝜋

d𝑘
2𝜋ℱ(𝑘){

𝑒𝑖(𝑘𝑅+2𝜀
f
𝑘𝑡) + 𝑒𝑖(𝑘𝑅−2𝜀

f
𝑘𝑡)

2 } , (3.49)

with ℱ(𝑘) =
ℎ(𝐽i − 𝐽f)𝑃𝛼(𝑘)

8[ℎ + 𝐽f𝑃𝛼(𝑘)]√ℎ[ℎ + 𝐽i𝑃𝛼(𝑘)]
, (3.50)

where the index i refers to the pre-quench (initial) Hamiltonian and the index f to the post-quench
(final) Hamiltonian. The functionℱ(𝑘)weights each quasi-particle according to theirmode 𝑘. Note
that it depends on the observable and the quench.
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Figure 3.B.1: EE after a local quench in the 𝑧-polarized phase (ℎ/𝐽 = 50). (a) TDVP (𝑁 = 96): dynamical
exponent 𝛽𝑛𝐸𝐸 of the three Rényi entropies over different values of 𝛼. (b) LSWT (𝑁 = 512):
dynamical exponent 𝛽𝑛𝐸𝐸 of the three Rényi entropies over different values of 𝛼. (c)–(h) LSWT
(𝑁 = 512): Space-time behaviour of the three Rényi entropies 𝒮𝑛(𝑅, 𝑡) considered in the local
regime at 𝛼 = 2.5 (top row (c)–(e)) and in the quasi-local regime at 𝛼 = 1.5 (bottom row
(f)–(h)). (c) 𝛼 = 2.5 and 𝑛 = 1/2, (d) 𝛼 = 2.5 and 𝑛 = 1, (e) 𝛼 = 2.5 and 𝑛 = 2. (f) 𝛼 = 1.5
and 𝑛 = 1/2, 𝛼 = 1.5 and 𝑛 = 1, (h) 𝛼 = 1.5 and 𝑛 = 2. The solid green lines represent
power law fits to the entropy edges with dynamical exponents, (c) 𝛽𝑛=1/2𝐸𝐸 = 1.006 ± 0.001,
(d) 𝛽𝑛=1𝐸𝐸 = 0.9907 ± 0.0002, (e) 𝛽𝑛=2𝐸𝐸 = 1.014 ± 0.002, and (f) 𝛽𝑛=1/2𝐸𝐸 = 1.018 ± 0.003, (g)
𝛽𝑛=1𝐸𝐸 = 1.018 ± 0.001, (g) 𝛽𝑛=2𝐸𝐸 = 1.031 ± 0.002. Figure from [172].
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To characterise the asymptotic behaviour 𝑅, 𝑡 → +∞ along a constant line 𝑅/𝑡, we employ the
stationary-phase approximation, applied to Eq. (3.49), yielding,

𝐺𝑥(𝑅, 𝑡) ∼
ℱ(𝑘sp)

(|𝜕2𝑘𝜀𝑘sp|𝑡)1/2
cos(𝑘sp𝑅 − 2𝜀𝑘sp𝑡 + 𝜙), (3.51)

where 𝜙 is a constant phase irrelevant to our study, 𝑘sp is the stationary-phase quasi-momentum,
given by the solution of the equation 2𝑉g(𝑘sp) = 2𝜕𝑘𝜀𝑘sp = 𝑅/𝑡 > 0 with 𝑉𝑔 the group velocity
associated to spin-wave excitations.

Quasi-local regime The quasi-local regime corresponds to the case where the quasi-particle en-
ergy 𝜀𝑘 is finite over thewhole first Brillouin zone but the group velocity𝑉𝑔(𝑘) presents a divergence.
The space-time behaviour of 𝐺𝑥 in the vicinity of the CE (correlation edge) is dominated by the
quasi-particles propagating with the fastest group velocities. Due to the infrared divergence, only
the limiting behaviour in 𝑘 → 0 is relevant. There the long-range interaction potential reads as
𝑃𝛼(𝑘) ≈ 𝑃𝛼(0) + 𝑃′𝛼|𝑘|

𝛼−1, with 𝑃𝛼(0) > 0, 𝑃′𝛼 < 0, and the excitation energy is 𝜀𝑘 ≃ Δ − 𝑐|𝑘|𝑧,
where Δ = 2√ℎ[ℎ + 𝐽𝑃𝛼(0)] > 0 is the gap, 𝑧 = 𝛼 − 1 ≥ 0 is the dynamical exponent, and
𝑐 = √ℎ/[ℎ + 𝐽𝑃𝛼(0)]𝐽|𝑃′𝛼| > 0 is a prefactor. Then, computing 𝑘sp and injecting it into Eq. (3.51), we
find

𝐺𝑥(𝑅, 𝑡) ∼
𝑡𝛾
𝑅𝜒 cos [𝐴𝑧(

𝑡
𝑅𝑧 )

1
1−𝑧 − 2Δ𝑡 + 𝜙], (3.52)

with

𝐴𝑧 = 2𝑐(2𝑐𝑧)𝑧/(1−𝑧)(1 − 𝑧) , 𝛾 = 𝜈 + 1/2
1 − 𝑧 , and 𝜒 = 𝜈 + (2 − 𝑧)/2

1 − 𝑧 , (3.53)

where 𝜈 ≥ 0 is the scaling exponent of the amplitude function in the infrared limit, ℱ(𝑘) ∼ |𝑘|𝜈.
It follows from Eq. (3.49) and the approximation of 𝑃𝛼 in the infrared limit that 𝜈 = 0 for the 𝐺𝑥
spin correlation function. On the one hand, the CE is found by imposing the condition that the
prefactor is constant. The latter leads to the algebraic form 𝑡 ∝ 𝑅𝛽CE with 𝛽CE = 𝜒/𝛾 = 3− 𝛼. Since
1 ≤ 𝛼 < 2 in the quasi-local, the CE is always sub-ballistic, i.e. 𝛽CE > 1. On the other hand, the
spreading law of the local extrema is determined by the equation

𝐴𝑧(
𝑡
𝑅𝑧 )

1
1−𝑧 − 2Δ𝑡 + 𝜙 = cst leading to 𝐴𝑧(

𝑡
𝑅)

𝑧
1−𝑧 − 2Δ → 0. (3.54)

The maxima are thus ballistic, i.e. 𝑡 ∼ 𝑅𝛽𝑚 with 𝛽𝑚 = 1.

Local regime In the local regime, corresponding to the case where both the quasi-particle en-
ergy 𝜀𝑘 and the group velocity 𝑉𝑔(𝑘) are finite over the whole first Brillouin zone, there exists a
quasi-momentum 𝑘∗ such that the group velocity is maximum, 𝑉𝑔(𝑘∗) = max𝑘(𝑉𝑔(𝑘)). Hence, the
stationary-phase condition 2𝑉𝑔(𝑘sp) = 𝑅/𝑡 has a solution only for 𝑅/𝑡 ≤ 2𝑉𝑔(𝑘∗). The CE is determ-
ined by the spreading of the quasi-particles with a quasi-momentum 𝑘sp ≃ 𝑘∗. It is thus ballistic,
with the CE velocity 𝑉CE = 2𝑉𝑔(𝑘∗). Moreover, in the vicinity of the CE, the motion of the local
maxima is determined by the phase factor in Eq. (3.51) with 𝑘sp = 𝑘∗. It follows that the local ex-
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trema propagate ballistically at the velocity 𝑉𝑚 = 2𝑉𝜑(𝑘∗) where 𝑉𝜑(𝑘) = 𝜀𝑘/𝑘 is the quasi-particle
phase velocity. Note that here, 𝑘∗ < 0 and 𝑉𝑚 = 2𝑉𝜑(𝑘∗) = 2𝜀𝑘∗/𝑘∗ < 0.

3.C.1 Numerical TDVP results

We have performed numerical TDVP calculations for the spreading of the spin correlation function
along 𝑥 for the same parameters as for its counterpart in the 𝑧 direction, discussed in the text.
The left panel of Fig. 3.C.1 shows a typical result, plotted in log-log scale, in the quasi-local re-

gime. The underlying chequered structure is characteristic of the 𝐺𝑥 function and was similarly
found using mean-field calculations in Ref. [34]. In spite of this complex structure, we can identify
a CE, using the same 𝜖 method used for the 𝐺𝑧 correlation function, as well as propagating local
maxima. The green solid and dashed blue lines correspond to algebraic fits to the CE and the local
extrema, respectively. The associated scaling law exponents 𝛽CE and 𝛽𝑚 are in very good agreement
with the theoretical ones discussed in Sec. 3.C, see filled marks in Fig. 3.3.1(b) of the main text.
The right panel of Fig. 3.C.1 shows a typical result in the local regime, now plotted in linear scale.

The solid green and dashed blue lines are linear fits to the CE and local extrema, respectively. The
corresponding numerical velocities 𝑉CE and 𝑉𝑚 are in good agreement with the theoretical ones,
see filled marks in Fig. 3.3.1(c) of the main text.

Figure 3.C.1: Spreading of the 𝐺𝑥 spin correlations. Left panel (log-log scale): Quasi-local regime with 𝛼 =
1.7 < 2 for a global quench from (ℎ/𝐽)i = 50 to (ℎ/𝐽)f = 1, both in the 𝑧 polarized phase of
the LRTI model. Right panel (linear scale): Local regime with 𝛼 = 3 < 2 for a global quench
starting from (ℎ/𝐽)i = 0.9 to (ℎ/𝐽)f = 1. The solid green and dashed blue lines are algebraic (for
𝛼 < 2) or linear (for 𝛼 > 2) fits to the CE and the extrema, respectively.
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4 Entanglement and quantum phase
transitions

This chapter is mainly based on our publication, J. T. Schneider, et al., “Entanglement Spectrum
and Quantum Phase Diagram of the Long-Range XXZ Chain”, Physical Review B 106:1, 014306
(2022) [185].

4.1 Introduction

Macroscopic physical properties of the equilibrium state of a quantum system are determined by
the complex interplay of microscopic interactions, and competing symmetries leading to a variety
of critical phenomena. Aswe have introduced in Section 1.7, In Landau’s paradigm of second order
phase transitions one identifies an order parameter characterising the ground state’s breaking of a
symmetry. Typically, above a certain critical point, the order parameter vanishes identically while
below it is non-zero signalling that the ground state spontaneously breaks a symmetry [16]. Tradi-
tionally, these order parameters are local observables on the ground state [105]. However, recent
years have witnessed the development of new understanding of phases of matter that do not fall in-
side Landau’s paradigm [186]. Therefore, such an approach is inoperant for several quantum phase
transitions including infinite-order and topological phase transitions which are only signalled in
global observables [187]. The former do not display an order parameter that spontaneously breaks a
symmetry, arguably themost famous is the Berezinskii–Kosterlitz–Thouless transition in the 2DXY
model [188–190]. At the same time it has been noted that quantum entanglement constitutes a fruit-
ful alternative to the characterization of quantum phases and quantum phase transitions [104, 191,
192]. For instance, the von Neumann entropy has been shown to display characteristic logarithmic
divergence at critical points [143, 187, 193–196]. In systems described by gapped Hamiltonians, the
von Neumann entanglement entropy follows an area law and subleading corrections can be used
to identify topological order or spontaneous symmetry breaking, see e.g. [104] and Refs. therein.
Moreover, other entanglement witnesses, such as the geometric entanglement [152, 197–200] have
been shown to be instrumental for the detection of elusive quantum phase transitions [153, 201,
202]. Nevertheless, both the entanglement entropy [203, 204] and the geometric entanglement [205]
have been shown to not exhibit any singular behaviour at the respective critical point and thusmore
refined entanglement properties are required.
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4 Entanglement and quantum phase transitions

Following the seminal work of Li and Haldane [112], entanglement spectroscopy as an extension
to entanglement entropy emerged as a research direction. The complete set of Schmidt weights {𝑠𝑗}
associated to the ground-state wave function following a bipartition is mapped onto {𝜉𝑗} as,

𝜉𝑗 = − log(𝑠2𝑗 ) , (4.1)

where {𝜉𝑗} is known as the entanglement spectrum (ES) and 𝜉𝑗 is the 𝑗-th entanglement energy.
The ES contains a wealth of information beyond traditional entanglement witnesses [104, 105, 112]
and proves instrumental for detecting quantum phase transitions [115, 121, 206–208] and topological
order [105, 112, 209, 210]. In spinmodels for instance, quantumphase transitions have been signalled
by a singular behaviour of the Schmidt gap [115, 116], the difference between the lowest and second-
lowest entanglement energy, and by degeneracy lifts of higher entanglement spectral lines [118].
Entanglement properties of prototypical (short-range) spin models have been extensively studied
in connection with many-body physics [187, 211–215].

In this chapter, we study the entanglement spectrum (cf. Appendix 2.A.2) of the long-range,
spin-1/2 XXZ chain and show that it contains sufficient information to determine the phase dia-
gram as a function of the anisotropy parameter and the interaction range exponent. The anti-
ferromagnetic–XY and XY–ferromagnetic phase transitions are, respectively, characterised by de-
generacy lifts and the divergence of the Schmidt gap, similarly to the short-range XXZmodel. Ana-
lysis of the entanglement spectrum is also instrumental in identifying a remarkable self-similar
property of the XY phase. Its breakdown signals the onset of genuine long-range effects and the
spontaneous breaking of a continuous symmetry, consistent with renormalisation group theory.
Our results are confirmed by numerical calculations using tensor-network techniques. Moreover,
we show that the self-similarity observed in the entanglement spectrum extends to other quantities,
including the geometrical entanglement and the Luttinger parameter in the critical phase.

In Section 4.2, we introduce the model and lay out our approach. Section 4.3 discusses the bo-
sonisation technique to formulate an effective bosonic field theorymodel of the low-energy LRXXZ
Hamiltonian. After discussing the basic principles (Section 4.3.1), we include the interaction terms
(Section 4.3.2) and study the renormalisation group flow of the coupling constants to determine a
phase diagram of the effective field theory model (Section 4.3.3). We continue with the study of the
quantum phase diagram of the LRXXZ model in Section 4.4.1 via measuring geometric entangle-
ment. In Section 4.4.2, we discuss entanglement-spectrum signatures of quantumphase transitions
in the same phase diagram, andwe reveal its self-similarity upon rescaling the anisotropic coupling
parameter. Furthermore, we combine this remarkable feature with the results of RG theory for the
critical Luttinger parameter to locate the phase transition into the continuous symmetry breaking
phase. In Section 4.4.3, we verify Luttinger liquid behaviour, in particular the self-similarity feature
for the Luttinger parameter. Finally, we draw our conclusion and give an outlook in Section 4.5.
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4.2 Model and approach

4.2 Model and approach

We study the long-range, anisotropic XXZ Heisenberg (LRXXZ) chain, governed by the Hamilto-
nian,

𝐻 = −𝐽 ∑
𝑅≠𝑅′

𝑆𝑥𝑅𝑆𝑥𝑅′ + 𝑆𝑦𝑅𝑆
𝑦
𝑅′ + Δ𝑆𝑧𝑅𝑆𝑧𝑅′

|𝑅 − 𝑅′|𝛼
, (4.2)

where 𝑆𝑗𝑅 (𝑗 = 𝑥, 𝑦, 𝑧) are the spin-1/2 operators on lattice site 𝑅 ∈ [0, 𝑁 − 1], 𝑁 is the system size,
𝐽 > 0 is the coupling energy, and Δ is the anisotropy parameter. As an archetype of an interacting
spin chain, the short-range XXZ model has been extensively studied in various contexts such as a
textbook example for theoretical techniques like bosonisation [6, 16, 216], the Bethe ansatz [6, 16,
217, 218], many-body localization [219], as well as out-of-equilibrium dynamics in the context of
integrable systems [220, 221]. The short-range anisotropic XXZ chain (𝛼 → ∞, i.e. 𝛼−1 = 0) is
integrable and can be exactly solved via Bethe ansatz [16, 217, 218]. At equilibrium, it encompasses
three phases: One finds a trivial, fully polarized, gapped ferromagnetic (FM) phase for Δ > 1, a
gapless paramagnetic XY phase for −1 < Δ < 1, and a gapped antiferromagnetic (AFM) phase for
Δ < −1. While the phase transition from XY to FM is of first order, the transition from AFM to XY
is conversely an infinite-order phase transition of the Berezinskii–Kosterlitz–Thouless (BKT) type
and no local correlation measure signals this phase transition [187, 217] highlighting the need for a
global measure. Moreover, the low-energy physics in the paramagnetic phase is well described by
a Luttinger liquid. The latter is characterised by a massless, quadratic, conformally-invariant field
theory with central charge 𝑐 = 1, described by the Hamiltonian

𝐻LL =
𝑢
2 ∫ d𝑥 [𝐾(𝜕𝑥𝜃(𝑥))

2 + 1
𝐾(𝜕𝑥𝜙(𝑥))

2] , (4.3)

where𝜙(𝑥) is a scalar field,Π(𝑥) = 𝜕𝑥𝜃(𝑥) is the canonical conjugatemomentumwith [Π(𝑥), 𝜙(𝑦)] =
i𝛿(𝑥 − 𝑦), such that 𝜃(𝑥) is the dual field to 𝜙(𝑥), 𝐾 is the Luttinger parameter, and 𝑢 is the speed of
sound. Formore details on the Luttinger liquid description, see Section 4.3. Hereafter, we study the
entanglement properties of the LRXXZ model (4.2) for 𝛼−1 ≥ 0 via density matrix renormalisation
group (DMRG) simulations [138] as well as the renormalisation group flow of the effective field
theory description to combine the two into a comprehensive prediction for the quantum phase dia-
gram of the LRXXZmodel. To this end, we discuss the effective bosonic field theory and its RG flow
in Section 4.3. We then inspect the geometric entanglement and study the entanglement spectrum
in Section 4.4.

4.3 Bosonisation and effective Luttinger liquid theory

In this section, we discuss the bosonisation technique to describe fermionic degrees of freedom in
terms of effective bosonic degrees of freedomwhile taking the example of the long-range, anisotrop-
ically interacting spin chain (LRXXZ). In one dimension, such an effective bosonic model is gen-
erally called a Luttinger liquid. It is the most prevalent description of fermionic one-dimensional
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systems replacing Fermi liquid theory which is only valid in higher dimensions [6]. The bosonisa-
tion technique allows us to describe (parts of) the interacting fermionic theory in terms of a free
bosonic theory thereby (partly) solving the many-body problem. Here, we will discuss in which
sense the solution of the free bosonic theory is actually the full solution of the fermionic model.
Moreover, we study when the fermionic interactions become too strong to be amenable to a free
bosonic description, and study these phase transition, driven by these microscopic interactions,
by means of the renormalisation group (RG). Paraphrasing below considerations in the context of
the LRXXZ chain, we build a ‘bosonosation dictionary’ by translating those microscopic spins on
the lattice which represent free fermions on the lattice. We continue by defining effective fermionic
continuum fields by only considering the linear part of the lattice dispersion at half-filling, and sub-
sequently translate these into bosonic fields according to standard bosonisation formulas. Finally,
we translate the remaining interaction terms into bosonic field variables and consider the renorm-
alisation of the introduced interaction terms to study when the free bosonic theory fails to be the
fixed point of the RG flow and a phase transition occurs. We wish to note that the linearisation of
the lattice dispersion around the Fermi momentum is not restrictive to fermionic systems and may
also apply to bosonic lattice systems, e.g. the integer spin Heisenberg model at large external fields.
This is an example of a ‘Luttinger liquid’ which is a conformally invariant (with central charge
𝑐 = 1), effective bosonic field theory of the low-energy physics of some 1𝐷 lattice model. In gen-
eral, it is obtainedwhen the 1𝐷 lattice dispersion admits a linear approximation and the low-energy
excitations are bosonic.
In the context of one dimensional free fermions on the lattice, Lorentz invariance is an emergent

property in the low-energy limit where the lattice dispersion relation may be approximated by a
linear one. There, the Fermi velocity acts as the speed of light as the only characteristic velocity
in the free model. Furthermore, the free fermion and boson model are invariant under conformal
transformations, i.e. rotations, translations, and changes of length scale, and in the case we exhibit
here, with the associated conserved charge to the conformal transformation, the central charge, is
identically unity.

4.3.1 Bosonisation dictionary of the free model

The bosonisation technique hinges on the observation that in one dimension particle–hole excita-
tions are bosonic in nature which is based on the quasiparticle picture defined at the point of the
free quadratic theory. We consider the LRXXZ Hamiltonian,

𝐻 = −
𝑁−1
∑

𝑛,𝑚=1;𝑛≠𝑚,
𝐽𝑛,𝑚(𝑆𝑥𝑛𝑆𝑥𝑚 + 𝑆𝑦𝑛𝑆

𝑦
𝑚 + Δ𝑆𝑧𝑛𝑆𝑧𝑚) (4.4)

= − ∑
𝑛≠𝑚

𝐽𝑛,𝑚(
1
2[𝑆

+
𝑛 𝑆−𝑚 + 𝑆−𝑛 𝑆+𝑚] + Δ𝑆𝑧𝑛𝑆𝑧𝑚) , (4.5)

where 𝑆𝑡𝑛 (𝑡 = 𝑥, 𝑦, 𝑧) are the spin-1/2 operators on lattice site 𝑛 ∈ [0, 𝑁 − 1], 𝑁 is the system
size, 𝑆±𝑛 = 𝑆𝑥𝑛 ± 𝑖𝑆𝑦 are the spin raising and lowering operators, and Δ is the anisotropic coupling
parameter. In the following, we only focus on the short-range case of 𝐽𝑛,𝑚 = 𝐽𝛿𝑚,𝑛+1 (𝐽 > 0 the
coupling energy), and come back to the long-range case 𝐽𝑛,𝑚(𝛼) = 𝐽/|𝑛 − 𝑚|𝛼 after bosonisation.
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4.3 Bosonisation and effective Luttinger liquid theory

We are therefore following textbook approaches for the bosonisation of the short-range interacting
XXZ model [6, 16, 216, 218] in considering the free fermion point Δ = 0, 𝛼 = ∞ as the basis of
the bosonisation technique. Furthermore, we consider periodic boundary conditions within this
analytic framework of the bosonisation. Expressing the free spins on the lattice as free fermions on
the lattice using the Jordan–Wigner transform,

𝑆−𝑛 = Φ(𝑛)𝑐𝑛 , 𝑆+𝑛 = Φ(𝑛)𝑐†𝑛 , 𝑆𝑧𝑛 = 𝑐†𝑛𝑐𝑛 −
1
2 , (4.6)

where {𝑐†𝑛, 𝑐𝑚} = 𝛿𝑛,𝑚 are spinless fermionic creation and annihilation operators, and

Φ(𝑛) = 1
2 exp(−i𝜋 ∑

𝑚<𝑛
𝑐†𝑚𝑐𝑚) +H.c. (4.7)

is the hermitian ‘fermionic phase factor’, we obtain the fermionic Hamiltonian,

𝐻0 = −𝐽2 ∑𝑛
𝑐†𝑛𝑐𝑛+1 +H.c. = −𝐽∫

𝜋
𝑎

−𝜋
𝑎

d𝑘
2𝜋 cos(𝑘𝑎) ̃𝑐†𝑘 ̃𝑐𝑘 . (4.8)

Having used the Fourier transform defined as,

𝑓𝑛 =
1
√𝑁

𝑁−1
∑
𝑘=0

̃𝑓𝑘e
+i 2𝜋

𝑁
𝑘𝑛 , ̃𝑓𝑘 =

1
√𝑁

𝑁−1
∑
𝑛=0

𝑓𝑛e
−i 2𝜋

𝑁
𝑘𝑛 , (4.9)

we thus identify the dispersion relation 𝜀(𝑘) = −𝐽 cos(𝑘𝑎) for free fermions. In one dimension,
the free fermions have two Fermi points at ±𝑘𝐹 with 𝑘𝐹 = 𝜋/(2𝑎) in case of a half-filled lattice,
see also Fig. 4.3.1(a). In general, 𝑘𝐹 may differ when one considers an external field ℎ coupling
as −ℎ∑𝑛 𝑆

𝑧
𝑛 to the spins and the lattice is not at half-filling. Until explicitly mentioned otherwise,

we continue only considering the model at half-filling, i.e. 𝑘𝐹 = 𝜋/(2𝑎). The low energy modes
up to a cutoff 1/𝑎c around either Fermi point are then approximated by a linear dispersion relation
𝜔(𝑘)|±𝑘𝐹 ≃ ±𝐽𝑎(𝑘 ∓ 𝑘𝐹), cf. Fig. 4.3.1(b). It gives rise to the Fourier mode decomposition of a
fermionic quantum field with two species,

𝜓±(𝑥𝑛) = lim
𝑎→0

1
√𝑎

𝑐𝑛 exp(±i𝑘𝐹𝑥𝑛) , (4.10)

with 𝑥𝑛 = 𝑎𝑛 and the exponential serving as the translation in the Brillouin zone to the respective
Fermi point. We can then formulate 𝐻0 to read in the low energy limit as,

𝐻0 = ∫ d𝑘
2𝜋[

̃𝜓†+(𝑘) 𝑘 ̃𝜓+(𝑘) − ̃𝜓†−(𝑘) 𝑘 ̃𝜓−(𝑘)] . (4.11)
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−𝜋
𝑎

− 𝜋
2𝑎

𝜋
2𝑎

𝜋
𝑎

-1

1

𝑘

𝜀(𝑘)

(a)

− 𝜋
𝑎𝑐

𝜋
𝑎𝑐

𝑘′

𝜀(𝑘′) ≃ 𝑣𝑘′

(b)

Figure 4.3.1: (a) Dispersion relation of the free Hamiltonian 𝐻0 = − 𝐽
2
∑𝑛 𝑆

+
𝑛 𝑆−𝑛+1 + 𝑆+𝑛+1𝑆−𝑛 =

∫𝜋/𝑎
−𝜋/𝑎

d𝑘
2𝜋
𝜀(𝑘) ̃𝑐†𝑘 ̃𝑐𝑘, with 𝜀(𝑘) = −𝐽 cos(𝑘𝑎) plotted as black solid line. Linearisation of the low

energy modes around the two Fermi momenta 𝑘𝐹 = ±𝜋/(2𝑎) is plotted as solid red and blue
lines for the left and right moving modes, respectively. While the discrete lattice introduces a
UV cutoff through its finite lattice spacing 𝑎, the range of accuracy of the linearisation is con-
trolled by the UV cutoff 𝑎𝑐 > 𝑎 (range between vertical dashed lines).
(b) Linearised dispersion relation is combined to the free dispersion of relativistic Dirac fermi-
ons by shifting the momentum for the left (right) moving modes to 𝑘′ = 𝑘 + 𝑘𝐹 (𝑘′ = 𝑘 − 𝑘𝐹).

We may combine these two species to define a single (spinful) spinor Dirac fermion field Ψ(𝑥) ≔
(𝜓𝑅(𝑥), 𝜓𝐿(𝑥)), with the Hamiltonian,

𝐻0 = ∫
d𝑝
2𝜋Ψ̃

†(𝑝) 𝛾5 𝑝 Ψ̃(𝑝) (4.12)

= ∫ d𝑥Ψ†(𝑥) 𝛾5𝜕𝑥Ψ(𝑥) , (4.13)

where in 1 + 1 dimension the Clifford algebra {𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇,𝜈𝟙 (𝜂𝜇,𝜈 = diag(1, −1)) is spanned by
the Pauli matrices 𝛾0 = 𝜎𝑦 , 𝛾1 = 𝜎𝑥 , 𝛾5 = 𝑖𝛾0𝛾1 = 𝜎𝑧. Figure 4.3.1 illustrates the origin of the two
fermion species, namely the two Fermi points ±𝑘𝐹.

By means of the bosonisation formula,

𝜓±(𝑥) ≡
1

√2𝜋𝑎c
exp[∓i√4𝜋𝜙±(𝑥)] , (4.14)

and the definitions 𝜙(𝑥) = 𝜙+(𝑥) + 𝜙−(𝑥), 𝜃(𝑥) = 𝜙+(𝑥) − 𝜙−(𝑥), we obtain the free bosonic field
Hamiltonian,

𝐻0 =
𝑢
2 ∫ d𝑥 [𝐾(Π(𝑥))2 + 1

𝐾(𝜕𝑥𝜙(𝑥))
2] , (4.15)
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where Π(𝑥) = 𝜕𝑥𝜃(𝑥) is the canonical conjugate of 𝜙, [Π(𝑥), 𝜙(𝑦)] = i𝛿(𝑥 − 𝑦). Furthermore, we
have abbreviated in the free theory 𝐾 = 1 and 𝑢 = 𝐽, which is nothing but the Fermi velocity. The
action associated to 𝐻0 reads as

𝑆0[𝜙] =
1
2𝐾 ∫ d2r (𝜕𝜇𝜙(x))

2 (4.16)

= 1
2𝐾 ∫

d2p
(2𝜋)2 (

𝑝𝜇𝜙(p))2 (4.17)

≕ 1
2 ∫

d2p
(2𝜋)2

𝜙(𝑝)𝐷−1
𝜙 (𝑝)𝜙(𝑝) (4.18)

with r = 𝑟𝜇 = (𝑢⋅𝑡, 𝑥) the spacetime vector (withEuclideannorm), p = 𝑝𝜇 = (𝜔/𝑢, 𝑘) the spacetime
Fourier vector, and 𝐷𝜙(𝑝) = 𝐾/𝑝2 the (free) Feynman propagator for field 𝜙. Note the symmetry of
𝑆0 under the duality transformation 𝜙 → 𝜃, 𝐾 → 1/𝐾, 𝐷𝜙(𝑝) → 𝐷𝜃(𝑝) = 𝐾−1𝑝−2. Subsequently,
we relate the microscopic spin degrees of freedom on the lattice to their bosonic counterpart in the
continuum as [6, 216, 218],

𝑆±(𝑥) =
𝑆±𝑛
√𝑎

= (−1)𝑥/𝑎

√2𝜋𝑎c
exp(±i√𝜋𝜃(𝑥)) , (4.19)

𝑆𝑧(𝑥) =
𝑆𝑧𝑛
𝑎c

= 1
√𝜋

𝜕𝑥𝜙(𝑥) −
(−1)𝑥/𝑎c
𝜋𝑎c

sin(√4𝜋𝜙(𝑥)) , (4.20)

where the Jordan–Wigner phase factor Φ(𝑥) is taken to be the Hermitian version

Φ(𝑥) = 1
2 exp(−i𝜋 ∑

𝑦<𝑥
𝑐†𝑦𝑐𝑦) +H.c. = cos(𝜙(𝑥) − 𝑘𝐹𝑥) . (4.21)

4.3.2 Perturbatively including interactions

In the following, we use the definitions Eqs. (4.19) and (4.20) to include themicroscopic interaction
terms contained in Eq. (4.4) in our bosonic model. Since the link between spins on the lattice to
bosonic field operators hinges on the free model, we are thus adding these interaction terms as
a perturbation to our free model. Ultimately, our aim is to study the renormalisation group flow
to inspect when the interaction terms become strong enough to drive the system away from the
free Gaussian fixed point with conformal symmetry. To this end, we consider in principle three
interaction potentials. First, we consider the translation of the bosonised interaction of the short-
range nearest neighbour interaction −𝐽Δ𝑆𝑧𝑛𝑆𝑧𝑛+1, which we write following textbook examples [6,
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216, 218]. Second, we consider the long-range interaction in XY-direction. And third, we consider
the long-range interaction of the 𝑆𝑧𝑛𝑆𝑧𝑚 term. Using Eqs. (4.19) and (4.20) they translate as,

𝐽Δ𝑆𝑧𝑛𝑆𝑧𝑛+1 → 𝐽Δ(𝜕𝑥𝜙(𝑥))
2 + 𝐽Δ

(𝜋𝑎𝑐)2
cos(√16𝜋𝜙) , (4.22)

𝐽
𝑆+𝑛 𝑆−𝑚 +H.c.
|𝑛 − 𝑚|𝛼

→ 𝐽
2𝜋𝑎𝑐

cos(√𝜋(𝜃(𝑥) − 𝜃(𝑦)))

|𝑥 − 𝑦|𝛼
, (4.23)

Δ
𝑆𝑧𝑛𝑆𝑧𝑚

|𝑛 − 𝑚|𝛼
→ Δ

𝜋
𝜕𝑥𝜙(𝑥) 𝜕𝑦𝜙(𝑦)

|𝑥 − 𝑦|𝛼
, (4.24)

where we define 𝑥 = 𝑎𝑛, 𝑦 = 𝑎𝑚. Note the bosonised version of the interaction Δ𝑆𝑧𝑛𝑆𝑧𝑛+1 contains
a term quadratic in the boson field. This term is generally absorb in the free quadratic part of
the Hamiltonian (4.15), at the cost of perturbative renormalising the Luttinger parameters with
microscopic parameters according to,

𝑢𝐾 = 𝑣𝐹 , (4.25)
𝑢
𝐾 = 𝐽(1 + 4Δ

𝜋 ) . (4.26)

Furthermore, the long-range interaction term 𝑆𝑧𝑛𝑆𝑧𝑚/|𝑛 − 𝑚|𝛼 is highly irrelevant for 𝛼−1 < 1 [222],
as it contains two derivatives and two field operators. We therefore omit it in our following RG
analysis. Furthermore, we rename the coupling 𝑔𝐿𝑅𝑋𝑌 to 𝑔LR henceforth.

Consequently, we add the following interaction potentials to our action,

𝑉ZZ[𝜙] =
𝑔ZZ

(𝜋𝑎c)2
∫ d𝑥 cos(√16𝜋𝜙(𝑥)) , (4.27)

𝑉LR[𝜃] =
𝑔LR
2𝜋𝑎c

∫
|𝑥−𝑦|≫𝑎

cos(√𝜋[𝜃(𝑥) − 𝜃(𝑦)])

|𝑥 − 𝑦|𝛼
d𝑥 d𝑦 , (4.28)

such that we have the fully interacting model defined by,

𝑆[𝜙, 𝜃] = 1
2𝐾 ∫ d2r (𝜕𝜇𝜙(x))

2

−
𝑔ZZ

(𝜋𝑎c)2
cos(√16𝜋𝜙(𝑥))

−
𝑔LR
2𝜋𝑎c

∫
|𝑥−𝑦|≫𝑎

cos(√𝜋[𝜃(𝑥) − 𝜃(𝑦)])

|𝑥 − 𝑦|𝛼
d𝑥 d𝑦 . (4.29)

Equations (4.25) and (4.26) are perturbative relations of the microscopic parameter Δ and the Lut-
tinger parameters 𝐾 and 𝑢. In the short-range case, 𝛼 → ∞, can be improved and extended over the
entire paramagnetic phase in which the model is gapless and amenable to the linearisation of the
dispersion relation [6]. The Bethe ansatz allows for two predictions—in the case of the XXZ model
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this is the magnetic susceptibility linked to 𝑢/𝐾 and the spin stiffness linked to 𝑢𝐾—such that we
may extend above relations [6, 217, 218],

𝐾(Δ, 𝛼 = ∞) = 𝜋
2 arccos(Δ)

, (4.30)

𝑢(Δ, 𝛼 = ∞) = 𝜋√1 − Δ2
2 arccos(−Δ)

, (4.31)

which are valid for𝛼 → ∞ and |Δ| ≤ 1 over the entire critical phase of the (short-range)XXZmodel.
Note the linearised versions of Eqs. (4.30) and (4.31) yield up identical relations to Eqs. (4.25)
and (4.26) for |Δ| ≪ 1. However, upon including the interaction terms 𝑉ZZ[𝜙] and 𝑉LRXY[𝜃], the
value of the Luttinger parameter 𝐾 and the speed of sound 𝑢 are generally a function of the micro-
scopic parameters Δ and 𝛼, i.e. 𝐾 = 𝐾(Δ, 𝛼), 𝑢 = 𝑢(Δ, 𝛼).

4.3.3 Renormalisation group flow

Taking the path integral approach to renormalisation, we consider themicroscopic generating func-
tional 𝑍0 = ∫D𝜙D𝜃 exp(−𝑆[𝜙, 𝜃]) with action 𝑆[𝜙, 𝜃] = 𝑆0[𝜙] − 𝑉ZZ[𝜙] − 𝑉LRXY[𝜃] in Euclidean
spacetime. As per usual, one splits the spacetime Fourier modes of both fields in slow and fast
moving ones according to,

𝜙(𝑘) = {
𝜙𝑠(𝑘) if 0 ≤ 𝑘 ≤ Λ(1 − dℓ)

𝜙𝑓(𝑘) if Λ(1 − dℓ) < 𝑘 ≤ Λ
, (4.32)

𝜙(𝑘) = 𝜙𝑠(𝑘) + 𝜙𝑓(𝑘) , (4.33)

with 𝑘 being the norm of the Fourier spacetime vector, and dℓ the width of the spacetime mo-
mentum shell being integrated out. The analogous splitting applies to the field 𝜃(𝑘) = 𝜃𝑠(𝑘)+𝜃𝑓(𝑘).
In integrating out the fast moving modes, the fully interacting quantum theory generates a mixing
of Fourier modes that changes the effective values of the coupling ‘constants’. Such an integra-
tion leaves the new theory with a lower momentum cutoff. To compare the two theories, before
and after integrating out fast fluctuating modes, one only considers an infinitesimal shell at the
old cutoff as the integration interval and then rescales the newly obtained theory such that both
theories have the same momentum cutoff. This infinitesimal change of the coupling constants is
generally referred to as the renormalisation group (RG) flow. They generically constitute differen-
tial equations, and in the context of the Luttinger liquid with the interaction terms coming form
the LRXXZ model, Eqs. (4.27) and (4.28), they read [216, 223],

d𝑔ZZ
dℓ = (2 − 4𝐾)𝑔ZZ , (4.34)

d𝑔LR
dℓ = (3 − 𝛼 − 1

2𝐾)𝑔LR , (4.35)

where dℓ is the width of the spacetime momentum shell at momentum cutoff Λ, integrated out
in one RG step. For more details and a derivation, see Appendix 4.B. Note that the flow equations
(4.34) and (4.35) are uncoupled. To first-order perturbative RG, the renormalisation of 𝑔ZZ is thus
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both 

rel.

both 

irrel.

Legend:

Luttinger liquid

K

1/
α

Figure 4.3.2: A projection of the RG flow based on the flow Eqs. (4.34) and (4.35) of the effective bosonic
field theory (EFT) model of the LRXXZ defined by the action in Eq. (4.29). The curves for
𝐾𝑐 (4.36) and 𝐾′

𝑐 (4.37) are shown as the solid yellow and cyan lines, respectively. The vector
field visualises in the 𝑥-direction the derivative 𝑔′ZZ while the 𝑦-direction shows the derivative
𝑔′LR. The coupling 𝑔ZZ is thus irrelevant when the vetor field points into the left half plane,
while the coupling 𝑔LR is irrelevant when the vector field is pointing into the lower half plane.
Therefore, only when pointing into the lower left quadrant are both couplings irrelevant, and
we obtain a Luttinger liquid.

completely controlled by the Luttinger parameter 𝐾 [6, 216], while that of 𝑔LR is controlled by both
𝐾 and the long-range exponent 𝛼 [223].
Equation (4.34) governs the AFM-XY transition: The ZZ interaction term is relevant for 𝐾 < 1/2

(AFM phase) and irrelevant for 𝐾 > 1/2 (XY phase), indicating a transition characterised by the
critical Luttinger parameter

𝐾c(Δ, 𝛼) = 1/2 , (4.36)

which defines a curve in the parameter space (Δ, 𝛼) of the LRXXZ model. As mentioned above in
Eqs. (4.30) and (4.31), the Bethe ansatz provides a non-perturbative solution of the effective field
theory parameters 𝐾 and 𝑢 in terms of the microscopic anisotropy parameter Δ in case of short-
range interactions (𝛼 → ∞). Therefore, the AFM to Luttinger liquid (LL) phase transition in the
short-range case occurs at 𝐾𝑐(Δ, 1/𝛼 = 0) = 1/2 ⇔ Δ𝑐 = −1. This prediction of the critical value of
𝐾𝑐 = 1/2 is confirmed by numerical calculations all along this transition line, see Sec. 4.4.3.
On the other hand, inspecting the critical line where 𝑉LRXY[𝜃] is marginal, i.e. where Eq. (4.35)

has a coefficient identically zero, we find for the transition into a long-range XY (LRXY) phase with
a broken continuous symmetry (CSB) the condition,

𝐾′
c(Δ, 𝛼) =

1
2(3 − 𝛼)

, (4.37)

defining the phase transition line in the parameter space (Δ, 𝛼) of the LRXXZmodel. Note that the
transition into the CSB phase can only occur for finite values of 𝛼 ≤ 3 since the Luttinger parameter
is 𝐾 > 0. Noteworthy to discuss are two points in the parameter plane (Δ, 𝛼). Firstly, consider
𝛼 → 3 in which case 𝐾′

𝑐 → +∞ which is the same behaviour of the Luttinger parameter when
approaching the XY–FM transition at Δ = +1 in the short-range case, cf. Eq. (4.30). As discussed in
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Appendix 4.A, long-range interactions neither alter the position ΔFM𝑐 = +1 of this phase transition
nor do they change the ground state itself. This suggests the Luttinger parameter𝐾 does not change
on theXY–FMphase boundary either but is diverging𝐾 → ∞ on thewhole line whichwould imply
the SRXY–LRXYphase transition line defined by𝐾′

c(Δ, 𝛼)meets theXY–FMphase boundary at (Δ =
−1, 𝛼 = 3) in the LRXXZ parameter plane. Indeed, we confirm this behaviour through numerical
simulations, cf. Section 4.4.3. Secondly, consider 𝛼 = 2 in which case 𝐾′

𝑐 = 1/2 = 𝐾𝑐. Thus, we
expect the SRXY–LRXY phase boundary meets the AFM–XY phase boundary at 𝛼 = 2. Figure 4.3.2
shows a projection of the RG-flow diagram of the effective bosonic field theory, defined by the first-
order flow equations (4.34) and (4.35). Here, we chose to visualise the flow in terms of the two
parameters 𝐾 and 𝛼−1 and not as usual in terms of the couplings 𝑔ZZ and 𝑔LR. The vector field plots
the derivatives 𝑔′ZZ and 𝑔′LR as the 𝑥- and 𝑦-components respective vector at the corresponding point.
We see for 𝐾 > 1/2 and rather short-ranged interactions (𝛼−1 → 0), the ground state flows towards
the Luttinger liquid fixed point and exhibits conformal symmetry. For 𝐾 > 1/2 and long-ranged
interactions (𝛼−1 > 1/3), the ground state spontaneously breaks the symmetry𝐾 → 1/𝐾 and𝜙(𝑥) →
𝜃(𝑥) as 𝑉LRXY becomes relevant. This reflects the spontaneous breaking of the 𝑈(1) symmetry in
the microscopic spin model. At 𝐾 < 1/2, the Hamiltonian renormalises to the antiferromagnetic
Néel phase when 𝑉ZZ becomes relevant. There, the cosine term of 𝑉ZZ breaks the chiral symmetry,
opens a gap in the spectrum, and the system is not well-approximated by the linearisation of the
lattice dispersion and Luttinger liquid theory breaks down. We thus consider the emergent phase
between the red critical curve and the green critical curve for 𝛼−1 > 0.5 an artefact of the effective
linearisation of the lattice dispersion and the linearisation of the RG-flow equations, therefore not
reflecting a phase of the microscopic spin chain.
Last but not least, long-range interactions must increase the frustration in the ground state when

the coupling is not ferromagnetic, i.e. it is antiferromagnetic following our definition of 𝐽. Thus,
they alter the AFM–XY phase boundary compared to the well-known point Δ = −1, 𝛼 = ∞ in
the short-range limit of the LRXXZ model. In the following, we determine this shift by numerical
simulation of several observables and verify the predictions obtained through RG.

4.4 Results

4.4.1 Geometric entanglement

We first consider the ground-state geometric entanglement (GE), defined as,

𝐸𝑔(𝜓) = − log2(max𝜙∶prod
|⟨𝜙|𝜓⟩|2) , (4.38)

where |𝜓⟩ is the exact ground state of the model and the set {|𝜙⟩} span the submanifold of product
states [199]. It has been previously shown to be instrumental for identifying quantum phase trans-
itions, including infinite order ones, in a variety of models, for instance short-range spin mod-
els [153], and two-dimensional classical models [224], and is related to other geometric measures of
the entanglement [205]. Here we compute the GE for the LRXXZ model on the MPS ground state
using a two-step approach as detailed in Section 2.A.1: We first compute the exact MPS ground
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(a)

(b)

Figure 4.4.1: (a) Quantum phase diagram of the LRXXZmodel, Eq. (4.2), versus the anisotropy (Δ) and long-
range (𝛼−1) parameters. The colour scale indicates the GE density 𝐸𝑔/𝑁, Eq. (4.38). It shows
a cusp at the AFM-XY phase transition (indicated by the red points) and a non-analytic step
at the XY-FM phase transition (see Inset). Also shown are numerical results for the AFM-XY
phase transition found from degeneracy lift of the entanglement spectrum (blue crosses), and
for the upper bound in 𝛼−1 for LL behaviour (purple diamonds). The yellow solid line shows
the AFM-XY phase transition as found from renormalisation group analysis combined with
inverse rescaling of Eq. (4.41) at the critical Luttinger parameter 𝐾c = 1/2, see Section 4.3.3.
The cyan solid line shows the critical line for breaking of LL behaviour obtained similarly at
𝐾′
c = 1/[2(3 − 𝛼)]. The transparent yellow and cyan ribbons as well as the size of the markers

correspond to the uncertainty.
(b) GE versus Δ for 𝛼−1 = 0 (blue), 0.34 (orange), and 0.5 (green). For all calculations, the
system size is 𝑁 = 192. Figure adapted from [185].
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state |𝜓⟩ using DMRG calculations with high bond dimension, perform a singular value decompos-
ition (SVD), and truncate it down to a single dominating singular value, to reduce the MPS to a
product state |𝜙0⟩. Subsequently, we submit the obtained state |𝜙0⟩ to several variational optimiza-
tion sweeps, keeping the bond dimension fixed at unity, until convergence of the overlap |⟨𝜙|𝜓⟩|2.
More precisely, the optimization procedure is stopped when the difference of the overlaps |⟨𝜙|𝜓⟩|2

before and after the optimization sweeps becomes negligible (in practice smaller than 10−9). This
algorithm yields the state |𝜙⟩ closest to the exact ground state |𝜓⟩within the product-statemanifold.

In Figure 4.4.1, the GE of the LRXXZ model is represented in colour scale versus the anisotropy
parameterΔ and the long-range parameter 𝛼. The XY to FM phase transition is signalled by a sharp
step from 𝐸𝑔(Δ ≤ 1) > 0 to 𝐸𝑔(Δ > 1) = 0, see Fig. 4.4.1(b). This transition occurs at Δ = 1, irre-
spective to the value of the long-range parameter 𝛼−1 being consistent with the expected transition
to the trivial, fully 𝑧-polarized ground state of the FM phase, see Appendix 4.A. On the other hand,
the AFM to XY phase transition is signalled with a marked cusp of the GE, see Fig. 4.4.1(b). Par-
alleling its behaviour in the short-range case [153], the GE’s ability to signal the AFM–XY phase
transition persists in the long-range case for all considered values of 𝛼−1. Furthermore, we have
checked that the position of the local maximum signalling the phase transition is well converged
in system size, see Appendix 4.C. Consequently, the pronounced peak in the GE allows us to loc-
ate the XY-FM phase transition versus the long-range parameter, see red disks in Fig. 4.4.1. While
long-range interactions do not affect the XY-FM transition, they significantly shift the AFM-XY
transition towards higher values of the antiferromagnetic anisotropy parameter |Δ|. This is to be ex-
pected since 𝑧-oriented AFM order is frustrated by long-range interactions, which hence favour the
XY phase. The two phase boundaries, the AFM–XY as well as the XY–FM as obtained from the GE
are in excellent quantitative agreement with that found using the central charge in the conformally
symmetric XY phase [223]. This shows that the GE provides a robust probe of both quantum phase
transitions also in the long-range case. Nevertheless, RG predicts a phase transition away from the
Luttinger liquid into a continuous symmetry broken phase following the condition Eq. (4.37). The
geometric entanglement evidently fails to signalling this transition.

4.4.2 Entanglement spectrum

To gain more insight into the entanglement properties of the LRXXZ model, we now study the
entanglement spectrum (ES) [112]. Its properties have been shown to signal quantum phase trans-
itions in a variety of models, including the infinite order BKT phase transition of the XXZ model
in the short-range case [118]. This contrasts with standard entanglement witnesses, such as Rényi
entropies, which show a smooth behaviour at the AFM-XY transition [153, 187]. As defined in Ap-
pendix 2.A.2, the ES is defined in terms of the Schmidt decomposition of the ground state |𝜓⟩,

|𝜓⟩ = ∑
𝑗
√𝜆𝑗|𝜓𝐴

𝑗 ⟩ ⊗ |𝜓𝐵
𝑗 ⟩ , (4.39)

99



4 Entanglement and quantum phase transitions

where 𝜆𝑗 is the 𝑗-th Schmidt coefficient, and |𝜓𝐴
𝑗 ⟩ and |𝜓𝐵

𝑗 ⟩ are orthonormal bases of each subsystem.
The reduced density matrix of a partition, 𝜌𝐴 = tr𝐵(|𝜓⟩⟨𝜓|), is then cast in thermal-like form,

𝜌𝐴 = ∑
𝑗
e−𝜉𝑗|𝜓𝐴

𝑗 ⟩⟨𝜓𝐴
𝑗 |, (4.40)

where the coefficients 𝜉𝑗 = − ln(𝜆𝑗) are the entanglement energies and the effective temperature
equals unity.

4.4.2.1 Entanglement spectrum of the LRXXZ chain

The ground-state ES of the LRXXZ is shown in Fig. 4.4.2 versus the anisotropy parameter Δ in
the short-range case [(a) 𝛼−1 = 0] and in the long-range case for two values of the long-range
parameter [(b) 𝛼−1 = 0.3 and (c) 𝛼−1 = 0.54]. In all cases, the XY to FM phase transition is marked
by the sharp divergence of all entanglement energies but 𝜉1, which vanishes for Δ = 1. This is
consistent with the onset of a fully polarized, exact product state in the FM phase, irrespective
of the long-range parameter 𝛼−1. The ground state deep in the AFM phase also tends towards a
product state but only smoothly in the limit of infinite anisotropy, Δ → −∞, as indicated by the
monotonous increase of all 𝜉𝑗 but 𝜉1. In the short-range case, Fig. 4.4.2(a), the AFM to XY phase
transition at Δ = −1 is marked by the sudden lift in the degeneracy of entanglement energies, see
also Ref. [118]. More precisely, the entanglement energies 𝜉2 and 𝜉3 are degenerate in the XY phase
while they are distinct in the AFM phase. The degeneracy lift, found exactly at Δ = −1, marks the
AFM–XYphase transition. A similarly sharp degeneracy lift is found for the entanglement energies
𝜉5 and 𝜉6. Qualitatively similar features are found in the long-range case, for all considered values
of long-range parameter 𝛼−1. The degeneracy lift point is, however, found for a critical anisotropy
parameter Δ that significantly depends on the long-range parameter 𝛼−1, Figs. 4.4.2(b) and (c). It
allows us to locate the AFM to XY phase transition in the LRXXZ model for all values of the long-
range parameter. The result, shown as blue crosses in the phase diagram of Fig. 4.4.1, is in excellent
agreement with the transition previously inferred from the cusp of the GE.

Note that the ES shows an apparent crossover regime in a narrow region of the AFM phase close
to the AFM–XY phase transition, even for the relatively large system size used in our calculations
(𝑁 = 192). It is marked by apparent degeneracies (e.g. 𝜉3 = 𝜉4) and a cusp of the lowest two
entanglement energies in this crossover regime, see behaviour in the interval−1.5 < Δ < −1 for the
short-range case, and lower values for long-range cases. However, we find that this interval slowly
shrinks towards the true AFM–XY critical point, see Appendix 4.C. This is consistent with the slow
finite-size scaling of the localmaximumof the entanglement entropy reported in earlier works [203,
204]. For a more detailed discussion of the finite-size effects on the ES, see Appendix 4.C.We hence
consider the cusps of 𝜉1 and 𝜉2, i.e. the local minimum of the Schmidt gap, as well as the apparent
degeneracies in the crossover regime observed in Fig. 4.4.2 as finite-size artefacts. Note that in
striking contrast the degeneracy lift point is nearly independent of the system size for 𝑁 ≳ 100, see
Appendix 4.C.
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(a)

(b)

(c)

Figure 4.4.2: Entanglement spectrum of the ground state of (a) the short-range XXZ model, 𝛼−1 = 0, and
(b)-(c) the LRXXZ model for 𝛼−1 = 0.3 and 𝛼−1 = 0.54, respectively. Shown are the first seven
entanglement energies (𝜉1 blue, 𝜉2 orange, 𝜉3 green, 𝜉4 purple, 𝜉5 brown, 𝜉6 teal, and 𝜉7 pink).
The phase transition from XY to FM is marked by the divergence of all but the first entangle-
ment energies at Δ = 1. In the XY phase, the entanglement energies 𝜉2 (orange) and 𝜉3 (green)
are degenerate (𝜉2 = 𝜉3) while they are distinct deep in the AFM phase (𝜉2 ≠ 𝜉3), and the de-
generacy lift marks the AFM–XYphase transition. Note the ES is in a crossover regime between
the AFM–XY critical point and the cusps of 𝜉1 and 𝜉2, see text. The system size is 𝑁 = 192 for
all calculations. The error bars are smaller than the size of the markers. Figure from [185]. See
https://jtschneider.github.io/es-rescaling for an interactive version online.
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4 Entanglement and quantum phase transitions

4.4.2.2 Self-similarity

Inspection of the ES for a variable interaction range in the various panels of Fig. 4.4.1 shows a re-
markable similarity, in particular in the low-entanglement-energy sector of the XY phase. Note
that the entanglement spectrum ‘stretches’ in the direction −Δ, starting from Δ = +1, for ever-
increasing interaction range, cf. Fig. 4.4.2 and follow https://jtschneider.github.io/es-
rescaling to an interactive plot online. More precisely, we can find a nonlinear rescaling of the
anisotropy parameter of the form

Δ → Δ̃(Δ, 𝛼) = −𝛾(𝛼)|Δ − 1|𝜈(𝛼) + 1 , (4.41)

such that all spectral lines (approximately) collapse onto the ES of the short-range model, see
Fig. 4.4.3. The rescaling (4.41) is consistent with the exact fixed point Δ⋆ = 1 corresponding to
the XY–FM transition. The parameters 𝛾(𝛼) and 𝜈(𝛼) are then found by minimizing a weight func-
tion constructed over a wide interval containing the AFM–XY phase transition. For more details,
see Appendix 4.D. Figure 4.4.4 shows the rescaling parameters 𝛾 and 𝜈 versus the long-range para-
meter 𝛼−1. Both start to significantly differ from unity at 𝛼−1 ≃ 0.2, consistently with Fig. 4.4.1.

More precisely, we distinguish two regimes. For roughly 𝛼−1 ≲ 0.3, all spectral lines almost
perfectly collapse onto the short-range ES upon rescaling in the XY phase, see Fig. 4.4.3(a). On the
other hand, for 𝛼−1 ≳ 0.3, only the lowest three spectral lines 𝜉1, 𝜉2, 𝜉3 are congruent with the short-
range ones upon rescaling, see Fig. 4.4.3(b). In contrast, the rescaled spectrum shows aworsematch
for higher entanglement energies (𝜉4 and higher). For instance, while 𝜉4 (purple) is rescaled to
greater values of Δ̃, 𝜉7 (pink) is rescaled to lower ones, pointing towards an irreconcilablemismatch
following a global rescaling of the ES. Nevertheless, the good match of the lowest entanglement
energies renders the scaling (4.41) sufficient to determine the AFM to XY transition found from
the degeneracy lift of 𝜉2 and 𝜉3. Similarly, the rescaling parameters 𝛾(𝛼), 𝜈(𝛼) start to significantly
deviate from close to unity around 𝛼−1 ≃ 0.2 reflecting an onset of a stronger expansion of the
ES to more negative values of Δ with longer ranged interactions. See also Fig. 4.4.2 for a direct
observation of the degeneracy lift position expanding faster than linear towards more negative Δ
with longer ranged interactions.

Note that the self-similarity applies in particular to the congruent rescaling of the degeneracy
lift point indicating the AFM–XY phase transition. This implies the critical AFM–XY point char-
acterised by 𝐾𝑐 = 1/2 follows the same rescaling property as the ES, i.e. 𝐾(Δ = −1, 𝛼 = ∞) =
1/2 = 𝐾(Δ̃(Δ = −1, 𝛼), 𝛼). However, the self-similarity applies more importantly at least to the
low-entanglement-energy spectrum over the entire XY phase. It is therefore reasonable to assume
that not only the critical AFM-XY point at 𝐾 = 1/2 can be rescaled to its long-range counterpart,
but rather can 𝐾 be rescaled over a wider region of the XY phase. With this assumption, we in-
spect the critical line where 𝑉LRXY[𝜃], Eq. (4.28), turns relevant, corresponding to the condition
𝐾′
c = 1/[2(3−𝛼)], see Eq. (4.35). Replacing𝐾′

c by the Bethe ansatz formula (4.30) andΔ by Δ̃(Δ′c, 𝛼),
Eq. (4.41), we then solve for Δ′c(𝛼). It yields the cyan solid line in Fig. 4.4.1. Above this line, the
physics is governed by the long-range XY model (LRXY phase in the Fig. 4.4.1), while below the
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4.4 Results

Figure 4.4.3: Entanglement spectra plotted versus the rescaled anisotropy parameter Δ̃ for various long-range
parameters 𝛼−1. The short-range case 𝛼−1 = 0 is shown as coloured circles while long-range
cases are shown as coloured diamonds. (a): Values of 𝛼−1 from 0.02 to 0.3with an increment of
0.04 corresponding to progressively fainter colour. (b): Same for values of 𝛼−1 from 0.34 to 0.78.
Figure from [185].
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Figure 4.4.4: Rescaling parameters 𝛾 and 𝜈 of Eq. (4.41) versus the long-range parameter 𝛼−1. The error bars
are indicated by capped black lines (see method in Appendix 4.D). Figure from [185].

long-range XY term is irrelevant (SRXY phase). Numerical calculations confirm that the transition
is characterised by the critical Luttinger parameter 𝐾′

c = 1/[2(3 − 𝛼)], see Sec. 4.4.3. Note that for
𝛼 = 2, the critical line for long-range behaviour yields𝐾′

c = 1/2, at which point also𝑉ZZ[𝜙] becomes
relevant (𝐾c = 1/2). We thus expect that the two critical lines approximately meet around 𝛼c = 2
within first order perturbative RG.
Likewise, we have checked that the same rescaling also applies to the geometric entanglement

curves. Applying the rescaling of Eq. (4.41) with the scaling parameters 𝛾(𝛼) and 𝜈(𝛼) found from
the ES (Fig. 4.4.4), we find very good data collapse of the rescaled GE curves onto the corresponding
short-range curve for 𝛼−1 ≲ 0.3, see Fig. 4.4.5(a). It is worth noting that this holds over both the
AFM and XY phases. In contrast, for 𝛼−1 ≳ 0.3, the rescaling gets increasingly worse for longer
range interactions (increasing values of 𝛼−1), although the cusp is still consistent with Δ̃ ≃ −1,
see Fig. 4.4.5(b).

4.4.3 Luttinger liquid parameters in XY phase

This section is dedicated to the numerical verification of Luttinger liquid behaviour. The results
above in Section 4.4.2.2 indicate that the entanglement properties (ES andGE) of the LRXXZmodel
can be deduced from their short-range counterpart upon the rescaling of Eq. (4.41). Furthermore,
our RG analysis is consistent with the existence of an effective Luttinger parameter 𝐾 fulfilling the
same rescaling over the entire SRXY phase. In this section, we check Luttinger liquid behaviour
as well as the self-similar features of 𝐾 over the critical phase by inspecting a number of universal
behaviours characteristic of LL.
We first consider the behaviour of the Rényi entropies, 𝒮𝑛 = ln[tr(𝜌𝑛𝐴)]/(1 − 𝑛) with Rényi order

𝑛 ∈ ℝ+. Measuring Rényi entropies allows us on the one hand to verify that the central charge is
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Figure 4.4.5: Rescaling of the ground-state GE density, Eq. (4.38), with Eq. (4.41) versus Δ̃. (a) Data for 𝛼−1 ≤
0.3, colour coding from dark blue to bright yellow for 𝛼−1 = [0.0, 0.02, 0.06,… , 0.3]. (b) Data for
𝛼−1 > 0.3, colour coding from dark blue to bright yellow for 𝛼−1 = [0.34, 0.38,… , 0.62]. Figure
from [185].
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close to unity, a necessary condition for LL behaviour, and on the other hand to estimate the LL
parameter 𝐾. The Rényi entropies of the short-range XXZ model in the critical XY phase may be
written as [225, 226]

𝒮𝑛(𝑁, 𝑙) = 𝒮CFT𝑛 (𝑁, 𝑙) + 𝒮osc𝑛 (𝑁, 𝑙), (4.42)

with𝑁 the system size and a bipartition into two sub-systems𝐴 and 𝐵 of respective sizes 𝑙 and𝑁−𝑙.
The first term is the conformal field theory (CFT) prediction. For a finite one-dimensional gapless
system of size 𝑁 with open boundary conditions, it reads as

𝒮CFT𝑛 =
𝑐(1 + 𝑛−1)

12 ln[4(𝑁 + 1)
𝜋 sin(𝜋(2𝑙 + 1)

2(𝑁 + 1) )]
+ 𝑐1 , (4.43)

where 𝑐 is the central charge, and 𝑐1 is a nonuniversal constant [225, 226]. Note that the open bound-
ary conditions (OBC) alter the chord distance 𝐷OBC(𝑙, 𝑁) = 4(𝑁 + 1) sin[𝜋(2𝑙 + 1)/(2(𝑁 + 1))]/𝜋
with respect to periodic boundary conditions (PBC) 𝐷PBC(𝑙, 𝑁) = 𝑁 sin(𝜋𝑙/𝑁)/𝜋 [226, 227]. The
second term accounts for oscillatory corrections to the CFT prediction due to significant antiferro-
magnetic correlations in the critical XY phase of the XXZ model [226, 228]. It takes the universal
form [225–229]

𝒮osc𝑛 =
𝑔𝑛
𝑁𝑝𝑛

sin[(2𝑙 + 1)𝑘′𝐹]
|||sin(

𝜋(2𝑙 + 1)
2(𝑁 + 1) )

|||

−𝑝𝑛
, (4.44)

where 𝑔𝑛 is a nonuniversal constant, the exponents of the oscillation amplitude, 𝑝𝑛, are related to
the Luttinger parameter 𝐾 as 𝑝𝑛 = 2𝐾/𝑛 for OBC, and 𝑘′𝐹 =

𝑁
𝑁+1

𝑘𝐹 +
𝜋

2(𝑁+1)
is an effective Fermi

momentum, including OBC finite-size corrections with respect to its counterpart in the thermody-
namic limit, 𝑘𝐹 = 𝜋/2.

To determine the effective central charge 𝑐 and Luttinger parameter 𝐾 of the LRXXZ, we fit
Eq. (4.42) with Eqs. (4.43) and (4.44) to the Rényi entropy obtained from the ground state MPS
in the range 𝑙 ∈ [10,… ,𝑁−10] at fixed system size𝑁 and fixed Rényi order 𝑛. It yields estimates of
the four fitting parameters 𝑐, 𝑐1, 𝑔𝑛, 𝑝𝑛, and consequently of the Luttinger parameter, 𝐾 = 𝑛𝑝𝑛/2.
We focus on the critical XY phase (−1 < Δ̃ < 1) as previously identified from the GE and ES.
We consider that the Rényi entropies are consistent with LL behaviour when the residual sum of
squares (RSS) is below 2%. Typical fits of Eq. (4.42) to the MPS data are displayed in Fig. 4.4.6(a).
Note that for clarity the various curves are shifted by an amount indicated on the right-hand-side of
each curve. Judging from the fit quality check above, we find that the results are consistent with LL
behaviour in a region of the critical phase bounded from above in direction of 𝛼−1. The boundary
is displayed as purple diamonds in Fig. 4.4.1. The breakdown of the LL behaviour is in excellent
agreement with the critical line found from our RG analysis (solid cyan line). Consistently, we find
that in the region so identified, the central charge—as extracted from the fits—does not signific-
antly deviate from unity 𝑐 ≈ 1. This property was used in Ref. [223] as a criterion to identify the LL
phase and yields a similar boundary. Moreover, we find that the various estimates of the Luttinger
parameter from Rényi entropies of different orders 𝑛, 𝐾 = 𝑛𝑝𝑛/2, consistently yield a value of 𝐾
approximately independent of 𝑛 with a tolerance of less that 7.5%.
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Figure 4.4.6: Typical MPS data for entanglement entropies and correlation functions for Δ = −0.875, 𝛼−1 =
0.06 (blue), Δ = −1.5, 𝛼−1 = 0.42 (orange), Δ = −0.125, 𝛼−1 = 0.34 (green), Δ = 0.5, 𝛼−1 =
0.14 (purple), and the system size 𝑁 = 192. The error bars are smaller than the size of the
marker. (a) Rényi entanglement entropies 𝒮𝑛=2(𝑁, 𝑙) (colourised circles) and corresponding fit
of Eq. (4.42) (solid line) plotted versus the logarithm of the chard distance. Fits performed over
𝑙 ∈ [10,… ,𝑁 − 10] yield 𝑐eff = 0.9, 𝐾 = 0.6 (blue), 𝑐eff = 1, 𝐾 = 1.1 (orange), 𝑐eff = 1, 𝐾 = 1.5
(green), and 𝑐eff = 1, 𝐾 = 1.5 (purple). For clarity, the curves are shifted by a constant offset
indicated on the right-hand-side of each curve. (b) Correlation function ⟨𝑆+𝑁/2𝑆

−
𝑁/2+𝑑⟩ (points)

and corresponding fit of Eq. (4.45) (solid line) plotted versus distance 𝑑. The fits yield 𝐾 = 0.6
(blue), 𝐾 = 1.1 (orange), 𝐾 = 1.4 (green), and 𝐾 = 1.4 (purple). Figure from [185].
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Figure 4.4.7: Luttinger parameter 𝐾 versus the anisotropy parameter for various values of the long-range
parameter 𝛼−1. Coloured disks correspond to the Rényi-entropy estimates 𝐾𝒮, Eq. (4.42) with
Rényi order 𝑛 = 2, and coloured crosses to correlation-function estimates𝐾𝐺, Eq. (4.45). Colour
codings for 𝛼−1 are indicated in colour bars. The dashed red line is the short-range Bethe ansatz
formula (4.30). The upper panels (a) and (b) show the data versus the bare anisotropy parameter
Δ, separating the cases 0 ≤ 𝛼−1 ≤ 0.3 and 𝛼−1 > 0.3 for clarity. The lower panels (c) and (d)
show, respectively, the same data versus the rescaled parameter Δ̃. The breakdown of LL theory
is signalled by deviations between the two estimates at Δ̃ ≲ −1. The size of the error bars is
smaller than the size of the marker. Figure from [185].

To verify the validity of the LL behaviour within the SRXY phase, we now turn to a second,
independent measurement of the effective Luttinger parameter 𝐾. To this end, we consider the
⟨𝑆+𝑅𝑆−𝑅′⟩ correlation functions. For the short-range XXZ model they read as,

𝐺(𝑅, 𝑅′) = ⟨𝑆+𝑅𝑆−𝑅′⟩ ≈
𝐶1

|𝑅 − 𝑅′|2𝐾+
1
2𝐾

+ 𝐶2

|𝑅 − 𝑅′|
1
2𝐾

, (4.45)

where 𝐶1 and 𝐶2 are nonuniversal constants1. We compute the correlation function ⟨𝑆+𝑁/2𝑆
−
𝑁/2+𝑑⟩

in the LL regime identified above. Typical MPS results (points) together with fits of Eq. (4.45) to the
data (solid lines) are shown in Fig. 4.4.6(b), showing excellent agreement over the full LL regime.
These fits confirm the LL behaviour and yield a second, independent, estimate of the Luttinger
parameter 𝐾.
To compare the two estimates of the Luttinger parameter, from fits to the Rényi entropies (𝐾𝒮)

and to the correlation functions (𝐾𝐺) respectively, first note that the same congruent rescaling as
discussed above also applies to both 𝐾 estimates. Figures 4.4.7(a) and (b) show the fitted values of
𝐾𝒮 (coloured dots) and 𝐾𝐺 (coloured stars) plotted against the anisotropy parameter Δ for different
values of the long-range parameter 𝛼−1. Data for 0 < 𝛼−1 ≤ 0.3 and 0.3 < 𝛼, respectively, are

1The Hamiltonian of the short-range model obeys the symmetry𝐻(−𝐽,−Δ,ℎ,𝛼 = ∞) = 𝑈2𝐻(𝐽,Δ, ℎ, 𝛼 = ∞)𝑈−1
2

with 𝑈2 = ∏𝑙=even 𝜍
𝑧
𝑙 = 𝑈−1

2 . This maps 𝑆𝑥𝑙 , 𝑆
𝑦
𝑙 , 𝑆𝑧𝑙 to −𝑆𝑥𝑙 , −𝑆

𝑦
𝑙 , 𝑆𝑧𝑙 for even 𝑙 [217]. Using this transformation,

Eq. (4.45) is consistent with its counterpart for antiferromagnetic coupling (𝐽 < 0), see Refs. [6, 217].
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Figure 4.4.8: Critical Luttinger parameter along the SRXY-LRXY transition versus the long-range parameter
𝛼−1. The solid black line is the RG prediction 𝐾′

c = 1/[2(3 − 𝛼c)]. The coloured disks show
the numerically measured 𝐾𝒮 through fits to Eq. (4.42) with Rényi order 𝑛 = 2 at points in the
phase diagram Fig. 4.4.1 closest to the RG critical boundary line (cyan solid line). The colour
code correspond to values of Δ from Δ = 0.5 (yellow) to Δ = −2.75 (blue). Figure from [185].

separated in Figs. 4.4.7(a) and (b) for clarity. The dashed red line shows the analytic short-range
result from Bethe ansatz, Eq. (4.30). Figures 4.4.7(c) and (d) show, respectively, the same data
versus the rescaled anisotropy parameter Δ̃. For 0 ≤ 𝛼−1 ≤ 0.3, we observe an almost perfect
collapse of all long-range values of 𝐾𝒮 and 𝐾𝐺 onto the short-range curve upon the rescaling (4.41)
with parameters as in Fig. 4.4.4, see Fig. 4.4.7(c). In contrast, the data for 𝐾𝒮 and 𝐾𝐺 for Δ̃ < −1
do not agree with each other, consistently with the breakdown of LL theory. Similarly, Fig. 4.4.7(d)
displays 𝐾𝒮 and 𝐾𝐺 for 0.3 < 𝛼−1 (colour coding from blue to yellow) and shows a good self-similar
rescaling, albeit with few singular deviations inside −1 < Δ̃ < 1 for the largest values of 𝛼−1. Here
also the breakdown of LL theory is found for Δ̃ < −1 where 𝐾𝒮 and 𝐾𝐺 deviate from each other.
These results confirm the LL behaviour in the SRXY phase identified in the diagram of Fig. 4.4.1.

They furthermore confirm the self-similarity features of the Luttinger parameter 𝐾 that was as-
sumed in the derivation of the critical lines in the self-similarity analysis in Section 4.4.2.2. The
latter matches well our independent numerical analysis in this section, as well as the numerical
results of Ref. [223]. The critical line we obtain from RG analysis constitutes a substantial improve-
ment over the perturbatively computed analytic line ibidem.
Moreover, we find that the point where the two numerically estimated Luttinger parameters start

to deviate, hence marking the breakdown of LL behaviour and found at Δ̃ ≃ −1, is consistent
with the RG prediction for the AFM–XY phase transition, 𝐾𝑐 = 1/2, for all values of 𝛼 inspected,
see Fig. 4.4.7(c). Similarly, we find that the Luttinger parameter computed from Rényi entropies,
𝐾𝒮, along the phase boundary estimated by 𝐾′

𝑐 (solid cyan line in Fig. 4.4.1) is consistent with the
RG prediction for the SRXY-LRXY transition, see Fig. 4.4.8.
We finally consider the behaviour of the speed of sound 𝑢 in the LL regime. To find it, we rely

on the LL formula for the magnetic susceptibility 𝜒 = 𝜕𝑀/𝜕ℎ||ℎ=0 = 𝐾/(𝑢𝜋), where ℎ is the
magnetic field amplitude and 𝑀 = 2∑𝑛⟨𝑆

𝑧
𝑛⟩ is the total magnetization. In the MPS simulations,

we add the magnetic coupling term −ℎ∑𝑛 𝑆
𝑧
𝑛 to Hamiltonian (4.2) and compute 𝑀 for various

magnetic field amplitudes in the range 0.01 < ℎ < 0.1. The magnetic susceptibility 𝜒 is then found
from a linear fit to the MPS data for the total magnetisation. The speed of sound is then given by
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4 Entanglement and quantum phase transitions

Figure 4.4.9: Speed of sound 𝑢 versus the rescaled anisotropy parameter Δ̃ for various values of the long-
range parameter 𝛼−1. The data are found from calculations of the magnetic susceptibility and
estimates of the Luttinger parameter 𝐾 from fits to the Rényi entropy, see text. The solid red
line indicates the short-range analytic result. Data for 𝛼−1 ≤ 0.3, colour coded from dark blue
to bright yellow while data for 𝛼−1 > 0.3 is colour coded from bright yellow to dark brown. The
uncertainty on each data point is marked by vertical capped error bars. Figure from [185].

𝑢 = 𝐾𝒮/(𝜋𝜒), where 𝐾𝒮 is the estimate of the Luttinger parameter found from the entanglement
entropy as discussed above. The results (coloured disks), together with the Bethe ansatz prediction
𝑢(Δ) = 𝜋√1 − Δ2/(2 arccos(−Δ)) [6, 217, 218] are shown in Fig. 4.4.9. In striking contrast with the
Luttinger parameter 𝐾, the speed of sound 𝑢 does not follow the rescaling of Eq. (4.41). It rather
increases in value upon increasing the long-range parameter 𝛼−1. Quantitatively, the increase goes
from a few percent for 𝛼−1 = 0 to ≃ 30% for 𝛼−1 ≃ 0.2marking a small yet appreciable mismatch
with the analytic short-range prediction, see Fig. 4.4.9 data coloured from dark blue to bright green.
In contrast, for longer range interactions, 𝛼−1 ≳ 0.2, we find a dramatic increase of 𝑢 with respect
to the short-range value, see Fig. 4.4.9 data coloured coding from bright yellow to black.

Note that the fact that 𝑢 does not fulfil the same rescaling as 𝐾 does not call into question the
validity of the mapping to the effective short-range LL model identified above. It, however, indic-
ates that the long-range XXZ Hamiltonian in the LL phase cannot be mapped into its short-range
equivalent solely by the rescaling (4.41). In fact, it is necessary to add a rescaling in energy, determ-
ined by the results of Fig. 4.4.9. Since the latter only affects the energy scale, it does not affect the
entanglement Hamiltonian.

4.4.4 Entanglement Hamiltonian

This section is presenting yet unpublished results on the structure of the entanglement Hamilto-
nian (EH) �̃�𝐴 introduced in Section 1.7 as the Hermitian operator who shares its eigenbasis with
the reduced density matrix and whose spectrum is the entanglement spectrum. Recall that the EH
is defined in terms of the reduced density matrix (RDM) 𝜌𝐴 = exp(−�̃�𝐴) = ∑𝑗 exp(−𝜉𝑗)|𝜓

𝐴
𝑗 ⟩⟨𝜓𝐴

𝑗 |

where ||𝜓𝐴
𝑗 ⟩ is an (orthonormal) eigenbasis of the RDM. In the following, we will establish that

the bipartite ground state of the LRXXZ admits an EH having an operator form inspired by the
BW theorem (cf. Eq. (1.21)). Here, we follow the lines of Qi and Ranard in Ref. [230] to recon-
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struct the EH given a single eigenstate2. Note that an eigenstate of the reduced density matrix is
necessarily also an eigenstate of the entanglement Hamiltonian. Following a real-space Schmidt
decomposition (bipartition) of the ground state in complementary subsystems 𝐴 = [1,… , 𝐿] and
𝐵 = [𝐿 + 1,… ,𝑁],

||𝜓GS⟩ =
𝑟
∑
𝑙=1

𝜆𝑙||𝜓𝐴
𝑙 ⟩ ⊗ ||𝜓𝐵

𝑙 ⟩ , (4.46)

we thus start with the input state ||𝜓𝐴
0 ⟩ corresponding to the state in 𝐴 with the largest Schmidt

value, i.e. the smallest entanglement energy. See also Eq. (2.26) for a graphical representation of
the Schmidt decomposition. We now embark to reconstruct the entanglement Hamiltonian �̃�𝐴

given one of its eigenstates ||𝜓𝐴
0 ⟩. To this end, we must minimise the energy variance,

𝜎2𝐸 = ⟨𝜓𝐴
0 ||�̃�2

𝐴||𝜓𝐴
0 ⟩ − ⟨𝜓𝐴

0 ||�̃�𝐴||𝜓𝐴
0 ⟩

2 , (4.47)

because ||𝜓𝐴
0 ⟩ can have vanishing energy variance 𝜎2𝐸 = 0 if and only if it is a true eigenstate of

�̃�𝐴. Following Qi and Ranard [230], we shift our perspective and keep ||𝜓𝐴
0 ⟩ fixed by the Schmidt

decomposition and minimise in the variable couplings of �̃�𝐴 given that we choose an operator
ansatz inspired by the BW theorem. Our ansatz for the EH is therefore,

�̃�𝐴 =
𝐿−1
∑
𝑛=1

𝐽𝑛
𝑛+𝑀
∑

𝑚=𝑛+1

1
|𝑛 − 𝑚|𝛼

(𝑆𝑥𝑛𝑆𝑥𝑚 + 𝑆𝑦𝑛𝑆
𝑦
𝑚 + Δ𝑆𝑧𝑛𝑆𝑧𝑚) , (4.48)

=
𝐿−1
∑
𝑛=1

𝐽𝑋𝑌𝑛

𝑛+𝑀
∑

𝑚=𝑛+1

1
|𝑛 − 𝑚|𝛼

(𝑆𝑥𝑛𝑆𝑥𝑚 + 𝑆𝑦𝑛𝑆
𝑦
𝑚) +

𝐿−1
∑
𝑛=1

𝐽𝑍𝑍𝑛

𝑛+𝑀
∑

𝑚=𝑛+1

1
|𝑛 − 𝑚|𝛼

𝑆𝑧𝑛𝑆𝑧𝑚 (4.49)

where 𝐿 is the size of subsystem 𝐴, 𝐽𝑋𝑌𝑛 = 𝐽𝑛 and 𝐽𝑍𝑍𝑛 = 𝐽𝑛 ⋅ Δ, and 𝑀 is an upper limit to the
long-range coupling we have to introduce to tame the computational complexity. The couplings
𝐽𝑋𝑌𝑛 and 𝐽𝑍𝑍𝑛 are unspecified variables which remain to be determined. Note that 𝐽𝑛 forms an 𝐿 −
1 dimensional vector J = (𝐽0, 𝐽1,… , 𝐽𝐿−1)𝑇 containing all variables in the ansatz (4.49). We may
simplify the notation with the definitions,

�̃�𝐴 =
𝐿−1
∑
𝑛=1

𝐽𝑛ℎ𝑛 (4.50)

ℎ𝑛 ≔
𝑛+𝑀
∑

𝑚=𝑛+1

1
|𝑛 − 𝑚|𝛼

(𝑆𝑥𝑛𝑆𝑥𝑚 + 𝑆𝑦𝑛𝑆
𝑦
𝑚 + Δ𝑆𝑧𝑛𝑆𝑧𝑚) , (4.51)

and note that the minimisation problem may be written as a simple linear algebra equation,

𝜎2𝐸 = 𝜎2𝐸(J) =
𝐿−1
∑
𝑛=1

𝐿−1
∑
𝑚=1

𝐽𝑛𝐽𝑚⟨𝜓𝐴
0 ||ℎ𝑛ℎ𝑚||𝜓𝐴

0 ⟩ −
𝐿−1
∑
𝑛=1

𝐿−1
∑
𝑚=1

𝐽𝑛𝐽𝑚⟨𝜓𝐴
0 ||ℎ𝑛||𝜓𝐴

0 ⟩⟨𝜓𝐴
0 ||ℎ𝑚||𝜓𝐴

0 ⟩ (4.52)

≕
𝐿−1
∑
𝑛=1

𝐿−1
∑
𝑚=1

𝐽𝑛𝐶𝑛,𝑚𝐽𝑚 = J𝑇 ⋅ 𝐶 ⋅ J , (4.53)

2The reconstruction of the Hamiltonian given one of its eigenstates is sometimes called the quantum inverse problem.
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where we define the correlation matrix 𝐶 as

𝐶𝑛,𝑚 ≔ ⟨𝜓𝐴
0 ||ℎ𝑛ℎ𝑚||𝜓𝐴

0 ⟩ − ⟨𝜓𝐴
0 ||ℎ𝑛||𝜓𝐴

0 ⟩⟨𝜓𝐴
0 ||ℎ𝑚||𝜓𝐴

0 ⟩ . (4.54)

Let us denote the eigenvalues of 𝐶 in ascending order as 𝑒1 ≤ 𝑒2 ≤ … and so on. From Eq. (4.53) it
is evident if J is an eigenvector of the correlation matrix 𝐶 with eigenvalue 0 then the couplings in
J define an entanglement Hamiltonian through our ansatz (4.49) to which our input state ||𝜓𝐴

0 ⟩ is
a true eigenvector. Furthermore, if there is more than one vanishing eigenvalue, each eigenvector
{J} in the kernel of 𝐶 defines a Hamiltonian trough the ansatz (4.49) and our approach cannot
determine the entanglement Hamiltonian uniquely. We can uniquely determine the EH from the
input state ||𝜓𝐴

0 ⟩, should we find a single eigenvector in ker(𝐶). Lastly, if there is no eigenvector
in ker(𝐶), we conclude that we cannot determine the EH of the form in Eq. (4.49) given the input
state ||𝜓𝐴

0 ⟩. Although this approach formally only ensures the EH defined by J through Eq. (4.49)
shares a single eigenstate, namely the input state ||𝜓𝐴

0 ⟩, with the true entanglement Hamiltonian
�̃�𝐴 = − log(𝜌𝐴), it has recently been argued that all other eigenvectors of the EH defined by J and
the true EH match well whenever the lowest eigenvalue 𝑒1 is vanishingly small [135].

Consequently, we measure all matrix elements of 𝐶𝑛,𝑚 defined by Eq. (4.54) and numerically
diagonalise it to obtain its lowest eigenvalue 𝑒1 and the corresponding eigenvector 𝑣1. Note that𝐶𝑛,𝑚
is by definition a positive semi-definite Hermitian matrix implying 𝐽𝑛 are real-valued and allowing
us to resort tomore efficient numerical diagonalisation algorithms than generic ones. Furthermore,
note we have to measure all ∼ (𝐿 − 1)2 ⋅ 𝑀 connected 4-point correlation functions3 with respect
to the input state ||𝜓𝐴

0 ⟩ from the bipartition since our ansatz includes long-range couplings up to
𝑀-nearest neighbours. To tame the computational complexity, we restrict ourselves in practice to
𝑀 = 𝑀(𝛼) neighbours defined by𝑀−𝛼 ≤ 0.02. However, we also define a lower bound of no less
than five nearest neighbours,𝑀min = 5, being incorporated in the correlation matrix element4.

We proceed to measure the correlation matrix 𝐶 (4.54) in the state with the lowest entanglement
energy following a half-chain bipartition of the ground state of the LRXXZ model.We consider the
BW inspired ansatz Eq. (4.49) to approximate the EH of the bipartite ground state if the lowest ei-
genvalue 𝑒1 is numerically vanishing. Figure 4.4.10 displays the phase diagram obtained from the
lowest eigenvalue of the correlation matrix 𝐶 whereas the colour bar, indicating the value of 𝑒1,
is logarithmically scaled. We note that 𝑒1 is vanishingly small (𝑒1 ≪ 10−7 colour-coded as light
blue) well into the phases above inferred to be the SRXY phase, i.e. Luttinger liquid, and the AFM
phase. The smallest eigenvalue rises however appreciably beyond numerically small values be-
fore approaching the phase transition into the LRXY phase. Interestingly, we again encounter an
artefact we attribute to the slow convergence of the entanglement entropy with system size, cf.
Section 4.C, at Δ = −1.625 and from 1/𝛼 ≥ 0. Contrarily, 𝑒1 increases when approaching the
above determined phase transitions which is perceivable by the changing colour from very light
blue to darker shades of blue. We conclude that in the regions shaded from dark red to light red
in Fig. 4.4.10, the diagonalisation does not yield any eigenvector in the kernel of the correlation

3Note that each ℎ𝑛 contains two-body interaction terms rendering any matrix element 𝐶𝑛,𝑚 a 4-point function.
4Note that we respect open boundary conditions meaning one encounters at most couplings up to the boundary and
implying exceptions to𝑀min = 5 when approaching the boundary closer than five sites.
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AFM SRXY (LL)

LRXY (CSB)

Figure 4.4.10: Phase diagram of the smallest eigenvalue 𝑒1 of the correlation matrix Eq. (4.54). Note the
logarithmic scale of the colour bar corresponding to the value of 𝑒1. The solid yellow line
marks the transition between AFM and XY phases and the cyan line the transition between
SRXY and LRXY phases. Both lines are the same as in Fig. 4.4.1. The for all data in this plot,
DMRG simulation ran in system size is 𝑁 = 200 with maximum link dimension 𝜒𝑚 = 450.

matrix 𝐶. Therefore, there cannot be any EH in that region which follows our ansatz in Eq. (4.49).
Furthermore, we note the second-smallest eigenvalue 𝑒2 is consistently larger than 𝑒1 by up to three
orders of magnitude, as can be inspected in Fig. 4.4.11. We observe that the region where 𝑒2/𝑒1 ≫ 1
follows the region where 𝑒1 ≪ 10−7, cf. Fig. 4.4.10 and Fig. 4.4.11. Hence, we also consider the
eigenvector to 𝑒1 to be the only vector in ker(𝐶) therefore uniquely defining the EH through the
ansatz of Eq. (4.49).
We proceed by checking the consistency of our estimated regionwhere we reconstructed the EH.

To this end, we compare the reconstructed couplings to the prediction from the short-range case
via conformal field theory (CFT) in the SRXY phase, and via the corner transfer matrix (CTF) in
the AFM phase, respectively. Considering the CFT prediction for a finite chain in open boundary
conditions from Eq. (1.22), we expect the lattice couplings in the critical SRXY phase to follow,

𝐽𝑋𝑌𝑛 ∝ sin(𝜋𝑛2𝐿 ) , 𝐽𝑍𝑍𝑛 ∝ Δ sin(𝜋𝑛2𝐿 ) , (4.55)

while on the other hand the CTM prediction of Eq. (1.23) indicates a linear increase of the lattice
couplings close to the bipartition position 𝑛 = 1 in the gapped AFM phase,

𝐽𝑋𝑌𝑛 ∝ 𝑛 , 𝐽𝑍𝑍𝑛 ∝ Δ𝑛 , (4.56)

with 𝑛 being much smaller than the subsystem size 𝐿, 𝑛 ≪ 𝐿. Figure 4.4.12 shows some exemplary
cases of inferred couplings of the EH. The analytical prediction from the short-range case is apply-
ing to Figs. 4.4.12(a)–(d). Figures 4.4.12(a) and (b) are located in the AFM phase where we find the
CTM prediction of Eq. (4.56) to be a good fit (fitted curve drawn as dashed line) to the couplings
(plotted as solid lines) close to the bipartition position 𝑛 = 1 up to 𝐿/2. Furthermore, the CFT
prediction of Eq. (4.55) is also a good fit (shown as dash-dotted lines) for the inferred couplings
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Figure 4.4.11: Phase diagram of the ratios of 𝑒2/𝑒1. Note the colour bar’s perception is changing logarith-
mically with the magnitude of 𝑒2/𝑒1 indicating ratios of 𝑒2/𝑒1 > 1 from bright blue to dark
blue while values of 𝑒2/𝑒1 ≤ 1 are coloured in black to red to bright red. The solid yellow line
marks the transition between AFM and XY phases and the cyan line the transition between
SRXY and LRXY phases. Both lines are the same as in Fig. 4.4.1.

(plotted as solid lines), as can be seen in Figs. 4.4.12(c) and (d) which are in the SRXY phase. Last,
Figs. 4.4.12(e) and (f) are located in the darker blue region of Fig. 4.4.10 where the BW-inspired an-
satz cannot be confirmed. We find the couplings to be obviously not well described by neither the
CFT nor the CTM prediction. This corroborates our above conclusion that the BW-form of the EH
as in the ansatz Eq. (4.49) does not apply to the bipartite ground state in the regions of Fig. 4.4.10
where 𝑒1 ≳ 10−7. Note that Figs. 4.4.12(c) and (f) are neighbouring data in Fig. 4.4.10with the resol-
ution of 𝛿(1/𝛼) = 0.04 we have chosen here. Hence, the reconstruction of the EH from the lowest-
entanglement-energy state appears to be very sensitive to long-ranged interactions, although we
have made sure the low-entanglement-energy spectral lines of the ground state are well-converged
by utilising amaximum link dimension of up to𝜒𝑚 = 450 in the DMRG simulations for Figs. 4.4.10
and 4.4.11.
Finally, we wish to remark that the EH with an ansatz as a local operator, i.e. the ansatz of

Eq. (4.49) with a long-range coupling limit of 𝑀 = 1, consistently yields a phase diagram of the
smallest eigenvalue 𝑒1 of the corresponding correlation matrix 𝐶 that is only reliably close to zero
in a much smaller region confined to the line 1/𝛼 ≃ 0 than the ansatz Eq. (4.49) with at least𝑀 ≥ 5
as was done for Fig. 4.4.10.

4.5 Discussion

In this chapter, we have shown that the entanglement properties, and more precisely the entan-
glement spectrum, are instrumental in determining both first-order and infinite-order phase trans-
itions in a long-range quantum spin model. Specifically, we have shown that the entanglement
spectrum combined with the RG analysis of the Luttinger liquid model contains sufficient inform-
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Figure 4.4.12: Collection of inferred couplings 𝐽𝑛 defining the EH in Eq. (4.49). In all plots, the blue solid
line represents 𝐽𝑋𝑌𝑛 while the solid orange line is 𝐽𝑍𝑍𝑛 . (a)–(d) are located in the bright blue
region of Fig. 4.4.10 with 𝑒1 ≪ 10−7. A dashed line marks a fitted CTM prediction in the AFM
phase (Eq. (4.56)), and the fit to the CFT prediction in the SRXY phase (Eq. (4.55)) is shown
as a dash-dotted line. (e) and (f) are in the dark blue region of Fig. 4.4.10 where 𝑒1 ≳ 10−7.
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ation to fully determine the quantum phase diagram of the LRXXZ model, and locate the cor-
responding phase transitions in terms of the anisotropy and long-range parameters. In contrast,
geometrical entanglement signals the AFM–SRXY and SRXY–FM transitions, reminiscent of the
short-range XXZ model, but shows a smooth behaviour at the onset of genuine long-range effects,
namely across the SRXY-LRXY transition. We have found that, within the XY phase, the entan-
glement spectrum exhibits a remarkable self-similarity, which allows us to map the long-range
model onto its short-range counterpart. The latter can be exploited in combination with RG the-
ory to locate the AFM–SRXY and SRXY–LRXY phase transitions from the breakdown of LL theory.
The AFM, SRXY, and FM phases hence obtained are reminiscent of the short-range XXZ model,
while the LRXY phase is characterised by emerging long-range effects and continuous symmetry
breaking. The obtained phase diagram is in good agreement with our numerical calculations using
tensor-network approaches, as well as with previous results.
We have further shown that the self-similarity identified in the entanglement properties extends

to both the geometrical entanglement and the Luttinger parameter in the SRXY phase. In contrast,
the speed of sound, which defines the energy scale of LL theory exhibits a different rescaling with
the long-range parameter. Finally, we have checked the validity of LL theory by comparing estim-
ates of the Luttinger parameter from various Rényi entropies and correlation functions, which all
agree within the SRXY phase.
Lastly, we have shown the EH can be uniquely determined in large regions into the SRXY and

AFM phase for significantly long-ranged interactions. In those regions, the EH follows the form of
paradigm of the BW theorem—namely, near the bipartition site, it is given by a linear weighting of
the systemHamiltonian density. On the other hand, the BWformof the entanglementHamiltonian
can be ruled out in the LRXY phase. Nevertheless, we found a departure of the BW-form of the EH
when increasing the long-range interaction range before the above determined phase transition
lines.
These results call for further studies of the entanglement properties of long-range quantum sys-

tems. A particularly important question would be to understand the origin of the self-similar res-
caling found here from a microscopic point of view including effects beyond perturbation theory,
and extend it to other quantum models as well as thermal equilibrium states. Similarly, whether
the triple point, where SRXY, LRXY and AFM phase meet, is a robust feature beyond first order
perturbation theory in RG remains to be understood. Furthermore, it remains an open question
whether the early departure of the EH from a BW form is due to the DMRG ground state being ill-
converged in entanglement entropy. Due to the rather large maximum link dimension employed
here, we rather believe in a slow finite-size convergence of the entanglement properties, includ-
ing the convergence of the smallest-entanglement-energy state, which possibly shifts the departure
of the EH from the BW form closer to the determined phase transitions, similarly as is the case
in the direction of the anisotropic coupling, cf. Appendix 4.C. Increasing the long-range coupling
limit 𝑀 in Eq. (4.51) may improve the inferred EH and move the apparent departure of the BW
form closer to the phase transition into the LRXY phase. However, studying this was regrettably
outside the scope of this thesis. We expect that the approach we use here can be straightforwardly
extended to other short-range and long-range models. In this respect, we stress that the analysis of
the entanglement spectrum is self-contained and does not rely on any previous knowledge of the
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4.5 Discussion

phase diagram. Degeneracy lifts are the primary signals of phase transitions and appear to be robust
against finite-size effects. Other features, such as the Schmidt gap, may be more sensitive to finite-
size effects but can be excluded using proper finite-scaling analysis. The approach developed here
may also constitute a useful tool in studying out-of-equilibrium dynamics of many-body quantum
systems with long-range interactions, which attracts significant attention [21, 31–34, 45, 48–50, 56,

99, 100, 172, 231].
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Appendix

4.A FM–phase ground state analysis

In this appendix, we provide a simple argument showing that the ground state of the LRXXZmodel
in the FM phase (Δ ≥ 1) is a trivial, fully polarized, product state. Proofs at the spin-wave level are
discussed in previous work, see for instance Refs. [223, 232]. Contrarily, we stay within the full spin
description not linearising the Hamiltonian in bosonic form. Here we write the Hamiltonian (4.2)
as

𝐻LRXXZ = ∑
𝑛≠𝑚

−𝐽/2
|𝑛 − 𝑚|𝛼

( ⃗𝑇2
𝑛𝑚 + (Δ − 1)(𝑇𝑧

𝑛,𝑚)2) + const , (4.57)

where we have introduced the two-site spin operator ⃗𝑇𝑛𝑚 = ⃗𝑆𝑛 + ⃗𝑆𝑚, 𝑇𝑧
𝑛𝑚 = 𝑆𝑧𝑛 + 𝑆𝑧𝑚, and we have

used the identities ⃗𝑆2𝑛 = 𝑆(𝑆+1) = 3/4 and (𝑆𝑧𝑛)2 = 1. Consider first theminimisation of the energy
of each two-site term independently. Due to the ferromagnetic coupling, this corresponds to the
maximization of the expectation value,

⟨𝜓𝑛,𝑚|| ⃗𝑇2
𝑛𝑚 + (Δ − 1)(𝑇𝑧

𝑛𝑚)2||𝜓𝑛,𝑚⟩⟶ max
𝜓𝑛,𝑚

. (4.58)

The operator ⃗𝑇𝑛𝑚 represents a spin 0 or spin 1, and the quantity ⟨ ⃗𝑇2
𝑛𝑚⟩ is maximized for spin 1.

The expectation value ⟨(𝑇𝑧
𝑛𝑚)2⟩ is also maximized for spin 1 states. Either of the product states

|𝑇 = 1, 𝑇𝑧 = +1⟩𝑛,𝑚 = |↑⟩𝑛 ⊗ |↑⟩𝑚 or |𝑇 = 1, 𝑇𝑧 = −1⟩𝑛,𝑚 = |↓⟩𝑛 ⊗ |↓⟩𝑚 represent spin 1 with
respect to ⃗𝑇𝑛𝑚 and maximize the pair term of Eq. (4.58) for Δ ≥ 1. It follows that either of the fully
polarized states,

|𝜓⟩ =⨂𝑛
|↑⟩𝑛 , (4.59)

or |𝜓⟩ =⨂𝑛
|↓⟩𝑛 , (4.60)

jointly maximizes all the pair terms constituting the entire Hamiltonian, and consequently minim-
ize 𝐻LRXXZ. Note that for Δ < 1, each pair is optimized by the antiferromagnetic state

|𝑇 = 1, 𝑇𝑧 = 0⟩𝑛,𝑚 = 1
√2

(|↑⟩𝑛 ⊗ |↓⟩𝑚 + |↓⟩𝑛 ⊗ |↑⟩𝑚) . (4.61)

This yields to frustration when including all two-site terms and pairwise optimization for the entire
Hamiltonian breaks down.
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4 Entanglement and quantum phase transitions

4.B Derivation of the Renormalisation group flow equations

In this appendix, we detail the derivation of the renormalisation group flow equations for the two
interaction terms considered for the bosonic field description of the LRXXZmodel. To this end, we
consider the microscopic generating functional 𝑍 = exp(−𝑆[𝜙, 𝜃]) with action 𝑆[𝜙, 𝜃] = 𝑆0[𝜙] −
𝑉ZZ[𝜙] − 𝑉LRXY[𝜃]. Integrating out the fast moving modes in the momentum shell dℓ, we inspect
how the coupling constants change under such an RG step. Firstly, we split the spacetime Fourier
modes of both fields in slow and fast moving ones according to,

𝜙(𝑘) = {
𝜙𝑠(𝑘) if 0 ≤ 𝑘 ≤ Λ(1 − dℓ)

𝜙𝑓(𝑘) if Λ(1 − dℓ) < 𝑘 ≤ Λ
, (4.62)

𝜙(𝑘) = 𝜙𝑠(𝑘) + 𝜙𝑓(𝑘) , (4.63)

with 𝑘 being the norm of the Fourier spacetime vector, and dℓ the width of the spacetime mo-
mentum shell being integrated out. The analogous splitting applies to the field 𝜃(𝑘) = 𝜃𝑠(𝑘)+𝜃𝑓(𝑘).
Integrating out the fast moving modes 𝜙𝑓(𝑘), 𝜃𝑓(𝑘) yields,

𝑍 = ∫∫D𝜙𝑠D𝜙𝑓D𝜃𝑠D𝜃𝑓 exp(−∫[12(𝜕𝜇𝜙𝑠)
2 + 1

2(𝜕𝜇𝜙𝑓)
2] d𝑡 d𝑥)

⋅ exp(−
𝑔ZZΛ2

2 ∫ cos(√16𝜋(𝜙𝑠 + 𝜙𝑓)) d𝜏 d𝑥)

⋅ exp(−
𝑔LRΛ
2 ∫ (−1)(𝑥−𝑦)/𝑎

|𝑥 − 𝑦|𝛼
cos(√𝜋[𝜃𝑠(𝑡, 𝑥) − 𝜃𝑠(𝑡, 𝑦) + 𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)]) d𝑡 d𝑥 d𝑦) ,

(4.64)

where we identified Λ = 1/(𝜋𝑎c). Note that under the path integral the fields are only ℂ–numbers
and thus commute. Next we expand cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏)−sin(𝑎) sin(𝑏) and ignore the terms
proportional to sin(𝜙𝑓) or sin(𝜃𝑓) because they average to zero over the even path integral measure.
Next, we recognize the expectation value with respect to the ground state of 𝜙𝑓 defined as

⟨𝐴[𝜙𝑓]⟩ = ∫D𝜙𝑓𝐴[𝜙𝑓] exp(−𝑆
𝑓
0 [𝜙𝑓]) = ∫D𝜙𝑓𝐴[𝜙𝑓] exp(−

1
(2𝜋)2

∫
Λ

Λ(1−dℓ)
(𝑝𝜇𝜙𝑓)2 dp) , (4.65)

where the spacetime integral over the action only contains modes in the momentum shell of width
dℓ. This allows us to write,

𝑍 = ∫D𝜙𝑠 exp(−∫
1
2(𝜕𝜇𝜙𝑠)

2 d𝜏 d𝑥) × ⟨ exp[−
𝑔ZZΛ2

2 ∫ cos(√16𝜋𝜙𝑠) cos(√16𝜋𝜙𝑓) d𝜏 d𝑥]

× exp[−
𝑔LRΛ
2 ∫ (−1)(𝑥−𝑦)/𝑎

|𝑥 − 𝑦|𝛼
cos(√𝜋[𝜃𝑠(𝑡, 𝑥) − 𝜃𝑠(𝑡, 𝑦)]) cos(√𝜋[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)]) d𝑡 d𝑥 d𝑦]⟩

𝑓

.

(4.66)

The expression above is exact and would yield the full, non-perturbative picture of a renormalisa-
tion step. However, it is often unfeasible to compute ⟨e𝐴⟩ nonperturbatively. Instead, we take the
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4.B Derivation of the Renormalisation group flow equations

approach to introduce an approximation in the form of a first-order cumulant expansion, ⟨e𝐴⟩ ≈
e⟨𝐴⟩, thereby ignoring higher order cross-terms of the interaction operators,

𝑍 ≈ ∫D𝜙𝑠 exp(−∫
1
2(𝑝

𝜇𝜙𝑠)2
d2𝑝
(2𝜋)2 )

× exp(−
𝑔ZZΛ2

2 ∫ cos(√16𝜋𝜙𝑠)⟨cos(√16𝜋𝜙𝑓)⟩
𝑓

d2𝑝
(2𝜋)2 )

× exp(−
𝑔LRΛ
2 ∫ (−1)(𝑥−𝑦)/𝑎

|𝑥 − 𝑦|𝛼
cos(√𝜋[𝜃𝑠(𝑡, 𝑥) − 𝜃𝑠(𝑡, 𝑦)])⟨cos(√𝜋[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)])⟩𝑓 d𝑡 d𝑥 d𝑦) .

(4.67)

To evaluate the expectation value of a trigonometric function of the fields, we use below iden-
tity [216],

e𝐴 ⋅ e𝐵 =∶e𝐴+𝐵∶ e⟨𝐴𝐵⟩+
1
2 ⟨𝐴

2+𝐵2⟩ , (4.68)

where∶𝐴∶ is the normal ordering of 𝐴. It follows as a corollary from theBaker–Campbell–Hausdorff
formula when [𝐴, 𝐵] commutes with𝐴 and 𝐵. Note that we have by definition ∶𝐴∶|0⟩ = 0 implying
⟨∶exp(𝐴)∶⟩ = 1. Using Eq. (4.68) and setting 𝐵 = 0 and 𝐴 = i𝛽𝑋, we find

⟨ei𝛽𝑋⟩ = e−
1
2
𝛽2⟨𝑋2⟩ , implying ⟨cos(𝛽𝑋)⟩ = e−

1
2
𝛽2⟨𝑋2⟩ . (4.69)

We thus find

⟨cos(√16𝜋𝜙𝑓)⟩
𝑓
= exp[−8𝜋⟨𝜙2𝑓⟩𝑓] (4.70)

and

⟨cos(√𝜋[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)])⟩𝑓 = exp[−𝜋2 ⟨[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)]
2⟩
𝑓
] . (4.71)

Equation (4.70) is readily evaluated as [216]

⟨cos(√16𝜋𝜙𝑓)⟩
𝑓
= exp[−8𝜋⟨𝜙2𝑓⟩𝑓] = exp[−8𝜋 1

(2𝜋)2
∫

Λ

Λ(1−dℓ)
𝐷𝜙(p) d2p]

= exp[−8𝜋 1
(2𝜋)2

∫
Λ

Λ(1−dℓ)

𝐾
𝑝2𝑝 d𝑝∫

2𝜋

0
d𝜑] = exp[−4𝐾 ln( Λ

Λ(1 − dℓ))]
= 1 − 4𝐾 dℓ .

(4.72)

Upon rescaling with 𝑠 = Λ/Λ′ and Λ′ = (1 − dℓ)Λ, the spacetime integral measure reads d2x =
𝑠2 d2x′ = (1+2 dℓ) d2x′. With this result, we conclude that one RG step yields the RG flow equation
for 𝑔ZZ up to first order perturbation theory (omitting to prime new variables),

𝑔ZZΛ2

2 ∫ d2x cos(√16𝜋𝜙(x)) →
𝑔ZZΛ2

2 (1 + (2 − 4𝐾) dℓ)∫ d2x cos(√16𝜋𝜙(x)) . (4.73)
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4 Entanglement and quantum phase transitions

Hence, we find

d𝑔ZZ
d𝑙 = (2 − 4𝐾)𝑔ZZ , (4.74)

which is Eq. (4.34) in the main text.
Equation (4.71) is similarly evaluated as the connected two-point equal-time correlation func-

tion. With the use of the symmetry of 𝑆0 under the duality transformation 𝜙 → 𝜃, 𝐾 → 1/𝐾,
𝐷𝜙(𝑝) → 𝐷𝜃(𝑝) = 𝐾−1𝑝−2, Eq. (4.71) yields [6, 216, 218],

⟨cos(√𝜋[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)])⟩𝑓 = exp[−𝜋2 ⟨[𝜃𝑓(𝑡, 𝑥) − 𝜃𝑓(𝑡, 𝑦)]
2⟩
𝑓
] (4.75)

= exp[−𝜋2 ∫|𝑥−𝑦|≫𝑎
⟨𝜃𝑓(p)𝜃𝑓(q)⟩𝑓(e

ipx − eipy)(eiqx − eiqy) d2p d2q]

(4.76)

= exp[−𝜋2
1

(2𝜋)2
∫

Λ

Λ(1−dℓ)
𝐷𝜃(𝑝)𝛿(p + q)(eipx − eipy)(eiqx − eiqy) d2p d2q]

(4.77)

= exp[−𝜋2
1
2𝜋 ∫

Λ

Λ(1−dℓ)
2𝐷𝜃(𝑝)[1 − cos(𝑝‖x − y‖)]𝑝 d𝑝] (4.78)

= exp[− 1
2𝐾 ln( Λ

Λ(1 − dℓ))]
= 1 − dℓ

2𝐾 . (4.79)

Here abovewe ignored the integral over the cosine since its frequency oscillations are large ‖x − y‖ ≫
𝑎 compared to the modes considered for 𝑝 ≃ Λ = 1/𝑎, and it thus averages out under the integral.
In the case of 𝑔LRXY, the spacetime integral measure transforms as d𝑡 d𝑦 d𝑥 = 𝑠3 d𝑡′ d𝑦′ d𝑥′ = (1 +
3 dℓ) d𝑡′ d𝑦′ d𝑥′ while the long-range interaction potential scales as |𝑥 − 𝑦|−𝛼 = 𝑠−𝛼|𝑥′ − 𝑦′|−𝛼 =
(1 − 𝛼 dℓ)|𝑥′ − 𝑦′|−𝛼. Therefore, the RG step and RG flow equation for the long-range XY operator
yield (omitting to prime new variables),

−
𝑔LRΛ
2 ∫

cos(√𝜋[𝜃(𝑡, 𝑥) − 𝜃(𝑡, 𝑦)])

|𝑥 − 𝑦|𝛼
→ −

𝑔LRΛ
2 (1 + (3 − 𝛼 − 1

2𝐾) dℓ)∫
cos(√𝜋[𝜃(𝑡, 𝑥) − 𝜃(𝑡, 𝑦)])

|𝑥 − 𝑦|𝛼
,

(4.80)

and

d𝑔LRXY
d𝑙 = (3 − 𝛼 − 1

2𝐾)𝑔LRXY , (4.81)

which is Eq. (4.35) in the main text.

4.C Finite-size scaling

In this appendix, we examine the finite-size scaling of the bare observables on theMPS ground state.
To this end, we showcase the explicit finite-size scaling of the short-range (𝛼−1 = 0) and a long-
range (𝛼−1 = 0.5) case for the geometric entanglement as well as the entanglement spectrum. The
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4.D Optimization of self-similar rescaling parameters

Figure 4.C.1: Geometric entanglement density 𝐸𝑔/𝑁 over the anisotropic parameter Δ for 𝛼−1 = 0 (colour-
ised circles) and 𝛼−1 = 0.5 (colourised diamonds) whereas the colour corresponds to system
size indicated in colour bar above.

same qualitative behaviour and convergence are found for all other 𝛼−1 considered in themain text
too. Here, we inspect system sizes𝑁 = [60, 80,… , 220]. As illustrated in Figure 4.C.1, theGE iswell
converged in system size for 𝑁 ≥ 160 for all considered values of 𝛼−1. The finite-size scaling of the
entanglement spectrum is showcased in Fig. 4.C.2. Although we observe the ES being moderately
well converged for the largest system sizes and large entanglement energies, the degeneracy lift
signalling the AFM-XY phase transition is very well converged as are the low entanglement energy
lines, cf. red diamonds in Fig. 4.C.2. The Schmidt gap, defined as the difference 𝜉2 − 𝜉1, has a local
minimum which is marked by the green diamonds in Fig. 4.C.2, which directly corresponds to a
local maximum in the entanglement entropy. Furthermore, this local minimum coincides with
a second lift of the apparent degeneracy of 𝜉3 = 𝜉4. We refer to this region between the local
minimum of the Schmidt gap and the lift of the degeneracy 𝜉2 = 𝜉3 as the crossover regime in
the main text. Figure 4.C.3 shows the finite-size convergence of these independent signals and the
size of the crossover regime. In the short-range case, the two signals locate the QPT at the same
position for all system sizes considered (blue data in Fig. 4.C.3). Contrarily, we find the degeneracy
lift being converged much earlier in system size compared to the local maximum of 𝐸𝑔/𝑁 when
considering longer ranged interactions, cf. orange data in Fig. 4.C.3. Furthermore, we observe a
very slow convergence of the crossover regime in system size, cf. crosses in Fig. 4.C.3, consistently
with previous studies of slow finite-size convergence of the entanglement entropy convergence of
the (short-range) XXZ model [203, 204].

4.D Optimization of self-similar rescaling parameters

To obtain the optimal self-similar rescaling parameters for the ES, we proceed as follows. We first
consider each spectral line as a function of the anisotropy parameter, 𝜉𝑗 = 𝜉𝑗(Δ) and rescale the
argument as Δ → Δ̃(𝛾, 𝜈) following Eq. (4.41). The rescaling parameters 𝛾(𝛼) and 𝜈(𝛼) depend on
the anisotropy parameter 𝛼, and we have the fixed point Δ̃(𝛼 = ∞) = Δ. We compute the ES of the
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4 Entanglement and quantum phase transitions

Figure 4.C.2: Finite-size scaling of the first seven entanglement energies {𝜉𝑗} for (a)𝛼−1 = 0 and (b)𝛼−1 = 0.5.
The transparency of each line decreases with the system size from 𝑁 = 60 (70% transparency)
to 𝑁 = 220 (0% transparency). The size step is Δ𝑁 = 20. The degeneracy lift is marked by the
red diamonds for each system size (light red 𝑁 = 60, dark red 𝑁 = 220), and the minimum of
the Schmidt gap (𝜉2−𝜉1) is marked by green diamonds for the corresponding system size (light
green 𝑁 = 60, dark green 𝑁 = 220).

Figure 4.C.3: Position of AFM-XY quantum phase transition (QPT) in values of the anisotropy coupling Δ
versus system sizes 𝑁 as found from the degeneracy lift in the ES (circles), from the maximum
of the GE (squares), and from the local minimum of the Schmidt gap (𝜉2 − 𝜉1, crosses). Blue
and orange markers correspond to 𝛼−1 = 0 and 𝛼−1 = 0.5, respectively.
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4.D Optimization of self-similar rescaling parameters

MPS ground state for a discrete set of values of the anisotropy parameter, Δ𝑑 = −4,−3.875,…1.5
and interpolate linearly each spectral line. The scaling parameters 𝛾(𝛼) and 𝜈(𝛼) are then fitted in
order to minimize the quadratic weight function over a few (here 4) low-lying spectral lines,

𝑊(𝛾, 𝜈) = ∑
1≤𝑗≤4

∫
Δ̃𝑓

Δ̃𝑖

dΔ̃ [𝜉𝑗(Δ̃(𝛾, 𝜈), 𝛼) − 𝜉𝑗(Δ, 𝛼 = ∞)]2 , (4.82)

where we vary the integral boundaries Δ̃𝑖, Δ̃𝑓 over a set of four different pairs of lower and upper
integral boundaries (Δ̃𝑖, Δ̃𝑓) = [(−1.5, 0.0), (−1.25, −0.5), (−1.25, 0.5), (−2, 0.5)] such as to optimize
the rescaling over a broad region including the AFM–XY transition, at Δ̃ = −1. We then infer
the value of the rescaling parameters 𝛾 and 𝜈 from the average over the four samples of different
integration intervals and estimate its error from the standard deviation. The result is shown in
Fig. 4.4.4 The numerical optimization is performed with the Julia package Optim.jl [233].
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5 Conclusions and outlook

In this thesis, we have studied the effects of long-range interactions that fall off with the relative dis-
tance 𝑅 between two constituents as 1/𝑅𝛼 on both in-equilibrium and out-of-equilibrium features
of spin chains through complementary analytical and numericalmethods. The twomainworks are
focused on the emergence of causality during out-of-equilibrium dynamics in the long-range inter-
acting transverse-field Ising (LRTI) chain, and the entanglement properties of and its role in the
ground state of the long-range interacting XXZ (LRXXZ) model. Specifically, we have investigated
the emergence of causality through studying the spreading of correlations and information in the
LRTI chain. The out-of-equilibriumdynamicswere induced by homogeneous global quenches after
which we inspected correlation spreading, as well as inhomogeneous local quenches after which
we inspected local magnetisation and entanglement entropy spreading. We showed the theoretical
framework of the quasiparticle picture is matching the twofold nature of correlation and local mag-
netisation spreading in state-of-the-art tensor-network simulations. In the former, we employed a
linear spin wave approximation applicable to both short- and long-range interacting𝐷-dimensional
latticemodels. In the latter, the two characteristic features close to the signal front, the signal’s edge
and the signal’s local maxima, are excellently explained by the quasiparticle picture. Furthermore,
these two edges follow a generic algebraic power-law relation in a spacetime diagram, i.e. 𝑡 ∝ 𝑅𝛽,
whereas the analytical prediction of the dynamical exponent’s functional behaviour with the long-
range interaction exponent, 𝛽(𝛼), is very well matching the data from our tensor-network simula-
tions. While entanglement spreading following an inhomogeneous local quench does not display
a twofold nature, the unique signal front and the constant ballistic behaviour of the corresponding
dynamical exponent, 𝛽(𝛼) = 1, irrespective of the interaction range are predicted by our extensions
of the quasiparticle picture and very well match the simulations.
In particular, we investigated the emergence of causality in the local as well as the intermediate
quasi-local regime. First, in the quasi-local regime, long-range interactions fall off slowly enough
such that the quasiparticle group velocity acquires a non-analyticity in the Brillouin zone. There,
the quasiparticle picture, together with stationary phase approximations, allows for predictions
of all dynamical exponents of correlations, local magnetisation, and entanglement entropies as a
function of the long-range exponent, 𝛽(𝛼), which are well-matched by our tensor-network sim-
ulations. The emergent causal edges of corrections and local magnetisation propagate with the
same sub-ballistic dynamical exponent, 𝛽CE = 𝛽SE > 1. However, local maxima in the vicinity of
the causal edge propagate ballistically in the case of corrections, 𝛽𝑚 < 1, while those of the local
magnetisation propagate super-ballistically, 𝛽𝑚 < 1. Second, in the local regime, long-range inter-
actions fall off fast enough such that the quasiparticles’ group velocity is analytic over the entire
Brillouin zone. There, a qualitative difference to the short-range limit is neither predicted by the
quasiparticle picture nor found in our tensor-network simulation. We observe an emergent form of
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causality analogous to the short-range interacting limit where themaximumgroup velocity determ-
ines the signal edge, while the inner extrema close to the edge propagate with the phase velocity
corresponding to the quasi-momentum where the group velocity is maximum.
The distinction of the two signals—the enclosing signal edge and local maxima—is not only cru-
cial regarding the emergence of a causal cone but also provides a unique fingerprint of the distinct
dynamical regimes of the LRTI model. This suggests the emergence of a dynamical phase diagram
where in the intermediate quasi-local regime a weak form of causality emerges characterised by
algebraic power-laws 𝑡 ∝ 𝑅𝛽 with dynamical exponents 𝛽 depending on the observable and the
range of interaction.
Contrarily, the causal edge of all Rényi entropies propagates ballistically in both the local regime
and the quasi-local regime where it is note-worthily faster than the sub-ballistic local magnetisa-
tion. The interior of the causal region being without marked features, and the saturation of all
entanglement entropies to log(2) is both excellently predicted by the quasi-particle picture. For the
latter, the two orthogonal elementary states describing the initial state after the inhomogeneous
local quench become maximally entangled.

We furthermore investigated in this thesis the entanglement properties of and its role in the long-
range interacting XXZ (LRXXZ) model. We have shown that through studying the entanglement
spectrum one can determine both first-order and infinite-order quantum phase transitions in the
phase diagram of the long-range XXZ model. In the XY phase, we have found the entanglement
spectrum to exhibit a remarkable self-similarity which allows us to map the long-range model onto
its short-range counterpart. This self-similarity together with the renormalisation group analysis
of the corresponding effective field theory, a Luttinger liquid, can be exploited to form a synergetic
prediction locating the phase transition from the Luttinger liquid (SRXY) phase into the antiferro-
magnetic (AFM) phase as well as the transition into the long-range XY (LRXY) phase which marks
the onset of genuine long-range effects. Crucially, the self-similarity extends to the Luttinger para-
meter, and also applies to the geometric entanglement. However, while the geometric entangle-
ment signals the AFM–SRXY and the SRXY–FM transitions, thereby paralleling its behaviour in
the short-range limit, its signal is smooth across the SRXY–LRXY transition. Furthermore, we have
shown the entanglementHamiltonian in large parts of the AFMand SRXYphases is uniquely iden-
tified to follow the form of the Bisognano–Wichmann theorem while such a form can be ruled out
in the LRXY phase.
The obtained AFM, FM, and SRXY phases are analogous to the three phases of the short-range
XXZmodel. Through our observed self-similarity, the SRXY phase in the long-range case is indeed
identical to its short-range limit with respect to entanglement features in form of the entanglement
spectrum and the geometric entanglement. On the other hand, the LRXY phase is characterised by
the onset of long-range effects and continuous symmetry breaking. Moreover, the predicted phase
diagram is in good agreement with our data simulated through DMRG.
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Outlook Our results concerning the out-of-equilibrium dynamics of the long-range transverse-
field Ising model prompt several perspectives of research, both experimentally and theoretically.
The verification of our results on experimental quantum simulators would be timely as new lar-
ger scale platforms with more qubits of the order of the system size inspected in our simulations
are nowadays accessible, in particular trapped ions in optical lattices [96], and Rényi entropies
have now been measured in those platform [180, 181] and other noisy intermediate-scale quantum
devices [182]. Among the theoretical perspectives, an interesting direction constitutes the extension
of the generic quasiparticle picture for out-of-equilibrium dynamics to fermionic lattice models.
The use of mean-field approximations and Bogolyubov theory to generically describe the out-of-
equilibrium dynamics of a fermionic lattice model up to quadratic terms is fundamentally similar
to the existing approach through bosonic Holstein–Primakoff approximations such that it could
be readily studied in the (possibly long-range) XXZ model, and the Hubbard model. As another
perspective serves the study of open quantum systems being coupled to an environment and the
investigation how these behave differently compared to its closed counterpart. Further perspect-
ives are offered through the lens of quantum information and the study of entanglement entropy
and its role on the early- and late-time dynamics towards thermal equilibration particularly in the
context of long-range interacting systems. As we have shown in the context of the long-range Ising
model, entanglement entropies are propagating faster than local magnetisations in the quasi-local
regime. It remains an debated question how long-range interactions influence the equilibration
towards thermal equilibrium.

The results of our study of the long-rangeXXZmodel suggest several future directions. Of partic-
ular importance to uswould be to understand the origin of the self-similar rescaling of the entangle-
ment properties and the Luttinger parameter fromamicroscopic point of view. This calls for further
theoretical studies including effects beyondperturbation theorywhich could possibly be inspired by
functional renormalisation group techniques as well as similar techniques applicable to the integ-
rable Haldane–Shastry model [234–236], which is the special case of the LRXXZ Hamiltonian (4.2)
atΔ = −1, 𝛼 = 2. Similarly, it remains to be understoodwhether the triple pointwhere SRXY, LRXY
and AFM phase meet within the approximation of our analysis and the accuracy of our numerical
callculations, is a robust feature both beyond first-order perturbation theory in the RG analysis, and
more detailed numerical studies in this neighbourhood. Furthermore, it remains an open question
whether the entanglementHamiltonian follows the Bisognano–Wichmann theorem’s form of a lin-
ear weighting of the system Hamiltonian’s density over the entire phases which are reminiscent of
their short-range counterpart, namely the AFM phase and the SRXY phase. Additional numerical
investigations could verify this author’s hypothesis that the entanglement properties of the LRXXZ
model converge slowly with system size and finite-size effects shift their deceptive signal not only
in the direction of anisotropic coupling as was shown in Appendix 4.C, but also in the direction of
the long-range interaction exponent. Moreover, we expect the study of the entanglement spectrum
and its signals of phase transitions, namely degeneracy lifts and divergence of the Schmidt gap, can
be transferred to other lattice models, both short-range and long-range interacting. Lastly and to
link to the perspectives following our out-of-equilibrium results, studying the dynamical features
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5 Conclusions and outlook

of the LRXXZ model with the approach taken here may prove fruitful. The operator form of the
EH may shed new light onto the behaviour and features of the subsystem. Similarly, the operator
form may allow for a physically intuitive interpretation of entanglement features through a ther-
modynamic picture considering the general form 𝜌𝐴 = exp(−�̃�𝐴). Specifically, the investigation of
the entanglement spectrum and more generally the entanglement Hamiltonian following out-of-
equilibrium dynamics may yield a novel window into the mechanism of thermal equilibration, or
the lack thereof in integrable models and non-ergodic phases of disordered systems.
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Résumé : Les systèmes quantiques avec interaction à
longue portée ont attiré une attention considérable ces der-
nières années, tant d’un point de vue expérimental que
théorique. Dans cette thèse, nous étudions les effets des
interactions à longue portée sur les propriétés hors équi-
libre et à l’équilibre desmodèles de spin sur réseau en utili-
sant des calculs analytiques complémentaires utilisant des
simulations de réseaux tensoriels de pointe, tout en nous
concentrant particulièrement sur la caractéristique quan-
tique centrale et unique de l’intrication. Premièrement,
dans le modèle d’Ising en champ transverse de longue por-
tée, nousmontrons l’émergence d’une forme faible de cau-
salité caractérisée par des exposants dynamiques non uni-
versels. D’une part, la magnétisation et les corrélations lo-
cales présentent un cône causal émergent sub-balistique
tandis que les caractéristiques marquées à l’intérieur de
celui-ci se propagent de manière super-balistique ou balis-
tique, respectivement. Alors que l’aimantation et les cor-
rélations locales présentent un cône causal sub-balistique
émergent, celui qui émerge pour toutes les entropies d’in-
trication s’avère être balistique indépendamment de la por-

tée des interactions. Deuxièmement, nous déterminons le
diagrammede phase quantique d’équilibre dumodèleXXZ
à longue portée en termes de couplage anisotrope et d’ex-
posant d’interaction de longue portée en étudiant une re-
présentation du spectre de la matrice de densité réduite
suivant une bipartition en demi-chaîne, appelée spectre
d’intrication. Nous montrons qu’il présente une autosimi-
larité remarquable dans la phase critique où le système est
décrit par un liquide de Luttinger. La transition hors du
liquide de Luttinger est cohérente avec la rupture de l’au-
tosimilarité et une analyse par groupe de renormalisation.
La combinaison synergique de ces deux dernières nous
permet de déterminer les transitions de phase correspon-
dantes que nous corroborons à l’aide de simulations numé-
riques. De plus, nousmontrons que leHamiltonien d’intri-
cation, l’opérateur hermitien dont le spectre est le spectre
d’intrication, suit la forme du théorème de Bisognano–
Wichmann dans les grandes régions des phases incluant la
limite à courte portée, tandis qu’une telle forme peut être
exclue dans la phase où les effets à longue portée sont vé-
ritablement pertinents.
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Abstract: Long-range interacting quantum systems have
attracted considerable attention in recent years both from
an experimental and theoretical perspective. In this thesis,
we study the effects of long-range interactions on out-of-
equilibrium and equilibrium features of lattice spin mod-
els by employing complementary analytical calculations
and state-of-the-art tensor-network simulations while par-
ticularly focusing on the central and unique quantum fea-
ture of entanglement. First, in the long-range transverse-
field Ising model, we show the emergence of a weak form
of causality characterised by non-universal dynamical ex-
ponents. While local magnetisation and correlations have
an emergent sub-ballistic causal cone, the one emerging
for all entanglement entropies is shown to be ballistic ir-
respective of the interaction range. Second, we determine
the equilibrium quantum phase diagram of the long-range
XXZ model in terms of the anisotropic coupling and the

long-range interaction exponent through studying a rep-
resentation of the spectrum of the reduced density mat-
rix following a half-chain bipartition, the so-called entan-
glement spectrum. We show it exhibits a remarkable self-
similarity within the critical phase where the system is de-
scribed by a Luttinger liquid. The transition away from a
Luttinger liquid is consistent with the breakdown of self-
similarity and a renormalisation group analysis. The syn-
ergetic combination of the two latter allows us to locate the
corresponding phase transitions which we corroborate by
numerical simulations. Furthermore, we show the entan-
glementHamiltonian, theHermitian operatorwhose spec-
trum is the entanglement spectrum, follows the form of
the Bisognano–Wichmann theorem in large regions of the
phases which include the short-range limit, while such a
form can be excluded in the phase where genuinely long-
ranged effects are relevant.
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