Topics in BSM physics

Quentin Bonnefoy

under the supervision of E. Dudas

Centre de Physique Théorique - École Polytechnique

PhD Day November 15th, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

うして ふゆう ふほう ふほう ふしつ

Why BSM?

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g-2

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g - 2

 \rightarrow Theoretical concerns, ex: quantum gravity, families of particles, unification of forces

うして ふゆう ふほう ふほう ふしつ

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g-2

- \rightarrow Theoretical concerns, ex: quantum gravity, families of particles, unification of forces
- \rightarrow A mix of both, ex: hierarchy problem, strong CP problem

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g-2

 \rightarrow Theoretical concerns, ex: quantum gravity,

Axions families of particles, unification of forces

 \rightarrow A mix of both, ex: hierarchy problem, strong CP problem

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g-2

SUSY \rightarrow Theoretical concerns, ex: quantum gravity,

- (and SUSY) families of particles, unification of forces
 - \rightarrow A mix of both, ex: hierarchy problem, strong CP problem

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g - 2

String \rightarrow Theoretical concerns, ex: quantum gravity,

landscape families of particles, unification of forces

 \rightarrow A mix of both, ex: hierarchy problem, strong CP problem

- Quantum (field) theory describing the dynamics and interactions of a set of fundamental particles
- Based on **gauge symmetries**
- Very well tested at colliders, and when coupled to cosmology

Why BSM? \rightarrow Observations, ex: dark matter and dark energy, neutrino masses, muon g-2

 \rightarrow Theoretical concerns, ex: quantum gravity,

families of particles, unification of forces

 \rightarrow A mix of both, ex: hierarchy problem, strong CP problem

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $2 \rightarrow n$ collision processes at high-energy

ション ふゆ マ キャット しょう くしゃ

$2 \rightarrow n$ collision processes at high-energy

Cross-section calculations in particle physics: perturbation theory

$2 \rightarrow n$ collision processes at high-energy

Cross-section calculations in particle physics: perturbation theory

In $2 \rightarrow n$, break down at tree level, ex: $\sigma_{2\rightarrow n} \sim n!$

ション ふゆ マ キャット しょう くしゃ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Motivation: does SUSY change this?

ション ふゆ マ キャット しょう くしゃ

Motivation: does SUSY change this?

Toy model: Wess-Zumino model $L = -|\partial \phi|^2 - |\phi + \phi^2|^2$

Results:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回 りへぐ

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

\rightarrow no change in asymptotics

Results:

\rightarrow no change in asymptotics

 \rightarrow identification of a closed form solution

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Results:
$$A(t) = \frac{e^{t+i\theta}(1 - \frac{2ie^t \sin(\theta)}{6})}{1 - e^t \cos(\theta) - \frac{e^{2t} \sin^2(\theta)}{3} + \frac{e^{3t} \cos(\theta) \sin^2(\theta)}{27}}$$

\rightarrow no change in asymptotics

 \rightarrow identification of a closed form solution

ション ふゆ く は く は く む く む く し く

Results:
$$A(t) = \frac{e^{t+i\theta}(1 - \frac{2ie^t \sin(\theta)}{6})}{1 - e^t \cos(\theta) - \frac{e^{2t} \sin^2(\theta)}{3} + \frac{e^{3t} \cos(\theta) \sin^2(\theta)}{27}}$$

 \rightarrow preserves SUSY (**BPS**)

\rightarrow no change in asymptotics

 \rightarrow identification of a closed form solution

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Results:
$$A(t) = \frac{e^{t+i\theta}(1 - \frac{2ie^t \sin(\theta)}{6})}{1 - e^t \cos(\theta) - \frac{e^{2t} \sin^2(\theta)}{3} + \frac{e^{3t} \cos(\theta) \sin^2(\theta)}{27}}$$

 \rightarrow preserves SUSY (**BPS**)

Currently investigating soft terms, and other superpotentials

Thank you!

