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préparée à l’École polytechnique
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Résumé

Les quasi-cristaux sont des solides ordonnés à longue distance sans symétrie
de translation, présentant des symétries rotationnelles qui sont interdites pour
les cristaux normaux, par exemple d’ordre 5, 7, 8, ... Leur découverte en
laboratoire dans les années 1980 a entraîné un changement de paradigme en
cristallographie, révolutionnant notre compréhension de la structure possible
des solides [1–3]. Depuis lors, les quasi-cristaux ont attiré beaucoup d’attention
en raison de leurs propriétés intrigantes, notamment les quasi-particules pha-
soniques [4–6], les propriétés de transport [7–10], le spectre d’énergie com-
plexe [11–13], l’ordre topologique non trivial [14–18] et la localisation de type
Anderson [19, 20]. Un outil puissant pour étudier les propriétés physiques des
quasi-cristaux est la simulation quantique [21–23]. Avec la réalisation de sys-
tèmes atomiques ultrafroids dans les années 1990 [24, 25] et les développements
rapides qui ont suivi, un nouveau terrain de jeu pour la physique quantique à
plusieurs corps s’est ouvert. En particulier, le contrôle précis des paramètres
physiques et les différents outils de mesure dans un système atomique froid en
font une plateforme prometteuse pour la simulation quantique [26, 27]. Un
potentiel quasipériodique unidimensionnel dans les expériences sur les atomes
froids peut être créé en superposant plusieurs faisceaux laser avec des périodes
incommensurables. Au cours des dernières années, les atomes froids dans des
potentiels quasipériodiques unidimensionnels ont été largement étudiés[20, 28–
45]. Un réseau optique bidimensionnel formant un potentiel quasi-cristallin peut
également être créé par certaines configurations géométriques de faisceaux laser.
Cela a été proposé pour la première fois théoriquement en 2005 [46] et réalisé
dans des expériences sur les atomes froids en 2019 [47], suivant une configu-
ration proposée en 2013 [48]. La localisation de bosons faiblement interactifs
dans ce système a été rapportée [49]. Avec ces avancées dans les expériences,
les études théoriques sur les atomes froids bidimensionnels dans des potentiels
quasicristaux commencent également à gagner du terrain [50–52]. Dans les
potentiels quasi-cristallins pour les bosons froids, les effets de localisation peu-
vent induire la phase de verre de Bose, qui est une phase isolante compressible.
L’existence de la phase de verre de Bose a été proposée théoriquement à la fin
des années 1980, d’abord en une dimension [53], puis également en dimensions
supérieures [54]. Cependant, l’observation directe et non-ambigüe de la phase
de verre de Bose dans les atomes ultrafroids reste un défi. Un obstacle majeur
est la fluctuation thermique, car toutes les expériences sur les atomes froids sont
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réalisées à une température finie. Les fluctuations thermiques peuvent entrer
en compétition avec le (quasi)désordre et détruire la phase de verre de Bose.
Il a été proposé que ce problème puisse être surmonté en utilisant un potentiel
quasipériodique peu profond [38]. Pour un réseau profond, le modèle de liaisons
fortes donne une bonne description et l’échelle d’énergie typique est l’énergie de
couplage tunnel. Cette énergie est généralement assez faible et de même ordre
de grandeur que la température dans les expériences typiques. Dans les poten-
tiels quasi-cristallins peu profonds, l’échelle d’énergie pertinente est l’énergie de
recul Er. Il s’agit de la température limite du refroidissement laser et beaucoup
plus élevée que la température typique des expériences d’atomes ultrafroids. De
cette manière, l’effet de la température est relativement réduit et peut faciliter
l’observation de la phase de verre de Bose. Dans cette thèse, nous présentons
une étude théorique de la simulation quantique de quasicristaux bidimension-
nels avec des atomes froids. Nous discuterons des propriétés des particules
individuelles et des diagrammes de phase thermodynamiques pour des bosons
bidimensionnels dans un potentiel quasi-cristallin peu profond. La structure de
la thèse est la suivante.

Le chapitre 1 présente une revue du système à étudier, préparant ainsi le
terrain pour les parties suivantes. Nous passons en revue la réalisation expéri-
mentale et la configuration des atomes ultrafroids, ainsi que l’idée fondamentale
de la simulation quantique, en soulignant comment les différentes méthodes de
contrôle et de mesure dans les atomes ultrafroids en font une plateforme idéale
pour la simulation quantique. Nous introduisons ensuite le phénomène de lo-
calisation dans les systèmes désordonnés. Nous passons ensuite en revue la
découverte et les concepts des quasicristaux, montrant que la localisation peut
également apparaître dans les quasicristaux, mais pas avec le même comporte-
ment que dans les systèmes désordonnés.

Le chapitre 2 se concentre sur les liquides quantiques de bosons, fournissant
les bases théoriques pour les études ultérieures sur les bosons froids bidimen-
sionnels, et introduit également l’algorithme de Monte Carlo par intégrale de
chemin que nous avons largement utilisé pour les calculs numériques. Nous pas-
sons d’abord en revue les concepts de la condensation de Bose-Einstein (CBE)
pour les bosons non interactifs. Ensuite, nous discutons le critère de Penrose-
Onsager sur la façon d’étendre la définition de la CBE aux bosons en interac-
tions. Nous donnons une brève présentation des approches théoriques largement
utilisées pour les bosons condensés : l’équation de Gross-Pitaevskii et le spectre
de Bogoliubov. Nous discutons le phénomène étroitement lié de la superfluidité
et du modèle des deux fluides. Pour les bosons bidimensionnels, la transition
superfluide a un caractère particulier. Elle appartient à la classe d’universalité
de la transition BKT. Nous passons en revue ses propriétés de base et certains
résultats théoriques, en particulier ceux qui seront utilisés dans les chapitres
suivants. Ensuite, nous discutons des bosons dans des réseaux, avec ou sans
désordre. Ainsi, nous voyons comment la phase d’isolant de Mott et la phase
de verre de Bose peuvent apparaître pour les bosons interactifs. Les différentes
phases introduites dans ce chapitre, y compris la superfluidité, le fluide normal,
l’isolant de Mott et le verre de Bose, seront le sujet d’étude des chapitres suiv-
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ants sur les bosons dans des potentiels quasicristaux. Enfin, nous donnons un
bref aperçu de la méthode numérique de Monte Carlo par intégrale de chemin
pour les bosons, y compris son optimisation appelée algorithme du ver.

Dans le chapitre 3, nous étudions les propriétés des particules individu-
elles dans le potentiel quasicristal bidimensionnel créé par plusieurs faisceaux
laser disposés géométriquement de manière à ce que le potentiel total présente
une symétrie de rotation interdite pour les cristaux normaux. Nous discutons
d’abord les propriétés de localisation. Nous soulignons qu’une étude minutieuse
de la localisation nécessite de voir comment le rapport de participation inverse
évolue avec la taille du système. Grâce à cela, nous identifions des états localisés,
étendus et également critiques. Nous étudions ensuite les structures de bande
interdite. Pour la plus grande bande interdite, nous utilisons une approche de
perturbation pour expliquer pourquoi cette bande interdite existe. Enfin, nous
présentons également une image générale du spectre pour différents types de
potentiels avec différentes symétries de rotation.

Le chapitre 4 présente notre étude sur les diagrammes de phase thermody-
namique de bosons bidimensionnels dans un potentiel quasicristal, en utilisant
la méthode de Monte Carlo par intégrale de chemin pour les calculs numériques.
Nous identifions les différentes phases à l’aide de quelques paramètres d’ordre.
Pour les isolants compressibles, le verre de Bose et le fluide normal, nous in-
troduisons une stratégie pour les différencier. Nous discutons de l’importance
des effets de taille finie pour obtenir un diagramme de phase thermodynamique
correct. Par cette approche, nous utilisons les données de Monte Carlo pour lo-
caliser les frontières entre les différentes phases et ainsi obtenir les diagrammes
de phase.

Dans le chapitre 5, nous résumons nos travaux de cette thèse et discutons
plusieurs perspectives de recherches futures.
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Abstract

Quasicrystals are long-range-ordered solids without translational symmetry,
showing rotational symmetries that are forbidden for normal crystals, for ex-
ample 5 fold, 7 fold, 8 fold etc. Their discovery in the laboratory during the
1980s lead to a paradigm shift in crystallography, revolutionizing the basic idea
on possible structure of solids [1–3]. Since then on, quasicrystals have attracted
much attentions, owing to their intriguing properties, including for examples
phasonic quasiparticles [4–6], transport properties [7–10], intricate energy spec-
trum [11–13], nontrivial topological order [14–18] and Anderson-like localiza-
tion [19, 20]. A powerful tool to study the physical properties of quasicrystals is
quantum simulation [21–23]. With the realization of ultracold atomic systems
in the 1990s [24, 25] and the rapid developments thereon, a new playground of
quantum many body physics has opened. In particular, the strong control over
the physical parameters and the various measurement tools in a cold atomic
system make it a promising platform for quantum simulation [26, 27]. A one-
dimensional quasiperiodic potential in cold atoms experiments can be created
by superimposing several laser beams with incommensurable periods. In the
past years, cold atoms in one-dimensional quasiperiodic potentials have been
studied extensively [20, 28–45]. A two-dimensional optical lattice giving a qua-
sicrystal potential can also be created by certain geometrical arrangements of
laser beams. This was first proposed theoretically in 2005 [46], and realized
in cold atoms experiments in 2019 [47] following a configuration proposed in
2013 [48]. Localization of weakly interacting bosons in that system has been
reported [49]. With these advancements in experiments, the theoretical studies
of two dimensional cold atoms in quasicrystal potentials also start to gain mo-
mentum [50–52]. For cold bosons in quasicrystal potentials, localization effects
may induce the Bose glass phase, which is a compressible insulating phase. The
existence of Bose glass phase was proposed theoretically in the late 1980s first
in one dimension [53] and then also in higher dimensions [54]. However, a di-
rect undisputed observation of the Bose glass phase in ultracold atoms is still
challenging. One big hindrance is the thermal fluctuation, as all cold atoms ex-
periments are performed under a finite temperature. The thermal fluctuations
may compete with the (quasi)disorder and destroy the Bose glass phase. It has
been proposed that this issue may be overcome by using a shallow quasiperi-
odic potential [38]. For a deep lattice, the tight binding model gives a good
description and the typical energy scale is the tunnelling energy. This energy
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is usually quite small and of the same order of magnitude of the temperature
in typical experiments. In shallow quasicrystal potentials, the relavant energy
scale is the recoil energy Er. This is the limiting temperature of laser cooling
and much higher than the typical temperature of ultracold atoms experiments.
In this way, the temperature effect is relatively decreased and may help the
observation of Bose glass phase. In this thesis, we give a theoretical study of
quantum simulation of two-dimensional quasicrystals with cold atoms. We will
discuss the single particle properties and the thermodynamic phase diagrams
for two dimensional bosons in a shallow quasicrystal potential. The structure
of the thesis is as follows.

Chapter 1 gives a review of the system to be studied, setting up the stage
for the following parts. We review the experimental realization and setup of
ultracold atoms and the basic idea of quantum simulation, stressing how the
various control and measurement methods in ultracold atoms allows it to be a
good platform of quantum simulation. We give a introduction to the localization
phenomenon in disordered system. We then review the discovery and concepts
of quasicrystals, and showing that localization can also appear in quasicrystals,
but not with the same behaviour as in disordered systems.

Chapter 2 focuses on the quantum liquids of bosons, giving the theoreti-
cal backgrounds for the following studies of two dimensional cold bosons, and
also introduces the path integral Monte Carlo algorithm that we have heavily
used for numerical calculations. We first review the concepts on Bose-Einstein
condensation (BEC) for non-interacting bosons. Then we discuss the Penrose-
Onsager proposal on how to extend the definition of BEC to interacting bosons.
We give a brief explanation of the widely used theoretical approaches for con-
densed bosons: Gross-Pitaevskii equation and Bogoliubov spectrum. We discuss
the closely related phenomemon superfluid and the two fluids model. For 2D
bosons, the superfluid transition is of special character. It is in the universality
class of the BKT transition. We review its basic properties and some theoreti-
cal results, in particular those that will be used in the following chapters. Then
we discuss the bosons in lattices, with or without disorder. With this we see
how the Mott insulator phase and Bose glass phase may appear for interacting
bosons. The various phases introduced in this chapter, including superfluid,
normal fluid, Mott insulator and Bose glass, will be the study subject of the
following chapters for bosons in quasicrystal potentials. In the end we give a
brief review of the path integral Monto Carlo numerical method for bosons,
including its optimization called worm algorithm.

In chapter 3 we study the single particle properties of the two dimensional
quasicrystal potential created by several laser beams, geometrically arrange in
such a way that the total potential has a rotational symmetry that is forbidden
for normal crystals. We first discuss the localization properties. We stress that
a careful study of localization requires to see how the inverse participation ratio
scales with system sizes. With that we identify localized, extended and also
critical states. We then study the gap structures. For the largest gap, we use a
perturbation picture to give a explanation on why that gap exists. In the end
we also show the general picture of the spectrum for different kinds of potentials
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with different rotational symmetries.
Chapter 4 shows our study on the thermodynamic phase diagrams of two

dimensional bosons in a quasicrystal potential, using the path integral Monte
Carlo method for numerical calculations. We identify different phases with a
few order paramters. For compressible insulators Bose glass and normal fluid,
we introduce a strategy to differentiate one from the other. We discuss why
a careful finite size effect is indispensable to obtain a faithful thermodynamic
phase diagram. With this preparation, we use the Monte Carlo data to locate
the boundaries between various phases, and thus get the phase diagrams.

In chapter 5, we give a summary of our works in this thesis, and discuss
several perspectives of future researches.
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Chapter 1

Introduction

Macroscopic systems are made of atoms, neutral particles that are in per-
petual motion. Atoms are in turn composed of electrons with negative charges
and nucleus with positive charges. Although atoms are electrically neutral as a
whole, there are electromagnetic interactions between the atoms due to dipole-
dipole interaction, called Van der Waals interaction. The electrons moving
around the nucleus can lead to an instantaneous electric dipole moment of an
atom. The electric field created by this dipole then polarizes another atom
far away. The polarized atom will then interact back with the original polar-
ized atom. This dipole-dipole interaction gives an attractive force for atoms
far apart. When atoms are near to each other with distance about the atomic
radius, they are like hard spheres and have a repulsive interaction.

Macroscopic systems consists of a large number of atoms. This large num-
ber permits a statistical description of macroscopic systems. One can define a
temperature describing how the entropy of a system changes with respect to its
energy, as 1/T ≡ dS/dE. Clearly, this physical quantity, temperature, is of pure
statistical nature. A macroscopic system shows different properties at different
temperature, in particular, the large total number N of atoms in a macroscopic
system permits us to define its thermodynamic phases. Let us consider a gas of
neutral atoms with short range binary interactions. Of course, if the tempera-
ture is very high then the electrons can escape from the Coulomb attraction of
the nucleus and the macroscopic system becomes a plasma of electrons and nu-
clei. In this case the atomic picture breaks down. Suppose we have a relatively
high temperature where the atomic picture still holds, then the atoms are in a
gas phase. A dilute gas is well described by the elementary kinetic theory of
gases. The thermodynamics of the atoms are the usual ones of a classical gas.
Its specific heat is independent of temperature T , and for fermions with spin, the
thermodynamic average of spins has a susceptibility that scales as the inverse of
temperature T , which is the Curie’s law. As temperature decreases, the system
can undergo a first order phase transition into a liquid state, where the atoms
have stronger correlations. As the temperature further decreases, the system
may undergo another first order phase transition into a solid phase. This is
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what happens for almost all cases, with the only exceptions being the isotopes
of helium, 3He and 4He, which remain in a liquid phase down to the lowest
temperatures. The small mass of helium leads to a large quantum zero-point
fluctuation, which prevents the helium from solidifying. Thus helium remains
in a liquid phase at low temperature where quantum effects must be consid-
ered [55]. The statistics of the atoms are no longer given by the Boltzmann
statistics. The fermions like 3He which obey Fermi-Dirac statistics, and the
bosons like 4He which obey Bose-Einstein statistics, have very different physi-
cal properties. From a broader perspective, the electrons in metals can also be
viewed as a quantum liquid. Due to the small mass of electrons compared to
atoms, the quantum degeneracy temperature of electron is much higher and is
typically about ∼ 104K. So the conduction electrons are in the quantum regime
at room temperature. The study of the physics of quantum liquids gave rise
to the far reaching concepts of elementary excitations [56–58], with the crucial
observation that each of the low lying many body eigenstates of quantum liquids
can be considered as a combination of elementary excitations, which makes low
temperature quantum liquids in some aspects better understood than classical
liquids [55]. An elementary excitation could be of boson type or fermion type,
and has a dispersion relation ε(p) between its energy ε and momentum p. Quan-
tum liquids at low temperatures show novel macroscopic quantum phases like
superfluidity [59] for bosons and superconductivity [60] for fermions.

The above mentioned systems like electrons and liquid helium are strongly
interacting and there physical parameters like the interaction strengths are not
well controlled. This situation was changed in the 1990s, when the ultracold
atomic systems are realized in experiments [24, 25], thanks to the developments
of cooling techniques. With them one can get dilute systems that are well
controlled. The dilute atomic gases are cooled down to a temperature where
quantum effects must be taken into account. After the first achievement of
Bose-Einstein condensation (BEC) with bosonic gas, the quantum degenerate
fermionic gas was also realized a few years later [61–64]. With these achieve-
ments, ultracold atoms have become a new type of quantum many body systems.
It allows for various controlling and probing methods. The interaction between
the atoms and laser can be used to create external potentials for the atoms,
which may confine the atomic movements to one or two dimensions and can be
used to design a certain periodic [65, 66] or quasi-periodic [46, 67, 68] potential
for the atoms. The interaction between the atoms can be tuned via the Fes-
hbach resonance [69, 70]. The momentum distribution of the atomic gas can
be directly measured in a time-of-flight experiment [71]. The new systems of
ultracold atoms also give rise to new physics. A quantum phase transition be-
tween superfluid and Mott insulator was observed by tuning the depth of optical
lattice [71]. By tuning the Feshbach resonance to the unitary point where the
interaction strength is infinitely large, one length scale related to the interaction
strength disappears and one observes the atomic gases display universal ther-
modynamics [72–75]. If one tunes the Feshbach resonance across the unitary
point, a BEC-BCS crossover can be observed for fermionic atoms [76–79].

The macroscopic quantum phases like superfluid and superconductivity only
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exist at low temperatures, while the critical temperatures depend on the density.
Above a certain critical temperature, theses phases are destroyed by the thermal
fluctuation. The basic idea of thermal fluctuation can be well explained in a
classical system of atoms. Temperature is bounded below by 0K. At non-zero
temperature, atoms are all in thermal motions. Thermal motions are random,
and the motions are stronger at higher temperatures. These thermal motions
of small atoms can be visibly observed in the Brownian motion experiment,
where one put a pollen into water and then observe the pollen which is a much
larger object than the atoms. The pollen does not stay at rest in the water,
but undergoes a random movement called Brownian movement. This originates
from the collisions between the pollen and the many moving molecules of water
surrounding it. The net effect of the collisions is a random force experienced
by the pollen. If we neglect the short correlation time scale of the collisions,
different collisions are independent events and the random force is a white noise.
The random walk of the pollen has a mean squared distance proportional to the
time t, as < x2 >= 2Dt, where x is the displacement of pollen in x direction
and D is the diffusion coefficient. On the other hand, if one drags a pollen
with constant velocity v in water, the pollen experiences a friction force, in
the opposite direction of the velocity and proportional to the velocity value as
f = −v/µ, where f represents the friction force and µ is called the mobility.
This friction force also originates from the collisions between the moving pollen
and the atoms in the water. It is thus not surprising that the diffusion coefficient
D and mobility µ can be related by the Einstein relation [80] D = kBµT , where
kB is the Boltzmann constant and T is the temperature. This relation is an
example of the fluctuation-dissipation theorem. The presence of temperature
T in this relation clearly shows the thermal nature of Brownian motion. The
random movements of the pollen is a typical example of thermal fluctuation,
where randomness is introduced by the finite temperature. In the following
chapters, we will see how thermal fluctuations could destroy long range phase
coherence of matter waves, as what happens when a superfluid becomes normal
fluid when the temperature is increased above the critical temperature.

Another possibility of destroying the long-range coherence besides thermal
fluctuation is the randomness of the media through which the wave propagates.
This is what happens in the physics of Anderson localization [81]. Originally
Anderson localization was discussed in the context of the movements of electrons
in a crystal. It is well known that in a perfect periodic crystal, the single particle
eigenstates of the electron’s wavefunction are the Bloch waves, which are just
plane waves modulated by a periodic function. Anderson conjectured out that
in the presence of strong enough disorder in the crystal, a conductor can become
an insulator. This is actually a general phenomenon of waves propagating in
a disordered media. The destructive interference of waves scattered by the
disorders prevents the wave from propagating far away and we then have a
localized wave.

Quasicrystals play an intermediate role between periodic systems and dis-
ordered systems. Solid state alloys with quasicrystal structure were discovered
by chance in 1984 [1]. They are long-range-ordered, while have no translational
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symmetry. On the one hand, unlike periodic crystals, quasicrystal potentials
can lead to localization effects [19]. On the other hand, the localization physics
of quasicrystals are quite different from the Anderson localization of disordered
systems. We can study the physical properties of quasicrystals by quantum
simulation, thanks to the strong control over the physical parameters in a cold
atomic system. In cold atoms experiments, a quasicrystal optical lattice po-
tential can be realized with relatively easy arrangements of laser beams. In
one-dimension, a quasiperiodic potential can be created by superimposing sev-
eral laser beams with incommensurable periods. In the past years, these one-
dimensional quasiperiodic systems of cold atoms have been extensively stud-
ied [20, 28–45]. Studying quantum fluids in a 2D quasicrystal optical lattice
was first theoretically proposed in 2005 [46]. In 2019, this was realized in cold
atoms experiments [47] following a configuration proposed in 2013 [48]. In par-
ticular, observation of a localization phase of weakly interacting bosons in that
system has been reported [49]. With these advancements in experiments, the
theoretical study of two dimensional cold atoms in quasicrystal systems is just
starting [50–52] and many questions remain open. For example, we want to
know how robust the localization phase is against thermal fluctuations. The
physics in 2D quasicrystals have fundamental differences compared to the 1D
cases, as we know the effects of thermal and quantum fluctuations in 1D sys-
tems are generally more significant. For instance, in a homogeneous system,
there is no superfluidity at any finite temperatures for bosons in 1D, while in
2D there is a finite temperature superfluid-to-normal fluid transition which is
a topological BKT transition. Better theoretical understandings of the physics
of cold atoms in 2D quasicrystals are required, which may be useful guides for
further experimental works.

The main subject of this thesis is the cold atoms in a two dimensional qua-
sicrystal potential. In this chapter, we first review the basic ideas and experi-
mental setups of ultracold atomic systems, and then give a review of the local-
ization physics and quasicrystal systems, thus set up the stage for the study of
the combination of the two in the following chapters.

1.1 Cold atoms and quantum simulation

Cold atoms are experimental systems where one can control various kinds
of physical parameters. These controls of parameters make cold atoms one of
the best platforms of quantum simulation, where one directly design an exper-
imental setup corresponding to a certain theoretical model and then measure
the physical observables. These rich methods of controls in cold atomic systems
are thanks to the internal degrees of freedoms of the atoms.

1.1.1 External and internal variables

Atoms are composite objects containing the nucleus and electrons surround-
ing the nucleus. For a dynamical description of atoms, it is helpful to make a
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separation between the external variables and internal variables [82]. While the
relative motions between the electrons and nucleus are subject to the Coulomb
interaction, the motion of the atoms as a whole are subject to the Van der Waals
interaction, thus a separation between these two kinds of dynamical variables
are intuitively quite acceptable.

We illustrate this idea by taking the example of an atom composed of the
nucleus and one electron. We denote the position variables of the electron and
nucleus as re and rN , their masses as me and mN , and their momenta as pe

and pN. In quantum mechanics, they have the standard canonical commutation
relations as

[re,i, pe,j ] = i~δij , [rN,i, pN,j ] = i~δij , i, j = x, y, z (1.1)

and all the other commutators are zero. The Hamiltonian is the summation of
the kinetic terms and the interaction between the electron and the nucleus,

H =
pe

2

2me
+

pN
2

2mN
+ V (re − rN ). (1.2)

We introduce the new variables

R =
mere +mNrN

M
, P = Pe + PN, (1.3)

r = re − rN ,
p

m
=

pe

me
− pN

mN
, (1.4)

where M = me + mN is the total mass of the atom and m = memN
M is the

reduced mass. The variables R and P are the position and momentum of the
center of mass, and they are called external variables. The variables r and p
describe the relative motion between the electron and the nucleus, and they are
called internal variables. It can be easily checked that these new variables obey
the commutation relations

[ri, pj ] = i~δij , [Ri, Pj ] = i~δij , i, j = x, y, z, (1.5)

while all other commutators are zero. So this transformation is a canonical
transformation which conserves the canonical commutation relations.

The Hamiltonian can be rewritten with the new variables as

H =
P2

2M
+

p2

2m
+ V (r). (1.6)

We can see from this Hamiltonian that the dynamics of external and internal
variables are separated.

As we will see in the following parts, the separation of internal and external
degress of freedoms of atoms goes through the whole discussion of cold atomic
physics. If the atoms were elementary particles with no internal structure, there
would be much less ways to play with the systems. It is the internal degree of
freedom that allows people to have so many ways to control and probe the
atoms.
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1.1.2 Ultracold atoms

The internal variables are governed by quantum mechanics, which lead to
the discrete atomic spectra. For the interaction between atoms and monochro-
matic lasers, the internal degrees of freedom are usually well described by a two
level system, with a ground state conventionally denoted as |g〉 and an excited
state conventionally denoted as |e〉 [82]. For example, for interaction processes
between an atom and a laser with frequency ω, due to the conservation laws,
only few states can be reached from the ground state with nonzero matrix ele-
ments. Due to the fact that the electromagnetic field is a vector field, according
to Wigner-Eckart theorem, a state with angular momentum l can only transit
to another state with angular momentum l, l− 1 or l+ 1. In addition, photons
are spin-1 particles, but with only transverse polarizations, so 2 states out of
them are involved in the reachable final states. Further selection rules can be
obtained by picking a certain polarization of the laser and taking into account
the parity symmetry. In the end, the excited states with excitation energy too
far from the energy of a single photon ~ω have little effects and we can only
consider the states that are almost in resonance with the laser, i.e. an excitation
energy ~ω0 close to ~ω. If ω is smaller than ω0, the laser is called red detuned;
if ω is larger than ω0, the laser is called blue detuned.

At room temperature, the external variables of atoms are well described
by classical physics, which gives the equipartition rule and leads to a constant
specific heat. As the temperature gives the scale of the kinetic energy of the
atom, the atomic velocity scales as square root of temperature, and with low
enough temperature, it is possible to have the atomic momentum small enough
that the de Broglie wavelength λ = h/p is comparable or larger than the typical
inter-atomic distance. Then the atoms’ external variables should be described
by quantum mechanics. Ultracold atoms fall into this category. They have a
temperature of the order to tens to hundreds of nK, corresponding to a thermal
de Broglie wavelength of the order λT ∼ 102 − 103nm . This is the same order
of magnitude as optical wavelengths, which is also the typical inter-particle
distance in these systems.

1.1.2.1 Laser cooling

The quantum degenerate ultracold atomic systems are realized in experi-
ments thanks to the developments of cooling techniques for atomic systems. A
first stage of cooling is usually achieved by the laser cooling technique. An atom
placed in counter-propagating lasers can be cooled down due to the Doppler ef-
fect [83], see Fig. 1.1. If we choose the laser frequency ω to be red detuned,
i.e. ~ω is a bit smaller than the transition energy between the electron ground
and excited states, then due to the Doppler effect, the atom will be more likely
to absorb a photon when it moves towards the laser source, and gain the mo-
mentum of the photon which is in opposite direction to the atomic momentum.
This makes the atom experience a friction -like force, which decreases the atomic
velocity. When the excited electron decays back into the ground state through
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Figure 1.1: (a) An atom with velocity v encounters a photon with momentum
~k; (b) after absorbing the photon, the atom is slowed by ~k/m; (c) after re-
radiation in a random direction, on average the atom is slower than in (a). This
figure is from Ref. [84]

spontaneous emission, the atom gains the opposite momentum of the emitted
photon. The spontaneous emission is however isotropic and thus the net ef-
fect of average momentum change is zero. On the other hand, the spontaneous
emissions in random directions give a non-zero average of the square of velocity.
In the end, the atoms reach an equilibrium state where cooling due to pho-
ton absorbing and heating up due to photon emission fluctuations balance each
other. The atoms are just like Brownian particles. The colliding and absorbing
of photons give an effective friction force and the spontaneous emissions give the
random kicks. For a well-chosen detuning, the lowest equilibrium temperature
that can be reached is given by the natural linewidth Γ of the excited state as
T = ~Γ/2kB . In experiments, this could be of the order of hundreds of µK.

Further cooling below this Doppler limit can be achieved using sub-Doppler
cooling techniques, for example the Sisyphus mechanism [85, 86]. The later uses
the energy shifts and cycles of pumping and transitions betweeen Zeeman sub-
levels. This can in the end reach a natural temperature limit of laser cooling
techniques, given by the recoil energy of the photon emission as

Er =
~2k2

2m
(1.7)

where k represents the wavenumber of the laser and m is the atomic mass.
If an atom at rest emits a photon with momentum ~k, the atom gains a recoil
momentum ~k in the opposite direction. The corresponding kinetic energy is this
recoil energy Er. This gives a temperature of the order of µK in experiments.
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1.1.2.2 Trapping

The idea of slowing down the atoms by absorbing photons can also be used
for trapping of atoms. A widely used trapping method for neutral atoms is the
magneto-optical trap (MOT) [87–89], utilising both the optical and magnetic
fields. The idea is illustrated in Fig. 1.2 for a 1D trapping in the z direction.
Assume the atom internal state has a transition from ground state with angular
momentum Jg = 0 to excited states with angular momentum Je = 1. The
magnetic field leads to the Zeeman splitting between the excited states with
different angular momentumMe in the z direction. The magnetic field is chosen
to be spatially inhomogeneous, and as a result, the relative energies between the
Zeeman sub-levels depend on the positions as well. The lasers propagating in
the two directions are circularly polarized in opposite directions. As shown in
Fig. 1.2, the laser propagating from right to left has σ− polarization, and the
laser propagating from left to right has σ− polarization. Due to the conservation
of angular momentum in light matter interaction processes, the σ− polarized
light can only excite the atom from the ground state to the Me = −1 state,
and the σ+ polarized light can only excite the atom from the ground state to
the Me = +1 state. If we take the laser to be red-detuned from the Me =
0 state with detuning δ, then at the trap center all three Zeeman sub-levels
are detuned from the laser. For atoms to the right of the trap center, say at
point z′ in Fig. 1.2, the state Me = −1 is close to resonance and the state
Me = +1 is further from resonance, and the atom absorbs more photons with
σ− polarisation. Since the σ− polarised light propagates from right to left, the
atom is pushed towards the trap center. On the other hand, if an atom is at a
position z′′ < 0 to the left of the trap center, it absorbs more photons with σ+

polarization as the state Me = +1 is closer to resonance, so the atom is pushed
to the right towards the trap center. In this way, the cooling and trapping of
the atomic cloud is achieved simultaneously in the MOT.

1.1.2.3 Evaporative cooling

Yet the temperature reached by laser cooling methods is not low enough to
reach the quantum degeneracy with phase space density D ≡ nλ3

T & 1. Lower
temperatures of the atomic gases are realized in experiments by evaporative
cooling, see Fig. 1.3. By gradually decreasing the depth of the trap, the atoms
with large velocities will escape the trap. Then the remaining atoms can reach
a new thermal equilibrium through atom-atom interactions, and this new equi-
librium has a lower temperature than before. Although a number of the atoms
is lost during the evaporation process, the decrease of particle number density
n is compensated by a faster increase of thermal de Broglie wavelength λT and
the phase space density D ≡ nλ3

T is increased. Thus the cooling is efficient
enough to reach the quantum degeneracy threshold. In the end, it gives the
temperature of tens to hundreds of nK where lies the ultracold atoms regime.
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Figure 1.2: Arrangement for a MOT in 1D. The horizontal dashed line rep-
resents the laser frequency seen by an atom at rest in the center of the trap.
Because of the Zeeman shifts of the atomic transition frequencies in the inho-
mogeneous magnetic field, atoms at z = z′ are closer to resonance with the σ−
laser beam than with the σ+ beam, and are therefore driven toward the center
of the trap. This figure is from Ref. [90]

Figure 1.3: Principle of the evaporation technique. Once the trap depth is
lowered, atoms with energy above the trap depth can escape and the remaining
atoms reach a lower temperature. This figure is from Ref. [90]



24 CHAPTER 1. INTRODUCTION

1.1.2.4 Hamiltonian of atomic gases

The achievements of methods to cool and trap atoms with laser light was
recognized by the award of the Nobel prize in 1997 [84, 91, 92]. Thanks to the
developments of these cooling and trapping techniques, the ultracold atomic
systems have been realized in experiments during the 1990s. A landmark is
the observation of Bose-Einstein condensation using dilute ultracold gases in
1995 [24, 25], characterizing the quantum degeneracy of the bosons. This opened
a new field of experimental study over quantum systems, and was recognized
by the award of the Nobel prize in 2001 [93, 94]. An experimental setup for the
atoms confined by lasers and magnetic fields are sketched in Fig. 1.4. The con-
fined atoms can be sustained a sufficiently long time, such that the system can
be considered in an equilibrium state with a certain temperature T . Since the
interaction and statistics of the atoms are quantum, the physics is characterised
by the Hamiltonian,

Ĥ =
∑
i

p̂i
2

2m
+
∑
i

V (r̂i) +
∑
i<j

U(r̂i − r̂j), (1.8)

with m the atom mass, i and j go over the number of atoms. The momentum
operator p̂i and position operator r̂i refer to the external variables of the atoms,
i.e. dynamic variables of their centers of mass. The Hamiltonian contains the
kinetic term

∑
i
p̂i

2

2m , the external potential
∑
i V (r̂i) and the interaction between

the atoms
∑
i<j U(r̂i − r̂j). Here we only consider two-body interactions as

the ultracold atomic gases are dilute. These terms in the Hamiltonian are all
operators of the external variables of the atoms. As we will show, the internal
states of the atoms allow strong control over the Hamiltonian of the external
variables.

1.1.2.5 Atom-atom interactions

The interaction term U describes 2-body scattering processes for dilute
atomic gases, coming from the Van de Waals interactions between the atoms,
as discussed above. Just like what we have done for separation of internal and
external variables for electron and nucleus, a 2-body scattering process can be
treated by separating the center of mass motion and the relative motion of
the two scattering objects. The center of mass motion is just as trivial as a
free particle and is thus eliminated from the problem by taking the center of
mass reference frame. The scattering properties are then characterized by the
relative motion of the two scattering objects. For isotropic interaction U , the
angular momentum l of the relative motion is a good quantum number during
the scattering. The scattering amplitude can be decomposed into a summa-
tion of partial waves amplitudes for different angular momentum. Scattering in
isotropic potential can be thus reduced to solving a one-dimensional Schrödinger
equation in semi-infinite space. The angular momentum l amounts to a centrifu-
gal potential term in addition to the bare interaction potential. This centrifugal
potential is proportional to ~2l(l + 1), i.e. the eigenvalue of the square of the
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Figure 1.4: Experimental setup for a cold atom system. Six laser beams
intersect in a glass cell, creating a magneto-optical trap. The coils generating
the fixed quadrupole and rotating transverse components of the time orbiting
potential trap magnetic fields are shown in green and blue, respectively. This
figure is from Ref. [24]

angular momentum operator. It is zero for s-wave scattering with angular mo-
mentum l = 0. At low temperature, only the s-wave scattering needs to be
considered because partial waves with higher angular momentum are strongly
suppressed due to the centrifugal energy. A typical centrifugal energy barrier for
l = 1 corresponds to a temperature ∼ 1mK, much higher than the temperature
regime of ultracold atomic systems. The s-wave scattering can be characterised
by a quantity asc with the dimension of length, called scattering length. It is
related to the scattering amplitude f in the low energy limit as

f(k → 0) = −asc (1.9)

where k is related to the energy E as E = ~2k2

2µ , while µ is the reduced mass. The
sign of scattering length asc characterizes the sign of interaction: the interaction
is repulsive for positive scattering length, and attractive for negative scattering
length.

1.1.2.6 Feshbach resonance

This scattering length for atomic collisions can actually be tuned in exper-
iments, thanks to the internal states of the atoms, using so-called Feshbach
resonances [95]. The colliding atoms can have different kinds of initial internal
states. Under the spirit of Born Oppenheimer approximation, different kinds
of initial states give different effective interaction potentials between the two
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Figure 1.5: Left: The two-channel model for a Feshbach resonance. Atoms
prepared in the open channel, corresponding to the interaction potential, un-
dergo a collision at low incident energy. In the course of the collision, the open
channel is coupled to the closed channel. When a bound state of the closed
channel has an energy close to zero, a scattering resonance occurs. The position
of the closed channel can be tuned with respect to the open one, e.g., by varying
the magnetic field B. Right: Magnetic field dependence of the scattering length
between the two lowest magnetic substates of 6Li with a Feshbach resonance at
B0 = 834G and a zero crossing at B0 +∆B = 534G. The background scattering
length abg = −1405aB is exceptionally large in this case (aB the Bohr radius).
This figure is from Ref. [26]

atoms, which are referred to as different collision channels. Figure 1.5(left)
gives a sketch of a two-channel collision. There is an open channel, where the
colliding atoms are initially prepared. The other channel, called the closed chan-
nel, has an energy at infinitely large distance larger than the initial energy of
the two colliding atoms in the open channel. It has discrete bound states with
energies lower than the energy limit at infinite large distance. One of the bound
states may have an energy close to the initial energy of the open channel, and
the two atoms in the open channel will undergo a scattering resonance with this
bound state. The scattering amplitude of the resonant scattering is controlled
by the energy difference between the colliding atoms in the open channel and the
resonant bound state in the closed channel. If the two channels have different
magnetic moments, the relative position of the closed channel bound state can
be tuned by varying an external, uniform magnetic field. As a consequence, the
scattering length asc can be tuned with this method called Feshbach resonance.
In particular, it is possible to reach the unitary point where the scattering length
asc is infinite and go over this point to change the sign of interaction from at-
tractive to repulsive or vice-versa, see Fig. 1.5(right).
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1.1.2.7 Optical lattices

In addition to the interaction term U in the Hamiltonian (1.8), the external
potential term V (r) can also be well controlled in the experiments. Although
an atom is neutral as a whole, it can still interact with electro-magnetic fields,
i.e. lasers, via its internal variables, which creates an effective external potential
experienced by its external variables. This can be understood in a semi-classical
picture. The laser shining on an atom polarizes the atom, and induces a dipole
moment d proportional to the electromagnetic field E(r). The dipole then
interact with the laser field and gives a dipole force F = d·∇E(r) ∝ ∇|E(r)|2, i.e.
the force is proportional to the gradiant of the laser field intensity. Consequently,
the effective external potential due to the dipole force is just proportional to the
intensity as V (r) ∝ I(r). In addition, the sign of potential V (r) is controlled by
the detuning δ of the laser: if the laser is red detuned with δ < 0, the potential
is attractive where the laser intensity I(r) is large; if the laser is blue detuned
with δ > 0, the potential is repulsive where the laser intensity I(r) is large.

This allows to optically design potentials on purpose. For instance, over-
lapping two counterpropagating coherent lasers will give a standing wave with
spatial period as half of the laser wavelength λ. Taking the propagation direc-
tion of the lasers as the z direction, the intensity of the standing wave along
z direction is proportional to sin2(kz). The optical potential can be written
as V (z) = V0sin

2(kz), where k = 2π/λ is the wave number of the lasers and
V0 represents the laser intensity. This is a periodic potential along z direction,
with spatial period a = λ/2. This gives a one-dimensional optical lattice. Two-
dimensional or three-dimensional optical lattices can be created using multiple
pairs of laser beams, see Fig 1.6. They are usually in orthogonal directions,
and have no interference between different directions, due to a slight frequency
shift. Then the total potential in three dimensions is just a summation of three
one-dimensional potentials

V (x, y, z) = V0[sin2(kx) + sin2(ky) + sin2(kz)] (1.10)

Atoms in this periodic potential of optical lattice can mimic the electrons in
the periodic potential created by solid crystals, see Fig. 1.7. The absolute values
of the physical parameters in the two systems are different by several orders of
magnitude: the typical lattice constant in solid crystal is of order Å while the
optical lattice constant is half of the laser wavelength and of the order µm;
the typical temperature of electrons in solid is ∼ 102K while the temperature
for ultracold atoms is about 10−8-10−7K; the mass of an atom is thousands
of times heavier than the mass of an electron. However, what matters are
the ratios of the various physical parameters, which can be of the same order
for the two system, and then the quantum degenerate cold atomic gases in
optical lattices are governed by the same physics as the electrons in crystals.
For example, the atomic wavefunctions can be described by the Bloch waves,
and Bloch oscillations in optical lattices have been observed [96, 97]. With deep
optical lattices, one can reach a strongly-correlated lattice system [98]. Using the
Wannier functions as the basis, one can develop the tight binding lattice model.
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Figure 1.6: Optical lattices.(a)Two- and (b) three-dimensional optical lattice
potentials formed by superimposing two or three orthogonal standing waves. For
a two-dimensional optical lattice, the atoms are confined to an array of tightly
confining one-dimensional potential tubes, whereas in the three-dimensional case
the optical lattice can be approximated by a three-dimensional simple cubic
array of tightly confining harmonic-oscillator potentials at each lattice site. This
figure is from Ref. [26]
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Figure 1.7: Left: periodic potential experienced by electrons in a crystal. Right:
periodic potential experienced by atoms in a optical lattice. This figure is from
Ref. [100]

The main physics is given by the hopping between nearest neighbours and on-
site interactions. This leads to the Hubbard model, widely used in condensed
matter physics, for example in the study of Mott insulator transitions and high
temperature superconductors [99].

The optical lattice potential can also be used to confine the atoms to lower
dimensions. For deep optical lattice potentials, the confinement on a single site
can be approximated by a harmonic trap. The trapping frequency ω is related to
the potential amplitude V0 as ~ω = 2Er(V0/Er)

1/2, where Er is the recoil energy
Eq. 1.7. If all the other energy scales of the atomic gas are much smaller than ~ω,
then the atoms are effectively confined in a two-dimensional system. Likewise,
effective one-dimensional systems can be created by two strong confining optical
potentials.

In an optical lattice, the dimension, the potential amplitude and spatial pe-
riod are all controllable. The good control over the external potential term and
interaction term in the Hamiltonian (1.8) makes the ultracold atomic systems
a good platform for quantum simulation.

1.1.3 Quantum simulation
Generally speaking, solving a quantum mechanical problem could be chal-

lenging both analytically and numerically, in particular in the presence of strong
correlations. From the analytical perspective, only few models are exactly solv-
able. Most of the theoretical problems can only be dealt with by certain approx-
imation methods. However, there are many problems that cannot be correctly
analysed by any known approximations. For example, some strongly correlated
materials could be beyond the scope of mean field theory. Another approach to
target a quantum mechanical problem is by numerical calculation. Nevertheless,
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Figure 1.8: Left: a classical bit, which has two states 0 and 1. Right: a qubit
which lives on a Bloch sphere. This figure is from Ref. [101]

there is a fundamental difficulty here, which comes from the fact that people
calculate a quantum mechanical problem using classical computers. A classical
computer is based on the information unit classical bit, which is just a two state
object. The two states of a classical bit are usually called as 0 and 1. However,
a quantum state lives in the Hilbert space. For instance, a quantum spin 1

2 , also
referred to as a qubit, lives on a Bloch sphere, which is a two dimensional com-
plex vector space spanned by states |0〉 and |1〉, see Fig. 1.8. As a consequence,
a quantum spin system with N spin 1

2 will give a Hilbert space with dimension
2N . A general quantum state is described by a 2N × 2N density matrix. If we
store the quantum states by classical bits, the number of bits required hence
grows exponentially with the size of the spin system. One way of solving this
problem is to make the computer itself quantum [21], where one uses the quan-
tum bit, or qubit, for calculations of quantum mechanical problems. This is the
idea of quantum computation.

1.1.3.1 Digital quantum simulator

A quantum simulator is a quantum system onto which one can map the
theoretical model one wants to study. Of course this simulator should not be as
complicated as the original real system from where the theoretical model was
extracted in the first place, otherwise we gain nothing by this loop. The logic
is that we first get the theoretical model which is a great simplification of the
real-life objects but is expected to capture its core physics we are interested
in. Then this theoretical model could be mapped to by a quantum simulator
and the physics of this model can be directly measured. Suppose we want to
study the time evolution of a quantum state |φ(0)〉. We can map this state
into state |ψ(0)〉 of the quantum simulator and map the Hamiltonian of the
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system Hsys into the Hamiltonian of the simulator Hsim, then in the end map
the final state of the simulator |ψ(t)〉 back to |φ(t)〉, see Fig. 1.9. The quantum
simulator should be a controllable system: the initial state can be prepared,
the Hamiltonian of the simulator can be engineered and the final state can be
measured [23].

A digital quantum simulator is a universal machine. The quantum states
are encoded using the qubits. The unitary transformation U is implemented by
the application of a sequence of qubit gates. One just needs to re-register and
re-program the qubits and gates to simulate different systems. In this sense it
is a quantum computer. The digital simulator would be optimised in a general
way, not specific to any particular system.

1.1.3.2 Analog quantum simulator

Another approach to simulate quantum systems is analog quantum simula-
tion, where the simulator directly mimics the model to be simulated. It can
be viewed as a quantum computer for a single Hamiltonian. An experimental
system is designed such as the Hamiltonian is the same as the quantum problem
to solve, then the calculations over this Hamiltonian will be done by nature. Of
course, in practice it is impossible to reproduce in the experiments exactly the
same model Hamiltonian, so the task of building an analog quantum simulator
is to make the Hamiltonian of the simulator as close as possible to the Hamil-
tonian to be simulated, such that we can believe we can get the physics of the
simulated Hamiltonian from measurements performed on the analog quantum
simulator.

Compared to a true quantum computer, an analog quantum simulator is
usually easier to build. On the one hand, one needs to build a new analog sim-
ulator for each model; on the other hand, an analog simulator can be optimized
specifically for the simulated model, without taking any compromises for the
sake of being applied to other general models as for a quantum computer.

1.1.3.3 Cold atoms for quantum simulations

In order to give the desired Hamiltonian, we need to have good control
over the experimental system of the simulator. As we explained above, the
Hamiltonian Eq. (1.8) of the ultracold atomic gas is remarkably controllable and
the physical information of the atomic gas can be probed in various ways, thus
ultracold atomic gases are a good candidates for quantum simulation[27, 102].

There are many achievements in this field, including for examples simulating
the quantum phase transition between a Mott insulator and a superfluid by
tuning the optical lattice depth [71], simulating the BEC-BCS crossover by
the Feshbach resonance [103], simulating artificial gauge field by rotating the
trapping potential or by utilizing the Berry phase in atom-laser interactions
which leads to the quantum Hall effects in cold atoms [104], simulating one
dimensional spin chains [105] and simulating localization effects in disordered
or quasiperiodic systems [106–110].
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Figure 1.9: Schematic representation of a quantum system and a corresponding
quantum simulator. The quantum state |φ(0)〉 evolves to |φ(t)〉 via the unitary
transformation U = exp(−i~Hsyst). The quantum simulator evolves from the
state |ψ(0)〉 to |ψ(t)〉 via U ′ = exp(−i~Hsimt). The simulator is designed such
that there is a mapping between the simulator and the simulated system, in
particular, the mappings |φ(t)〉 ↔ |ψ(t)〉,|φ(0)〉 ↔ |ψ(0)〉, and U ↔ U ′. While
the simulated system may not be controllable (or not experimentally accessible
in some cases),the quantum simulator is. Namely, the initial state |ψ(0)〉 can be
prepared, the unitary evolution U ′ can be engineered, and the final state |ψ(t)〉
can be measured. The result of this measurement provides information about
the simulated system. The colored arrows denote the controllable operations.
The solid black arrows describe the time evolution of the system and the sim-
ulator. The dashed arrows indicate the correspondence between the quantum
states of the simulator and the simulated system. This figure is from Ref. [23]
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1.2 Localization
In this thesis we will study the quantum simulation of 2D quasicrystals by

cold atoms, including the localization properties. In this section, we give a brief
review of the basic idea of localization, disorder and quasicrystals.

1.2.1 Bloch waves in periodic potentials
For comparison to a disordered case, we first review the Bloch theorem for

single particle eigenstates in a periodic potential. For simplicity, we take a one
dimensional system. The Hamiltonian is

H =
p2

2m
+ V (x) (1.11)

where the potential is a periodic function,

V (x) = V (x+ a), (1.12)

where a is the lattice constant.
The system has discrete translational symmetry for all translations of an

integer times a. According to the Wigner’s theorem, this translation symmetry
should be mathematically represented as a linear, unitary operator T . The
operator of translation of distance a is

Taψ(x) = ψ(x− a). (1.13)

The momentum operator p̂ is by definition the generator of spatial translation
(multiplied by ~), so we can also write the operator Ta in terms of p̂ as

Ta = e−iap̂/~. (1.14)

The Hamiltonian commutes with Ta thanks to the periodicity of potential
V (x). As a consequence, we can search the common eigenstates of H and Ta.
Since the translation operations commute with each other, all the translation
operators T form an Abelian group. Abelian groups only have one dimensional
irreducible representations. The eigenstates are such that

Taψ(x) = λψ(x). (1.15)

The eigenvalue λ should be a pure phase e−iθ(a) since Ta is unitary. We expect
the phase θ(a) to be linear with a due to the commutation of translations. So
we write the phase as θ(a) = ka, and the eigenstate ψ(x) obeys

e−ikaψ(x) = Taψ(x) = ψ(x− a). (1.16)

Defining u(x) = e−ikxψ(x), we get

u(x− a) = e−ik(x−a)ψ(x− a) = e−ikxeikaψ(x− a) = e−ikxψ(x) = u(x), (1.17)
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Figure 1.10: Left: an extended state. Right: a localized state. The blue curves
represent the typical profiles of the wavefunctions in the two cases. This figure
is from Ref. [111]

so u(x) is a periodic function with period a.
In summary, the eigenstates of the periodic Hamiltonian can be written as

ψ(x) = eikxu(x), (1.18)

where u(x) is a periodic function u(x+ a) = u(x).
This result can be easily extended to multi-dimensional systems, noting that

the translations in different directions all commute with each other. The eigen-
states are just plane waves multiplied by a periodic function with the same pe-
riod as the periodic potential. This gives a typical example of extended states,
whose wavefunctions run across the system. See Fig. 1.10 (left) for a typical
wavefunction profile of an extended state.

We can see from Eq. 1.18 that a difference of k = 2π/a means a phase
difference ei2πx/a of the Bloch wavefunction. This phase factor is itself a periodic
function with period a, so it can be absorbed into the periodic function u(x).
As a result, the k is defined with modulus 2π/a. We can choose the range of k
as from −π/a to π/a, and this range is called the Brillouin zone. For each k in
the Brillouin zone, there could be different u(x) corresponding to wavefunction
with different energies. The energies of Bloch states are grouped into energy
bands, separated by energy gaps between them.

The electrons in perfect crystals obey the Bloch theorem if we neglect the
interactions between the electrons and between the electrons and the phonons.
Their eigenstates are given by Bloch waves and the eigenenergies are Bloch
bands separated by energy gaps. Each eigenstate of an electron has a crystal
momentum ~k, where k lies in the Brillouin zone. The Fermi level is decided by
the electron numbers in the solid. If the Fermi level is inside an energy band, a
driving force can lead to an increase of the crystal momentum of all the electrons
in this band and thus induce current. If the Fermi level is in an energy gap,
then the energy bands are fully occupied. A driving force may still increase the
crystal momentum but the electron at one end of the Brillouin zone will reenter
the Brillouin zone from the other end, so the net change of the total current of
the electrons is zero. As a result, we have an insulator. This kind of insulator
is usually called the band insulator.

If we turn on the interaction, for weak repulsive interaction between elec-
trons, Fermi liquid theory tells us that the above picture of free electrons still
holds, as long as we replace the bare electrons by quasiparticles which are dressed
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Figure 1.11: A portion of a monatomic Bravais lattice containg a vacancy.
This figure is from Ref. [112]

by interactions. However, strong repulsive interactions may induce a metal-
insulator phase transition when the electrons are at half filling of the band. The
picture is that the electron movements are blocked due to the Pauli principle
and interactions. This kind of insulator is named as Mott insulator.

1.2.2 Localization in disordered systems

A disordered system is characterized by a potential V (r) containing random-
ness. Historically, localization transitions in disordered systems was first dis-
cussed in the context of metal-insulator transitions in condensed matter physics.
Apart from band insulator and Mott insulator mentioned above, another kind
of insulator transition is possible due to the localization of electron wavefunc-
tions [81] in disordered potential.

Disorder is ubiquitous. Take a crystal for example, there could be vacancies
and interstitials as the absence of ions or presence of extra ions, there could
be dislocations where arrays of atoms are misaligned, there could be impurities
which are different kinds of atoms present in the crystal. These crystal defects
generally appear randomly in positions, thus distort the crystal from a perfect
periodic lattice [112].

It is worth noting that the disorder is not something that unfortunately enter
the system, but really intrinsically exist [112]. For instance, for the vacancy
defects in crystals with typical energy cost ∆E as shown in Fig. 1.11, a nonzero
density n of defects is guaranteed by a nonzero temperature T . Although there
is a cost in energy ∆E, this can be compensated by the gain in entropy. In fact,
the defects’ density n is given by the Boltzmann distribution n ∼ e−∆E/T .

Take into account the disorders in the crystal like impurities or defects,
the potential is not any more a pure periodic potential but contains a certain
degree of randomness. It has been shown that in the presence of strong enough
disorders, single particle wavefunctions of electrons can be localized in space.
See Fig. 1.10 (right) for a typical wavefunction profile of a localized state. It
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covers a finite region of the space and at large distance the wavefunction only
has an exponentially decaying tail. As a result, the electrons cannot move across
the system and the crystal become an insulator. This metal-insulator transition
due to disorder is usually called Anderson transition.

The Anderson localization transition depends strongly on dimension. This
can be analysed by scaling theory [113]. The idea is to dynamically enlarge the
system size and try to see whether a wavefunction in a small system tends to
become more localized or more extended as the system size is being increased.
One characterizes this by a dimensionless parameter g [114, 115]: if g is large,
the particle tends to be extended; if g is small, the particle tends to be localized.
For a metal, g represents the conductance. Dimensional analyses indicate that
at the large g limit where wavefunctions are extended, g scales with the system
size L as a power law g ∼ Ld−2 with d the dimension of the system. On the
other hand, at the small g limit where wavefunctions are localized, g scales with
the system size L exponentially as g ∼ e−αL.

In order to analyze the behaviour of g with respect to linear size of the system
L, we define a scaling parameter β = d ln g

d lnL . In the small g limit, g ∼ e−αL

decreases as system size L increases, so β = d ln g
d lnL is negative. In the large g

limit, we have β ∼ d − 2. A flow diagram of β(g) is shown in Fig. 1.12, where
the arrows indicate the flow direction when system sizes are increased.

In a one dimensional system with d = 1, the β(g) is always negative. So
g decreases as the system size L increases, and finally will enter the localized
regime. Thus we conclude that all states are localized in one dimension with
the presence of arbitrarily small disorder.

A similar situation is expected for dimension d = 2, though it is marginal
here as the limiting value of β at large g tends to 0.

In three dimension with d = 3, the behaviour of g is richer as β(g) crosses
0 at a critical point gc. If we start with a β(g) > 0, then the system will end
in the extended regime in the infinite large L limit. In contrast, if we start
with a β(g) < 0, then the system will end in the localized regime in the infinite
large L limit. So there is a critical point of the transition between localized and
extended phases.

In summary, in one dimension, all the single particle eigenstates will be
localized for arbitrarily weak disorder. The same phenomenon is expected to
hold for two dimensional systems as well. In three dimensions, a finite disorder
is needed for the localization of single particle eigenstates. Thus there exists a
critical disorder potential amplitude above which the states could be localized.
In addition, for a given potential amplitude, localization also depends on the
eigenenergies of the states. The energy which separates the localized states from
extended states is called mobility edge.

Generally speaking, Anderson localization is a destructive coherence effect
for waves propagating in a disorder medium. It is not restricted to the wavefunc-
tion in quantum mechanics and can be realized for classical waves as well [117].
In particular, Anderson localization can be observed for matter waves using cold
atoms [20, 108, 110, 118, 119].
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Figure 1.12: According to scaling theory, Anderson localization is a critical
phenomenon, at least in three dimensions. The scaling function β(g) describes
how, or more precisely, with what exponent the average conductance g grows
with system size L. For a normal ohmic conductor in d dimensions, the con-
ductance varies as Ld−2; consequently, β(g) ∼ d− 2 for large g. Thus the beta
function is positive for three dimensional conductors, zero for two-dimensional
conductors, and negative in one dimension. In the localized regime, g decays
exponentially with sample size so that β(g) is negative. In three dimensions,
that leads to a critical point at which β vanishes for some special value for g
associated with the mobility edge. Lower-dimension systems do not undergo a
genuine phase transition because the conductance always decreases with system
size. A small 2D conductor, for instance, will look like a metal in the quasi-
extended regime, but all its states are eventually localized if the medium is large
enough. The arrows indicate the renormalization flow directions as system size
increases. This figure is from Ref. [116]
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Figure 1.13: (a) In a clean crystal, eigenstates are Bloch waves, which ex-
tend throughout the sample. (b) The essence of Anderson localization of non-
interacting particles is that for sufficiently strong disorder there is a vanishing
probability for a particle to make a resonant transition from one site to another
one spatially separated from it. This leads to eigenstates which are localized in
some region of space, decaying exponentially away from it.(c) Adding interac-
tions to an Anderson localized system. To first order, the effect of interaction is
to induce hopping of pairs of particles between the single-particle localized or-
bitals. One may ask if the localized phase, with vanishing particle and thermal
conductivities, is robust to this process. This figure is from Ref. [120]
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Since the Anderson localization is a single particle localization, a natural
question to ask is whether similar localization scenario will hold if the interaction
is turned on, see Fig 1.13. As we have seen in the discussion of Mott transition
and Anderson transition, either interactions or disorder can lead to localization.
When both of them are present, the interplay between interaction and disorder
is interesting and, to a great extent, open question. There is the currently
still quite debatable subject of many body localization (MBL). The idea is
that, for a many-body quantum system, due to the presence of disorder, the
system is unable to be thermalized, or, at least, the thermalization process has
a differnt form of scaling with time which is much slower than the case without
disorder [120]. Interacting bosons in the presence of disorder may enter into
a localized phase call Bose glass. The idea was introduced for experiments
with liquid helium [121]. It is observed that on porous substrates the liquid
helium may have a suppression of superfluidity. It suggests that interactions
may cooperate with disorder and induce a localization phase. The Bose glass is
a compressible, gapless phase and it is an insulating phase where superfluidity
disappears. While the existence of a Bose glass phase was theoretically discussed
in one dimension in 1988 [122] and in higher dimensions in 1989 [54], up to now
a direct undisputed observation of a Bose glass in cold atoms experiments is
still a challenge.

1.3 Quasicrystals

A quasicrystal is a structure with long range order but with no spatial pe-
riodicity. Since its experimental discovery in the 1980s [1], it has attracted
tremendous attention due to fascinating properties. Quasicrystals can usu-
ally be obtained in the laboratory by rapid solidifying of alloys. It shows
many novel properties including for examples exotic transport properties, in-
tricate energy spectrum and phasonic degrees of freedoms [3, 4, 7–13, 123]. In
particular, like disordered systems, quasiperiodic structures can host localized
states [19, 38, 39, 49, 124, 125]. In this section, we give a concise review of
quasicrystals and the localization phenomena in it.

1.3.1 Definition

A usual way to explore the structures of crystals are diffraction experiments.
Figure 1.14 (left) shows the electron diffraction pattern of a normal crystal. It is
composed of sharp peaks, reflecting the periodic order of the crystal. A normal
crystal is a periodic structure which has translational and discrete rotational
symmetries. The translational symmetry has a restriction over the possible
types of rotational symmetry. Take a point A in the Bravais lattice, which
is on the rotation axis, and then take another point B on the Bravais lattice,
separated from A by the shortest period a of the lattice, as shown in Fig. 1.15.
If the crystal has a n fold rotational axis, then the points A′ and B′ obtained
by rotations of angle φ = 2π/n should also be points in the Bravais lattice. The
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Figure 1.14: Left: Electron diffraction pattern of a crystal. This figure is from
Ref. [126]. Right:Electron diffraction pattern of a quasicrystal alloy. This figure
is from Ref. [1]

Figure 1.15: A and B are two points on the Bravais lattice. The rotation axis
is perpendicular to the plane. This figure is from Ref. [1]

distance from A′ to B′ should be a integer times the smallest period a, as

a+ 2a sin(φ− π/2) = pa, (1.19)

with p an integer. The only possible solutions for n is n = 1, 2, 3, 4, 6. So trans-
lational symmetry of a normal crystal restricts the possible types of rotational
symmetry to 1,2,3,4,6 folds.

In 1984, an electron diffraction image which does not fulfill this restriction
was published [1], as shown in Fig. 1.14 (right). The rapidly cooled alloy which
gave this diffraction pattern has a icosahedral point group symmetry, which is
not a sub group of any of the 230 space groups for 3D crystals. It is actually a
quasicrystal. In fact, it is only after some time that people started to commonly
acknowledge this new structure of solids. There was a lot of debates over it
as it has challenged common beliefs on the possible types of lattices that a
crystal can possess. For example, Linus Pauling believed and persistently argued
that it came from twinning of periodic crystals [127–133]. However, explaining



1.3. QUASICRYSTALS 41

the experimental data on quasicrystals with the model of twinning of normal
crystals could require very large unit cells composed of more than 10 thousand
atoms [132, 134]. In the end, people has gradually realized the quasicrystals
are true new order of solids, which is a paradigm shift in crystallography. On
the one hand, the fact that quasicrystals’ diffraction patterns are composed of
sharp peaks means that quasicrystals are long range ordered structure. On
the other hand, differing from traditional normal crystals, a quasicrystal has
no translational symmetry, and it can have rotational symmetries which are
forbidden for crystals, such as 5-fold, 7-fold, 8-fold etc.

Diffraction from periodic objects results in sharp spots, corresponding to
the reciprocal lattice. One reason of the controversies over quasicrystals is that
people simply took for granted the converse statement, sharp diffraction spots
could only come from a periodic object, to be true [135]. The idea that sharp
diffraction peaks can come from non-periodic sturctures can be more easily
realized by considering a quasicrystal as the projection of a periodic lattice in
a higher dimensional space to a lower dimensional space. This is usually called
the cut-and-project method. For simplicity, let’s illustrate this idea for a one-
dimensional quasiperiodic chain projected from a two-dimensional lattice, see
Fig. 1.16. Take a 2D lattice on the xy plane, and take a x′ axis with slope√

5−1
2 . The xy plane corresponds to the higher dimensional space and the x′

axis corresponds to the physical dimension where the quasicrystal lives. Draw
the red strip parallel to x′ axis with a width to cover one unit cell in the 2D
lattice, then project all the lattice points covered by the red strip onto the x′
axis. Thus we obtain a sequence of red long bar and short blue bar on the x′
axis, which is a one dimensional quasiperiodic structure with long range order.
This sequence of long and short bars do not have translational symmetry, while
it is not random either. Denoting the long red bar by L and short blue bar by
S, the sequence of L and S is just the Fibonacci chain. The Fibonacci chain
can also be obtained from a substitution construction. If we start by L and
then substitute the sequence step by step with the rule: L replaced by LS and
S replaced by L, then we can get sequences Fn as follows

F1 =L

F2 =LS

F3 =LSL

F4 =LSLLS

F5 =LSLLSLSL

F6 =LSLLSLSLLSLLS

· · ·

We can easily check that the sequence Fn at step n is the concatenation of
the sequences of the previous two steps Fn = Fn−1Fn−2, just like Fibonacci
numbers.

The idea of quasicrystals was historically first introduced mathematically as
a tiling of a 2D plane, before the physical observation of quasicrystal materials
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Figure 1.16: The cut-and-project method. Selected points(joined by a broken
line) of a 2D square lattice are projected on to the x′ axis, giving the binary
quasiperiodic sequence of red and blue tiles. The infinite selection strip S is
colored red. This figure is from Ref. [136].

in the laboratories. A tiling means a covering of a surface with some patterns
of geometrical shapes, with no overlaps or gaps. Figure 1.17(left) shows a
tiling of a 2D plane with two kinds of tiles, colored green and blue. It shows
strong regularity as it has discrete translational symmetries. The tiling structure
represents a normal periodic crystal. While it is common to have a periodic
tiling of a 2D plane as in Fig. 1.17(left), there exists the aperiodic tilings, as
in Fig. 1.17(right). It is still a covering of a 2D plane with no overlap or gap,
though it has no translational symmetry. In particular, a kind of aperiodic
tiling that is closely connected to quasicrystals is the so-called "Penrose tiling",
which has no periodicity but has some reflection and rotational symmetry. An
example of Penrose tiling is shown in Fig. 1.18 (left). Note that it is composed
of the same two kinds of tiles as the periodic tiling shown in Fig. 1.17 (left),
the only difference lies on the rules of arrangements of the tiles. It is a long
range order structure with 5 fold rotational symmetry. A diffraction pattern of
Penrose tiling is shown in Fig. 1.18 (right). It is composed of sharp peaks, with
similarities in structure compared to the diffraction pattern shown in Fig. 1.14
(right).

1.3.2 Localization in quasicrystals

A quasicrystal is an intermediate situation between a periodic potential and
a disordered potential, since quasicrystals have long range order but have no
translational symmetry. We have seen that extended Bloch waves are hosted in
periodic potentials while Anderson localization exists in disordered potentials.
It is interesting to study what would be the localization physics in a quasicrystal
potential, which has been studied a lot [19, 38, 39, 44, 49, 140–142].
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Figure 1.17: Left: a regular tiling of a two-dimensional plane with discrete
translational symmetry. This figure is from Ref. [137]. Right: an aperiodic
tiling of a two-dimensional plane with no translational symmetry. This figure is
from Ref. [138].

Figure 1.18: Left: a Penrose tiling, taken from Ref. [137]. Right: diffraction
pattern for a Penrose tiling, taken from Ref. [139].
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Now we turn to 1D for illustration. A quasiperiodic potential in one dimen-
sion can be obtained by superimposing periodic potentials with incommensu-
rable periods. For example, a quasiperiodic bichromatic potential can be written
as

V (x) =
V1

2
cos(2k1x) +

V2

2
cos(2k2x), (1.20)

with k2/k1 = β an irrational number. If the first potential amplitude V1 is
much larger than the second potential amplitude V2 and the recoil energies
E1 = ~2k2

1/2m, E2 = ~2k2
2/2m of the two, i.e. V1 � V2, E1, E2, then the

Hamiltonian with the quasiperiodic potential Eq. 1.20 can be discretized to be
a tight binding model on a lattice, giving rise to the Aubry-André model [19],
as

H = −J
∑
n

(a†nan+1 + h.c.)− λJ
∑
n

cos(2πβn)a†nan (1.21)

It is a non-interacting lattice model with a constant hopping term and the
modulating on-site energy showing quasiperiodic pattern.

It turns out that this model has a self duality between real space and mo-
mentum space [19]. Taking the Fourier transform of the operators as

bk =
1√
N

∑
n

exp(2πiβkn)an, (1.22)

the Hamiltonian can be rewritten as

H = −λJ
2

∑
k

(b†kbk+1 + h.c.)− 2J
∑
k

cos(2πβk)b†kbk. (1.23)

We can see that the momentum space Hamiltonian has the same form as the
real space one if we replace λ by 4/λ (up to a total multiplication factor λ

2 ).
Since we know a state localized in real space is extended in momentum space,
and vice-versa, the self duality of Aubry-André model shows that a critical point
of localization is given by λ = 2. For λ < 2, all states are extended; for λ > 2,
all states are localized.

In contrast to disordered potentials, where all states are localized for arbi-
trary small disorder, the states in the 1D Aubry-André model can be extended
or localized depending on the strength of the quasiperiodic potential. This is
an example of where a quasicrystal is somehow less disordered.
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Quantum fluids of bosons

A theoretical study of quantum simulations of quasicrystals using cold bosons
will be discussed in the following chapters, based on the theories of bosonic quan-
tum liquids. The study of quantum liquids of bosons was initially driven by the
observation of superfluidity in liquid helium [55, 56]. Theoretical models like the
Gross-Pitaevskii equation and Bogoliubov mean field theory were developed to
describe it. The early understandings of superfluidity were independent of Bose-
Einstein condensation (BEC). However, it was realized later that superfluidity
is closely connected to BEC. Interestingly, theses theories initially developed for
liquid helium really became more realistic for the dilute Bose gas experimen-
tally realized in the 1990s, where one can give a firmer microscopic foundation
for those theories [99]. The ultracold atomic system also gave access to physics
beyond what had been observed for liquid helium. For example, the combina-
tion of a dilute Bose gas and an optical lattice gave rise to strongly-interacting
lattice systems of bosons, where a quantum phase transition between superfluid
and Mott insulator was observed [71]. Besides analytical theories, numerical
methods for quantum liquids of bosons were also developed with the advances
of computer power. One of the most successful numerical methods is the path
integral Monte Carlo method [143], which was later on improved with the worm
algorithm [144, 145]. In this chapter, I will give a brief review of the theory of
quantum fluids of bosons, in particular those that will be used in the following
chapters of this thesis, and the path integral Monte Carlo numerical method,
with emphasis on the key logical and physical ideas.

2.1 BEC and superfluid in 3D

2.1.1 BEC of non-interacting bosons
The BEC of non-interacting bosons was initially predicted by Einstein. Af-

ter Bose proposed the indistinguishable statistics over the photons, Einstein
extended this new statistics to the massive particles, where the total particle
number is fixed and a condensation can be expected. It gives a typical example

45
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of a phase transition for a non-interacting system in 3D and above. Below the
critical temperature, there is a macroscopic occupation of bosons in a single
state. Intuitively, one can understand this fact from the

√
n+ 1 and

√
n factors

in the boson creation and annilation operators, which illustrates that bosons
like to stay in the same state. Mathematically, BEC is a consequence of the
convergence of the total particle number that can be accommodated by all the
excited states.

Non-interacting bosons obey the Bose-Einstein distribution

ns =
1

e(Es−µ)/kBT − 1
, (2.1)

which gives the occupation number ns for each single particle state s. The single
particle state energy Es is bounded below by the energy of the ground state Eg.
In free space, the ground state energy can be chosen to be Eg = 0, and this will
be the case that we consider.

At high temperature, the chemical potential µ is a large negative number,
so e(Es−µ)/kBT � 1. The Bose-Einstein distribution is approximately

ns = e(µ−Es)/kBT , (2.2)

which is just the Boltzmann distribution for distinguishable particles.
If we decrease the temperature T while keeping the total particle number

N in the system constant, the chemical potential µ will increase. However, the
increase of µ is bounded by the ground state energy Eg = 0, otherwise the Bose-
Einstein distribution ns for ground state would be meaningless. The fact that
µ is always smaller than 0 gives an upper bound of the total particle number in
the excited states

Nexc =
∑

excited

1

e(Es−µ)/kBT − 1
< Nmax

exc =
∑

excited

1

eEs/kBT − 1
(2.3)

This upper bound Nmax
exc can be rewritten as an integral using the density of

states
Nmax
exc =

ˆ ∞
0

dερ(ε)
1

eε/kBT − 1
(2.4)

where ρ(ε) represents the density of states for energy ε.
This integral is convergent in the upper limit due to the exponential factor.

At low limit, the convergence of the integral depends on the form of the density
of states ρ(ε). In 3D homogeneous space, ρ(ε) ∝ ε1/2, and the integrand scales
as ε−

1
2 for small ε, so the integral converges at the lower limit. As a result, the

total number of particles in the excited states are upper bounded by a finite
number. As the chemical potential µ approaches 0, the number of particles in
excited states reaches this upper bound, while the number of particle in the
ground state diverge. So when the total particle number N is larger than the
upper limit of particle number in the excited states Nmax

exc , all the remaining
N − Nmax

exc particles will go to the ground state. Thus we have a macroscopic
occupation of a single quantum state.
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2.1.2 BEC of interacting bosons
2.1.2.1 Penrose and Onsager definition

For interacting bosons, the single particle states are not relevant anymore
and the above definition of BEC loses its sense. However, some features of BEC
of non-interacting bosons can be used to extend the definition of BEC into the
interacting case [99]. Here I first give a brief review of the definition of BEC in
interacting systems following the idea of Penrose and Onsager.

A many-body system of N bosons can be described in quantum mechanics in
the most general way as a N body density matrix ρN (r1, r2, ..., rN ; r′1, r

′
2, ..., r

′
N ).

We can define the single particle density matrix by taking the partial trace
of N − 1 coordinates as

ρ(r, r′) ≡ N
ˆ
dr2...drNρN (r, r2, ..., rN ; r′, r2, ..., rN ). (2.5)

Equivalently, it can be obtained from the Bose field operator ψ̂(r) as

ρ(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉. (2.6)

As the N body density matrix is Hermitian, it follows directly from the
definition that the single particle density matrix is also Hermitian

ρ(r, r′) = ρ∗(r′, r). (2.7)

As a result, this single particle density matrix ρ can be diagonalized with all
eigenvalues being real numbers, as

ρ(r, r′) =
∑
i

Niχ
∗
i (r)χi(r

′). (2.8)

The BEC for interacting systems can be defined as the case when one of the
eigenvalues of ρ(r, r′), say N0, is of order N . The corresponding eigenfunction
χ0(r), can be called the wavefunction of the condensate. Note that χ0(r) is not
necessarily connected with any eigenfunction of the single particle Hamiltonian.
However, in many aspects, it just behaves as a single particle wavefunction. In
particular, it is clear from Eq. 2.8 that χ0(r) is defined up to a global phase
factor eiφ with no physical significance. This property is sometimes called U(1)
gauge symmetry, and it is connected with the symmetry of the Hamiltonian
that it conserves the particle number. It is obvious that this definition of BEC
for interacting bosons is consistent with the previous definition of BEC for non-
interacting bosons.

An order parameter characterizing the BEC phase can be defined as

Ψ(r) =
√
N0χ0(r) (2.9)

which contains both the information of the condensate particle number and
condensate wavefunction. We can write out explicitely the phase of the complex
variable Ψ(r) as

Ψ(r) = |Ψ(r)|eiθ(r). (2.10)
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Then we can write the density of the condensate as

ρc(r) = N0|χ0(r)|2 = |Ψ(r)|2, (2.11)

and the current carried directly by the condensate particles as

jc(r) = N0

(
− i~

2m
χ∗0(r)∇χ0(r) + c.c.

)
= N0|χ0(r)|2 ~

m
∇θ(r). (2.12)

The ratio jc(r)/ρc(r), which has a dimension of velocity, can be defined as the
superfluid velocity

vs(r) =
~
m
∇θ(r). (2.13)

We can see from this expression that the circulation of this velocity over a closed
contour is always zero if the order parameter is nowhere vanishing. Otherwise if
the order parameter vanishes at some points the circulation of superfluid velocity
is quantized to be 2πn~

m with n an integer because the phase θ(r) is defined only
modulo 2π.

2.1.2.2 Off-diagonal long-range order

BEC in interacting systems can also be characterized by the behaviour of the
single particle density matrix ρ(r, r′) in the limit |r−r′| → ∞. In a translational
invariant homogeneous system, the single particle density matrix ρ(r, r′) only
depends on the relative difference between the two coordinates as ρ(r, r′) =
ρ(r − r′). Consequently, it is diagonalized in momentum representation. The
diagonal elements n(k) = 〈k| ρ |k〉 are just the Fourier transform of ρ(r− r′). A
BEC implies that the momentum distribution n(k) has a sharp peak at k = 0,
as the condensate in a homogeneous system should have zero momentum. The
large distance limit of the single particle density matrix lim|r−r′|→∞ ρ(r, r′) is
a non-zero constant given by the sharp peak of n(k), while the small values
of n(k) for nonzero k will give zero contributions due to the rapid oscillations
at large distance. This nonzero large distance limit of single particle density
matrix is called the off-diagonal long-range order in the BEC system.

2.1.3 Gross-Pitaevskii equation and Bogoliubov spectrum
The Gross-Pitaevskii equation gives a description of a BEC for interact-

ing bosons by a non-linear differential equation of a complex field. For liquid
helium, where the condensate fraction N0/N is small, the Gross-Pitaevskii equa-
tion serves as a phenomenological theory of the superfluidity, as the Ginzburg
Landau theory for superconductivity. For dilute Bose gas, where we have a
large condensate fraction, we can derive the Gross-Pitaevskii equation from a
microscopic perspective through the variational principle.

The variation ansatz is a mean field wavefunction of the Hartree form, where
all particles take the same single particle wavefunction, and the many body
wavefunction is just the product of all of them

|ψ〉 = |φ(1)〉 ⊗ |φ(2)〉 ⊗ · · · ⊗ |φ(N)〉 (2.14)
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The Hamiltonian for a dilute gas consists of the kinetic terms, the single
particle potential, and the two-body interactions

H =

N∑
i=1

(
p2
i

2m
+ V (r)

)
+

1

2

∑
i

∑
j 6=i

V (ri − rj), (2.15)

where we take a contact interaction potential V (ri − rj) = gδ(ri − rj).
The variation principle amounts to minimize 〈ψ|H |ψ〉 − µ 〈ψ|ψ〉, where µ

is the Lagrange multiplier associated with the conservation of the norm of the
wave function.

The functional differentiation δ(〈ψ|H |ψ〉 − µ 〈ψ|ψ〉) leads to equation

− ~2

2m
∇2φ(r) + V (r)φ(r) + (N − 1)g|φ(r)|2φ(r) = µφ(r). (2.16)

In addition we can replace N − 1 by N as N � 1. This is the Gross-Pitaevskii
equation. By taking the derivative of the energy with respect to particle number
N , we can show that the Lagrange multiplier µ is just the chemical potential of
the system.

The variation ansatz means all bosons are in the same state, which is just
the condensate. The Gross-Pitaevskii equation gives a mean field equation for
the condensate wavefunction φ(r).

The assumption that all bosons are in the condensate is not really true with
interactions turned on. The condensate fraction N0/N is smaller than 1 for
interacting bosons at zero temperature. This is called the quantum depletion.
The interaction kicks some particles out of the condensate. We can take into
account this by allowing fluctuations of the complex field φ(r). The dynamics
of these fluctuations give the dispersion of the elementary excitations

~ωk =

√
~2k2

2m

(
~2k2

2m
+ 2gn

)
, (2.17)

where n is the particle number density. This formula can be obtained by lin-
earizing the Gross-Pitaevskii equation for small perturbation around the mean
field solution. This dispersion is called the Bogoliubov spectrum. At low energy,
it gives a linear dispersion

ωk = ck, (2.18)

which is just the sound mode. The sound velocity is c =
√

gn
m . In the high energy

limit of the Bogoliubov spectrum, we recover the free particle dispersion.

2.1.4 Superfluid
2.1.4.1 Landau criterion

A superfluid is a state of matter that can move with no viscosity. Lev Landau
gave an interpretation of this as the impossibility of exciting any excitations in
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the superfluid. Suppose an impurity is moving in a superfluid. In order to have
viscosity between the impurity and the superfluid, the moving impurity must
be able to excite some elementary excitations in the superfluid, thus transfer its
momentum to the elementary excitations and slow down, while the superfluid
will have a nonzero momentum, i.e. carried along by the moving impurity.
Otherwise, the impurity will have nothing to scatter and will move through the
superfluid without losing any momentum or energy.

During the scattering processes of the impurity and the elementary excita-
tions, the total momentum and energy are conserved. The scattering of ele-
mentary excitations is only possible if the velocity v of the moving impurity is
larger than a critical value (ω/k)min, i.e. the minimum of ω/k for the dispersion
spectrum of elementary excitations in the superfluid. For the Bogoliubov spec-
trum we discussed above, this critical velocity is the sound velocity c =

√
gn
m ,

so we conclude that a BEC with Bogoliubov excitation spectrum at T = 0 is
superfluid. In contrast, for non-interacting BEC, the excitation dispersion is
the usual quadratic dispersion relation of free particles, and the critical velocity
is zero. So a non-interacting BEC is not superfluid.

2.1.4.2 Two fluids model of superfluid

Generally, the moving impurity may cause the fluid to move with it, but
the momentum of the moving fluid does not equal the velocity times the whole
mass of the fluid. This can be simply described by a two fluid model. The idea
is that the quantum liquid of bosons is a mixture of two liquids, one of which
is superfluid and the other a normal fluid. The two fluids move with different
velocities. While the superfluid part cannot be driven by the moving impurity,
the normal fluid part has viscosity just as a normal classical fluid. Note that
this two fluid model is just a theoretical description and in reality there is no
such separation of the quantum liquid.

The superfluid part and normal fluid part have their densities ρs and ρn,
and velocities vs and vn. The total density of the fluid is the sum of the two
densities

ρ = ρs + ρn, (2.19)

and the total density current j of the moving fluid is the sum of the currents

j = ρsvs + ρnvn. (2.20)

As discussed before, the superfluid velocity is related to the condensate wave-
function as

vs(r) =
~
m
∇θ(r), (2.21)

with θ(r) the phase of the condensate wavefunction.
Suppose we put the quantum liquid in a ring confined by two circular walls

with almost the same radius r. If we rotate the ring with an angular velocity
Ω, then the normal fluid part will rotate with the walls with the same angular
velocity Ω. However, the circulation of superfluid velocity is quantized to be
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2πn~
m with n an integer, so the superfluid velocity cannot be arbitrarily small

unless zero. For small enough angular velocity Ω, the superfluid velocity can
only stay to be zero, which characterize the superfluid.

From the reference frame of the rotating confining ring, the normal fluid is
at rest, while the superfluid part is rotating with angular velocity −Ω. If the
fluid is only a normal fluid, then the whole fluid would move with the confining
ring, and in the reference frame of the rotating ring, the whole fluid would be at
rest. The fact that the fluid is not all a classical normal fluid but has a nonzero
superfluid density means there is an increase in the free energy ∆F .

The change of reference frame to the rotating ring gives two changes to the
Hamiltonian in the rotating frame of reference. Firstly there is an additional
centrifugal term which shifts all energy level by 1

2IclassΩ
2, with Iclass the mo-

ment of inertia of the fluid if there is no superfluid part. Secondly the rotating
frame changes the Hamiltonian in a way similar to introducing a magnetic field
with vector potential A(r) = mΩr in the angular direction. Thus momentum p
in the Hamiltonian is replaced by p−A(r). This modification of the Hamiltonian
can actually be absorbed into the boundary condition of the wavefunction while
returning to the original form of the Hamiltonian. The new boundary condition
enforces a phase difference Θ when the geometrical angle φ is turned by 2π

ψ(φ+ 2π) = e−iΘψ(φ), (2.22)

with phase Θ = 2π Ω
Ωc

and Ωc = ~
mr2 .

Thus the increase of the free energy due to the nonzero superfluid density
ρs is related to the twisted boundary condition of the wavefunction. A careful
calculation gives the relation

∆F (Θ)

V
=

~2Θ2

2mL2
ρs (2.23)

where V is the system volume and L is the circular length 2πr.
In practice, this relation can be taken as a definition of the superfluid density.

Of course, it is not necessary to always use the annular geometry. The twisted
boundary condition in annular geometry is equivalent to an additional phase
along one direction in a cubic box as

ψ(x+ L, y, z) = e−iΘψ(x, y, z), (2.24)
ψ(x, y + L, z) = ψ(x, y, z), (2.25)
ψ(x, y, z + L) = ψ(x, y, z). (2.26)

2.2 Superfluid in 2D and BKT phase transition

2.2.1 Absence of long range order

It follows from the Peierls instability [146], or more generally the Mermin-
Wagner-Hohenberg theorem [147, 148], that a long range order does not exist in
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2D for any non-zero temperature. In fact, there is no BEC for a homogeneous,
infinite 2D Bose gas. For interacting bosons at low temperature, we use a
classical field ψ(r) to describe it. Finite temperature leads to fluctuations of the
field. Its modulus fluctuation corresponds to the fluctuation of the density of
bosons. The density fluctuations are suppressed by the interaction and can be
neglected compared to the phase fluctuation.

There are two kinds of excitations that contribute to the phase fluctuation.
The first kind is the phonons, which give smooth fluctuations of the phase with
space. There is no singularity of the phase from the phonon modes. The second
kind of excitation are vortices, where the density, or equivalently the amplitude
of the field ψ(x), vanishes, and there is a singularity of the phase. The phase
can change by multiples of 2π around the singular point of the vortex. At low
temperature, the vortices only appear in pairs with opposite winding direction
of the phases and thus have negligible distortion of the phase at large distance.
Then the phase fluctuations are given only by the phonon modes.

As discussed above, the superfluid density ns is related to the increase of en-
ergy with a twist phase on the boundary condition. So the energy of fluctuating
phase can be written as

E ≈ ~2

2m
ns

ˆ
(∇θ)2d2r (2.27)

with θ the phase of the classical field ψ(r).
The phase fluctuation can be decoupled into Fourier modes where each mode

has an average fluctuation proportional to the temperature T . With density
fluctuations neglected, the correlation function G(r) can be related to the phase
fluctuation as

G(r) =< ψ(r)ψ∗(0) >≈ n < ei(θ(r)−θ(0)) > (2.28)

With all these ingredients, a calculation of the correlation function G(r)
shows that it has an algebraical decay in 2D as

G(r) ∝ r−η. (2.29)

The exponent η is related to the superfluid density ns as η = 1
nsλ2

T
, where λT is

the thermal de Broglie wavelength. At large distance, the correlation g(r) tends
to zero, in contrast to the 3D case where it tends to a constant. We see that
there is no off-diagonal long-range order in a 2D bose gas.

2.2.2 BKT phase transition
The energy of the fluctuating phase as in Eq. 2.27 is the same as in a 2D

XY model. The XY model consists of vectors S on a lattice, where each vector
Si can point in a certain direction θi in a 2D plane. A 2D XY model is a XY
model on a two dimensional lattice. The energy is given by the coupling of the
vectors as

E = −J
∑
<i,j>

Si · Sj = −J
∑
<i,j>

cos(θi − θj). (2.30)



2.2. SUPERFLUID IN 2D AND BKT PHASE TRANSITION 53

Figure 2.1: Microscopic mechanism at the superfluid transition in the uniform
2D Bose gas. Below the transition temperature, vortices exist only in the form
of bound pairs formed by two vortices with opposite circulation. Above the
transition temperature, free vortices proliferate, causing an exponential decay
of the one-body correlation function G(r). This figure is from Ref. [26]

At low energy, the slow variation of the angles θ gives an energy proportional
to
´

(∇θ)2d2r in the continuous limit. This is the same form as the energy of a
fluctuation phase in the superfluid in Eq. 2.27.

The 2D XY model has a phase transition induced by the vortices, which is
called the BKT phase transition [149–151]. Similarly, the Bose gas also has a
phase transition between superfluid and normal fluid in 2D even though a true
condensate does not exist, and this transition is of the same universality class
as the BKT transition in the 2D XY model. As discussed above, at low temper-
ature, the correlation function has an algebraic decay induced by the phonons.
Each vortex is bound with an anti-vortex, and the vortex/anti-vortex pair causes
negligible deformation of the correlation function g(r). At high temperature,
individual vortices may appear. The vortices are topological defects where the
phase changes by integer times 2π around it. Thus an individual vortex stongly
suppresses the phase correlation and this leads to an exponential decay of the
correlation function, see Fig 2.1. The Bose gas at high temperature is then in
the normal fluid phase.

At the critical point, the superfluid density ns undergoes a jump from 4/λ2
T

to 0. This value of the superfluid density jump can be extracted from a ther-
modynamic argument. For a single vortex at the center of a disk, the velocity
field is v(r) = ~

Mr , with r the distance to the vortex center. The density at the
vortex center is zero, and the size of the vortex is approximately the healing
length ξ, a length scale set by the interactions strength over which the density
recovers to the uniform value. The energy of a single vortex in a disk of radius
R can be approximated as

E = πMns

ˆ
v(r)2rdr =

π~2ns
M

lnR/ξ. (2.31)

On the other hand, the entropy of putting a vortex with size πξ2 in a radius
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with area πR2 is S = kB ln R2

ξ2 . So the free energy F = E − TS is

F/(kBT ) =
1

2
(nsλ

2
T − 4) lnR/ξ. (2.32)

For nsλ2
T > 4, the free energy difference for creating a single vortex is positive

and large in a large system, so the single vortex is thermodynamically unfa-
vorable. For nsλ2

T < 4, this free energy difference is large and negative, and
it is favoured to have single vortices proliferate in the system. So we have the
relation nsλ2

T = 4 at the critical point.

2.2.3 Equation of state in the critical region

The thermodynamic argument above provides information about the super-
fluid density nsλ2

T = 4 at the critical point. However, this does not inform us
about the total particle number and chemical potential at the critical point.
In this part, we review some results of the equation of state in the critical
region obtained by a combination of analytical arguments and numerical calcu-
lations [152, 153].

At the critical point, the total particle number density and critical chemical
potential are given by

nc =
mT

2π~2
ln

(
ξ~2

mU

)
(2.33)

µc =
mTU

π~2
ln

(
ξµ~2

mU

)
(2.34)

where U is the interaction strength and T is the temperature. The ξ and ξµ are
two constants. Their values are given by Monte Carlo calculations for a classical
|φ|4 model as ξ = 380± 3, ξµ = 13.2± 0.4.

Next we give the equation of state and superfluid density around the critical
point. The distance to the critical point is characterized by a dimensionless
variable X defined as

X = (µ− µc)/mTU. (2.35)

Then the equation of state and superfluid density around the critical point are
given by the universal thermodynamic relations

n− nc = mTλ(X) (2.36)

ns =
2mT

π
f(X) (2.37)

where λ(X) and f(X) are two dimensionless functions. The equation of state
and superfluid density are fully characterized by these two dimensionless func-
tions. The function λ(X) can be further expressed in terms of another function
θ(X) as

λ(X) = [θ(X)− θ0 +X]/2 (2.38)
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Figure 2.2: The numerical results of the value of the dimensionless functions.
This figure is from Ref. [153]
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where θ0 ≡ θ(0) = 1
π ln(ξ/ξµ).

In brief, the equation of state and superfluid density around the critical
point are contained in the functions θ(X) and f(X), which are calculated by
Monte Carlo simulations. The numerical results are shown in figure 2.2. With
the numbers in this table, the equation of state and superfluid density can be
reconstructed via the above formulas.

2.2.4 BKT transition for 2D bosons with the presence of
disorder

The BKT phase transition for 2D bosons has been shown to be stable against
a certain disorder potential [154]. In the superfluid phase, the correlation func-
tion has an algebraic decay as G(r) ∝ r−η. The susceptibility is related to
the correlation function as χs = 1

L2

´
drdr′〈ψ†(r)ψ(r′)〉. This double integral

can be decoupled as an integral over one coordinate and another integral over
the relative difference of the two coordinates. For a system with linear size
L, each integral gives a factor L2. So the susceptibility has a finite size scal-
ing as χs ∼ L2−η. In particular, at the critical point where η = 1/4, the
susceptibility has finite size scaling as χs ∼ L7/4. So rescaled susceptibilities
χs/L

7/4 for different system sizes should cross at a single point, which is just
the critical point of the BKT phase transition. Monte-Carlo calculations show
that this behaviour is still valid for 2D bosons in the presence of disorder, see
Fig 2.3(left). In addition, the critical point of the BKT transition is recovered
by shifting the chemical potential by the average value of the disorder potential,
see Fig 2.3(right).

2.3 Bosons in a lattice

The dilute Bose gas make it possible in experiments to confine the bosons
in deep lattices by utilising the optical lattices. This can give new phases in
addition to the superfluid of bosons.

2.3.1 Superfluid-Mott insulator transition for Bose-Hubbard
model

A discrete lattice model can be obtained from the continuous system by
introducing the localized Wannier functions and using these wavefunctions as
the basis of the Hilbert space. If the first energy band is well separated from
the other bands, it is reasonable to restrict the Hilbert space to the first band.
In addition, if the Wannier functions decay fast over a lattice space, we can
consider only the nearest neighbour hopping. These considerations lead to the
Bose-Hubbard model, with Hamiltonian

H = −J
∑
〈ij〉

a†iaj +
U

2

∑
i

ni(ni − 1) +
∑
i

εini (2.39)
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Figure 2.3: Left: Scaled superfluid susceptibility against temperature for sys-
tem sizes in the range LR = L/σR = 5 − 40 with σR the correlation radius
of disorder, at disorder strength VR/µ = 0.3 and interaction strength g̃ = 0.1.
Darker curves mark increasingly large sizes. In the inset, the susceptibility is
shown as a function of LR (temperature increases from top to bottom). The
divergence predicted by the BKT transition for clean systems (η = 1/4) is indi-
cated by the dashed line. Right: Phase diagram of two-dimensional interacting
bosons at fixed chemical potential and interaction strength g̃ = 0.1. The dark
dashed line is the critical temperature of the clean system with a renormal-
ized chemical potential. For strong disorder, the normal system goes to the
Bose-glass phase in the zero-T limit. These two figures are from Ref. [154]

where 〈ij〉 denotes summation over nearest neighbours.
The physics of the Bose-Hubbard model is governed by the competition

between the kinetic energy J and interaction energy U . The kinetic term tends
to delocalize particles over lattice sites in an extended Bloch state, while the
interaction term tends to localize each particle on a single site. Consequently,
in the limit of U → 0, the bosons are in a superfluid phase, while in the limit
of J → 0, the bosons will be in a Mott insulator phase with integer number of
bosons on each site. The overall phase diagram is shown in Fig 2.4(left).

At the limit of zero hopping J = 0, the system is separated on each site
and the Hamiltonian of each site is diagonal in the particle number ni of each
site. The system is clearly in a Mott insulator phase with each site populated
by an integer number of bosons. Its energy spectrum has a Mott gap of order
U . The particle number is governed by the chemical potential µ in the unit of
interaction U . Now we turn on the hopping term. For small hopping J , the
system can be understood in the perturbation picture as the energy differences
between unperturbed states are of order U . Then the unperturbed states are
coupled to other states by the hopping terms. The hopping terms conserve the
total particle number. So with nonzero J , though there is fluctuation of particle
number ni on each site, the average particle number of the total system is still
an exact integer. This gives the Mott lobes in Fig 2.4(left). For larger particle
number on each site, the

√
n matrix elements of bosons effectively enhance the

hopping strength. So the Mott lobes for larger n is smaller in the range of J/U .
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Figure 2.4: Schematic zero-temperature phase diagram of the Bose-Hubbard
model. Dashed lines of constant-integer density < n̂ >= 1, 2, 3 in the superfluid
hit the corresponding Mott insulator phases at the tips of the lobes at a critical
value of J/U , which decreases with increasing density n. For < n̂ >= 1 + ε
the line of constant density stays outside the n = 1 Mott insulator because a
fraction ε of the particles remains superfluid down to the lowest values of J . In
an external trap with an n = 2 Mott insulator phase in the center, a series of
Mott insulator and superfluid regions appear on going toward the edge of the
cloud, where the local chemical potential has dropped to zero. These two figures
are from Ref. [26]
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Figure 2.5: Absorption images of multiple matter-wave interference patterns
after atoms were released from an optical lattice potential with a potential
depth of (a)0Er,(b)3Er,(c)7Er,(d)10Er,(e)13Er,(f)14Er,(g)16Er, and(h)20Er.
The ballistic expansion time was 15ms. These figures are from Ref. [71].

Although a superfluid is a U(1) symmetry breaking phase, the d dimensional
zero temperature superfluid transition between Mott insulator and superfluid
is actually not always in the universality class of the (d + 1) dimensional XY
model. Such a (d+ 1) dimensional XY model universality class is only realized
at the multicritical points as we follow the constant-density curves on the phase
diagram. On the other hand, the superfluid transitions in general, for example as
we follow the red dashed line in Fig 2.4(left) by changing the chemical potential,
behaves as the zero-density transition when the boson density is increased from
zero in the absence of external potential, i.e. a vacuum-superfluid transition.

If we start at a point in a Mott lobe and then decrease the chemical potential,
as the red arrow in Fig 2.4(left), the system will go through a series of Mott
insulator and superfluid phase. In experiments, the Bose gas is usually trapped
in a harmonic potential well. Under the local density approximation, the local
chemical potential decreases from the trap center to the periphery. So there is
a bunch of rings of superfluid and Mott insulator phases next to each other.

In experiments, the ratio J/U can be tuned through the strength of the
optical lattice. The dependence of hopping J on lattice depth V has an expo-
nential factor, while the interaction U approximately depends on lattice depth
V as a power law. So changing the lattice depth V can greatly change the
ratio J/U . This superfluid to Mott insulator phase transition was initially ob-
served experimentally by a time-of-flight method [71], see Fig 2.5. For a weak
lattice potential, the system is in the superfluid phase. The phase coherence
gives the diffraction pattern from the time-of-flight images. As the lattice po-
tential increases, the system enters the Mott insulator phase and loses the phase
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coherence. The diffraction patterns have no more sharp peaks.

2.3.2 Bose-Hubbard model with disorder

The Bose-Hubbard model with weak disorder potential was studied in Ref. [54].
In addition to the standard Bose-Hubbard Hamiltonian as in Eq. 2.39, there is
additional random on-site potentials δµi, with the strength of disorder given by
a parameter ∆. With the presence of the disorder, a third Bose glass phase
exists in addition to the superfluid and Mott insulator phase for interacting
bosons. Different from superfluid and Mott insulators, the Bose glass is a gap-
less compressible insulating phase.

For bosons in a random potential, if the interaction is zero, all bosons will be
condensed in the localized eigenstate with lowest eigenenergy. For interacting
bosons, repulsive interaction is essential to prevent all bosons from condensing
in the same single particle eigenstate and the noninteracting bosons picture does
not give a good starting point to perform a perturbative treatment. The phase
diagram at zero temperature results from the competition of various factors. On
the one hand, the kinetic energy tries to delocalize the bosons and reduce the
fluctuations of phases. On the other hand, both repulsive interaction and the
disorder try to localize the bosons and reduce the particle number fluctuations.
The zero temperature phase diagram for bosons in a disordered potential is
shown in Fig 2.6. Compared to Fig. 2.4, now the superfluid phase and Mott
insulator phase are separated by the Bose glass phase, a localization phase due
to the disorder potential. In addition, for strong disorders the Mott phase can be
completely destroyed. The phase transitions between the superfluid phase, the
Mott insulator phase and the Bose glass phase for 2D bosons in a quasicrystal
potential will be one of the subject of the following chapters.

2.4 Path integral Monte Carlo for bosons

A successful numerical method for bosonic systems is the path integral Monte
Carlo method [143], which was further improved by the worm algorithm [144,
145]. A detailed discussion of the approach can be found in Ref. [155]. In this
part we will give a brief review of the key ideas of these numerical methods.

2.4.1 Path integral

Path integrals in general gives an alternative approach to quantum mechan-
ics. The idea is that the evolution of a physical system just go through all
processes, and the propagator in the end is a coherent summation of all prob-
ability amplitudes of each process [156]. The probability amplitude of a single
process is the exponential of a phase, which is just given by the action of this
process. The summation of all the processes is a path integral. The classical
physics is the saddle point of this path integral in the limit ~→ 0.
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Figure 2.6: Zero-temperature phase diagram for the lattice boson model with
weak bounded disorder, ∆/U < 1/2, with ∆ being the strength of the disorder.
This figure is from Ref. [54]

Take a single particle for example. The propagator K(x2, t2;x1, t1) between
two space-time points (x1, t1) and (x2, t2), i.e. the matrix elements of the evo-
lution operator e−iĤt/~, reads 〈x2| e−iĤ(t2−t1)/~ |x1〉. Dividing the time interval
into N = (t2 − t1)/ε infinitely small steps ε, permits the approximation of the
form

eε(Â+B̂) ' eεÂeεB̂ (2.40)

which is generally not true for finite ε if [Â, B̂] 6= 0. In particular, for Hamil-
tonian Ĥ = p̂2/2m+ V (x̂), the propagator from x to x′ during infinitely small
time interval ε reads

K(x, x′; ε) = 〈x| e−iĤε/~ |x′〉

∼ 〈x| e−i
p̂2

2m εe−iV (x̂)ε |x′〉

∼
ˆ
dp 〈x| e−i

p̂2

2m ε |p〉 〈p| e−iV (x̂)ε |x′〉 .

At this step, the operators disappear in the path integral formalism. Using
〈x|p〉 ∼ eipx/~ we get

K(x, x′; ε) ∼
ˆ
dp exp

[
−i p

2

2m
ε+ ip(x− x′)/~− iV (x)ε

]
∼ exp

{
i
ε

~

[
m(x− x′)2

2ε2
− V (x)

]}
upon completing the square and performing the Gaussian integral of p, with all
normalization prefactors omitted. Note that for infinitely small ε, x−x

′

ε is just
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the velocity and m(x−x′)2
2ε2 −V (x) is just the Lagragian L, so the infinitely small

time propagator is
K(x, x′; ε) ∼ ei ε~L (2.41)

For a certain path x(t), the total phase is just i
~
´
dtL = i

~S(x(t)), with S(x(t))
the action of the path x(t). The total propagator is the path integral of all
paths, as

K(x2, t2;x1, t1) ∼ Dx(t) e
i
~S(x(t)). (2.42)

A thermal density matrix with Gibbs distribution is of the form ρ ∼ e−βH .
This is of the same mathematical form as the evolution operator e−iHt/~, with
the only difference that the prefactor of H is a real number β instead of it

~ .
A path integral formalism can also be written for a density matrix at finite
temperature by taking an imaginary time. At temperature T = 1

kBβ
, the density

matrix ρ = exp(−βH) can be rewritten as

ρ ∼ [exp(−εH)]N (2.43)

with ε = β/N . A small ε allows for approximations when calculating the matrix
elements of the propagator exp(−εH) of a small time slice.

2.4.2 Path integral Monte Carlo for bosons

The path integral formalism can be applied to many body systems composed
of identical bosons. A typical quantity to be calculated is the mean value of an
observable A,

< A >= Tr(ρA) =

ˆ
dR 〈R| ρAS |R〉 (2.44)

where ρ is the density matrix and R = (r1, r2, ...) represents the set of positions
of all bosons. A symmetrization operator S = 1

N !

∑
σ
|σR〉 〈R| is included to

take into account the particle exchanges due to indistinguishability of bosons, by
averaging over all permutations σ of N elements. In the path integral formalism,
the mean value of A reads

<A>=
´
dR0...dRN−1〈R0|e−εH |RN−1〉〈RN−1|e−εH |RN−2〉...〈R1|e−εHAS|R0〉 (2.45)

The sets R0,R1, ...,RN−1 give the paths of all bosons in the imaginary time
direction, see Fig. 2.7, and the mean value of A becomes an integral over all
possible paths. The ensemble of R0,R1, ...,RN−1 is called a configuration.

The Monte Carlo method gives an efficient way of calculating integrals. This
is how Monte Carlo enters the story. For example, instead of calculating the
exact integral I =

´
dx f(x), we can rewrite this integral as I =

´
dx p(x) f(x)

p(x)

with p(x) a probability distribution of variable x. The Monte Carlo method
samples a random variable xi according to the probability distribution p(x) and
then take the statistical average 1

N

∑N
i=1

f(x)
p(x) . This will not give the exact result

of the integral, but for large N , it can give a reasonably good estimation of the
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Figure 2.7: Path integral representation of the many particle propagator. The
plot illustrate a configuration of N particles.

integral with much less computation resources compared to directly calculating
the integral exactly.

The path integral is just an integral over all configurations with correspond-
ing weights. This integration over configurations can be calculated by the Monte
Carlo method, with sampling weights calculated from the matrix elements of
short time propagator e−εH . The sampling is generated with a Markov chain,
by proposing a certain move and then deciding whether to accept this move
or not, respecting the configurations’ relative statistical weights. The propose-
and-judge process is to give high acceptance rates in practice. This Monte
Carlo method is used to calculate the various physical observables. In particu-
lar, following the idea that the superfluid density can be obtained by a twisted
boundary condition, superfluid density can be calculated with this path integral
method by counting the total winding number, i.e. the total number of bosons
going across the full system.

2.4.3 Worm algorithm

The path integral Monte Carlo method introduced above has an intrinsic
drawback in the presence of Bose-Einstein condensation. The off-diagonal long-
range order reflects the fact that bosons can be exchanged with each other with
a very far distance between them. In the path integral numerical method, this
becomes very inefficient because this kind of exchange processes will dramati-
cally change the topology of the world lines and as a result it is very hard to
efficiently sample this kind of processes. This problem can be improved by in-
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Figure 2.8: Schematic illustration of a swap move. (a) before the move. (b)
after the move. This figure is from Ref. [144]

troducing the so-called worms, which are just open world lines, into the system.
For example see Fig. 2.8 for a swap move, where the topological structure of
the wordlines is changed by a local update of the wordlines. This makes the
sampling of the exchange processes of bosons much more efficient, as it replaces
a global update by a local update. The worm algorithm also helps for the cal-
culation of Green’s functions, as each configuration with open wordlines just
corresponds to a single particle Matsubara Green’s function.



Chapter 3

Localization and spectral
structure

The physics of single quantum particles in a quasicrystal potential plays a
important role, not only for their unique properties but also for understanding
the many-body problem. For instance, it has been recently shown that the emer-
gence of a Bose glass and an insulating Mott phase in strongly-correlated Bose
gases subjected to shallow quasicrystal potentials can be related to localization
and spectral gaps of noninteracting systems [157].

In this chapter, we investigate the localization properties and the structure
of the energy spectrum of non-interacting quantum particles in two-dimensional
quasicrystal potentials, as realized for ultracold-atom quantum simulators. To
observe localization phenomena in quasicrystal potentials using cold atoms,
the temperature should be small compared to the typical energy scale of the
quasiperiodic structure. For a deep quasiperiodic potential, for example giving
rise to a Aubry-André model upon discretization, the relevant energy scale is
the tunnelling J , which is usually a small energy and reaching a temperature
much below this scale could be challenging. On the other hand, for a shallow
quasicrystal potential created by the optical lattice, the relevant energy scale
is the recoil energy Er. This is the limiting temperature of laser cooling. Ul-
tracold atomic systems obtained by additional evaporation cooling is naturally
much colder than this. So using a shallow quasicrystal potential has a practical
advantage in ultracold atoms experiments. In addition, from the theoretical
aspect, a shallow quasiperiodic potential also shows a novel localization picture
compared to the deep lattice model. This was studied in one dimension for
example in [38].

We show results for single particle properties of a 2D shallow quasicrystal
potential in this chapter. While quantum states are generally localized at low
energies and extended at high energies, we find an alternation of localized and
critical states at intermediate energies. A finite-size scaling analysis of the in-
verse participation ratio unveils a power law scaling, with a non-integer fractal

65
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dimension, for systems up to sizes of several hundreds of the natural length
scale (optical wavelength). Furthermore, the energy spectrum shows a complex
succession of bands and gaps, and we show that the most prominent gap is gen-
erated by localized ring states, and the gap width is controlled by the energy
splitting between states with different quantized winding numbers.

We present our results as follows. We first show how the localizations can be
quantitatively characterized by the inverse participation ratio (IPR) in Sec. 3.1.
Then we recall the single particle properties of a 1D quasiperiodic potential
in Sec. 3.2. A 2D optical quasicrystal with eight-fold rotational symmetry is
introduced in Sec. 3.3 and we provide a general overview of the localization and
spectral properties in Sec. 3.4. The localization properties are then discussed in
greater detail within Sec. 3.5, including the structure of localized, critical, and
extended states, and their identification from a finite-size scaling analysis of
the inverse participation ratio. Next, in Sec. 3.6, we investigate the formation
of gaps in the energy spectrum and show that they originate from localized
ring states with different winding numbers. Finally, in Sec. 3.7, we extend this
discussion to quasicrystal potentials with other discrete rotational symmetries,
before ending with our conclusions and the implications of our results in Sec. 3.8.

3.1 Inverse participation ratio
Though a simple picture of localization can be visualized as whether a state

extends across the system, a quantitative characterization of localization can be
given by the so-called inverse participation ratio (IPR), defined as

IPR =

´
dr|ψ(r)|4

(
´
dr|ψ(r)|2)2

. (3.1)

To illustrate how it works, we consider several one dimensional examples,
as shown in Fig. 3.1. The wavefunctions are of differernt forms and they are
plotted in Fig. 3.1 with a typical length scale a chosen to be a = 1 for the
relevant cases. We take the system size to be L. Figure 3.1 (a) shows the
wavefunction magnitude of a plane wave. It is clearly extended with a constant
magnitude across the system, with IPR = 1

L . For large L, the IPR is small.
On the other hand, for localized states with typical length scale a, the IPR
scales as ∼ 1

a . For example, a wavefunction ψ(x) = 1
(2πa2)1/4

e−
x2

4a2 which gives a
Gaussian probability distribution, shown in Fig. 3.1 (b), has IPR = 1

2
√
πa

. And
for a box wavefunction which only has non-zero magnitude |ψ(x)| = 1√

a
for

x ∈ [0, a], see Fig. 3.1 (c), it has IPR = 1
a . We see that for those wavefunctions

with a length scale a, a small a gives a large IPR. Typically a state tends to
be extended if it has a large IPR and a state tends to be localized if it has a
small IPR. However, this could actually be misleading, as we can see from the
example shown in Fig. 3.1 (d). It depicts a wavefunction whose magnitude is
a nonzero constant value in the ranges x ∈ [n, n + r] for all integer values of
n and 0 < r < 1. Its IPR is IPR = 1

Lr . For a finite L, as is usually the case
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Figure 3.1: Various kinds of 1D wavefunctions. The length scale is a = 1 for
the relevant cases.

for numerical calculations, we can get a large IPR if r is small, even though
this state is clearly an extended periodic state. A more rigorous analysis of
localization should be done by looking at how the IPR scales with the system
size L. In one dimensional systems, an extended state’s IPR scales with system
size L as IPR ∼ L−1 and a localized state’s IPR scales as IPR ∼ L0. We can
see that the wavefunction of Fig. 3.1 (d) clearly has a IPR ∼ L−1 scaling as an
extended state.

3.2 Single particle properties of 1D quasiperiodic
potential

As we said, a shallow quasicrystal potential not only has certain advantages
in cold atoms experiments but also can show different localization pictures com-
pared to a deep lattice model. Here we review the results obtained for the
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Figure 3.2: Localization transition for the balanced bichromatic potential,
Eq. (3.2). IPR versus particle energy E and lattice amplitude V for the system
size L = 100a. Localized states correspond to large values of the IPR (blue)
and extended to vanishingly small values (yellow). The ME, found from finite-L
scaling analysis of the IPR, is shown as black points. This figure is from [38].

one-dimensional case in continuous space [38]. The quasiperiodic potential reads

V (x) =
V

2
cos(2k1x) +

V

2
cos(2k2x+ φ) (3.2)

with k2/k1 =
√

5−1
2 an irrational number. A relative phase shift is chosen as

φ = 4, avoiding any unnecessary special symmetry.
Eigenenergies and eigenstate wavefunctions are calculated by exact diago-

nalization for a system with size L = 100a where a = π/k1 notes the spatial
period of the first periodic potential. The IPR is calculated for each single par-
ticle eigenstate. The IPR versus the eigenenergy E and potential amplitude V
are shown in Fig. 3.2. The black dots indicating the mobility edge separating
localized states and extended states, are obtained by finite size scaling analysis
of the IPR. First we see that for low enough potential amplitude V all the states
are extended. So there is a critical potential, Vc ' 1.112 ± 0.002Er, where the
localized states start to appear for larger potential amplitude. For V > Vc, the
localized states appear at low energy and extended states appear at high energy,
separated by a single mobility edge. Furthermore, finite size analysis shows that
the single particle gaps, as the white spaces between the colored bands shown
in Fig. 3.2, have fractal structure. For larger system sizes, the gaps dissolve into
smaller gaps in a fractal way.

We see that the localization picture is different from the 1D Aubry-André
model. In the Aubry-André model, all states are extended below the critical
point, while all states are localized above the critical point. Here in the shallow
quasiperiodic potential we observe both localized states and extended states
for V > Vc. In addition, the localized states and extended states are always
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Figure 3.3: Two-dimensional optical quasicrystal for ultracold atoms. A 2D
quasicrystal potential with eight-fold rotation symmetry is realized using four
pairs of counterpropagating laser beams, making successive angles of 45° each,
with small frequency shifts to suppress mutual coherence.

separated by a single sharp mobility edge. As we will see, this will not be the
case for the 2D quasicrystal potential on which we will focus hereafter.

3.3 Two-dimension quasicrystal potential

We now turn to two-dimensional quasicrystals. A 2D quasicrystal potential
can be created using an optical lattice by certain geometrical arrangements of
multiple laser beams [46]. In particular, a 2D quasicrystal with 8-fold rotational
symmetry can be created by four intersecting laser beams [48]. It is the sum
of four one-dimensional standing waves with amplitude V0 and lattice period
a = π/|Gk|, and successively rotated by an angle of 45°, see Fig. 3.3. It can be
written as

V (r) = V0

4∑
k=1

cos2 (Gk · r + φk) , (3.3)

with G1 = π
a (1, 0), G2 = π

a ( 1√
2
, 1√

2
), G3 = π

a (0, 1), G4 = π
a (− 1√

2
, 1√

2
), position

vectors r = (x, y) and phase factors φk of laser beam k. This potential can
be realized in ultracold-atom experiments using four retro-reflected laser beams
with slightly shifted frequencies to suppress mutual coherence [47, 49, 158].
This is the quasicrystal potential we consider. Generalizations to quasicrystal
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potentials with higher rotational symmetries are discussed in Sec. 3.7.
The eight-fold quasicrystal potential with all φk = 0 is shown at different

length scales in Fig. 3.4(a), (b) and (c), which show the quasi-repetition of
short-range structures. Here, we can observe the underlying eight-fold rota-
tional symmetry, which is incompatible with periodic order. This is better seen
in Fig. 3.4(d), which shows the Fourier transform of the 2D potential, Eq. (3.3).
The discreteness of the Fourier pattern is a characteristic of long-range order,
while the eight spots regularly arranged on a circle of radius |k| = 2π/a directly
reflects the eight-fold discrete rotational symmetry and absence of periodic or-
der. For φk = 0, the origin of the 2D system at r = 0 is a rotational symmetry
center. The spot at kx = ky = 0 is due to the finite average value of the poten-
tial,

´
dr
L2V (r) = 2V0, where L is the linear system size. It can be cancelled out

by shifting the potential by −2V0.
To avoid exact rotation symmetry around the center at (x, y) = (0, 0), for

the majority of our results, we consider an off-centered square area, which is
more generic. For instance, it lifts exact degeneracies of strongly-localized states
around potential minima, that are, however, very far apart from each other.
This facilitates the discrimination of localized and extended states. In practice,
we shift the center from (x, y) = (0, 0) to (x0, y0) = (−13543a, 196419a), which
is far beyond the system borders we consider. This is equivalent to phase shifts
of the laser beams with φ1 = 0, φ2 ' 0.8597π, φ3 = π, and φ4 ' 1.5540π.
Note that the direction of the symmetry center to the system center is θ =
arctan(y0/x0) ' −86.06°. It is away from any special directions associated with
the discrete rotation symmetry, which are multiples of 22.5°.

3.4 Single particle spectrum

We now consider massive quantum particles in the quasicrystal potential of
Eq. (3.3). The single-particle Hamiltonian is

H =
p2

2M
+ V (r), (3.4)

where p = −i~∇ is the 2D momentum operator and M is the particle mass.
The eigenstates of this Hamiltonian are obtained using exact numerical diag-
onalization. In practice, the diagonalizations are performed in square areas of
linear sizes L with periodic boundary conditions. We use the lattice constant a
as the length unit and the recoil energy Er = π2~2/2Ma2 as the energy unit. We
use the spatial discretization dx = 0.1a and the typical system size is L = 60a,
except whenever mentioned. Due to the finite discretization, only the lowest
energy eigenstates are retained. They correspond to those whose variation scale
λ significantly exceeds the discretization dx. For an eigenstate with energy E,
the typical de Broglie wavelength is λ = 2π~√

2ME
, which yields the restriction on

the eigenenergy as E/Er � 4
(dx/a)2 = 400. In practice, we consider potential

amplitudes up to V0 = 10Er and we keep the eigenstates up to energy E = 8V0.
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Figure 3.4: Eight-fold quasicrystal potential. (a)-(c) Real-space potential,
Eq. (3.3) with φk = 0 for all k, plotted at various scales, for the linear system
sizes (a) L = 20a, (b) L = 40a, and (c) L = 60a, all centered at r = 0.
(d) Fourier transform of the potental. The color scale represents the value of
the potential or its Fourier transform from low values (dark colors) to high
values (light colors).

In the numerics, we must impose boundary conditions. Owing to the non-
periodicity of the potential, any choice would distort the wavefunctions in the
vicinity of the edges and some care should be taken over the states obtained in
finite squares. We should indeed keep the states that faithfully represent the
spectrum at thermodynamic limit, and discard the states that are created by
boundary effects. Here, we choose periodic boundary conditions, where non-
physical edge states may appear in the vicinity of the system boundaries. We
have checked that such edge states disappear from their initial location when we
repeat the diagonalization in a larger system; while new edge states appear near
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the new boundaries, confirming that they are indeed created by the boundaries.
To get a spectrum representative of the thermodynamic limit, these edges states
are excluded as follows: We first reduce each wavefunction to a binary map. If
the wavefunction magnitude at a certain position is larger than 10% of the
maximum of the wavefunction magnitude, it maps to 1; Otherwise it maps to 0.
Then, at each point with value 1, we compute the quantity Z = 1−2d/L, where
d the distance to the nearest edge, as well as, for each eigenstate, its average
Z. The criterion used in this work to only keep bulk states is the combination
of the following two: (i) Z < 0.9 and (ii) the position of the wavefunction max-
imum is at a distance larger than 3a from the nearest edge of the system. If
an eigenstate fulfills both conditions, it is identified as a legitimate bulk state;
Otherwise, it is identified as an edge state and is excluded.

Figure 3.5 shows the single-particle spectrum of the Hamiltonian versus the
quasicrystal amplitude V0 and the eigenenergy E, up to 8Er (the color scale
represents the IPR of each eigenstate, see Sec. 3.5). The spectrum has a rich
structure and shows a series of energy gaps (highlighted in red), each in spe-
cific ranges of the quasicrystal amplitude. The largest gap has been identified
earlier [157, 159], while the smallest are more elusive. To locate these gaps sys-
tematically, we apply the following method for each spectrum corresponding to
different values of V0: For each set of successive 500 eigenstates, we calculate all
the eigenenergy differences between neighbouring bulk states and then take the
average value of all these eigenenergy differences. If any eigenenergy difference
is larger than 50 times that mean value, it is identified as a gap. Otherwise, it
is considered to be in an energy band.

We have checked that the gaps thus identified for a system of linear size
L = 60a agree with another approach where the energy resolution is fixed, and
are stable against increasing system sizes: Careful identification of the true
energy gaps in the spectrum can be captured by performing a finite-size scaling
analysis. Here we compute the density of state (DOS) using

gε(E) =
δW (E, ε)

ε
, (3.5)

where ε = 0.005Er is a finite energy resolution and δW (E, ε) is the number
of states in the energy window [E,E + ε). A good estimate of the DOS is
obtained when the energy resolution ε is smaller than the typical variation scale
of the DOS and larger than the inverse of the typical DOS so that several states
are in each energy slice, gε(E)ε � 1. For the homogeneous 2D gas, we have
g(E)−1Er = 4a2/πL2 ' 0.003 for the smallest system size L = 20a.

Figure 3.6 shows the DOS per unit area versus energy for different system
sizes from L = 20a to 90a. Each point with zero DOS gives an energy gap, so
that all gaps larger than the energy resolution ε are revealed. For the smallest
system size of L = 20a in Fig. 3.6, the DOS displays many small gaps and a
few large energy gaps. While the two large gaps are stable against increasing
the system size, only a few small gaps survive for large system sizes. For the
energy resolution ε = 0.005Er, the structure of the spectrum is stable when the
system size is larger than L ' 60a.
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Figure 3.5: Energy spectrum of the 8-fold quasicrystal potential for various V0.
The system size is L = 60a, centered at (x0, y0) = (−13543a, 196419a). We keep
the eigenstates with energy up to 8V0 for potential amplitude V0 . 4Er and up
to 30Er for larger potential V0. The color scale shows the value of log(IPR) for
each eigenstate, while the gaps are colored red.

3.5 Localization properties

Quasiperiodic systems are known to exhibit localization of eigenstates [19,
38, 81, 124, 160, 161]. To study these properties, we compute, for each single-
particle eigenstate ψ(r), the inverse participation ratio (IPR) as defined in
Eq. 3.1. Generally, in sufficiently large systems, states with large IPR are lo-
calized while states with small IPR are delocalized, which may be either ex-
tended or critical. Figure 3.5 shows, for every eigenstate, log(IPR) versus V0

and E in color scale. For small quasicrystal amplitude V0, all the eigenstates
appear delocalized. This is consistent with the critical potential for localization
Vc ' 1.76Er, found in previous works [52, 162]. As V0 increases, the low energy
eigenstates tend to localize since long-range coherence is suppressed as the qua-
sicrystal becomes deeper, while higher energy eigenstates remain delocalized.
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Figure 3.6: Density of states per unit area versus energy for the quasicrystal
amplitude V0 = 2.5Er and the energy resolution ε = 0.005Er. The various
panels correspond to increasing system size from L = 20a (top) to L = 90a
(bottom). The energy gaps are indicated by grey shaded areas.

In the intermediate energy range, the localization behaviour is richer. We find
that eigenstates with large and small IPR coexist, and in particular, the IPR is
nonmonotonous against energy.
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3.5.1 Finite-size scaling analysis

As we have discussed in Sec. 3.1, to study localization in more detail, the bare
value of the IPR is insufficient and we consider a more rigorous characterization
of localization. It is provided by the scaling of IPR with the system size L,
IPR ∼ Lγ . In 2D, localized states are characterized by γ = 0 and extended
states by γ = −2. Any intermediate value of γ between 0 and −2 then identifies
a critical state [160, 161]. In the following, we focus on the case V0 = 2.5Er,
which is larger than the critical potential Vc ' 1.76Er, but similar results are
found for other amplitudes of the quasicrystal potential.

Studying the finite-size scaling properties of the IPR requires comparing
eigenstates for different sizes. However, diagonalization in systems with differ-
ent sizes gives different total numbers of eigenstates, as the density of states
generally scales with the system area. Hence, given an eigenstate for a certain
system size, there is always some arbitrariness on picking up the corresponding
eigenstate for another system size to be compared with. To overcome this issue,
we compute the averaged IPR of all eigenstates in a narrow energy window,
IPR. The width of the energy window is chosen to be δE = 0.01Er, narrow
enough such that the eigenstates in the energy window have similar localization
properties, but large enough to have enough states to average. Then, the scaling
exponent γ considered below refers to this averaged IPR, and characterizes the
localization properties in the corresponding energy window.

For instance, Fig. 3.7 shows the scaling of the IPR versus the system size from
L = 20a to L = 300a, for three different energy windows. In all cases, it shows a
clear power-law scaling, IPR ∼ Lγ , and the exponent γ is found by a linear fit of
log
(
IPR

)
versus log(L/a). Figure 3.7(a1) corresponds to energy E ' 4Er. The

quantity log
(
IPR

)
fluctuates with the system size but shows no clear increasing

or decreasing tendency. Linear regression of the data points yields the slope
γ = −0.04 ± 0.03. The small value of |γ| indicates that the states in this
energy window are localized. An example of the wavefunction of an eigenstate
in this energy window is plotted in Fig. 3.7(b1). The state is localized in a
few local potential wells, consistently with strong localization. Figure 3.7(a2)
corresponds to energy E ' 6Er. In this case, linear regression yields the slope
γ = −2.06 ± 0.06, corresponding to extended states. The wavefunction of an
eigenstate in this energy window, shown in Fig. 3.7(b2), consistently covers the
full system area, although not homogeneously. Finally, Fig. 3.7(a3) corresponds
to energy E ' 5.81Er. It also shows a clear linear behaviour in log-log scale
and the slope is found to be γ = −1.25± 0.09, significantly far from both 0 or
−2. In this energy window, the states are thus neither localized nor extended,
i.e. they are critical. A typical eigenstate is plotted in Fig. 3.7(b3). Unlike
localized states, these critical states extend over the full system but, compared
to extend states, they only cover a limited proportion of the area.

Systematic finite size scaling and linear fits are performed over the full spec-
trum, with results shown in Fig. 3.8. Generally, the system sizes range from
L = 20a to L = 100a. For some energy windows, notably where critical states
appear, we use larger sizes, up to L = 300a, so as to check that the scaling be-
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Figure 3.7: Localization properties of some eigenstates. The left column,
(a), shows log

(
IPR

)
versus log(L/a) for all eigenstates in various energy win-

dows. Blue disks are data points while orange dash lines show linear fits.
The quasicrystal amplitude is V0 = 2.5Er and the system sizes for linear re-
gressions range from L = 20a to L = 300a. (a1) The energy window is
E/Er ∈ [4.00, 4.01] and the linear fit yields γ = −0.04± 0.03. (a2) The energy
window is E/Er ∈ [6.45, 6.46] and the linear fit yields γ = −2.06±0.06. (a3) The
energy window is E/Er ∈ [5.81, 5.82] and the linear fit yields γ = −1.25± 0.09.
The right column, (b), show examples of eigenstates in the corresponding energy
windows, with energies indicated on the top of each panel. The wavefunctions
plotted here are computed for the system size L = 60a.

haviour of the IPR persists for larger system sizes. The exponent γ, such that
IPR ∼ Lγ , is found from linear fits of log

(
IPR

)
versus log(L/a), with results
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shown in the first row of Fig. 3.8. To characterize the fit quality, we compute
the Pearson correlation coefficient,

r =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑
i(yi − y)2

, (3.6)

for two data sets xi, yi where x and y are their mean values. A value of |r| close
to 1 indicates good linear correlation between the data sets, while |r| close to 0
indicates poor linear behaviour. The correlation coefficient for linear fitting of
log
(
IPR

)
and log(L/a) is shown in the second row of Fig. 3.8. It shows good

linear behaviour with r ' −1 and γ ' −2 for energy E & 6.45Er, and the states
in this energy range are clearly extended. For a lower energy range, however, the
coefficients r are much worse, which questions the corresponding results. This
is actually misleading as when the slope γ is about 0, even weak fluctuations of
data points around a constant value can greatly affect the coefficients r.

To circumvent this issue, we repeat the linear regression for log
(
IPR · L/a

)
versus log(L/a) with slope γ′ + 1 and for log

(
IPR · (L/a)2

)
versus log(L/a)

with slope γ′′ + 2. The results, together with the corresponding correlation
coefficients, r′ and r′′ respectively, are shown in the lower rows of Fig. 3.8. The
three linear regressions give almost indistinguishable results for the exponent
γ, γ′, and γ′′, and, for each energy E, at least one of the three correlation
coefficients r, r′ or r′′ is close to 1. For instance, the coefficient |r′′| has values
away from 1 for E & 6.45Er, since the slope γ′′ + 2 for log

(
IPR · (L/a)2

)
is

about 0. It is, however, close to 1 for low energy states, and the scaling given
by γ′′ (essentially equal to γ and γ′) is reliable in this regime. In general, the
fitted slope γ yields the correct scaling and the quality is assessed by either r,
r′ or r′′.

The results show that the lowest energy states are localized, with γ ' 0.
For energy E & 6.45Er, i.e. above the second large energy gap, all states are
extended, with γ ' −2. In the intermediate energy range, there are critical
states whose scaling exponent γ is neither 0 nor −2 but clearly in between.
Taking into account the uncertainty of the fitted exponents γ, energy ranges
with different kinds of localization properties can be identified as follows, with
results shown in the lower row of Fig. 3.9: Localized states for γ > −0.25 (green),
extended states for γ < −1.75 (blue), and critical states for −1.75 < γ < −0.25
(yellow). Also shown is log(IPR) for each eigenstate calculated for L = 80a
(red dots). The behaviour of the DOS shows that that there is a significant
number of states of each kind in the spectrum. The behaviour of log(IPR) is
rather smooth, up to significant fluctuations. Interestingly, we find that critical
and localized states can coexist at intermediate energies, with no clear mobility
edge, or separation between localized and critical domains. This is reminiscent
of “anomalous mobility edges” separating bands of localized states and bands of
critical states as found in other quasiperiodic models [45].

General properties of localized, extended, and critical states are further dis-
cussed in the following subsections.
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Figure 3.8: Finite size scaling of the IPR, performed as in Fig. 3.7, for sys-
tem sizes ranging from L = 20a to L = 100a, except in some narrow energy
windows where data for larger sizes, L = 120a, 160a, 200a, 300a, are also calcu-
lated. The panels, from top to bottom, show, successively the scaling exponent
and the corresponding regression coefficient: (i) γ and r for log

(
IPR

)
versus

log(L/a), (ii) γ′ and r′ for log
(
IPR · L/a

)
versus log(L/a), and (iii) γ′′ and r′′

for log
(
IPR · (L/a)2

)
versus log(L/a).
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3.5.2 Localized states

Localized states generally appear in the low energy range, as well as at some
energy band edges, near by energy gaps, see Fig. 3.9. Typical localized states |ψ|
in different energy ranges are plotted on Fig. 3.10, with eigenenergy increasing
in the reader order, from panel (a) to panel (h). The insets show magnifica-
tion of the main panel in the vicinity of the localization center. The states
with lowest energies are strongly localized in a single local potential well, see
Fig. 3.10(a). As the energy increases, the states start to cover a few potential
wells. Some states are localized in regions where the local potential is almost
eight-fold rotational symmetric, and the eigenstates form rings composed of
eight almost equivalent spots, see Fig. 3.10(b). Similar ring states exist with 16
spots (not shown). Other localized states cover a small cluster of different poten-
tial wells, such that the tunnelling between them is large enough to compensate
the eigenenergy differences between the local potential wells, see Figs. 3.10(c)
and (d). As the energy further increases, states composed of one or many small
rings begin to appear. Figure 3.10(e) shows such a localized state with one small
ring, with eigenenergy slightly below the energy gap at E ' 4.65Er. The small
ring actually corresponds to a set of several local shallow potential wells that
are very near by each other, and the wavefunction on these wells merge into
an almost homogeneous circle. Figures 3.10(f) and (g) are localized states with
energies, respectively, right below and right above the first large energy gap
in, approximately, E/Er ∈ [5, 5.7]. They are also states located on small rings
of nearby potential wells, as for Fig. 3.10(e). However, unlike in Fig. 3.10(e),

Figure 3.9: Localization spectrum in the quasicrystal potential. Upper
row: Scaling exponent γ of the IPR ∼ Lγ . Same data as the first row of Fig. 3.8,
for the convenience of comparison to the lower row. Lower row: Classification of
different kinds of states. The values of log(IPR) for all eigenstates with system
size L = 80a is plotted versus their eigenenergies. Localization properties are
shown as background colors: green for localized states, blue for extended states,
and orange for critical states. The potential amplitude is V0 = 2.5Er.
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Figure 3.10: Wavefunctions of typical localized states in various energy ranges.
The eigenenergy, indicated on the top of each panel, increases in the reading
order, from (a) to (h). The quasicrystal potential amplitude is V0 = 2.5Er and
the system size is L = 60a. The insets show magnifications of the corresponding
panel in the vicinity of the localization center.
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these small-ring wavefunctions have, respectively, one or two node lines due to
different phase winding numbers. These states play special roles in the spectral
structure and will be further discussed in Sec. 3.6. Localized states with rela-
tively high energies do not all have similar ring structures. Some of these states
are localized in one or multiple potential wells, as in Fig. 3.10(h).

3.5.3 Extended states

States with high enough eigenenergies are all extended, see Fig. 3.9. For
a potential amplitude V0 = 2.5Er, extended states appear after the second
large gap, i.e. for energy E & 6.45Er. Typical extended states are plotted in
Fig. 3.11. They cover the full system area quasi-homogeneously, even though
some dark node regions due to large scale modulation of the wavefunction may
appear, as for instance in Fig. 3.11(a3). Extended wavefunctions contain many
spots separated by node lines. For low-enough energy, each island has a size
comparable with the lattice constant a, and forms a rather ordered pattern, see
Fig. 3.11(a3). For states with higher energy, the wavefunction variations become
stronger and the typical size of the islands gets smaller. It goes down to the de
Broglie wavelength, λ = 2π~/

√
2mE, of the quasi-plane waves rather than the

potential profile. Correspondingly, the states show a complex, quite disordered,
pattern determined by multiple scattering on the quasicrystal potential, see
Figs. 3.11(a1) and (a2).

While the IPR alone does not seem to characterise the crossover from "or-
dered" extended states to "disordered" ones, a better understanding can be
gained by looking at the density profiles in momentum space, as shown in
Figs. 3.11 (b1), (b2), and (b3). Consider first the highest energy states [Figs. 3.11
(b1) and (b2)]. The momentum distribution of such states is concentrated
around a marked circle, with a smaller spreading when the energy increases.
This structure may be understood using simple perturbation theory: Extended
states with high-enough energy E are constructed from plane waves with mo-
mentum kE such that E = ~2k2

E/2M + 〈V 〉, where 〈V 〉 ' 2V0 is the potential-
energy contribution for purely plane waves. We consistently find that the circle
with radius kE [shown in red in Figs. 3.11(b1), (b2), and (b3)] coincides with
the dominant momentum components of the extended wavefunction. The qua-
sicrystal potential weakly couples many plane waves with a modulus of the
momentum nearly equal to kE in almost all directions and within a structure
consistent with the quasicrystalline eightfold rotational symmetry.

The formation of the momentum profile of extended states at a smaller
energy is more subtle. In this case, the extended wavefunctions are dominated by
the quasicrystal potential and we now have a quasiperiodic, lattice-like structure
[Fig. 3.11(b3)]. The origin of this structure can be deduced as follows. First,
we note that the extended state in real space is made of hybridized ring states
with 3 nodes lines. The rings are located around some potential maxima, which
forms a discrete lattice in real space, shown in Fig. 3.11(a4). The wavefunction
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Figure 3.11: Wavefunctions of extended states, with energies given on top
of each panel, V0 = 2.5Er, and L = 60a. We show the (a1)-(a3) real-space
density profiles and corresponding (b1)-(b3) Fourier space momentum distri-
butions. The red circle indicates the momentum kE given by a perturbation
theory. Panels (a4) and (b4) show the reconstructed components of (a3)-(b3),
Eq. (3.8). The spots in (a4) show the positions of the local maxima rj , with
color indicating the phase (blue : φj = 0, orange: φj = π). Panel (b4) shows
the square modulus of the Fourier transform of Eq. (3.8). The positions of spots
in (b4) match well with those in (b3).
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can thus be approximated as

ψ(r) '
ˆ
dr′ψ0(r)f(r− r′) (3.7)

and
f(r) =

∑
j

eiφjδ(r− rj), (3.8)

where ψ0(r) is a sample of the ring states with 3 node lines, rj is the position
of the jth potential maxima and φj is a phase factor of either 0 or π, which
gives the correct alignment of the local structures in the original wavefunction.
The phase factor is encoded in the color (blue or orange) of the lattice points in
Fig. 3.11(a4). To check this interpretation, we compute the Fourier transform
of f(r) in Eq. (3.8) and plot it in Fig. 3.11(b4). The result reproduces well
the primary features of the momentum profile found in Fig. 3.11(b3), namely
the quasiperiodic, lattice-like structure, and some of the most significant spots.
This shows that the structure of the lowest-energy extended states is strongly re-
lated to the quasiperiodic nature of the potential. When the energy E is further
increased, the quasiperiodic structure becomes less significant, with the progres-
sive emergence of the plane-wave momentum circles observed in Figs. 3.11(a1)
and (a2).

3.5.4 Critical states

Critical states generally appear in between the localized states not far from
the edges of energy bands, see Fig. 3.9. The critical states typically extend
across the full system, with complex geometrical patterns, separated in different
classes, see Figs. 3.12 and 3.13.

Figure 3.12 displays the states with energy closest to E = 4.6218Er for
different system sizes. For this energy, the scaling exponent is γ = −1.49±0.24,
clearly different from 0 and −2. As visible on Fig. 3.12(a), these critical states
are all composed of the small rings, similar to localized states with no node lines
in the rings as in Fig. 3.10(e). These critical states, which contain a countless
number of the small rings, have energies slightly smaller than the localized states
containing only one or a few small rings, owing to hybridization, which minimizes
the tunnelling energy. Since the ring states that form the building blocks of such
critical states are roughly isotropic, they do not favor any clear direction, and,
on a larger scale, they group together and form larger ring structures containing
eight small rings, and eventually form a “ring of ring”, see Fig. 3.12(b). On even
larger scales, these rings of rings also group together forming more complex
structures, see Figs. 3.12(c)-(h).

Fig. 3.13 shows an example of another class of critical states, found at a
higher energy. It displays the states with energy closest to E = 5.803Er for
different system sizes. Here the scaling exponent is γ = −0.87± 0.18, also cor-
responding to critical states. However, unlike Fig. 3.12, which contains rings at
different scales, Fig. 3.13 displays square-shaped structures. On large enough
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Figure 3.12: Wavefunctions in the critical regime at E ' 4.6218Er for V0 =
2.5Er, shown at different scales. The various panels show the wavefunction of
the state with eigenenergy closest to E = 4.6218Er for system sizes increasing
in the reader order, from (a) L = 20a to (h) L = 300a. Note that the colors
have been rescaled to increase the contrast.

scales, we find that these states display straight lines either along the main axes
(x and y) or along the diagonals. In fact, these states are also built from ring
states, but here with two node lines, similar to that shown on Fig. 3.10(g). For
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Figure 3.13: Wavefunctions in the critical regime at E ' 5.803Er for V0 =
2.5Er, shown at different scales. The various panels show the wavefunction of
the state with eigenenergy closest to E = 5.803Er for system sizes increasing in
the reader order, from (a) L = 20a to (h) L = 300a. Note that the colors have
been rescaled to increase the contrast.

such ring states with node lines along the diagonals, hybridization is favored
along the main axes, which maximizes the overlap of wavefunctions from adja-
cent rings. This explains the appearance of lines along the main axes. Moreover,
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Figure 3.14: (a), (b) and (c): Zoomed up plots of several regions of the wave-
function shown in (d), which is a copy of Fig. 3.13 (d).

owing to the eightfold rotation symmetry of the potential, there are also ring
states with two node lines, but now oriented along the main axes. For such
states, the hybridization is then favored along the diagonals, which creates the
distinct lines across the diagonals. Finally, since all the ring states with two node
lines along either the main axes or along the diagonals are quasi-degenerate,
square-like structures oriented in either directions also hybridize, hence forming
the complex structure observed in Fig. 3.13. In support of this interpretation,
zooms of the wavefunction show that the lines parallel to the main axes are
formed of ring states with two node lines along the diagonals while the lines
along the diagonals are formed of ring states with two node lines along the main
axes, see Fig. 3.14.

Finally, in Fig. 3.15, we show two examples of critical states with energy near



3.6. GAPS BOUNDED BY RING STATES WITH PHASE WINDING 87

Figure 3.15: Examples of critical states with energy near E ' 4.8Er, which
are composed of m = 1 ring state components (i.e. a single node line). We
consider V0 = 2.5Er and L/a = 100. Localized components become coupled
in circular, ring-like arrangements. These circular structures are then coupled
with a square-shaped pattern.

E ' 4.8Er. These states are composed of hybridized ring-like structures on small
scale, with a similar square-shaped pattern to what has been observed before
on large scale. At the intermediate length scale, we observe circular structures
composed of several ring states with a single node line each (i.e. m = 1 ring
states). The node lines are aligned in such a way to face the centre of the circle.
Different circles couple together and form extensive critical states.

3.6 Gaps bounded by ring states with phase wind-
ing

We now study the structure of the energy spectrum. The DOS for the
quasicrystal with amplitude V0 = 2.5Er and a large system size, L = 80a, is
shown in Fig. 3.16. It displays two main gaps, in the energy windows E/Er ∈
[4.98, 5.72] and E/Er ∈ [5.94, 6.44], respectively, as well as three smaller gaps
at E/Er ' 4.11, E/Er ' 4.65, and E/Er ' 4.71. To understand the origin of
these energy gaps, we study the properties of eigenstates in the vicinity of the
band edges.

3.6.1 Ring states at band edges

States localized in small ring structures of the potential play an important
role in the energy spectrum, as also observed in Ref. [159]. For instance, the
states right before the small gap at E ' 4.65Er are composed of small rings
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Figure 3.16: Density of states per unit area versus energy for potential ampli-
tude V0 = 2.5Er and system size L = 80a. The energies of the centered small
rings with winding m = 0, 1, and 2 are indicated by the dashed lines. The
shaded areas indicate the regions of the corresponding off-centered rings with
the same winding numbers.

with a roughly homogeneous density, similar to that shown in Fig. 3.10(e), and
spread over different locations. The states right before the first large energy gap
at E/Er ∈ [4.98, 5.72] are similar ring states but with one node line, similar to
that shown in Fig. 3.10(f). The states right after the same large gap are also
ring states but with two node lines, similar to that shown in Fig. 3.10(g). The
energies of ring states with 0, 1 or 2 node lines are highlighted with the shaded
blue areas in Fig. 3.16.

Although we have so far excluded the symmetry center of the potential by
considering off-centered systems, it is useful to re-incorporate it in the discussion
of these ring states. Indeed, very regular ring states exist for the eight-fold
quasicrystal potential around the symmetry center at r = 0, see Fig. 3.17(a).
Remarkably, these centered ring states have energies that exactly limit certain
bands, as indicated by the vertical, dashed blue lines in Fig. 3.16. For instance,
the centered ring state with no node lines, Fig. 3.17(a1), is the very last state
of the energy band before the small gap at E ' 4.65Er. Then, there are two
degenerate centered ring states with a single node line each, Figs. 3.17(a2) and
(a3), which lie immediately before the first large gap, at E ' 4.98Er. Finally,
there are another two degenerate, centered ring states with two node lines,
Figs. 3.17(a4) and (a5), immediately after the first large gap, at E ' 5.72Er.
The other ring states with 0, 1 or 2 node lines that are situated in rings away
from the center of the quasicrystal are slightly distorted, see Figs. 3.17(b1)-(b5),
and their energies lie deeper in the energy bands, as indicated by the shaded
areas in Fig. 3.16. As discussed below, rejection of the off-centered ring states
inside the energy bands may be interpreted as a level repulsion effect.

For the sake of completeness, note that the first state after the second large
gap at E ' 6.44Er is made of ring states with three node lines. In this case, how-
ever, many such rings are connected, hence forming a quite compact extended
state. The states at the band edges of the gap at E/Er ' 4.11 are localized
states, and will be briefly discussed later in Sec. 3.6.5. Finally, the states at
the other band edges before E ' 6.44Er are also localized states, without any
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Figure 3.17: Centered (left) and off-centered (right) ring states in the eight-
fold quasicrystal potential centered at r0 = (0, 0), with amplitude V0 = 2.5Er.
(a1)-(a5) States at energy band edges: (a1) Last state before the small gap at
E/Er ' 4.65; (a2) and (a3) Two almost degenerate states immediately before
the first large gap in E/Er ∼ [4.98, 5.72]; (a4) and (a5) Two almost degen-
erate states immediately after the same first large gap. They are eigenstates
for the smallest ring around r = 0 with winding numbers (node line numbers)
m = 0,±1,±2. (b1)-(b5) Off-centered ring states around r0 = (19.06a, 4.95a)
obtained by diagonalization in a square with size L = 4a.

particular features in their patterns.
These observations indicate that the small ring states, especially the ones

centered on the symmetry center of the quasicrystal potential at r = 0, play
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special roles in the structure of the spectrum, and we discuss them in more
detail below.

3.6.2 Central ring
We first consider the ring states around the quasicrystal symmetry center

at r = 0, see Fig. 3.17(a). They are located in a nearly isotropic annular
potential well of radius ρ0 ' 0.61a. More precisely, the potential has eight
very shallow potential wells along the ring, which may, however, be neglected.
In particular, we find that the ring-state with no node, Fig. 3.17(a1), has a
nearly isotropic density with modulations less than 10%. As a result, the small
ring states in Fig. 3.17(a) may be approximated by states localized in the nearly
isotropic annular potential well with almost isotropic density and O(2) rotational
symmetry around the symmetry center r = 0. In the vicinity of the annular
well, the Hamiltonian and the planar angular momentum operator L̂z can be
diagonalized simultaneously, and the wavefunctions can be written as φ0

m(r) '
um(r)eimθ, where um(r) is a real-valued function, θ is the polar angle, and
m ∈ Z is the phase winding number.

Writing um(r) = r−1/2fm(r), the amplitude fm(r) is then governed by the
semi-infinite one-dimensional, radial equation

− ~2

2M

d2

dr2
fm(r) + Vm(r)fm(r) = Emfm(r), r > 0, (3.9)

with the effective potential

Vm(r) = V (r) +
~2

2M

4m2 − 1

4r2
. (3.10)

The latter consists of the bare potential V (r) and a centrifugal term.
A shown in Fig. 3.18, the centrifugal term strongly deforms the potential

for r . 0.1a, but the distortion near the minimum, r0 ' 0.61a, is weak enough
that the radial eigenfunction fm(r) weakly depends on m for sufficiently large
V0 and small m. For a sufficiently deep potential well, we may use a harmonic
approximation and write

Vm(r) ' Vm(r0) +
1

2
Mω2

m(r − r0)2. (3.11)

The dependence of ωm on m is less than 10% for V0 > 3Er and |m| ≤ 2, and
similarly, the radius of the local minimum is almost independent of m in the
same range of parameters. So for sufficiently strong potential amplitude V0 and
low winding numberm, the functions um(r) are strongly confined around r = ρ0

and we may neglect the m-dependence originating from the centrifugal term.
Figure 3.17(a1) is the state with winding number m = 0. The states in

Figs. 3.17(a2) and (a3) correspond to winding numbersm = ±1. Since the states
φ0
±1(r) are strictly degenerate, any linear combination of both is also an eigen-

state of the Hamiltonian. Numerical diagonalization returns real-valued wave-
functions, i.e. ψ0

+1(r) '
√

2u(r) cos(θ − θ1) and ψ0
−1(r) '

√
2u(r) sin(θ − θ1),
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Figure 3.18: Effective potential Vm(r) for a quasicrystal potential with ampli-
tude V0 = 5Er and for varius winding numbers m.

where θ1 is some reference angle. Consequently, the two states in Figs. 3.17(a2)
and (a3) show orthogonal node lines at the angles θ1 +π/2 and θ1, respectively.
The angle θ1 is determined by the small modulations of potential along the
annular well and, in the numerics, by the discretization, which does not satisfy
an exact eight-fold rotation symmetry. Similarly, Figs. 3.17(a4) and (a5) show
states with two node lines, corresponding to linear combinations of the two de-
generate states with winding numbers m = ±2, ψ0

+2(r) '
√

2u(r) cos(2θ − θ2)

and ψ0
−2(r) '

√
2u(r) sin(2θ − θ2), with some angle θ2.

We now check the validity and accuracy of our model. On the one hand,
because of their strong localization, we can find the exact centered ring states
by performing diagonalization in a small square around r = 0 with size L = 4a,
larger than the ring diameter 2ρ0 ' 1.2a. Figure 3.19(a) shows the eigenenergies
hence obtained subtracted by the eigenenergy of the state with winding number
m = 0 (dashed red line, zero by construction), i.e. Em−E0 for m = ±1 (dashed
blue line) and m = ±2 (dashed green line). On the other hand, according to
our model, the energies of the centered ring states only differ by their orbital
rotation energy, which can be written as

Em ' E0 +
~2m2

2Mρ2
0

, (3.12)

where we have neglected the m-dependence of the radial Hamiltonian as well as
the radial extension of u(r) around the radius of the ring, ρ0. The results of this
prediction are shown as dashed black lines in Fig. 3.19(a), which corresponds
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Figure 3.19: Centered ring states. (a) Energy differences Em−E0 between the
ring states with winding numbers m = ±1 (blue) and ±2 (green), and the ring
state with winding numberm = 0 (red, zero by construction). The dashed black
lines show the corresponding theoretical estimates, ~2m2/2Mρ2

0, see Eq. (3.12),
for m = ±1 and m = ±2. (b) Energy spectrum (reproduced from Fig. 3.5)
showing bands (blue) and gaps (red). The dashed lines show the energies of
the ring states Em obtained from diagonalization in a small system with size
L = 4a for m = ±1 (blue) and m = ±2 (green). The circles are the theoretical
estimates using Eq. (3.12) with E0 corresponding to the numerical value. They
are almost on top of the corresponding dashed curves. The black crosses show
the energies of states which enter and finally close the large gaps at large V0,
see discussion in Sec. 3.6.4.
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to the orbital rotation energy for winding numbers m = ±1 and m = ±2,
respectively. As expected, we find an increasingly better estimate of the ring
states energies as the amplitude of the quasicrystal potential increases, owing
to a stronger radial confinement. In addition, the energies of these ring states
are also plotted on top of the full spectrum for a large system of size L = 60a in
Fig. 3.19(b). The full spectrum is reproduced from Fig. 3.5, with blue denoting
the bands and red the gaps. The dashed lines show the energies of the ring states
Em with m = 0 (red), m = ±1 (blue), and m = ±2 (green) as obtained from
diagonalization in a small system with size L = 4a and the open disks represent
the corresponding theoretical estimates, Eq. (3.12). The ring state energies
lie on the bands edges. This is consistent with the fact that the large gap is
created by the centered, localized ring states with winding number m = ±1 and
m = ±2, before it starts to close at V ' 8Er.

3.6.3 Off-centered rings
Let us now examine the off-centered ring states, which are located in annular

potential wells around various positions away from the symmetry center of the
quasicrystal potential. A typical example is shown in Fig. 3.17(b), which corre-
sponds to ring states centered at r0 = (19.06a, 4.95a) with 0, 1 or 2 node lines.
Quasiperiodicity of the system implies that the potential around such states is
similar to that around the central ring, but with distortions. The latter are
weak but clearly nonnegligible, see Fig. 3.20(a). In particular, the potential
and the ring states do not strictly fulfill eight-fold rotation symmetry around
the local center at r0 6= 0, see in particular the appearance of three deeper
wells around the central ring (dashed red line). As a consequence, the corre-
sponding ring states, Figs. 3.17(b1)-(b5), are not as symmetric as the centered
ones, Figs. 3.17(a1)-(a5). Nevertheless, the off-centered ring states have nearly
the same radius as the centred one, ρ0 ' 0.61a, and can still be classified ac-
cording to their winding number, or equivalently, node line number m. Similar
properties are found around other ring states centered at different locations.

As mentioned above, we have observed that the off-centered ring states with
winding number m = 0 or m = ±1 have lower energy than their centered
counterparts. In contrast, for winding number m = ±2, the off-centered ring
states have a higher energy than their centered counterparts. This phenomenon
is due to level repulsion, as we show now. Owing to the similarity of the off-
centered annular potential wells and ring states with their centered counterparts,
we may understand the properties of the former as a perturbation of the lat-
ter. To lowest pertubation order, we write the off-centered ring states as the
shifted centered one, φm(r) ' φ0

m(r − r0), and the perturbation potential as
∆V (r) = V (r) − V (r − r0). Working in the sub-Hilbert space of these states,
the perturbation matrix elements are

〈φm1 |∆V |φm2〉 ∝
ˆ
dθ∆V (ρ0, θ)ei(m2−m1)θ. (3.13)

On the one hand, the left hand side of Eq. (3.13) can be calculated numerically,
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Figure 3.20: Off-centered ring states. (a) Quasicrystal potential in the vicinity
of an off-centered annular potential well, centered at r0 = (19.06a, 4.95a). Color
scales represent the potential from low values (dark purple) to high values (light
yellow). The dashed circle is the ring of radius ρ0 = 0.61a around the local
maximum. (b) Perturbation potential V (ρ0, θ) along the ring as a function of
the polar angle θ. (c) Sketch of the energy-level repulsion picture. The red lines
represent energy levels of the centered (unperturbed) ring states with different
winding numbers, and the blue lines their off-centered (perturbed) counterparts.
The dash lines represent the dominant couplings.

where the required wavefunctions are reconstructed by linear combination of the
real-valued numerical wavefunctions, using φm(r) = [ψ+m(r)+ iψ−m(r)]/

√
2 for

m ∈ Z. On the other hand, the right hand side is found by neglecting the
radial extension of the ring states and ∆V (ρ0, θ) is a shorthand notation for the
perturbed potential along the ring of radius ρ0 with θ the polar angle. Due to the
three-period oscillation of the potential around the ring shown in Fig. 3.20(b),
the Fourier integral in Eq. (3.13) shows two resonances form2−m1 = ±3, and we
expect that the couplings are dominated by the processes such asm↔ m±3. We
indeed find that the corresponding couplings are at least one order of magnitude
larger than the other ones. Figure 3.21 shows, in units of Er, the moduli of all
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Figure 3.21: Perturbation matrix of the ring states.

the perturbation matrix elements 〈φm1 |∆V |φm2〉, see Eq. (3.13), between the
7 ring states with winding numbers m = 0, ±1, ±2, and ±3. The perturbation
∆V is the difference between the potentials around r0 = (19.06a, 4.95a) and
around r = 0. Since the matrix is symmetric, only the upper half is shown.
The numbers in red are the strongest couplings while those in black are at least
about one order of magnitude smaller.

Since perturbation is stronger for states with closer unperturbed eigenener-
gies, the strong couplings betweenm↔ m±3 effectively creates a 2-level system
for states |m = +1〉 and |m = −2〉 on the one hand, and for states |m = −1〉
and |m = +2〉, on the other hand. The state |m = 0〉 is strongly coupled to both
states |m = 3〉 and |m = −3〉, hence forming a three-level system. The overall
effective system is sketched in Fig. 3.20(c). Energy level repulsion in the 2-level
systems shifts down the energies of the states with winding number m = ±1
and up the energies of the states with winding number m = ±2. Note that
the diagonal perturbation terms, 〈φm|∆V |φm〉 are negligible. The couplings
between state |m = 0〉 and states |m = 3〉 and |m = −3〉 shifts down the energy
of |m = 0〉, since off-diagonal perturbations always yields negative corrections
to the ground-state energy.

As a result, the energies for the off-centered ring states with windings m =
0,±1,±2 are shifted in specific directions, which is in agreement with our nu-
merical diagonalization. As the largest energy gap corresponds to that between
ring states with winding numbers m = ±1 on the one hand and m = ±2 on
the other hand, we have shown that the bottom of this gap is bounded by the
winding m ± 1 ring states at center r = 0. Likewise, the top of this gap is
bounded by the winding m = ±2 ring states at center r = 0. This persists
in the thermodynamic limit, and the gap width is just the energy difference
between these centered ring states.
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Figure 3.22: (a) Ground state of the system alongside (b) the first state after
the first large energy gap, corresponding to the two red triangles in Fig. 3.19(b).
The system size is L = 60a and the potential amplitude is V0 = 8.5Er. The
insets show magnifications of the strongly localized states.

3.6.4 Closing of gaps

Our model relates the large gaps to ring states with different winding num-
bers. According to Eq. (3.12), valid for strong radial confinement, the gap
widths may thus be expected to reach a constant value for large enough poten-
tial depth V0, see also Fig. 3.19(a). Consistently, we indeed observe that the blue
and green dashed lines in Fig. 3.19(b), which show the energies of the centered
ring states with winding numbers m = ±1 and m = ±2, respectively, are almost
parallel to each other. They match the boundaries of the largest gap, shown in
red, for a significant energy range, for 2 . V0/Er . 8.1. However, this gap, as
well as the next one right above, close progressively, respectively in the ranges
8.1Er . V0 . 9.6Er and 5Er . V0 . 5.7Er, see the black crosses in Fig. 3.19(b),
which indicate the upper limit of the gaps in these regions. In fact, the clos-
ing of both these gaps is due to another kind of strongly-localized states. For
weak potential amplitude V0, these strongly-localized states have an energy well
inside a energy band above the second gap, but when V0 increases, they enter
successively each gap between the ring states and create the new upper limit of
the gaps. The state closing the largest gap for V0 = 8.5Er [upper red triangle
in Fig. 3.19(b)] is shown in Fig. 3.22(b) and, for comparison, the ground state
of the system [lower red triangle in Fig. 3.19(b)] is shown in Fig. 3.22(a). Both
these states turn out to be strongly localized in the same deep potential well,
and correspond to the ground state and the first excited state of this well. More
precisely, we may approximate the deep potential well by a harmonic potential.
The state in Figure 3.22(a) is then the ground state of the trap, while the state
in Figure 3.22(b) is the first excited state of the same trap. Consistently with
this interpretation, we note that the local minimum of the trap has a vanish-
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ingly small potential energy and the energy of the excited state in Fig. 3.22(b)
is about twice that of the state in Fig. 3.22(a), see values on top of the figures.
This is what is expected for a 2D isotropic harmonic trap. The discrepancy
to exact energy doubling (about 5%) may be attributed to slight anisotropy
and/or anharmonicity of the trap. Such kind of deep potential wells spread over
the system and similar states as in Figure 3.22 located around these potential
wells are found with similar energies. As the potential amplitude increases, the
first excited states of such deep potential wells, similar to Fig. 3.22(b), enter the
higher large gap at about V0 ' 5Er and comletely close it at about V0 ' 5.7Er.
Then, as the potential amplitude further increases, those states enter the lower
large gap at about V0 ' 8.1Er and close it at about V0 ' 9.6Er, see black crosses
in Fig. 3.19(b).

A similar phenomenon explains why we do not observe gaps at a higher
energy. In principle, Eq. (3.12) suggests even larger gaps at higher energies.
However, we find that various kinds of states other than the ring states appear
inside the gaps induced by the sole ring states and the latter are not visible.
Moreover, these different kinds of states hybridize at high energy and the struc-
ture of the spectrum is not governed by clear ring states any more.

3.6.5 Self-similarity and minigaps

The spectrum in Fig. 3.5 presents self-similar structures. Figure 3.23(a)
shows a zoom of the latter around V0 = 2Er and E = 3.5Er. It clearly shows
several gaps, the lowest two for instance around energy E ' 3.4Er for V0 =
1.9Er, and different energy for different V0. Although these gaps are almost
invisible on Figs. 3.5 and 3.19(b), we have checked that they are legitimate
gaps, according to the procedure presented in Sec. 3.4.

To identity the nature of these gaps, the states at their edges are plotted
in Figs. 3.23(b)-(e). Figure 3.23(b) shows the state at the bottom edge of the
first gap. It is a state localized around the quasicrystal center r = 0 and it is
composed of eight spots corresponding to eight local potential wells. The latter
are identical to each other due to exact eightfold rotational symmetry around
r = 0. They lie on a ring larger than the small ring discussed above [shown for
reference as a dash red circle in Figs. 3.23(b), (c), and (e)]. The states localized
on this larger ring can still be classified according to their winding numbers or
equivalently node line numbers. The state in Fig. 3.23(b) shows one clear node
line and it has thus winding number m = ±1. Similarly Fig. 3.23(c) shows the
state with winding number m = ±2, which lies near the top of the first gap, and
the state at the top of the second gap shown in Fig. 3.23(e) that with winding
number m = ±3. Note that the state of Fig. 3.23(c) is not strictly at the top of
the first gap. The state at the very top edge of the first gap is composed of four
off-centered copies of Fig. 3.23(c) connected together and has a slightly lower
energy than the centered state shown in Fig. 3.23(c). The state at the bottom
edge of the second gap shown in Fig. 3.23(d) is not localized at r = 0 and has
no clear special structure.

The general picture of these small gaps is thus similar to that of the large
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Figure 3.23: (a) Zoomed spectrum of the eight-fold quasicrystal potential
for various amplitudes V0. Bands are colored blue and gaps are red. (b)-
(e) Eigenstates at band edges for the two gaps with energy around E = 3.4Er
for V0 = 1.9Er. (b), (c) Bottom and top states of the first gap. (d), (e) Bottom
and top states of the second gap.

gaps discussed above created by the small ring states with different winding
numbers. The only difference is that the ring states creating the small gaps
have a larger ring radius, so that the energy differences due to phase windings
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Figure 3.24: Energy spectra of quasicrystal potentials with different rotational
symmetries as created by n pairs of counterpropagating laser beams, with n = 5
(left, ten-fold), n = 6 (middlet, twelve-fold), and n = 7 (right, fourteen-fold).
The system size is L = 60a, centered at x = −13543a, y = 196419a. The color
scale represents the value of log(IPR) of each eigenstate, while the gaps are all
colored red. The energies of the first few centered ring states are shown as black
crosses.

are much smaller, and the gap sizes are comparatively much smaller than the
gaps created by the small rings.

3.7 Quasicrystal potentials with different rota-
tional symmetries

So far, we have considered the localization and spectral properties of a qua-
sicrystal potential with eightfold rotational symmetry. Here we briefly discuss
whether or not quasicrystals with different rotational symmetries may also pos-
sess similar properties. To answer this, we study quasicrystal potentials that are
generated by interfering a larger number n of laser beams. The general formula
of a quasicrystal potential with a 2n-fold rotational symmetry is

V (r) = V0

n∑
k=1

cos2 (Gk · r + φk) , (3.14)

with Gk = π
a

(
cos(kπ/n) , sin(kπ/n)

)
. Realization of such potentials have been

recently proposed in Ref. [163]. In Fig. 3.24, we plot the energy spectra for n = 5,
6, and 7. The general localization picture is similar to that previously discussed
for the eightfold quasicrystal potential (n = 4): For sufficiently large amplitude
V0, the eigenstates are typically localized at low energy and extended at high
energy. At intermediate energy, we find a nonmonotonous energy-dependence
of the localization strength. Moreover, for n = 5 or n = 6, the spectrum also
has at least one large gap, similar to that found for n = 4, as well as smaller but
visible gaps. For n = 7 instead, the gaps become much narrower and almost
invisible at the scale of Fig. 3.24. To understand the origin of these gaps, we
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note that the quasicrystal potentials created by more than 4 laser pairs also
have an annular potential well around the center at r = 0, with almost the same
radius, ρ0 ' 0.61a. As a result, this annular potential well also hosts ring states
with different winding numbers, the energies of which are still approximately
given by Eq. (3.12). The energy differences are thus almost the same as for
n = 4, but the reference energy E0 may be dependent on n. Moreover, they
are almost independent of the potential amplitude for large enough V0. The
energies of the first few centered ring states for each quasicrystal potential are
plotted as black crosses in Fig. 3.24.

For n = 5, the structure of the spectrum is very similar to that discussed
above for n = 4. In particular, the largest gap is also created by the gap
between the ring states with winding numbers m = ±1 and m = ±2, and
the gap width is almost the same as for n = 4. For n = 6, the largest gap
may also be related to ring states, now with winding numbers m = ±2 and
m = ±3, and the gap size is larger. More precisely, the top of the gap is indeed
composed of centered ring states with winding number m = ±3. In contrast,
the bottom of the gap is not strictly a centered ring state with winding number
m = ±2, since off-centered ring states with the same winding number have
higher energies than the centered one, as discussed above. For a limited range
of quasicrystal amplitude, 2Er . V0 . 4Er, the centered and off-centered ring
states with m = ±2 lie near by the band edge, but the true edge state turns
out to be a different state, which can be either localized or extended with a
complex structure, depending on V0. For V0 & 4Er, new localized states enter
the bottom of the gap, and progressively closes it from below. Note also that
for a certain range of V0, roughly between 2Er and 7Er, the ground state of the
whole spectrum is the centered ring state with winding number m = 0. Finally,
we find that for n = 7 the gaps have almost negligible sizes, and there is no large
gap near the energies of the ring states. This is because other kinds of states
coexist with those ring states in the same eigenenergy ranges, even though ring
states still have the same energy differences for different winding numbers. For
larger n, we found that large gaps generated by ring states remain closed.

3.8 Conclusion

In summary, we have shown that 2D optical quasicrystals host exotic local-
ization properties and intriguing spectral features. For the eight-fold rotation-
ally symmetric potential, a finite-size scaling analysis of the IPR reveals the
presence of localized, critical, and extended states. Extended states dominate
the energy spectrum at large energies, as expected. Similarly, localized states
populate the low energy spectrum. However, at intermediate energies, we find
that localized states can appear alongside critical states, with no clear sepa-
ration between them. Furthermore, large gaps appear in the spectrum, with
some states at the band edges having a strongly localized profile. These local-
ized states can take the form of ring states with different quantized winding
numbers. By modelling these ring states, we have found that the band edges
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coincide with the theoretical energy of ring states, thus confirming that they
play an important role in the formation of energy gaps within optical quasicrys-
tals. Finally, we have also confirmed that quasicrystals with other rotational
symmetries can also possess similar kinds of localization properties and energy
spectra, with ring states again playing an important role. In all cases, the most
prominent gaps of the spectra are stable across a range of potential depths V0

and rotational symmetries, provided that other localized states do not compete
or enter the gap generated by the ring states. Our results shed new light on
localization and spectral properties of optical quasicrystal potentials, as realized
in recent experiments [47, 49, 158, 163]. Further application and development
of this work may be expected in two directions.

On the one hand, our results are directly applicable to the above-mentioned
experiments. The eightfold quasicrystal potential studied in the main part of the
paper has been implemented in the experiments reported in Refs. [47, 49, 158]
and potentials with higher order discrete rotation symmetry can be implemented
in a similar manner by using a suitable number of laser beams, see for in-
stance Refs. [46, 163]. The quasicrystal potential amplitudes considered here,
V0 ' 1 − 15Er, are also relevant for these experiments and inter-atomic inter-
actions can be cancelled with high accuracy using Feshbach resonance meth-
ods [95, 164]. Localization may be unveiled in ultracold atomic gases using
expansion schemes, as proposed in Refs. [46, 119] and realized for instance in
Refs. [20, 118, 165, 166], see also Refs. [167–171] for further theoretical discus-
sions. In this scheme, an initially trapped ultracold-atom gas is released into
the quasicrystal potential, generating a wavepacket covering a tunable range of
energy components. The components whose energy corresponds to a band of
localized states stop expanding on a short length scale, while those whose en-
ergy corresponds to a band of extended states show normal diffusive expansion.
Direct imaging at different times can thus be used to distinguish between them.
For the 2D quasicrystal lattice considered here, bands of critical states also exist,
for which we can anticipate anomalous diffusion, also observable in the expan-
sion dynamics. In such schemes, a cut-off energy can be set using the chemical
potential of an initially interacting Bose-Einstein condensate or the Fermi en-
ergy of an ultracold gas of fermions. When controlled by the initial interaction
strength and/or the number of atoms, we expect to observe a localized gas at
low chemical potential, anomalous diffusion on top of a localized component at
intermediate chemical potential, and an additional normal diffusion when the
spectral range contains extended states. Note, however, the coexistence of lo-
calized, critical, and extended components may make their segregation difficult.
To overcome this issue, fine selection of a particular energy can also be achieved
using radio-frequency transfer from an internal atomic state insensitive to the
quasicrystal potential towards a sensitive state [172]. Here, the width of the se-
lected energy range is proportional to the inverse of the pulse duration and can
be chosen from a band of either localized, critical or extended states. Expansion
then leads, respectively, to pure localization, anomalous diffusion or normal dif-
fusion. The non-transferred part undergoes ballistic expansion or can even be
eliminated by transfer to a non-imaged internal atomic state. This makes it pos-
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sible to reconstruct bands of localized, critical, and extended states, as shown
in Fig. 3.9. The existence of the gaps discussed here can also be demonstrated
by this approach.

On the other hand, our results on localization and spectral properties of the
single-particle problem studied here also play an important role in the physics of
correlated quantum gases in a 2D quasicrystalline potential. This is particularly
the case for a gas of correlated bosons. In one dimension and in the regime of
strong interactions, a gas of bosons can be exactly mapped onto a gas of free
fermions, a phenomenon known as fermionization. This makes it possible to map
Mott insulators onto free spectral gaps and Bose glass onto localized states. In
dimensions higher than one such exact mapping breaks down, but fermionization
persists nonetheless when the Bose gas populates only states that are spatially
separated from one another. In this case, strong repulsive interactions suppress
multiple occupation of each localized state, hence mimicking an effective Pauli
principle in real space. Our results could thus help understand the onset of a
Bose glass as well as a Mott plateau in the strongly-interacting regime, found
in recent work [157].



Chapter 4

Thermodynamic Phase
Diagram

As we have discussed in chapter 2, interacting bosons in a periodic lattice
may be in the superfluid (SF) or Mott insulator (MI) phases. In the presence
of additional disorder, the bosons may then fall into a localization phase called
Bose glass (BG), which is an emblematic compressible insulator, characteristic of
disordered or quasi-disordered systems and distinct from the superfluid (SF) and
Mott insulator (MI) phases. In bosonic models, however, thermal fluctuations
compete with (quasi-)disorder, which has so far hindered the observation of the
BG phase [34, 35]. It has been recently proposed that this issue may be overcome
by scaling up characteristic energies using shallow quasiperiodic potentials [38].
Before our work, this has been investigated only in 1D [39] and 2D harmonically
trapped [173] systems. In contrast, the case of a 2D Bose gas with genuine
long-range quasicrystal order remains unexplored. Moreover, the central issue
of discriminating the BG phase from trivial thermal phases has been hardly
addressed. As argued below, this cannot be achieved similarly as in 1D [35, 39]
due to the special nature in 2D, and requires specific analysis.

In this chapter, we discuss the behaviour of weakly to strongly interact-
ing 2D Bose gases in a shallow quasicrystal potential and in particular discuss
the thermodynamic phase diagrams at finite temperatures. Quantum Monte
Carlo simulations are performed in quasicrystal, homogeneous potentials and
finite-size effects are carefully taken into account. The SF, MI, and BG quan-
tum phases, induced by the competition of interactions and quasicrystal po-
tential, are systematically discriminated from the normal fluid (NF), which is
instead dominated by thermal fluctuations. Most importantly, we find that the
BG phase survives up to significantly high temperatures. Our results in the
strongly-interacting regime are interpreted using a fermionization picture and
implications to experiments in ultracold atom systems are discussed.

103
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4.1 The model
The dynamics of the 2D Bose gas is governed by the Hamiltonian

Ĥ =

ˆ
drΨ(r)†

[
−~2∇2

2m
+ V (r)

]
Ψ(r), (4.1)

+
1

2

ˆ
dr dr′Ψ(r)†Ψ(r′)†U(r− r′)Ψ(r′)Ψ(r),

where m is the particle mass and Ψ(r) is the bosonic field operator at position
r, obeying the commutation relation

[Ψ(r),Ψ(r′)] = δ(r− r′). (4.2)

The quasicrystal potential,

V (r) = V0

4∑
k=1

cos2 (Gk · r) , (4.3)

is the sum of four standing waves with amplitude V0 and lattice period a =
π/|Gk|, and successively rotated by an angle of 45°, giving a quasicrystal poten-
tial with an eightfold discrete rotational symmetry. This is the same potential
that has been studied in chapter 3, where we focus on the single particle prop-
erties. Here instead, we study the interacting bosons in this potential. The
bosons interact via the two-body scattering potential U(r− r′). As introduced
in chapter 1, at low energy, the collisions are dominated by s-wave scattering
and hence fully characterized by the sole 2D scattering length a2D. Due to the
logarithmic scaling of the interaction strength versus the scattering length in
2D [174–176], it is convenient to use the interaction parameter

g̃0 =
2π

ln(a/a2D)
. (4.4)

The model considered here is similar to that recently emulated in ultracold-atom
quantum simulators in Refs. [47, 49]. The typical potential amplitude V0 ranges
from zero to a few tens of recoil energies, Er = π2~2/2ma2. In the eightfold
quasicrystal potential (4.3), the critical amplitude for single-particle localization
is V0 ' 1.76Er [52]. So far, ultracold bosons in such 2D quasicrystal potential
have been studied for vanishing or weak interactions, up to g̃0 ' 0.86 [49].
However, significantly higher values can be realized using transverse confinement
or Feshbach resonances, up to the strongly-interacting regime, where g̃0 ∼ 1 −
5 [177]. The typical temperature in ultracold atom experiments is kBT/Er ∼
0.01− 0.5 with kB the Boltzmann constant.

4.2 Mean field zero temperature phase diagram
In this section we review some previous results of this model [52], which

serves as a starting point for further more elaborated studies.
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Figure 4.1: Phase diagram of the weakly interacting Bose gas in a 2D qua-
sicrystal lattice. The y axis is the quasicrystal potential amplitude and the x
axis is the interaction strength g times the particle number density n, scaled by
recoil energy Er. The mean field superfluid fraction fs is shown in color scale
for a system of linear size L = 20a. It exhibits a Bose glass phase (fs = 0, yel-
low) and a superfluid phase (fs > 0, blue), separated by a narrow intermediate
region. The exact critical line is found from quantum Monte Carlo calculations
at g̃0 = 0.03 (pink points; the dotted line is a guide to the eye). The pink ar-
row indicated the single-particle critical point Vc ' 1.76Er. This figure is from
Ref. [52].

A zero temperature phase diagram for weakly-interacting bosons can be ob-
tained with a relatively simpler method, namely a mean-field calculation [52].
The result is helpful to grasp the general picture of the localization of bosons
in the quasicrystal potential. In the regime of weak interaction, the authors of
ref. [52] gave the phase diagram, resulting from the competition of localization
and interactions. While the quasicrystal potential tends to localize the bosons
and favor a Bose glass phase with a superfluid fraction fs = 0, the repulsive in-
teractions tend to delocalize the bosons and restore superfluidity with a nonzero
superfluid fraction fs. The sole superfluid fraction fs can thus serve as an order
parameter.

As introduced in chapter 2, using a mean field approach for the weakly inter-
acting Bose gas, the ground state dynamics is governed by the Gross-Pitaevskii
equation

µψ = −~2∇2ψ/2m+ V (r)ψ + gN |ψ|2ψ, (4.5)

where ψ(r) is normalized as
´
dr|ψ(r)|2 = 1. V (r) represents the quasicrys-

tal potential. A dimensionful coupling constant, characterizing the interaction
strength, is denoted as g = (~2/2m)g̃. Within the Gross-Pitaevskii approxima-
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tion, the mean field phase diagram is determined by only two universal dimen-
sionless parameters: the potential amplitude V0/Er and the coupling coefficient
gn/Er. The authors calculated the field ψ(r) by solving the equation (4.5). It
gives the total energy E and the chemical potential µ. As discussed in chapter 2,
the superfluid fraction can be calculated by using the twisted boundary condi-
tion method. The authors applied this method to get the superfluid fraction
as

fs =
2m

~2n
lim
θ→0

Eθ − E0

θ2
(4.6)

where Eθ is the energy with a phase difference θ at opposite sides of the system.
The phase diagram for the weakly interacting Bose gas against V0/Er and

gn/Er is shown in Fig. 4.1. The color codes refer to the value of superfluid
fraction, from fs = 1 (dark blue) to fs = 0 (light yellow). We see that there
is a region where superfluidity vanishes, for low interactions and/or a strong
quasicrystal potential. This is the Bose glass phase. We know that in a homo-
geneous system, weakly interacting bosons at zero temperature is always in the
superfluid phase. The appearance of the BG phase is due to the localization
effect of the quasicrystal potential. Indeed, at low interaction limit gn → 0,
the onset point of the BG phase agrees with the critical potential Vc ' 1.76Er
of single particle localization, indicated by the pink arrow on Fig. 4.1. As the
repulsive interaction increased, the bosons tend to be more delocalized and a
stronger quasicrystal potential is needed to enter the localization phase. As
mean field approximation does not work well in the critical region, the authors
also did quantum Monte Carlo calculations to locate the transitions more accu-
rately. The data show sharp transitions between the two phases, indicated by
the red points in Fig. 4.1.

4.3 Thermodynamic phase diagrams

4.3.1 Phase diagrams and order parameters
We now turn to the discussions for stronger interactions and finite temper-

atures. Figure 4.2 shows the thermodynamic phase diagrams of the interacting
Bose gas in a quasicrystal potential of amplitude V0 = 2.5Er (above the critical
localization potential) for three values of the interaction parameter g̃0, rang-
ing from weak to strong interactions. The numerical calculations are performed
using path-integral quantum Monte Carlo (QMC) simulations within the grand-
canonical ensemble at temperature T and chemical potential µ. Details about
the analysis of the numerical results, in particular as regards finite-size effects,
appear below. In brief, we compute the compressibility κ = L−2∂N/∂µ, where
N is the average particle number and L the system’s linear size, as well as the
superfluid fraction fs, found using the winding number estimator with periodic
boundary conditions [143]. These two quantities are sufficient to identify the
expected zero-temperature quantum phases: SF (κ 6= 0 and fs 6= 0), BG (κ 6= 0
and fs = 0), and MI (κ = 0 and fs = 0). For high enough temperatures, how-
ever, one may expect a NF regime, dominated by thermal fluctuations. It is
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Figure 4.2: Thermodynamic phase diagrams of 2D bosons in the eightfold
quasicrystal potential of Eq. (4.3) with amplitude V0 = 2.5Er and different
interaction strengths, (a) g̃0 = 0.05, (b) g̃0 = 0.86, and (c) g̃0 = 5. The
quantum phases, SF (blue), BG (yellow), and MI (red), are distinguished from
the NF regime (green). Note the small MI lobes in panel (c) at µ ' 4.1Er
and µ ' 5.1Er, which survive only at very low temperatures. QMC results are
shown as data points with errorbars, while color boundaries are guides to the
eye.

characterized by a finite compressibility and absence of superfluidity (κ 6= 0 and
fs = 0), just as the BG phase.

4.3.2 Strategy to locate the NF-BG transition

To discriminate a genuine BG against a trivial NF, we use the criterion that
phase coherence and superfluidity must be destroyed by quasi-disorder and not
thermal fluctuations [53, 122]. In 1D, any finite temperature destroys super-
fluidity so that the BG phase is strictly well defined only at zero temperature.
In practice, it is thus sufficient to identify a NF by the onset of a sizable tem-
perature dependence of characteristic quantities, as done in Refs. [34, 35, 39].
In dimensions higher than one, however, quantum phases can survive at finite
temperature while showing a significant temperature dependence of the charac-
teristic quantities, and the above criterion breaks down. To discriminate the BG
from the NF in the 2D Bose gas, we thus proceed differently and systematically
compare the obtained phases in the presence of the quasicrystal potential with
those of the homogeneous gas for the same temperature and the same average
number of particles: If the gas is a SF in the absence of the quasicrystal poten-
tial, we identify a BG phase as soon as the quasicrystal potential amplitude is
sufficient to destroy superfluidity; Otherwise, we have a NF.

As a result, the BG-NF transition point (with chemical potential µc) has a
particle number density n equal to the critical particle number density nBKTc

at the BKT transition of 2D bosons in homogeneous system. Since both par-
ticle number density n and superfluid fraction fs are monotonous functions of
chemical potential µ in a quasicrystal system and homogeneous system, it can
be deducted that the thermodynamic states with chemical potential µ < µc are
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all in NF phase, while the states with µ > µc are all in BG phase(if not SF or
MI).

4.4 Bosons in homogeneous system
With the motivation of differentiating the Bose glass phase from the normal

fluid phase, we first discuss the behaviour of 2D bosons in the homogeneous
system, i.e. the external potential is identically zero V (r) = 0. As discussed
in chapter2, interacting 2D bosons show the BKT transition. We performed
quantum Monte Carlo simulations to locate this transition point and calculate
the equation of state around the critical region.

4.4.1 Weak interaction
As introduced in chapter2, the BKT transition is characterised by different

behaviour of the one-body correlation function

g(r) =< ψ†(r0 + r)ψ(r0) > (4.7)

in different phases. In the superfluid phase, the function g(r) has a power law
dependence over the distance r, while in the normal fluid phase, it displays an
exponential decay. If we denote the power law scaling of g(r) as g(r) ∼ r−η, then
the susceptibility χ = 1

L2

´
drdr′ < ψ†(r)ψ(r′) > for a system with linear size

L has its corresponding scaling χ ∼ L2−η. In particular, at the BKT transition
critical point, η = 1/4, so the rescaled susceptibility χ/L7/4 will have a single
crossing point for the curves of different system sizes. This correlation function
g(r) can be calculated by the quantum Monte Carlo method. Note that there
is an unfixed normalization factor for the QMC result of g(r), but this does not
affect the scaling behaviour, and in particular its does not affect the crossing
point of the rescaled susceptibility χ/L7/4. The QMC result of correlations is
shown in Fig. 4.3. It displays the correlation function g(r) for weakly interacting
bosons with g̃0 = 0.05 and temperature T = 0.1Er in a homogeneous system
with linear size L = 20a. The left column shows the data for a chemical potential
µ = −0.005Er in the normal fluid phase while the right column is for chemical
potential µ = 0.016Er in the superfluid phase. The value of the correlation
function g(r) is plotted in logarithm scale. The distance r is plotted in linear
scale for the upper row and plotted in logarithm scale in the lower row. In spite
of some fluctuation of the data, the general scaling behaviour can be discerned
from the data. In the normal fluid phase, it has a linear relation in semi-log
scale, so the correlation has an exponential decay. In the superfluid phase, we
see in Fig. 4.3 (b) that it is not linear in the semi-log scale, but the curve has
a linear trend when both g(r) and r are plotted in logarithm scale, so it has a
power law relation. These QMC calculation results all agree with the theoretical
expectation.

Due to the power law behaviour of the correlation function in the superfluid
phase, the BKT phase transition has a strong finite size effect. The discrimina-
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Figure 4.3: QMC results for the correlation function g(r) for weakly interacting
2D bosons in homogeneous system. Interaction is g̃0 = 0.05 and temperature is
T = 0.1Er. Left column (a) and (c) are at chemical potential µ = −0.005Er,
corresponding to the normal fluid phase. Right column (b) and (d) are at chem-
ical potential µ = 0.016Er, corresponding to the superfluid phase. The upper
row (a) and (b) are plotted with the correlation function g(r) in logarithm scale
and the distance r in linear scale. The lower row (c) and (d) are plotted with
both correlation g(r) and distance r in logarithm scale. Linear regression on the
data in (a) gives a slope −0.015 and a regression coefficient r = −0.98. Linear
regression on the data in (d) gives a slope −0.056 and a regression coefficient
r = −0.98.

tion between algebraic and exponential behaviour of the correlation functions is
good far enough from the transition. Near the critical region, finite size analysis
for the QMC numerical results is thus indispensable to locate the transition
point. We calculate the equation of state and superfluid density for 2D weakly
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Figure 4.4: QMC results for weakly interacting 2D bosons in homogeneous
system across the BKT superfluid transition point. Interaction is g̃0 = 0.05
and temperature is T = 0.1Er. (a) Equation of state (b) rescaled susceptibility
χ/L7/4 (c) superfluid fraction (d) superfluid density. Calculations are performed
for different system sizes L = 20a, 30a, 40a, 60a. The curves for the theoretical
formulas are also plotted in black.

interacting Bose gas in homogeneous system with different sizes, as shown in
Fig. 4.4. The interaction strength is g̃0 = 0.05 and the temperature is T = 0.1Er.
The system sizes range from L = 20a t0 L = 60a. As discussed in chapter 2,
the critical point and the equation of state and superfluid density around the
critical point was deduced by combination of analytical arguments and Monte
Carlo simulation of classical |ψ|4 theory [152, 153]. These theoretical results, as
given in Eq. 2.36, Eq. 2.37 and Table 2.2, are plotted as black curves in Fig. 4.4.

We see in Fig. 4.4(a) that the equations of state have little finite size effects,
and the results agree well with the theoretical curve. However, the superfluid
fraction and superfluid density, shown in Fig. 4.4(c) and (d), converge to the
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theoretical curve with a much slower pace. Theoretically, the superfluid frac-
tion and superfluid density have a finite value jump at the critical point. On
the other hand, for a finite size system, as there cannot be any non-analytic be-
haviour for thermodynamic variables without taking the thermodynamic limit,
the superfluid fraction and superfluid density change from zero to a significant
non-zero value in a continuous way. As a result, we would have a large finite
size error if we simply take the point where the superfluid fraction starts to be
non-zero as the critical phase transition point. We know from theory that at the
transition point in the thermodynamic limit, the superfluid density ns jumps
from 0 to 4/λ2

T. This value can help us to locate the transition point as where
the curve of ns cross this value 4/λ2

T. We see in Fig. 4.4(d) that these points
have a converging behaviour as system sizes increase. In addition, at critical
point the correlation function jumps from power law g(r) ∼ r−1/4 to an expo-
nential decay g(r) ∼ e−r/ξ and the rescaled susceptibility χ/L7/4 for different
system sizes should cross at a single point, as shown in Fig. 4.4(b). The critical
point located from Fig. 4.4(b) and Fig. 4.4(d) agree with each other, giving a
critical chemical potential µc ' 0.009Er.

4.4.2 Strong interaction

As mentioned in chapter 2, the theoretical formulas obtained by combin-
ing analytical arguments and Monte Carlo calculations over classical |ψ|4 the-
ory [152, 153] only hold in weak interaction regime. For stronger interactions,
these formulas do not apply any more. However, the BKT mechanism of the
superfluid phase transition still holds, as characterized by the behaviour of the
correlation function g(r), shown in Fig. 4.5. We see in Fig. 4.5 the QMC data of
2D Bose gas with interaction strength g̃0 = 0.86 and temperature T = 0.06Er,
with system sizes range from L = 20a to L = 60a. The figures are plotted with
the same strategy as in Fig. 4.3, i.e. plotting the correlation functions both in
semi-log scale and log-log scale. The left column, with a small chemical potential
µ = 0.01Er, is for the normal fluid phase. The correlation shows linear relation
only when the values of g(r) are plotted in logarithm scale. So the correlation
g(r) itself has an exponential decay. The right column, with a large chemical
potential µ = 0.10Er, is for the superfluid phase. The correlation g(r) at large
distance show linear relation when both g(r) and r are plotted in logarithm
scale. It means the correlation g(r) has a power law relation with the distance
r. Thus for 2D bosons with non-weak interaction, we observe the typical be-
haviour of the correlation function g(r) for BKT transitions, i.e. transition from
power law scaling to exponential decay.

Figure 4.6 shows the QMC calculation results for equation of state, suscep-
tibility, superfluid fraction and superfluid density for the 2D Bose gas. The
interaction strength is g̃0 = 0.86 and temperature is T = 0.06Er. System sizes
range from L = 20a to L = 60a. Though the theoretical formulas do not apply
for this case, we still plot the theoretical curves by simply inserting the value
g̃0 = 0.86 into the formulas. We see that for this interaction strength, the QMC
results have significant difference compared to the theoretical curves which only
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Figure 4.5: QMC results of correlation function g(r) for interacting 2D bosons
in an homogeneous system. Interaction is g̃0 = 0.86 and temperature is T =
0.06Er. Left column (a) and (c) are at chemical potential µ = 0.01 in the normal
fluid phase. Right column (b) and (d) are at chemical potential µ = 0.10Er in
the superfluid phase. The upper row (a) and (b) are plotted with the correlation
function g(r) in logarithm scale. The lower row (c) and (d) are plotted with both
correlation g(r) and distance r in logarithm scale. Calculations are performed
for different system sizes L = 20a, 30a, 40a, 60a. The correlation at very short
distance has some strong unphysical fluctuations.

holds for weak interaction. Similar to the weak interaction case, the equations
of state have little finite size effect while the superfluid fraction and superfluid
density show strong finite size effects. We can locate the superfluid transition
point with the same method as for weak interactions, namely the point where
the superfluid density reaches value 4/λ2

T and the crossing point of the curves of
rescaled susceptibility χ/L7/4 for different system sizes. We see that the critical
point from Fig. 4.6(b) and Fig. 4.6(d) agree with each other, with a critical
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Figure 4.6: QMC results for interacting 2D bosons in homogeneous system
across the BKT superfluid transition point. Interaction is g̃0 = 0.86 and tem-
perature is T = 0.06Er. (a) equation of state (b) rescaled susceptibility χ/L7/4

(c) superfluid fraction (d) superfluid density. Calculations are performed for
different system sizes L = 20a, 30a, 40a, 60a. The curves for the theoretical for-
mulas by directly inserting the interaction value g̃0 = 0.86 are also plotted in
black.

chemical potential µc ' 0.052Er. The same set of data are also calculated and
plotted for interaction strength g̃0 = 5, shown in Fig. 4.7. Though the theoret-
ical curves are even more irrelevant for this case, we still observe the familiar
behaviour of the equation of state and superfluid transition, and we can get the
critical point of BKT transition in the same way as before.

Equipped with the data and methods discussed above, we can perform the
QMC calculations to get the equation of state and superfluid transition point
of 2D interacting Bose gas in homogeneous system for any set of parameters of
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Figure 4.7: QMC results for interacting 2D bosons in homogeneous system
across the BKT superfluid transition point. Interaction is g̃0 = 5 and tempera-
ture is T = 0.1Er. (a) equation of state (the curves for different L are almost on
top of each other in the middle of the figure, while the theoretical black curve
is far from them in the up left corner) (b) rescaled susceptibility χ/L7/4 (c) su-
perfluid fraction (d) superfluid density. Calculations are performed for different
system sizes L = 20a, 30a, 40a, 60a. The curves for the theoretical formulas by
directly inserting the interaction value g̃0 = 5 are also plotted in black.

interaction g̃0 and temperature T . This allows us to do the comparison with
the Bose gas in quasicrystal potentials and identify the thermodynamic phases.

4.5 Bosons in quasicrystal potential
We now turn to the 2D bosons in a quasicrystal potential. The physical

observables at equilibrium in grand canonical ensemble are calculated by QMC
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Figure 4.8: (a) Number of particles N versus chemical potential µ for bosons
with different interactions and free fermions, with the same temperature T =
0.0025Er.(b) Same curves for superfluid fractions fs as calculated by QMC

method. As usual, we take the lattice constant a as the length unit and recoil
energy Er as the energy unit.

4.5.1 Interplay of localization, interaction and tempera-
ture

We first do the calculation in a square system with linear size L = 20a.
Consider the zero temperature limit. The QMC results are shown in Fig. 4.8
(a) for total particle number N and in Fig. 4.8 (b) for superfluid fraction fs.
We see that smaller interaction strength g̃0 gives larger particle number. At
small chemical potential µ, the particle number curves for interacting bosons
may coincide with the curve for free fermions, which has a bunch of plateaus
of N , see the dash black curve in Fig. 4.8 (a). The boson curves depart from
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Figure 4.9: Particle number density profile n(r) in a system with linear size
L = 20a. Interaction strength g̃0 = 5, temperature T = 0.0025Er. Left: Mott
rings with an integer number of bosons N = 40. Right: Bose glass phase with
incommensurate filling N = 13.4.

the fermion curve at a larger chemical potential for larger interactions. The
interacting bosons enter the superfluid phase for higher chemical potentials,
and we find the chemical potential at superfluid transition point increase with
the interaction strength, see Fig. 4.8(b).

The behaviour of the boson curves is closely related to the localization ef-
fect in the quasicrystal potential. For a weak chemical potential, the bosons
populate the low-lying single-particle states which are strongly localized. With
strong enough repulsive interactions, multiple occupation of the same deep po-
tential well is suppressed, see more discussion on fermionization in the next part.
In the eightfold quasicrystal potential, the single-particle states are organized
in rings of 8 or 16 spots. Above the localization threshold, tunneling is sup-
pressed between the different rings. In contrast, within each ring, the spots are
strictly degenerate, and thus form a narrow energy band in the single particle
spectrum. However, interactions suppress phase coherence, hence forming ring
Mott insulators at commensurate fillings when the chemical potential lies in the
energy gaps, see the plateaus of particle number N in Fig. 4.8(a), where the
compressibililty κ is vanishing. Figure 4.9(left) shows the density n(r) in this
case. The total number of bosons is an integer N = 40 and these bosons are all
localized in deep potential wells, while each site has just one boson. In between
two gaps, the chemical potential is within a narrow band and incommensurate
filling induces density fluctuations in the ring while long-range coherence is still
suppressed since the different rings remain phase incoherent, see the sloping
part of particle number N in Fig. 4.8(a) where the compressibililty κ is nonzero
and the superfluid fraction is zero. This forms a compressible insulator, hence a
BG at zero temperature. Figure 4.9(right) shows the density n(r) in this phase.
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Figure 4.10: (a) Number of particles N versus chemical potential µ on various
temperatures for bosons with the same interaction strength g̃0 = 0.86. Inset:
comparision between interaction bosons and free fermions. (b) Same curves for
superfluid fractions fs

The total number of bosons is N = 13.4. While the eight spots on the outer ring
are each filled by one boson, the inner ring of eight spots are incommensurately
filled with density fluctuations.

We turn to finite temperatures now. The QMC results are shown in Fig. 4.10.
As thermal fluctuations induce particle number fluctuation and give rise to
nonzero compressibility, the Mott plateaus are smoothed out and vanish when
the thermal energy kBT is comparable to the Mott gaps, see Fig. 4.10(a). On
the other hand, thermal fluctuations also suppress superfluid phase coherence,
thus the chemical potential of the superfluid transition point is pushed to a
higher value for higher temperatures, see Fig. 4.10(b). So at finite temperatures,
thermal fluctuations favor the BG phase at the expense of the MI and SF phases,
in competition with the emergence of a NF phase for high enough temperatures,
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where thermal fluctuations also dominate over the localization effects.

4.5.2 Fermionization
As we see in Fig. 4.9, the bosons in the quasicrystal potential with strong

enough interaction at low chemical potential are distributed in a spatially sep-
arated way, with each local potential well accomodating at most one boson.
This interaction blockade picture, is equivalent to real-space fermionization of
2D bosons. As the bosons are spatially separated, there is no interaction en-
ergy, and the strongly interacting bosons are equivalent to non-interacting free
fermions. This fermionization idea can be checked by plotting the equation
of state of fermions calculated from the Fermi-Dirac distribution, as shown in
Fig. 4.8(a) (dashed black line). We see that indeed at low chemical potential
the equation of state curves for the bosons lie on top of the free fermion curve.

This fermionization picture is expected to break down when a single site
is populated by more than one boson. So in order to have the boson curve
depart from the free fermion curve, the chemical potential should compensate
the interaction energy of putting a second boson in an already occupied site.
Consistently, the chemical potential at the departure point of the boson and
fermion curve is larger for stronger interaction, see Fig. 4.8(a). The departure
from the fermionization picture can also happen in the opposite direction, in
the sense that the particle number of bosons may be smaller rather than larger
compared to the particle number of fermions. Thus the equation of state curve
of bosons would be lower than the Fermi-Dirac curve. This happens for bosons
with strong interaction and will be discussed in a later section.

This fermionization picture also holds at finite temperatures. The particle
number of bosons can still be evaluated by using the Fermi-Dirac distribution
at finite temperature as

N '
∑
j

1

e(Ej−µ)/kBT + 1
, (4.8)

where kB is the Boltzmann constant. The QMC results for interacting bosons
are in excellent agreement with Eq. (4.8) in the low chemical potential and
low temperature regime, see Fig. 4.11. Thermal fluctuations enhance multiple
occupation of individual sites and the fermionization picture is expected to
break down for a chemical potential about ∼ kBT smaller compared to the
zero temperature case. We consistently find that the fermionization picture
breaks down at a lower chemical potential as the temperature increases, see
Fig. 4.11. In particular, we find that the QMC boson curve deviates from
Eq. (4.8) about at about 0.1Er smaller chemical potential for T = 0.1Er/kB

compared to T = 0.0025Er/kB ' 0, see inset of Fig. 4.10(a).

4.5.3 Necessity of finite size analysis
With the above discussed QMC results for 2D interacting bosons in a L =

20a square, and similar set of data for different interactions and temperatures,
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Figure 4.11: Fermionization for 2D bosons in quasicrystal potential, with
interaction strength g̃0 = 0.86 and g̃0 = 5. Quasicrystal potential is V0 = 2.5
and system size is L = 20a. β is a dimensionless parameter related to the
temperature as 1

β = π2

2
T
Er

. Particle numbers N are plotted against chemical
potentials µ. The fermions curves are calculated by Fermi-Dirac distribution on
the single particle spectrum. The temperatures are (1)β = 100, T = 0.002Er,
(2)β = 80, T = 0.0025Er, (3)β = 40, T = 0.005Er, (4)β = 20, T = 0.01Er,
(5)β = 10, T = 0.02Er, (6)β = 2, T = 0.1Er.

we may obtain the phase diagrams according to our methods of identifying
different phases. Actually, the phase diagrams thus obtained do not display the
phases at the thermodynamic limit as the ones shown in Fig.4.2. As we will
discuss below, the reason is that the data for L = 20a systems cannot really
represent the physics at the thermodynamic limit (where the concept of phase
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is rigorously defined) in a faithful way.
For the identification of any phase transition, the finite size effect is always a

problem to be dealt with. However, a careful finite size analysis is particularly
necessary for our case. This originates from several aspects. For the superfluid
transitions, as we already discussed, BKT transitions for two dimensional in-
teracting bosons have strong finite size effects, due to the power law scaling of
the correlation function. As a consequence, using the data for only L = 20a
to locate the BG-NF and BG-SF transition cannot give accurate result. This
is even further complicated by the quasicrystal potential. In homogeneous or
periodic systems, the physical quantities usually vary monotonously with the
system size L. This is not true in quasicrystal potential as the potential does
not vary in a regular way (see more detail on this in the next section 4.5.4).

The identification of MI phases also requires a careful finite size analysis.
This is because the position of the Mott lobes in a L = 20a system may be quite
different if we pick a L = 20a square area at another place in the quasicrystal.
For a periodic potential, as long as the system contains a certain number of unit
cells, there would be no difference if we pick the system in one place or another
place. They will lead to exactly the same result just because the system is
periodic, i.e. possesing some translational invariance. For a disordered system,
as long as the system size is much larger than the typical disorder correlation
length σ, then the fine detail of the disorder will be lost and there will again
be negligible difference if we pick one area or another at a different place. In
contrast, the quasicrystal potential by definition has no translational symmetry,
so each finite area picked at different place will be different. On the other hand,
quasicrystal is long range ordered, so there is no length scale as the correlation
length σ for disorder. As a result, a finite size system of quasicrystal potential is
not guaranteed to be well representative of the physics of another finite area with
the same size. The system at thermodynamic limit, viewed as combination of
many finite size systems, thus may not mimic the behaviour in any single finite
size system.

Take for consideration the small Mott plateaus at low chemical potential for
g̃0 = 5 shown in Fig. 4.8(a). According to the fermionization picture, the posi-
tion of these plateaus agree with the plateaus of the Fermi-Dirac distribution for
free fermions, so they correspond to the energy gaps in the single particle spec-
trum in the L = 20a system. However, as we showed in Fig. 3.6 in chapter 3, the
single particle energy gaps at L = 20a are not true gaps in the thermodynamic
limit. In fact, the single particle gaps for L = 20a appear at different positions
for systems at different locations. So the interacting bosons also become Mott
insulator at different chemical potentials. At thermodynamic limit, take the full
system as combination of many L = 20a squares. When some squares are in the
incompressible MI phase, many other squares may be in the compressible phase.
As a result, all these kinds of Mott insulators for small systems will merge into
the Bose glass phase, just as those single particle gaps for small systems will
disappear for larger systems and the Fermi-Dirac curve will have no plateau at
low chemical potential, see Fig. 3.6.

In summary, in order to get the phase diagrams at thermodynamic limit, it
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Figure 4.12: Left column: particle number density profiles for 2D bosons in
quasicrystal potential. Parameters are g̃0 = 0.05, T = 0.1Er, µ = 4.10Er.
The four rows are for four different system sizes L = 40a, 60a, 70a, 80a. The
color scale represents the value of local particle number density n(r), from large
(yellow) to small (blue). Right column: the average particle number density
n(L′) in the fictitious square with size L′ < L as a function of L′.

is indispensable to perform finite size analysis.
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Figure 4.13: The same data of right column of Fig. 4.12 plotted on top of each
other.

4.5.4 Fluctuation against system sizes

We do the QMC calculation for 2D interacting bosons in quasicrystal systems
for different system sizes. In contrast to the case of homogeneous systems, where
the equations of state have negligible finite size effect as shown in Fig. 4.4,
Fig. 4.6 and Fig. 4.7, in quasicrystal potential with V0 = 2.5Er the particle
number densities have quite significant fluctuation against system size. For a
better understanding of this fluctuation, we take the following approach: For
a square with size L, draw a smaller co-centered fictitious square with size
L′ < L, then take the integral of local particle number density n(r) inside
this fictitious square to get the total particle number in the fictitious square
N(L′). The average particle number density inside the fictitious square reads
n(L′) = N(insideL′∗L′)

L′2 , and we look at how this density n(L′) varies against
L′. In this way, we can better differentiate the fluctuations in the bulk region,
which are intrinsic for quasicrystal potential, and fluctuations in the edge region,
which may be due to some boundary effects.

The results for g̃0 = 0.05, T = 0.1Er and µ = 4.10 are shown in Fig. 4.12.
The four rows refer to different total system sizes L = 40a, 60a, 70a, 80a. The
right column shows the density in the fictitious square n(L′) against L′. The
left column shows the corresponding real space density profile in the full square.
We see n(L′) fluctuates with L′. In addition, as we plot these curves of n(L′)
for different L on the same figure, as shown in Fig. 4.13, we see that if L′ is not
close to L, n(L′) fluctuates with L′ in the same way for different total sizes L.
So these fluctuations of n(L′) when L′ not close to L are physical. It is due to
the quasicrystal having deep potential wells, where local density n(r) is large,
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see the density spots in the left column of Fig. 4.12. As L′ increases, the area
of the fictitious square may suddenly include some new potential wells, and this
leads to a sudden increase of the average density n(L′). Furthermore, we expect
this fluctuation decreases with larger L′. The sudden inclusion of new potential
wells happens on the boundary of the fictitious square, and the length of square
periphery scales as L′. The area of the square scales as L′2. Consequently,
we expect the average density in the fictitious square n(L′) to have a scaling
as ∼ L′

L′2 = 1
L′ . This is qualitatively in agreement with the numerical results,

though it is difficult to check that scaling relation as the system size is limited
in numerical calculations. On the other hand, we see in Fig. 4.13 that the n(L′)
curves for different L do not always have the same behaviour. As L′ approaches
L, n(L′) curves deviate from each other for different system size L. So the n(L′)
fluctuations in this region are not only due to quasicrystal potential but also
due to the boundary effects.

With these understandings of the behaviours of n(L′), the fluctuations of the
data in quasicrystal potential are not surprising nor mysterious for us. For our
practical purpose, we can just get a reasonable estimation of particle number
density at thermodynamic limit by calculating the n(L) for various system sizes
L and taking their averages.

4.6 Superfluid-to-Bose glass transition

With all the above considerations noted, we embark on the task of identi-
fying the phases at thermodynamic limit by the combination of the data for
homogeneous and quasicrystal systems.

Typical QMC results for the total particle density n = N/L2 and the SF
density ns = fs×n versus chemical potential for various system sizes are shown
on Fig. 4.14 for intermediate interaction strength and temperature, g̃0 = 0.86
and T = 0.06Er/kB. Similar results are found in all ranges of temperature,
chemical potential, and interaction strength considered for the phase diagrams
of Fig. 4.2, up to the MI phase relevant for strong interactions (see below). In
the absence of a quasicrystal potential, V0 = 0 [Fig. 4.14(a), left column], the
QMC results show a clear NF-to-SF transition, characteristic of the expected
Berezinskii-Kosterlitz-Thouless (BKT) behavior [149, 150, 152, 153, 178]. The
density is a smooth function of the chemical potential and shows weak finite-
size effects, see Fig. 4.14(a1) [179]. In constrast, the SF density shows strong
size dependence, see Fig. 4.14(a2). For low chemical potential, ns scales down
with L, pointing towards a NF phase, while for high chemical potential, it con-
verges to a finite value, as expected in the SF phase. See also Fig. 4.14(a3),
which shows the variation of ns with the system size for various values of the
chemical potential. This behaviour is consistent with the BKT universal jump
at criticality, nsλ

2
T = 4 with λT =

√
2π~2/mkBT the thermal de Broglie wave-

length. It allows us to precisely locate the NF-to-SF transition point as the
chemical potential µ′c such that nsλ

2
T = 4 for the largest considered sizes. We

use a conservative errorbar for the critical chemical potential corresponding to
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Figure 4.14: Total particle density (upper row) and SF density versus chemical
potential (middle row) as well as versus system size (lower row) for a 2D Bose
gas with interaction strength g̃0 = 0.86 and temperature T = 0.06Er/kB, in
the absence (left column) and in the presence (right column, V0 = 2.5Er) of a
quasicrystal potential. The QMC calculations are performed in square boxes
for different linear sizes L corresponding to the different line colors in the upper
and middle rows. The QMC statistical errorbars are smaller than the markers.
In panel (b1), the shaded area corresponds to the standard deviation of the
density fluctuations with the system size. The inset in (b2) is a magnification
of its main panel in the vicinity of the critical point for many system sizes with
L/a ∈ [20, 50] and the shaded area is the construction to locate the SF-to-BG
transition point. Panels (a3) and (b3) show the SF density as a function of L
for various chemical potentials in the vicinity of the SF transition.
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the variation of µ′ with the system size in the range L/a ∈ [20, 60], see shaded
area in Fig. 4.14(a2). Although it can be refined using appropriate finite-size
scaling [152], it appears to be sufficient for our purpose. The corresponding
critical density, n′c, is then found using the equation of state (particle density
versus temperature and chemical potential) as found from QMC calculations,
see Fig. 4.14(a1). For the parameters of Fig. 4.14(a), it yields µ′c = 0.052±0.004
and n′c = 0.29± 0.03.

We now turn to the behavior of the Bose gas in the presence of the quasicrys-
tal potential. Firstly, the NF regime is found by combining the above results
with their counterparts at V0 6= 0 [Fig. 4.14(b), right column]. For a given
interaction strength and temperature, we use the equation of state at V0 6= 0
to infer the chemical potential µ1

c corresponding to the critical density of the
homogeneous gas, n1

c = n′c, see Fig. 4.14(b1). It yields the NF-BG threshold
shown on the phase diagrams of Fig. 4.2. Note that at µ1

c , we find a finite com-
pressibility κ = ∂n/∂µ [finite slope in Fig. 4.14(b1)] and a vanishingly small ns
[see Fig. 4.14(b2)], which allows us to discriminate the BG against the SF and
the MI.

Secondly, having identified the NF regime, we can focus on the BG-to-SF
transition. Compared to the homogneous case, the QMC results in the presence
of the quasicrystal potential show stronger finite-size effects of both quantities
n and ns. The equation of state shown on Fig. 4.14(b1) is the density versus
chemical potential averaged over the system size in the range L ∈ [20, 50] with
the shaded area corresponding to the standard deviation. On top of these fluctu-
ations, the SF density nevertheless shows a clear finite-size scaling, qualitatively
reminiscent of that found in the homogeneous gas at the NF-to-SF transition,
see Fig. 4.14(b2). The inset of Fig. 4.14(b2) is a magnification in the vicinity
of the transition with more system sizes where the fluctuations of ns versus L
are more clearly seen. We find that the SF density sharply crosses over from
vanishingly small values to a few units of 1/λ2

T. We then locate the SF transi-
tion in the middle of the interval of chemical potentials such that 3 ≤ nsλ

2
T ≤ 5

for all system sizes in the range L/a ∈ [30, 50], the errorbar corresponding
to the size of this interval. The BG-to-SF transition obtained here is clearly
distinguished from the NF-BG threshold. For instance, for the parameters of
Fig. 4.14, we find µ1

c = 4.28±0.02 and n1
c = 0.29±0.03 at the NF-BG threshold

and µ2
c = 4.39± 0.02 and n2

c = 0.55± 0.05 at the BG-to-SF transition.
The values of µ1

c and µ2
c versus T hence obtained are used to locate the NF-

BG threshold and the BG-to-SF transition on the phase diagrams of Fig. 4.2,
together with the corresponding errorbars.

4.7 Mott insulator phase for strong interaction

We now turn to the strongly-interacting regime (g̃0 � 1), where MI lobes
emerge, see Fig. 4.2(c). Typical QMC results for the density and superfluid
fraction are shown on Fig. 4.15, for (a) vanishingly small and (b) finite tem-
peratures. The different line colors correspond to different sizes on panel (a)
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Figure 4.15: Strongly-interacting regime, g̃0 = 5. The upper and lower rows
show, respectively, the total particle density and the SF fraction versus the
chemical potential. Left column: Low-temperature regime, T = 0.02Er/kB, for
various system sizes. The Inset of (a1) shows the low-density regime for even
lower temperature, T = 0.0025Er/kB. Right column: Behaviour for various
temperatures and a system size L = 40a. QMC results for the interacting Bose
gas are shown as markers and solid lines, while the Fermi-Dirac (FD) predictions,
Eq. (4.9), are shown as dashed lines.

and different temperatures on panel (b). For a weak chemical potential, the
bosons populate the low-lying single-particle states, where strong repulsive in-
teractions suppress multiple occupancy. This mimics Pauli exclusion in real
space and a simple fermionization picture accounts for the equation of state of
the strongly-interacting Bose gas, within the Fermi-Dirac distribution,

n ' 1

L2

∑
j

1

e(Ej−µ)/kBT + 1
, (4.9)

where j spans the set of single particle states, with energy Ej . This formula
(dashed lines) indeed shows good agreement with the QMC results (solid lines)
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at vanishing, as well as finite temperatures and low chemical potential, see Insets
of Fig. 4.15(a1) and (b1).

Consider first the low-temperature regime. The lowest states are localized
and, owing to the eightfold rotational symmetry of the quasicrystal potential,
they are arranged in rings of 8 or 16 trapping sites. The interacting Bose gas
then organizes in MI rings, characterized by Mott plateaus at commensurability,
see Inset of Fig. 4.15(a1). Out of commensurability, finite tunneling between
the trapping sites of a given ring generates ring superfluidity, but energy gaps
between the different rings prevent long-range superfluidity, hence creating a
BG phase. We consistently find that the SF fraction vanishes for µ . 4.4Er, see
Fig. 4.15(a2). Similar phenomenology was observed in small systems in Ref. [52].
However, when the system size increases, new rings with slightly shifted energies
appear. This progressively fills the smallest gaps and blurs the corresponding
Mott plateaus as observed in our QMC results when the system size increases,
see Inset of Fig. 4.15(a1). In the thermodynamic limit, the compressibility
is thus finite and we find a BG. In contrast, the QMC results show that the
largest gaps survive when the system size increases, hence creating legitimate
MI phases. This occurs, for instance, for g̃0 = 5 and 5.5Er . µ . 6.4Er,
see Fig. 4.2(c) as well as Figs. 4.15(a1) and (b1). This is consistent with the
survival of a single-particle gap and the existence of a plateau in the Fermi-Dirac
prediction (4.9) at the same density and even larger systems, see Figs. 4.15(a1).
Here, however, the chemical potential is high enough to populate many states,
made of a large number of trapping sites, with nonzero spatial overlap. This
generates a finite, positive interaction energy, which contributes to the chemical
potential and correspondingly shifts the QMC results for interacting bosons
compared to the Fermi-Dirac distribution.

We finally discuss the finite-temperature effects. When the temperature
increases, the Mott plateaus shrink. The compressibility becomes finite but the
SF fraction remains zero, hence progressively opening BG phases on the edges
of the Mott plateaus, see Figs. 4.15(b1) and (b2). For low enough temperature,
the plateaus are still marked with very small compressibility and we identify
κ < 0.01m/~2 to a finite-temperature MI regime, corresponding to the MI
lobes in the phase diagram of Fig. 4.2(c). As expected, finite temperatures also
suppress the SF fraction in the SF phases and give space to the BG when it
vanishes, see Fig. 4.15(b2). Note that, here, the Bose gas is a superfluid in
the absence of the quasicrystal potential, hence the compressible insulator we
obtain is a legitimate finite-temperature BG.

4.8 High temperature phase diagrams

We have also performed calculations up to significantly higher temperatures.
The phase diagrams with larger temperature ranges are shown in Fig. 4.16. The
grey areas correspond to the error bars of the BG-SF and NF-BG phase transi-
tions. We see that as temperature increases, the error bars of the two transition
lines are merging, and the Bose glass phases are narrowing and vanishing. The
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Figure 4.16: Thermodynamic phase diagrams up to high temperatures for
(a) g̃0 = 0.05, (b) g̃0 = 0.86, and (c) g̃0 = 5. Grey zones correspond to the
regions defined by the errorbars around the phase transition points.

phase diagrams show that the Bose glass survives up to temperatures of about
T ' 8Er/kB for g̃0 = 0.05, T ' 0.7Er/kB for g̃0 = 0.86, T ' 0.5Er/kB for
g̃0 = 5. However, these temperatures are rather high for ultracold-atom exper-
iments where the temperature is significantly sub-recoil, and compared to the
phase diagrams in Fig. 4.2, these high temperature phase diagrams shrink the
most interesting part of the phase diagrams where the different phases compete.

4.9 Experimental relevance

We now discuss the experimental relevance of the phase diagrams we ob-
tained.

On the one hand, our work is directly relevant to experiments performed
in a box, which are implementable. There has been important progress in
this direction in the last years, in particular for 2D systems, see for instance
Refs. [180–182]. In principle, nothing prevents the addition of a quasicrystalline
potential and thus realize the model we are studying.

On the other hand, most ultracold-atom experiments are still performed in
harmonic traps, which are easier to realize. Yet, the ultimate goal of quantum
simulation as realized in these experiments is to extract the physics of standard
condensed-matter models, which are typically homogeneous. In this sense, our
work provides the "goal" of such experiments. In experiments, extraction of
the bulk properties can be performed using local density approximation (LDA).
More precisely, applicability of LDA in an experimental quantum simulator
is arguably a necessary condition to realize this goal, so that the position in
the trap can be mapped onto an effective chemical potential, using µ → µ −
Vtrap(r). Here, this applies when the variation of the trapping potential Vtrap(r)
is sufficiently weak over a length scale such that the finite size effects in the 2D
quasicrystal are negligible and the thermodynamic phase is nearly homogeneous
on this scale. According to our calculations, a size of L ∼ 40a is a minimum.
Our results realized in a homogeneous system hence gives particularly useful
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guidance for the applicability of LDA in quasicrystal simulation experiments
of ultracold atoms confined in arbitrary traps (including harmonic as well as
non harmonic ones). For instance, the experimental parameters used in the
quasicrystal simulation experiments at Cambridge, Refs. [47, 49], indicate a
harmonic trapping potential such that Vtrap ' 0.01Er at a distance 40a from
the center of the trap, smaller than typical energy scales in our phase diagrams,
and LDA is well applicable around the center of the trap.

Vice-versa, LDA can be applied to our results for comparison to experiments
(or numerical calculations) performed in any trap. To this end, we note that it
is vital to work out phase diagrams in the thermodynamic sense, in particular
in the grand-canonical ensemble, i.e. as a function of the chemical potential, as
well as in homogeneous systems, and analyzing finite-size effects. This is what
is done in our work.

4.10 Perspectives

4.10.1 Relation between the Mott insulator and small ring
states

As we observed in Fig. 4.15(a), the Mott insulator phase has the same par-
ticle number density as the plateau of the Fermi-Dirac curve for free fermions
which originates from a large energy gap in the single particle spectrum. This
suggests that the Mott insulator is related to the single particle energy gap.
As discussed in chapter 3, this large gap is bounded by the phase winding of
the small ring states, and the gap is precisely confined by the two states with
a ring at the symmetry center of the system r = 0 with winding m = 2 and
m = 3. To further understand the appearance of the Mott insulator phase in
this quasicrystal system, we calculate the particle number density profiles for
various chemical potentials for bosons with g̃0 = 5 and temperature T = 0.02Er
in the quasicrystal potential. We plotted differences of particle number density
distribution for different chemical potentials, see Fig. 4.17 and Fig. 4.18. The fig-
ures show the particle number density profiles of newly populated regions when
the chemical potential is slightly increased. The chemical potential successively
moves across the Mott insulator phase from small µ to large µ in Fig. 4.17 and
Fig. 4.18. We can observe that the particles populate the centered small ring
immediately before the bosons enter the Mott insulator phase, see the third row
of Fig. 4.17. Then as chemical potential further increases, the bosons are in the
Mott insulator phase and the plotted density profiles differences only have some
background noise, see the fourth row of Fig. 4.17 and the first row of Fig. 4.18,
until the bosons leave the Mott insulator phase, and note that here again the
particles first populate the centered small ring immediately after the Mott insu-
lator phase, see the second row of Fig. 4.18. Integrating the local density n(r) in
a small square with linear size 2a around the center ring, we get approximately
the number of particles that are accomodated by the center ring, see Fig. 4.19.
We see that in the range of chemical potential in the Mott insulator phase, the
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Figure 4.17: Particle number density differences for nearby chemical potentials,
representing the newly populated particles as chemical potential increase. The
parameters are g̃0 = 5, T = 0.02Er, L = 20a. The chemical potentials run
across the Mott insulator phase. The value of µ in the subtitle means what is
plotted is the particle number density difference for the two chemical potentials.
For example, µ = 5.3 − 5.25 means the plot shows the difference n(r, µ =
5.3Er)− n(r, µ = 5.25Er).
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Figure 4.18: Particle number density differences for nearby chemical potentials,
representing the newly populated particles as chemical potential increases. The
parameters are g̃0 = 5, T = 0.02Er, L = 20a. The chemical potentials run
across the Mott insulator phase. The value of µ in the subtitle means what is
plotted is the particle number density difference for the two chemical potentials.
For example, µ = 5.3 − 5.25 means the plot shows the difference n(r, µ =
5.3Er)− n(r, µ = 5.25Er).



132 CHAPTER 4. THERMODYNAMIC PHASE DIAGRAM

Figure 4.19: Total particle number in the square with linear size 2a around the
system center r = 0, obtained by taking integration of local density n(r) in the
area.

particle number in the center ring has a plateau of 3 particles.
This strongly suggests that the Mott insulator phase may be connected to

the small ring states, just like the large gap in the single particle spectrum.
However, the reason of this phenomenon remains to be further clarified.

4.10.2 Nature of BG-SF transition

The behaviour of the BG-SF transition of 2D bosons in the quasicrystal,
obtained from our QMC calculations, are quite similar to the BKT superfluid
transition for 2D bosons in homogeneous space. It may be interesting to study
more carefully the nature of the BG-SF phase transition. Figure 4.20 shows the
QMC results for the rescaled susceptibility χ/L7/4 for quasicrystal system with
different sizes. The curves of χ/L7/4 with different system sizes show crossing
behaviour similar to what is observed for homogeneous systems as in Fig. 4.4,
Fig. 4.6 and Fig. 4.7, but the crossing point is not that sharp for quasicrystal
system. This may be due to fluctuations against system sizes which we observed
for quasicrystal potential, and these fluctuations complicate a systematic study
over the nature of BG-SF transitions.

4.11 Conclusions

In conclusion, we have established the thermodynamic phase diagrams of
weakly to strongly interacting 2D bosons in a quasicrystalline potential. The
quantum phases have been obtained analyzing finite-size effects and systemat-
ically distinguished from the NF regime. Our results show the emergence of a
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Figure 4.20: Rescaled susceptibility χ/L7/4 for 2D bosons in the quasicrystal
system with V0 = 2.5Er. Interaction strength is g̃0 = 0.86 and system sizes are
L = 20a, 30a, 40a. The temperature is T = 0.06Er (left) and T = 0.1Er (right).

sizable BG phase induced by the quasicrystalline potential. For the parameters
used here, the BG extends over a range where the density typically varies by
a factor from 2 to 4 in all phase diagrams of Fig. 4.2, where the considered
temperatures are relevant for ultracold-atom experiments. This paves the way
to the direct observation of the BG in ultracold-atom quantum simulators. For
example, for 39K potassium atoms in an optical lattice with laser wavelength
λlat = 725nm, a temperature T = 0.1Er corresponds to 47nK, relevant for
typical cold atoms experiments. Moreover, further calculations for higher tem-
peratures show that the BG phase survives up to T ' 8Er/kB for g̃0 = 0.05,
T ' 0.7Er/kB for g̃0 = 0.86, and T ' 0.5Er/kB for g̃0 = 5.

Our results would directly apply to experiments performed in optical boxes [180–
182]. For experiments performed in confining traps, our diagrams, found versus
chemical potential, are amenable to local density approximation (LDA). It ap-
plies provided the variation of the trap potential is negligible over a large enough
distance such that the finite size effects become insignificant. Our results show
that a size L ∼ 40a is a minimum. For the parameters of Refs. [47, 49] for
instance, it corresponds to a variation of ' 0.01Er from the trap center, smaller
than the typical energy scales in our phase diagrams, and LDA is well applicable.

Moreover, our work raises new questions, notably about the detailed mech-
anism of the formation of MI phase and the nature of the SF-to-BG transition.
Our results for SF-to-BG transition are phenomenologically similar to a BKT
transition, but the exact mechanism at the origin of the transition, as well as the
effect of the quasicrystal potential on vortex pairing remain to be elucidated,
via quantum simulation experiments and theoretical work.
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Chapter 5

Conclusions and perspectives

In this thesis, we study the quantum simulation of quasicrystals with cold
atoms. The single particle properties are discussed with energies and wavefunc-
tions of single particle eigenstates obtained by exact diagonalization numerical
calculations. Based on these data, we have analysed the localization and spectral
properties of quasicrystal potentials. We have identified different kinds of states
by looking at how their IPR scales with system size L. For scaling IPR ∼ L0,
we get localized states; for scaling IPR ∼ L−2, we get extended states. In ad-
dition, we have observed states with IPR scaling that is neither IPR ∼ L0 or
IPR ∼ L−2. These are the critical states. Localized states have low energies,
and are localized in one or a finite number of potential wells. The extended
states have high energies and typically cover the full system. Critical states ap-
pear in the intermediate energy ranges, with wavefunctions showing interesting
geometrical structures. On the spectral properties, we put special focus on the
largest gap, which is related to the Mott insulator phase for strongly interacting
bosons in the quasicrystal potential. We have shown that the gaps are bounded
by two states that are very special: they are located at the symmetry center
of the whole potential. They have ring structures and are localized in a nearly
isotropic annular potential well. We have developed a theoretical model for
these ring states, agreeing well with the numerical data. The states with ener-
gies near the largest gap also display ring structures, which are just off-centered
ring states. The ring states can be classified according to the phase winding
number m. We have analysed the energies of these off-centered ring states with
perturbation theory. In particular, we have shown that for ring states with a
phase winding number difference ±3, the perturbation coupling due to the po-
tential deformation has a resonance effect. This results in the level repelling and
explains why the gap exists. We have also shown the general spectrum pattern
for quasicrystal potentials with other rotational symmetries. For some cases,
the ring states also play some special roles. However, as the number of laser
beams to create the potential increases, the gaps, at least the large ones, tend
to disappear.

For interacting two dimensional bosons in the quasicrystal potential, we have
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used quantum Monte Carlo methods to calculate various physical observables.
We use the superfluid fraction fs and compressibility κ as order parameters to
identify the superfluid and Mott insulator phases. For the Bose glass and normal
fluids, which are both compressible insulators, we give a method to differentiate
them by comparing the Bose gas with and without the quasicrystal potential.
For bosons in homogeneous systems, we have shown that our QMC data agree
well with the theoretical expectation. We get the BKT transition points for
2D bosons in homogeneous systems from weak to strong interactions. We then
discuss the bosons in the quasicrystal potential, in particular the fermionization
phenomenon. We argued that to get a reliable thermodynamic phase diagram,
a careful finite size analysis is indispensable, which was complicated by the
quasicrystal potential. With all these precautions, we study and locate the
transition from Bose glass to superfluid, as well as the boundary between Bose
glass and normal fluid. For strong interaction, the Mott insulator phase appears.
The large Mott insulator plateau shows a particle number density at the same
value as the plateau of the Fermi-Dirac distribution, obtained from the single
particle spectrum of the quasicrystal potential. This indicates that the Mott
phase may be related to the single particle gap.

Our works raise some new questions, which may be interesting for future
research. On the single particle side, we may wonder whether it is possible
to build a model to explain why and when the critical states appear. Can we
predict the energies of the critical states? For the gap structure, we realized the
special roles played by the ring states. Again, how general is this picture? Do
we have similar ring states, or some equivalents of ring states, in other kinds of
quasicrystal potentials? Our resolution of the gaps is limited by the system sizes
that are reachable in our exact diagonalization calculations. Mathematically, if
the energy resolution is infinitely high, will we get a spectrum with some kind
of fractal structure or not? In a Penrose lattice, some works [183–187] have
shown that the single particle spectrum have some similar tastes as the one
I obtained for the shallow optical quasicrystal potential. For example, for a
single particle tight-binding model on a Penrose lattice with constant on-site
energy and constant hopping term between all the nearest neighbours [183], it
has been shown that the density of states has a peak at zero energy while these
zero energy states are all localized, and all the other states are separated from
these zero energy states by a finite gap. Then for a tight-binding model on a
Penrose lattice with a particular on-site potential landscape, it has been shown
that the ground state wavefunction is self-similar. It would be interesting to see
whether the results I obtained, like the gap bounded by the ring states, are in
some sense related to the results in the Penrose latiice.

For the thermodynamic phase diagrams of interacting bosons, a first question
is the nature of the Mott insulator phase. We may try to explain the value of
its chemical potential width. In particular, is this width governed by the single
particle gap or the interactions? It would be interesting to do calculations
with different potential amplitude V0 and interaction strength g̃0, and see how
the Mott phase varies with these parameters. We see that there is no Mott
phase for g̃0 = 0.86 but there is the Mott phase for g̃0 = 5. We may ask at
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which interaction strength the Mott phase starts to appear, and how does its
width vary with interaction. Does the width always increase with increasing
g̃0? For different V0, does the Mott width saturate at a large V0 or not? In
practice, can we always reproduce this Mott insulator by doing a calculation
in a smaller system containing the center ring? If that’s the case, we may be
able to study this Mott phase with much cheaper calculations. The transition
between Bose glass and superfluid also leaves certain questions. We may study
whether the transtion we observed is still the standard BKT transition for 2D
bosons. If the chemical potential is very high, much larger than the average
quasicrystal potential, then intuitively we may expect a BKT behaviour persists
as the quasicrystal potential is strongly dominated by the kinetic and interaction
energies and may only perturb the bosons. However, in our case, the transition
chemical potential is by no means higher than the quasicrystal potential, so we
may need to have a careful study of whether the transition is of the BKT type.
For this, we may look at the one-body correlation function g(r). A characteristic
of BKT transition is that at the critical point g(r) has an algebraic decay as
g(r) ∼ r−1/4, and once the bosons enter the normal fluid phase, g(r) has an
exponential decay. So a scaling of g(r) ∼ rη with η between −1/4 and 0 cannot
be observed. This may be used to check whether the transition is BKT or not.
However, as quasicrystal systems has no translational symmetry, certain kinds
of averages is needed to have a correlation function g(r) that only depends on
one variable. This may introduce some fluctuation of the results and we may
need to have some smart ways to interpret the data. In addition, we can further
try to study how the localization interplays with the vortex/anti-vortex pairing
mechanism.
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Titre : Atomes froids dans des quasi-cristaux bidimensionnels

Mots clés : Quasi-cristaux, Bosons fortement corrélés, Monte Carlo quantique

Résumé : Les quasi-cristaux sont des solides or-
donnés à longue distance sans symétrie de transla-
tion, présentant des symétries rotationnelles qui sont
interdites pour les cristaux normaux, par exemple
d’ordre 5, 7, 8, ... Leur découverte en laboratoire
dans les années 1980 a entraı̂né un changement
de paradigme en cristallographie, révolutionnant notre
compréhension de la structure possible des solides.
Depuis lors, les quasi-cristaux ont attiré beaucoup
d’attention en raison de leurs propriétés intrigantes,
notamment les quasi-particules phasoniques, les pro-
priétés de transport, le spectre d’énergie complexe,
l’ordre topologique non trivial et la localisation de
type Anderson. Un outil puissant pour étudier les
propriétés physiques des quasi-cristaux est la si-
mulation quantique. Avec la réalisation de systèmes
atomiques ultrafroids dans les années 1990 et les
développements rapides qui ont suivi, un nouveau
terrain de jeu pour la physique quantique à plu-
sieurs corps s’est ouvert. En particulier, le contrôle
précis des paramètres physiques et les différents
outils de mesure dans un système atomique froid
en font une plateforme prometteuse pour la simu-
lation quantique. Un potentiel quasipériodique uni-

dimensionnel dans les expériences sur les atomes
froids peut être créé en superposant plusieurs fais-
ceaux laser avec des périodes incommensurables.
Au cours des dernières années, les atomes froids
dans des potentiels quasipériodiques unidimension-
nels ont été largement étudiés. Un réseau optique
bidimensionnel formant un potentiel quasi-cristallin
peut également être créé par certaines configura-
tions géométriques de faisceaux laser. Cela a été pro-
posé pour la première fois théoriquement en 2005 et
réalisé dans des expériences sur les atomes froids
en 2019, suivant une configuration proposée en 2013.
La localisation de bosons faiblement interactifs dans
ce système a été rapportée. Avec ces avancées
dans les expériences, les études théoriques sur les
atomes froids bidimensionnels dans des potentiels
quasicristaux commencent également à gagner du
terrain. Dans cette thèse, nous présentons une étude
théorique de la simulation quantique de quasicristaux
bidimensionnels avec des atomes froids. Nous dis-
cutons des propriétés des particules individuelles et
des diagrammes de phase thermodynamiques pour
des bosons bidimensionnels dans un potentiel quasi-
cristallin peu profond.

Title : Cold atoms in two dimensional quasicrystals

Keywords : Quasicrystals, Strongly correlated bosons, Quantum Monte Carlo

Abstract : Quasicrystals are long-range-ordered so-
lids without translational symmetry, showing rotational
symmetries that are forbidden for normal crystals, for
example 5 fold, 7 fold, 8 fold etc. Their discovery in
the laboratory during the 1980s lead to a paradigm
shift in crystallography, revolutionizing the basic idea
on possible structure of solids. Since then on, quasi-
crystals have attracted much attentions, owing to their
intriguing properties, including for examples phasonic
quasiparticles, transport properties, intricate energy
spectrum, nontrivial topological order and Anderson-
like localization. A powerful tool to study the physi-
cal properties of quasicrystals is quantum simulation.
With the realization of ultracold atomic systems in the
1990s and the rapid developments thereon, a new
playground of quantum many body physics has ope-
ned. In particular, the strong control over the physical
parameters and the various measurement tools in a
cold atomic system make it a promising platform for
quantum simulation. A one-dimensional quasiperiodic

potential in cold atoms experiments can be created
by superimposing several laser beams with incom-
mensurable periods. In the past years, cold atoms in
one-dimensional quasiperiodic potentials have been
studied extensively. A two-dimensional optical lattice
giving a quasicrystal potential can also be created
by certain geometrical arrangements of laser beams.
This was first proposed theoretically in 2005, and
realized in cold atoms experiments in 2019 follo-
wing a configuration proposed in 2013. Localization of
weakly interacting bosons in that system has been re-
ported. With these advancements in experiments, the
theoretical studies of two dimensional cold atoms in
quasicrystal potentials also start to gain momentum.
In this thesis, we give a theoretical study of quantum
simulation of two-dimensional quasicrystals with cold
atoms. We discuss the single particle properties and
the thermodynamic phase diagrams for two dimensio-
nal bosons in a shallow quasicrystal potential.
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