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Résumé
Cette thèse est dédiée à l’étude de certains aspects des espaces-temps dynamiques à bord.

Une attention particulière est portée sur les bords asymptotiques comme le bord conforme d’AdS
ou l’infini nul de l’espace plat. Le bord d’AdS est de genre temps et donc pseudo-Riemannien.
Plus généralement nous considèrerons aussi les espaces asymptotiquement localement AdS.
Dans ce cas la jauge de Fefferman-Graham nous permet d’établir que l’espace des solutions est
paramétrisé par deux quantités de bord : une métrique est un tenseur énergie-impulsion. Nous
considèrerons aussi la jauge de Bondi dans laquelle l’espace des solutions est paramétrisé diffé-
rement, mais nous montrerons qu’elle est équivalente. Le formalisme covariant de l’espace des
phases nous permettra de calculer les charges gravitationelles associées aux difféomorphismes
résiduels et d’établir qu’elles correspondent à des charges de Noether du bord pour des condi-
tions de bord de Dirichlet. De plus, nous montrerons qu’elles satisfont une algèbre conforme. Dans
le cas où la métrique du bord est sourcée, la même charge de Noether n’est plus conservée et la
non-conservation est sourcée par la courbure scalaire du bord. En conclusion de la partie AdS,
nous considèrerons la limite plate de la jauge de Bondi, qui est non-triviale et non-singulière.

Nous verrons que l’infini nul de l’espace plat est lui décrit par une géométrie de Carroll.
Cette dernière apparaît comme la limite ultra-relativiste, ou c → 0, d’une géométrie pseudo-
Riemannienne, qui dans notre cas correspond à la géométrie de bord d’AdS, établissant donc
que la limite plate dans l’intérieur de l’espace-temps correspond à cette limite ultra-relativiste sur
le bord. Nous verrons aussi comment les symétries de la gravité asymptotiquement plate se tra-
duisent par des symétries globales de cette géométrie exotique de bord. Nous montrerons que
le groupe BMS correspond simplement aux symmétries conformes de la géométrie de Carroll
induite sur le bord des espaces asymptotiquement plat (pour des conditions de bord de Dirichlet
bien particulières). Tout comme en AdS, l’espace des solution n’est pas paramétrisé seulement
par la géométrie du bord mais aussi par un équivalent Carrollien du tenseur énergie-impulsion.
Nous considèrerons aussi les charges gravitationelles BMS qui sont interpretées comme des
charges de Noether Carrollienne du bord. De plus, quand la géométrie de Carroll du bord est
sourcée, ces mêmes charges sont elles aussi non conservées.

Cette analyse de la structure de bord est d’une importance capitale pour la correspondence
fluide/gravité car le fluide vit sur le bord. Dans ce contexte nous imposons des conditions d’in-
tégrabilité sur le fluide du bord qui permettent une resommation de l’expansion aux dérivées en
AdS. Ces conditions d’intégrabilité sont intriguantes car elles relient les termes dissipatifs du fluide
à des quantités géométriques du bord construites à partir du tenseur de Cotton. Ce dernier per-
met d’établir si l’espace est asymptotiquement AdS ou seulement aymptotiquement localement
AdS. La limite plate produit la notion de fluide Carrollien sur le bord, c’est à dire un fluide couplé à
la géométrie de Carroll induite sur le bord de l’espace-temps. L’expansion hydrodynamique de ce
fluide se traduit aussi par une expansion aux dérivées dans l’intérieur, ce qui donne une notion de
correspondence fluide/gravité en espace plat. Nous verrons que nos conditions d’intégrabilité en
AdS admettent une limite plate ce qui donne lieu à une resommation de l’expansion aux dérivées
plate.

Un deuxième type de bord que nous étudirons est celui formé par l’horizon d’un trou noir. Ici,
un autre genre de correspondence fluide/gravité existe : le paradigme des membranes. A l’aide
des outils Carrollien développés pour l’étude des hypersurfaces nulles, nous revisitons ce concept
et proposons une interprétation nouvelle des équations de Damour–Navier–Stokes en terme de
lois de conservation ultra-relativistes. Nous montrerons que la géométrie induite sur l’horizon est
Carrollienne et que la géométrie extrinsèque est décrite à partir d’éléments de courbure Carrol-
liens. Grâce à cette construction nous établirons que la limite proche-horizon correspond à une
limite Carrollien et que les deux équations qui régissent la dynamique de la géométrie extrinsèque
de l’horizon sont en fait des lois de conservation Carrolliennes.

2



1 Introduction

The most important progresses in the study of gravity in the recent years are certainly due to a
better understanding of the role of boundaries for dynamical spacetimes. One of the main disco-
veries being that gravity, in some instances, is holographic [1, 2]. In the sense that the full theory
of quantum gravity inside the bulk of the spacetime is expected to be dual to a field theory whose
fundamental fields live on the boundary of the spacetime. The main realization of this property
is the AdS/CFT correspondence where the spacetime is asymptotically AdS and the boundary
theory is a relativistic conformal field theory. Quantum gravity would then be a quantum theory
of boundary conditions. This resonates with the so called area-law of the black hole entropy [3],
that states that the entropy of a black hole scales with its area rather than its volume. This was
further motivated by the Ryu-Takayanagi formula [4] that states that the entanglement entropy
associated with a subregion on the boundary, and therefore a subregion in the bulk (the entangle-
ment wedge), is computed by the area of a surface that encloses the bulk subregion. The horizon
area law is then only a particular case where one consider the entanglement entropy of the whole
boundary of the asymptotically AdS spacetime. All these results suggest that gravity, even when
the spacetime is not asymptotically AdS, could be described by the dynamics of its boundary. This
is why studying the boundary structure of spacetimes that are asymptotically AdS or flat seems
to be essential.

The role of asymptotic boundaries was also studied in classical gravity. This is where the
so-called boundary conditions are imposed for the spacetime, which allow for the definition of
consistent phase spaces. In classical gravity, it is often said that diffeomorphisms are pure gauge
symmetries, this is not quite true when the spacetime possesses boundaries. In that case, some
diffeomorphisms are promoted to real symmetries since they actually change the physical state,
they are called asymptotic symmetries and have been widely studied [5] (see also [6] and [7] for
recent reviews). Roughly speaking, this symmetries correspond to diffeomorphisms that are acting
non trivially on the boundary of the spacetime. The asymptotic symmetry group in asymptotically
flat gravity was derived by Bondi, Metzner and Sach [8, 9] and consists of an infinite-dimensional
extension of the Poincaré group, dubbed the BMS group. The fact that the asymptotic symmetry
group is bigger than the symmetries of the vacuum (here Minkowski) can come as a surprise but
turns out to be often the case. A three-dimensional version of the BMS group exists also [10].

It is also possible to associate charges to these diffeomorphism through the covariant phase
space formalism. In particular, it is thanks to this formalism that Iyer and Wald were able to show
that the first law of black hole thermodynamics holds for any stationary black hole in any theory
of gravity [11]. It is also using this formalism that Barnich and Troessaert were able to derive
charges associated with the BMS symmetries in four dimensions and compute the algebra they
satisfy [12]. This algebra is centrally extended but the central extension is field dependent and
the interpretation of such a structure is still mysterious. As we said, there exists also a three-
dimensional version of the BMS group and the charges were also computed in that case, giving
rise to a central extension that is not field dependent anymore [13]. This central extension can
be exploited to interpret the entropy of cosmological solutions in flat space in terms of a Cardy
formula for BMS symmetry [14].

Interestingly, both in four and three dimensions, the BMS group can be shown to be isomor-
phic to the conformal isometries of an exotic geometry : a Carroll manifold [15]. In the case of
asymptotically flat gravity, it is because the conformal boundary is null, it is the null infinity, and it
inherits therefore a non pseudo-Riemannian geometry. Carroll geometry emerges when one takes
the c → 0 limit of a relativistic metric, it is the ultra-relativistic counterpart of the Newton-Cartan
geometry that appears when the other limit (c→∞) is taken [16]. When doing so, the space-time
equivalence is broken and the geometry is now composed of a spatial metric and a vector field
that represents the time direction. On the null infinity, the spatial metric is simply the round metric
on the celestial sphere and the time arrow is the null direction. The conformal isometries of this
structure are in one-to-one correspondence with the BMS algebra. In this thesis, we show how the
geometry induced on the null infinity of asymptotically flat spacetimes can always be interpreted in
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terms of Carroll geometry, going beyond the simple case of Minkowski. We will also show how the
constraint equations of asymptotically flat gravity can be interpreted in terms of ultra-relativistic
conservation laws.

The holographic correspondence in AdS has led people to study extensively asymptotically
AdS spacetimes. A central result is that any asymptotically AdS metric can be written in a ra-
dial gauge called Fefferman–Graham gauge. In this gauge, there are two independent objects :
the conformal boundary metric and a second boundary tensor. The latter is related to the extrinsic
curvature of the conformal boundary and in the language of AdS/CFT it is the holographic energy-
momentum tensor (see [17] for a review on all this). It is also possible to derive the asymptotic
symmetry algebra in this gauge. In three dimensions, with the so-called Brown-Henneaux boun-
dary condition [18] they are in one-to-one correspondence with the conformal symmetries of the
two-dimensional boundary, i.e. the infinite-dimensional two copies of Virasoro. The gravitational
charges realize then a centrally extended version of this conformal symmetry with the same cen-
tral charge for left and right movers, related to the ratio of the AdS radius and the Newton constant.
It is interesting to note that both in asymptotically flat and AdS, the asymptotic symmetries (for
Dirichlet-like boundary conditions) are isomorphic to the conformal symmetries of the boundary
geometry.

Part of this thesis will be devoted to the study of three-dimensional gravity with the most gene-
ral boundary conditions. The advantage of working in three dimensions is that the computations
are significantly simpler while the key concepts that we want to describe are present, i.e. the
relation between the flat limit in the bulk and the Carrollian limit on the boundary. This part will
be the occasion to show how the notions of Carroll structure and Carrollian momenta appear on
the boundary of asymptotically flat spacetimes, they are the flat space surrogates for the AdS
boundary metric and holographic energy-momentum tensor. We will see that they are nicely inter-
preted as coming from an ultra-relativistic limit that corresponds simply to the flat limit in the bulk.
This will set the stage for the following section where the four-dimensional case is considered. To
perform a consistent flat limit we describe the AdS solution space in Bondi gauge. After a repara-
metrization of the solution space, the latter is shown to be in one-to-one correspondence with a
boundary metric and energy-momentum tensor. The same procedure is followed for the flat ver-
sion of the Bondi gauge, where this time the solution space is parametrized by a Carroll structure
on the null infinity and a Carrollian equivalent of the holographic energy-momentum tensor, that
we dub Carrollian momenta. The gravitational charges are then interpreted in this language.

In AdS, the constraint equations associated with the conformal boundary can be written as
the conservation of the holographic energy-momentum tensor. This is a key element of a spin
off of gravitational holography : the fluid/gravity correspondence [19]. The main observation is
that the dynamics of a relativistic fluid is also entirely contained in the conservation of its energy-
momentum tensor. This establishes a relationship between an asymptotically AdS solution and
a relativistic fluid living on its boundary. In fluid/gravity correspondence, one trades the usual
Fefferman-Graham gauge for the Derivative Expansion, parametrized by the data of a boundary
relativistic fluid. Then, assuming slow varying fields, one can map a bulk derivative expansion to
the fluid’s hydrodynamical expansion (see [20] for a review of the construction). A caveat of the
Derivative Expansion is that it is an infinite expansion and one can wonder if it can be resummed,
producing a closed line element in the gravity side and equivalently a closed energy-momentum
tensor for the dual fluid. It is this aspect of fluid/gravity that we study in this thesis. In particular
we give strong evidence in favor of such a resummation under mild conditions on the boundary
fluid, dubbed integrability conditions, that translate into a restriction of the possible corresponding
gravitational solutions. The advantage of the Derivative Expansion is that it is implemented in
a coordinate system that admits a non-singular flat limit as opposed to the Fefferman-Graham
gauge for which the flat limit is ill-defined. We show that the relationship between the bulk and the
boundary persists in the limit, we trade the Einstein metric for a Ricci-flat metric in the bulk, while
the relativistic fluid is replaced by a Carrollian fluid on the null infinity, i.e. a fluid coupled to the
Carrollian geometry. We also develop a notion of hydrodynamical expansion for such a fluid. In
the bulk it maps to a flat version of the Derivative Expansion, which provides the first example of
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fluid/gravity correspondence in flat space.
We conclude our journey with an application of the tools developed for the study of asympto-

tically flat gravity to another spacetime boundary : the horizon of a black hole. More precisely we
revisit the membrane paradigm [21, 22, 23, 24, 25, 26] that relates the dynamics of the horizon
to the Navier-Stokes equations. We propose a novel interpretation where the near-horizon limit
is interpreted as an ultra-relativistic (or Carrollian) limit. We also show that the small mismatches
between the Damour equation and the Navier-Stokes equation are due to the fact that the former
is actually an ultra-relativistic conservation law rather than a Galilean one.

Comments of the author

This thesis is based on works I have published during the three years of my PhD [27, 28, 29,
30, 31, 32, 33] and on some ongoing works. The way things are presented here does not reflect
the true chronology of the research I have conducted with my collaborators. I have started by
studying the fluid/gravity correspondence, mainly in four dimensions, looking for these integrability
conditions that would allow for a resummation of the Derivative Expansion in AdS. Wondering if
this construction would make sense in flat space, we noticed that we could simply (simply only in
principle) take the flat limit and that the corresponding limit for the fluid was a Carrollian limit. This
observation led us to consider both sides of the non-relativistic limit of fluid dynamics, namely
the Galilean and the Carrollian one. This is done in full generality in [27], where we derive the
conservation equations for Galilean and Carrollian fluid on generic curved and time-dependent
background by taking the corresponding limit of its relativistic counterpart. Having understood
how to properly describe an ultra-relativistic fluid we could then consider the holographic one
appearing on the boundary of the flat limit of the Derivative Expansion [28], setting a precise
duality between a bulk Ricci flat solution and a Carrollian fluid. The integrability conditions also
admit a flat limit such that the flat derivative expansion is also resummed.

The duality between Carrollian fluid and Ricci flat solutions led us to rewrite the constraint
equations for asymptotically flat solution spaces in terms of conservation equations of a fluid living
on the null infinity. These equations have a structure very similar to the constraint equations of the
four-dimensional Bondi gauge. In AdS the constraint equations are written as the conservation of
an energy-momentum tensor. One can wonder if such an object can be defined in flat space. In
[29] we define the counterpart of the boundary energy-momentum tensor for asymptotically flat
spacetimes, which abstractly could be seen as the variation of the bulk on-shell action w.r.t. the
Carrollian geometry induced on the null infinity. As an example, we study the linearized Bondi
gauge. It was shown in [15] that the symmetries of Bondi gauge, i.e. the BMS group, map to
conformal Carrollian symmetries on the null infinity. We extend this work to the bulk dynamics and
show that the constraint equations of Bondi gauge can be interpreted as conservation laws of our
Carrollian energy-momentum tensor. This is reminiscent of what happens in AdS : the boundary
energy-momentum tensor is sourced by the boundary geometry and the on-shell dynamics of
Fefferman-Graham gauge reduces to its conservation. Finally, we also map the BMS charges to
an ultra-relativistic version of the Komar charge on the boundary.

All this work was done in four dimensions and a natural question is if this construction exists
in three dimensions. In [30] we build a reconstruction formula that associate a three-dimensional
bulk solution, AdS or flat, to a boundary fluid, relativistic or Carrollian. We also study the effect
of hydrodynamic frame for two-dimensional fluids, the latter is mapped to a rotation of the Cartan
frame on the boundary. Finally we consider the space of bulk solutions whose dual fluid are in a
specific hydrodynamical frame, i.e. perfect or pure dissipative. The outcome is that even though
the two spaces of fluids are identified, the corresponding bulk solution spaces differ by their charge
algebra, giving a sensitivity of the bulk to the hydrodynamic frame.

The Carrollian interpretation of the null infinity is tied with the fact that it is a null hypersurface.
From this observation, we had the idea to apply the Carrollian approach to the study of another
null hypersurface of physical interest : the horizon of a black hole. In [31] we make use of the
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notion of a timelike stretched horizon and show that the near-horizon limit can be reinterpreted
as an ultra-relativistic limit on this stretched horizon. We show that the null Raychauduri and the
Damour-Navier-Stokes equations should be physically interpreted as ultra-relativistic conserva-
tion laws. This brings a novel understanding of the membrane paradigm and explains both the
small mismatch between the Damour-Navier-Stokes and the actual Navier-Stokes equation, and
the large (often overlooked) difference between the null Raychauduri equation and a conventio-
nal Galilean conservation of energy. We give also a Carrollian interpretation of the near-horizon
symmetries and their associated charges.

In [32] we develop the connection between null hypersurfaces and Carrollian spacetimes with
a more mathematical approach. We show that the induced geometry on a null hypersurface is
precisely Carrollian. We also find the minimal required condition under which the conformal iso-
metries of such a geometry belong to a BMS-like algebra, generalising the work of [15].

My last published work touches upon another aspect of flat gravity, namely flat holography. If
we believe in an eventual holographic duality, our works suggests that the field theory should be
conformal and Carrollian. Inspired by this observation and by the recent works on holographic
entanglement, in [33] we explore the holographic entanglement in Minkowski spacetime. The
authors of [34] had already proposed an equivalent of the Ryu-Takayanagi formula for 3d gravity,
matching a bulk geodesic length to the entanglement entropy of a subregion in a dual BMS3 -
invariant field theory. We refine this prescription and further propose a generalisation to 4d. We
also show that under some general assumptions on the putative dual, the first law of entanglement
is equivalent to the gravitational equations of motion in the bulk, linearised around Minkowski
spacetime.

Finally we would like to comment on the structure of this PhD thesis. A choice was made not
to rewrite in full details all the papers and results but rather give a self contained introduction to
the context and the highlights of my research. The reader will be guided with a selection of review
articles when a broader vision could be helpful and of course a clear connection will be maintained
between the presentation and the corresponding works on which it is based.

2 Minkowski spacetime and Carrollian geometry

In this section we give an introduction to the Minkowski spacetime, its conformal boundary and
its symmetries. We show how the Poincaré group maps to a subset of the conformal symmetries
of the geometry on the null infinity, the full set being actually isomorphic to the BMS group. We
show that the geometry induced on the null infinity corresponds to the simplest Carroll manifold.
When gravity is turned on, we expect the Carroll geometry induced on the null infinity of the
asymptotically flat solution to be non trivial. This is why we introduce the reader to the notion of
Carroll structure that we then exemplify with the null infinity of the Kerr black hole.

2.1 Minkowski : causal structure and symmetries

We start by introducing the simplest solution to Einstein equations with vanishing cosmological
constant : the Minkowski spacetime. We will not provide an exhaustive study of the properties of
this spacetime but we will give the necessary ingredients for what will follow next. The Minkowski
spacetime has vanishing Riemann tensor

Rabcd = 0, (1)

in that sense it is the most "flat" spacetime one could define. In Cartesian coordinates the metric
is simply

ds2 = −dt2 + δijdx
idxj = ηabdx

adxb, (2)
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where a = 1, .., D. Its isometry group is the Poincaré group ISO(1, D − 1) and is realized through
the coordinate transformations

x′a = Λabx
b + pa, (3)

where Λab is a Lorentz boost and pa is a spacetime translation. It is easy to check that this coordi-
nate transformation leaves the metric invariant, it follows from the fact that tΛηΛ = η.

In Cartesian coordinates, the geodesics are simply straight lines and describe trajectories
followed by free falling objects. To have a better understanding of the causal structure of this spa-
cetime and how physical objects freely travel inside, it is useful to draw its Penrose diagram. First
we introduce a new set of coordinates adapted to the study of Minkowski’s asymptotic regions,
we define the retarded time and the advanced time

u = t− r,
v = t+ r,

(4)

so that the metric becomes ds2 = −dudv + r2dΩ2
d, where we have defined the metric of the

d-sphere such that d = D− 2. This allows to define the various asymptotic regions of Minkowski :
— i+ = {t→ +∞ at fixed r} = future timelike infinity,
— i− = {t→ −∞ at fixed r} = past timelike infinity,
— i0 = {r →∞ at fixed t} = spacelike infinity,
— I+ = {v → +∞ at fixed u} = future null infinity,
— I− = {u→ −∞ at fixed v} = past null infinity.

Trajectories are characterized by where they start and end (when fully extended). A timelike tra-
jectory will start at i− and end at i+, a lightlike one will start at I− and end at I+ and finally a
spacelike one will start at i0 and come back to i0. There are subtleties when D = 2 because
there is no angle and we can define right and left asymptotic regions but we will not discuss this
degenerate case. The representation of these regions become very clear when we compactify the
coordinates u and v, therefore we define ψ and ζ as

v = tan
1

2
(ψ + ζ),

u = tan
1

2
(ψ − ζ),

(5)

so that the metric becomes

ds2 = Ω(ψ, ζ)2(−dψ2 + dζ2) + r(ψ, ζ)2dΩ2
d, (6)

with Ω(ψ, ζ)−2 = 4cos2 1
2 (ψ + ζ)cos2 1

2 (ψ − ζ). The new coordinates range over the half-diamond
ζ ± ψ < π, ζ > 0. It is now very easy to read the causal structure of the Minkowski spacetime
reported in Fig. 1.

We come back to Minkowski written in the coordinates (u, r), we will see later that this coor-
dinate system is adapted to the study of more generic asymptotically flat spacetimes, from now
on we will refer to them as Bondi coordinates. We would like to understand how to write the Poin-
caré group in these coordinates, this will be useful for the interpretation of the BMS group. In the
following we will focus on the 4-dimensional case and later we will give the same results for the
3-dimensional case.

To study the symmetries in this new coordinate system it is easier to consider the infinitesimal
version of the problem, i.e. we are looking for vector fields satisfying

Lξgab = 0, (7)

for the metric written in Bondi coordinates. The solution is

ξu = T (θ, φ) +
u

2
DAY

A,

ξr = − (r + u)

2
DCY

C +
DCD

CT

2
,

ξA =
(

1 +
u

r

)
Y A(θ, φ)− DAT

r
,

(8)
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FIGURE 1: Penrose diagram of Minkowski, the asymptotic regions are now at finite distance. Each
point in the shaded region is actually a d-sphere. Null geodesics are represented by 45o lines.

where xA = {θ, φ} and DA is the covariant derivative of the round two-sphere. The functions
T (θ, φ), Y θ(θ, φ) and Y φ(θ, φ) must satisfy certain constraints for the corresponding vector field ξ
to be a Killing. Indeed, we know that the Poincaré group has 10 generators composed of 6 boosts
and 4 translations and this should not change when we change coordinates. We will first spell
out the conditions and then make the connection with our usual representation of the Poincaré
algebra. The first set of conditions is that the vector Y = Y θ∂θ +Y φ∂φ must be a global conformal
Killing vector of the 2-sphere. There are 6 of them and they are known to satisfy an SL(2,C)
algebra. The other set of conditions is that the function T , when expanded in spherical harmonics,
must turn on only the first 4 harmonics

T (θ, φ) =
∑

`=0,1

∑̀

m=−`
T`mY`m(θ, φ), with T`−m = (−1)mT ∗`m. (9)

All this is reassuring as we obtain the right amount of generators. We can go further and identify
the generators of boosts and translations. Indeed let’s recall that the conformal algebra on the 2-
sphere is isomorphic to the Lorentz algebra : we write Y = Y abMab, with a and b antisymmetrized,
a = 0, .., 3, such that the Mab’s satisfy

[Mab,Mcd] = ηadMbc + ηbcMad − ηacMbd − ηbdMac. (10)

Mab corresponds to the boost in the (xa, xb) plane. In spherical coordinates they become 1

M12 = ∂φ, M30 = sinθ∂θ,

M± = ±iM23 +M13,

K± = ∓iM20 +M10,

M± = e±iφ(∂θ ± i cot θ∂φ),

K± = e±iφ(−cosθ∂θ ∓ isin−1θ∂φ).

(11)

1. For example, to write the generator of a boost in the (t, z)-plane but in Bondi coordinates, one can just consider the
vector field (8) and replace T by zero and Y by M30.
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It is also easy to find that the generator of a translation ξ = pa∂a maps in Bondi coordinates to the
the vector (8) with Y = 0 and

T (θ, φ) = p0 + p1sinθcosφ+ p2sinθsinφ+ p3cosθ, (12)

which indeed turns on only the first 4 harmonics of the sphere.
The bottom line of this little rewriting is that we have actually built a representation of the

Poincaré group leaving on the null infinity, i.e. the asymptotic region I+ = {r → +∞ at fixed u}.
The latter is parametrized by the retarded time u and the angular coordinates and its topology is
R× S2 (see Fig. 1). Indeed consider the r →∞ limit of the vector (8), it becomes

ξT,Y =
(
T (θ, φ) +

u

2
DAY

A
)
∂u + Y A∂A. (13)

This is a vector leaving on I+, uniquely defined by the couple (T, Y ) and we know that it is in
one to one correspondence with the generators of the Poincaré algebra when we impose the two
conditions stated above. We can compute their commutator

[ξT1,Y1
, ξT2,Y2

]Lie = ξT12,Y12
, (14)

where T12 = Y A1 ∂AT2 − Y A2 ∂AT1 − 1
2T2DAY

A
1 + 1

2T1DAY
A
2 and Y A12 = Y B1 ∂BY

A
2 − Y B2 ∂BY

A
1 . We

now define the modesMµν and Pν in the following way

P0 = ξT=1,Y=0, P1 = ξT=sinθcosφ,Y=0, P2 = ξT=sinθsinφ,Y=0, P3 = ξT=cosθ,Y=0, (15)

andMab = ξT=0,Y=Mab
. One can finally check that the algebra (14) becomes the usual Poincaré

algebra

[Mab,Mcd] = ηadMbc + ηbcMad − ηacMbd − ηbdMac,

[Mab,Pc] = ηacPb − ηbcPa,
[Pa,Pb] = 0.

(16)

2.2 A first encounter with the BMS group

The Penrose diagram of Minkowski indicates that I+ is part of the conformal boundary of
Minkowski, in that sense, the map we have found associates a "boundary" transformation to a
"bulk" isometry. Now one could wonder if the Poincaré algebra can be obtained as a symmetry
of the null infinity itself. In other words : is there a geometrical structure, defined intrinsically on
the null infinity, whose symmetries are given by the vectors (14)? For example, we know that the
conformal group can be defined as the isometries of the AdS spacetime in one dimension higher
or simply as the conformal symmetries of its boundary. This indicates that we are looking for a
definition involving conformal symmetries. Indeed, defining

~v = ∂u and γ = γABdx
AdxB , (17)

where γAB is the round metric on the 2-sphere, it is easy to show that the vectors (14) satisfy

LξT,Y ~v = −σ~v and LξT,Y γ = 2σγ. (18)

Taking the trace of the second equation gives σ = 1
2∇AξA. This suggest that the Poincaré algebra

is obtained as the conformal symmetries of the triple (I+, ~v, γ). This is not quite the case, because
there are actually an infinite amount of vectors that satisfy (18) and they are given by all the
vectors (14) but where T is now any function on S2. We conclude that the algebra satisfying the
two conditions (18) is not the Poincaré algebra but the algebra of an infinite dimensional group.
This group is the semidirect product of the conformal transformations of the 2-sphere (or SL(2,C))
with the abelian group of supertranslations associated with the function T that can now turn any
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harmonics of the sphere on (it is a generalization of a spacetime translation). More formally, the
group is

SL(2,C) n C∞(S2), (19)

and can be represented by its action on I+. To do so it is easier to parametrize the sphere with
complex coordinates, indeed consider the following change of coordinate

z = cot
θ

2
eiφ, (20)

the round metric becomes
γ = dθ2 + sin2θdφ2 =

4dzdz̄

(1 + zz̄)2
. (21)

With this parametrization the group action becomes

u′ = K(z, z̄)(u+ T (z, z̄)),

z′ =
az + b

cz + d
, with

(
a b
c d

)
∈ SL(2,C),

(22)

and K(z, z̄) is the conformal factor that the sphere metric receives under the transformation

4dz′dz̄′

(1 + z′z̄′)2
= K(z, z̄)2 4dzdz̄

(1 + zz̄)2
, with K(z, z̄) =

1 + zz̄

(az + b)(āz̄ + b̄) + (cz + d)(c̄z̄ + d̄)
. (23)

The reason we are spending time describing this group, which is a priori not related to pure
Minkowski, is because it is actually the symmetry group of asymptotically flat gravity, the so-called
Bondi–Metzner–Sachs (BMS) group. Indeed when gravity is turned on, one can define a proper
phase space for solutions that are asymptotically flat, i.e. that look like Minkowski far from the
source. This is achieved by imposing boundary conditions at infinity on the metric. When doing
so one can show that it is possible to associate non trivial charges to a particular subset of the
diffeomorphisms : the ones that have a non trivial action on the conformal infinity and they define
the Asymptotic Symmetry Group. We will make all these concepts more precise later in this work.

The initial goal was to find a definition of the Poincaré group that would be intrinsic to the "boun-
dary" of Minkowski, exactly like in AdS where the isometries are also the conformal symmetries of
the boundary. The natural geometrical structure to consider on I+ seems to be this couple (~v,γ),
where ~v points towards the null direction and γ is a metric on the base. Here the round metric on
the celestial sphere. The reader should bear in mind that I+ is a null hypersurface, therefore the
induced metric is degenerate and does not carry any information about the null directions. When
looking for the conformal symmetries of this new structure we find a bigger group than Poincaré,
this suggests that Poincaré arises when considering a stronger structure on I+. 2 But this was not
useless because, surprisingly, we ended up defining the asymptotic symmetry group of gravity in
flat space.

The triple (I+, ~v, γ), with the property γ(~v) = 0, is a well-known geometrical structure called a
Carroll manifold (in its weak version), see [16], it arises when considering the ultra-relativistic limit
a pseudo-Riemannian structure, i.e. the c → 0 limit of a relativistic metric. Interestingly, it sets a
connection between the symmetries of asymptotically flat gravity and the conformal symmetries
of an ultra-relativistic spacetime in one dimension less.

2.3 Ultra-relativistic limit and Carrollian geometry

We would like to make this connection a little more precise. Consider a (d + 1)-dimensional
relativistic spacetime (or equivalently (D − 1)-dimensional) endowed with a pseudo-Riemannian
metric,

ds2 = (−τµτν + λµν)dxµdxν , (24)

2. The answer to this question seems to lie in the tractor formalism, see [35].
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where xµ = x0, xA and λ0µ = 0 such that the metric is indeed parametrized by (d+1)(d+2)
2 func-

tions. We have in mind that the ultra-relativistic limit of this boundary metric should lead to the
Carrollian geometry on the null infinity, even though our result is quite generic and does not apply
only to the null infinity. Before taking the c → 0 limit, we make the natural change of coordinates
x0 = cu and the following assumptions

τ0(cu, xA) →
c→0

Ω(u, xA),

c−1τA(cu, xA) →
c→0
−bA(u, xA),

λAB(cu, xA) →
c→0

hAB(u, xA),

ξ0(cu, xA) →
c→0

c ξu(u, xA)

(25)

Moreover, let ξ be a conformal Killing of our relativistic metric, it satisfies the equation

Lξgµν = 2σgµν , (26)

we would like to take the c → 0 limit of this equation. Making use of the scaling in c introduced
for τ and γ we can compute the leading orders of each component of this equation to obtain its
ultra-relativistic counterpart

ξu∂uΩ + Ω∂uξ
u + ξA∂AΩ = σΩ,

∂uξ
A = 0,

ξu∂uhAB + ξC∂ChAB + hAC∂Bξ
C + hBC∂Aξ

C = 2σhAB .

(27)

These equations are not very enlightening, but with a little bit of algebra, it is easy to show that
they are equivalent to

Lξ~v = −σ~v and Lξh = 2σh, (28)

where ~v = Ω−1∂u and h = 0 · du2 + 0 · dudxA + hABdx
AdxB , such that h(~v) = 0. Therefore taking

the c → 0 limit of the conformal Killing equations lead to the defining equations of the conformal
symmetries of the Carroll manifold (~v, h). From now on we will call such symmetries conformal
Carrollian Killing (CCK). One should note that the scalings (25) we have imposed were important,
indeed changing them could lead to another ultra-relativistic limit, we will see that this choice of
scaling is relevant for the gravitational systems we want to study.

Two cases happen to be interesting for us right now, the first one is when the relativistic spa-
cetime is R× S1 endowed with the metric

ds2 = −(dx0)2 + dθ2. (29)

It corresponds to the choice Ω = 1 and hθθ = 1. Taking the c→ 0 limit we obtain the corresponding
CCK’s

ξT,Y = (∂θY u+ T (θ)) ∂u + Y (θ)∂θ, (30)

where Y and T are any functions on the circle. This algebra corresponds to the CCK’s of the
Carroll manifold (~v = ∂u, h = dθ2). This is again an infinite-dimensional algebra, more precisely it
is the Lie algebra of the group

Diff(S1) n C∞(S1). (31)

This group acts on the coordinates u and θ in the following way

u′ = ∂θf(u+ T (θ)),

θ′ = f(θ),
(32)

where f is a diffeomorphism of the circle and T a function on the circle. The structure of this group
remind us of course the structure of the BMS group (22), this is not a coincidence because this
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is actually the asymptotic symmetry group for flat space gravity in 3 dimensions, with a particular
choice of Dirichlet boundary conditions (we will see later that the geometry induced on the null
infinity in that case is exactly the Carroll geometry (∂u, dθ

2)). It contains also the 3-dimensional
Poincaré group as a subgroup but we will come back to this later when it will be properly defined
in the covariant phase space formalism. From now on we will make the difference between the
symmetries of flat space gravity in 3d and 4d by calling them BMS3 and BMS4.

The second case is when the relativistic spacetime is now R× S2, endowed with the metric

ds2 = −(dx0)2 + γABdx
AdxB , (33)

where we remind that γAB is the round metric on S2. It corresponds to the choice Ω = 1 and
hAB = γAB . Again, taking the c→ 0 limit we obtain the corresponding CCK’s

ξT,Y =
(u

2
DAY

A + T (θ, φ)
)
∂u + Y A∂A, (34)

where Y is a conformal Killing of the sphere and T any function on the sphere. We have obtained
again the BMS4 algebra. This is not a surprise because they correspond to the CCK’s of the Carroll
manifold (~v = ∂u, γ) as explained in the previous section. Something maybe less trivial is that we
started with a 3-dimensional relativistic metric whose conformal algebra is finite-dimensional but
taking the ultra-relativistic limit of the defining equations we obtain an infinite-dimensional algebra
of CCK’s. This is not inconsistent, the solution space of the zero-c limit of the defining equations
(27) can be bigger that the zero-c limit of the defining equations’ solution space.

2.4 Zero-c limit on the boundary as a flat limit in the bulk

Before turning our attention to the properties of ultra-relativistic geometry, it is worth noting how
this Carrollian geometry induced on the null infinity of Minkowski can be seen as arising from the
flat limit of an AdS spacetime’s boundary geometry. The conformal boundary of AdS is timelike,
therefore it is endowed with a relativistic metric. Indeed, consider AdS in the global coordinates

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2

(
1 + r2

`2

) + r2γABdx
AdxB , (35)

where ` is the radius of AdS. We change to Eddington-Finkelstein coordinates

u = t− ` arctan
r

`
, (36)

such that the metric becomes

ds2 = −
(

1 +
r2

`2

)
du2 − 2dudr + r2γABdx

AdxB . (37)

Taking the `→∞ limit of this metric we recover Minkowski in Bondi coordinates. Let’s have a look
at the effect of this limit on the conformal boundary, situated at r →∞. It’s topology is R× S2 and
it is endowed with the metric

ds2
∂ = −du

2

`2
+ γABdx

AdxB . (38)

This corresponds exactly to the second case described in the previous section with the identifica-
tion c = `−1. Taking the flat limit in the bulk leads to Minkowski, while the relativistic boundary of
AdS is sent to the Carrollian geometry leaving on the null infinity. We will come back to this later.

2.5 More on Carrollian geometry

The structure we have encountered on I+ is called a Carroll manifold in its weak version. Its
definition requires a triple (M, g, ~v), whereM is a smooth (d+ 1)-dimensional manifold, endowed
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with a twice-symmetric covariant, positive, tensor field g, whose kernel is generated by the now-
here vanishing, complete vector field ~v. In the case of the null infinity, the manifold is simply (a
piece of) the conformal boundary of Minkowski, g is the metric on the celestial sphere and ~v is the
null generator of I+. The metric g being degenerate, it does not provide an isomorphism between
vectors and forms, its kernel is spanned by ~v, the latter being the "time" direction, therefore g is a
good metric only for spatial directions. There is also a strong definition which requires the addition
of a torsionless connection∇ that parallel-transports both g and ~v. The simplest example of strong
Carroll manifold is

M = Rd+1, ~v = ∂t, g = δABdx
AdxB and Γµνρ = 0, (39)

where M is parametrized by xµ = t, xA. This is the "flat" Carroll manifold. One can look for
its symmetries, i.e. the coordinate changes that leave ~v, g and ∇ invariant. This results in the
following group

t′ = t+ ~β · ~x+ t0,

~x′ = R~x+ ~x0,
(40)

where R is a spatial rotation. These coordinate changes define the Carroll group (introduced
for the first time in [36]), they allow for spacetime translations, rotations in space and boosts in
time only. Carrollian observers are dual to Galilean observers in the sense that for them space is
absolute (up to rotations) rather than time. Actually, these coordinate changes can be obtained as
the c→ 0 contraction of the Poincaré ones.

A big difference between the strong Carroll manifold and the Riemannian manifold is that the
conditions on the connection do not uniquely fix it. We would like to study the space of allowed
connections, but to do so we are going to assume that there exists an additional structure on our
Carroll manifold : an Ehresmann connection. We will see later how this object naturally appears
on the null infinity.

Let’s call V the subbundle of TM described by the nowhere vanishing ~v. An Ehresmann
connection onM is a smooth subbundle H of TM, called the horizontal bundle of the connection,
which is complementary to V , in the sense that it defines a direct sum decomposition TM =
H ⊕ V . In more detail, the horizontal bundle has the following properties.

— For each point x ∈ M, Hx is a vector subspace of the tangent space TxM to M at x,
called the horizontal subspace of the connection at x.

— Hx depends smoothly on x.
— For each x ∈M, Hx ∩ Vx = {0}.
— Any tangent vector in TxM (for any x ∈ M) is the sum of a horizontal and vertical com-

ponent, so that TxM = Hx + Vx.
Throughout this thesis, a Carroll manifold equipped with an Ehresmann connection will be cal-
led a Carroll structure. This is the abstract definition, but more concretely it is equivalent to the
knowledge of a projector p such that Im(p) = V , p2 = p. The horizontal subbundle is now simply
H = Ker(p). It is easy to see that this projector should be written as

p = τ ⊗ ~v such that τ(~v) = ±1. (41)

An Ehresmann connection is then specified by a one-form τ , satisfying τ(~v) = ±1. We are going
to make use of this one form to build connections on our Carroll manifold. The null infinity is a
simple example, the vertical bundle is given by the span of ∂u, while a basis for the horizontal
bundle is simply {∂θ, ∂φ}, we are going to see other examples where the splitting is less trivial.
With the one-form τ we can define a pseudo-inverse metric gµν uniquely specified by the relations

gµντµ = 0,

gµνgνρ = δµρ + τρv
µ,

(42)

13



where we have made the choice τρvρ = −1. The set of relations satisfied by our fields is now

vµτµ = −1, gµνv
µ = 0, gµνg

νρ = δρµ + τµv
ρ and gµντν = 0 (43)

We consider now the connection ∇ on TM (we are now following [37, 38]), we have

∇∂µ∂ν = Γρµν∂ρ. (44)

We consider first the conditions of parallel-transport of ~v and g. The metricity becomes

∇µgνρ = ∂µgνρ − Γσµνgρσ − Γσµρgνσ = 0. (45)

by permuting the indices, summing and projecting on vν we obtain

(L~vg)µρ = vν
(
Tσνµgσρ + Tσνρgσµ

)
, (46)

with

T ρµν = 2Γρ[µν],

(L~vg)µρ = vρ (∂ρgµν − ∂µgρν − ∂νgρµ) .
(47)

The tensor T is of course the torsion. The relation (46) implies

Tµνσ = −τ[ν(L~vg)σ]ρg
µρ + 2Xµ

[νσ], (48)

where Xµ
[νσ] satisfies

vνXσ
[νµ]gσρ + vνXσ

[νρ]gσµ = 0. (49)

A useful relation is vµ(L~vg)µν = 0. From (45) by permuting the indices, and summing but without
projecting we obtain

Γλµρ = −Γσµρv
λτσ +

1

2
gνλ (∂µgνρ + ∂ρgµν − ∂νgρµ) +Aλµρ, (50)

with
Aλµρ =

1

2
gνλτρ(L~vg)µν +

1

2
gνλ

(
Xσ

[µρ]gνσ −Xσ
[µν]gσρ −Xσ

[ρν]gσµ

)
. (51)

We notice from (46) that the torsionless condition imposes immediately L~vg = 0, which also
imposes Xσ

[µν] to be zero using (48), so in the torsionless case, Aµνρ = 0. We would like now to
impose the parallel-transport of ~v. One can show that we already have

(δλρ + vλτρ)(∂µv
ρ + Γρµνv

ν) = 0. (52)

Therefore the condition to parallel-transport ~v becomes

τρ(∂µv
ρ + Γρµνv

ν) = −(∂µτν − Γρµντρ)v
ν = 0. (53)

This is solved by Γρµντρ = ∂µτν + Xµν with Xµν satisfying vρXρν = 0. Finally we obtain that the
connection that parallel-transports ~v and g is written as

Γλµρ = −vλ∂µτρ +
1

2
gνλ (∂µgνρ + ∂ρgµν − ∂νgρµ) +

1

2
gνλτρ(L~vg)µν

− vλXµρ +
1

2
gνλYλµρ.

(54)

with
Yνµρ = 2(Xσ

[µρ]gνσ +Xσ
[νµ]gρσ +Xσ

[ρν]gµσ). (55)
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We also have Xµν and Yνµρ satisfying vνXµν = 0, vνYνµρ = vρYνµρ = 0. Now computing the
torsion we obtain

Tλµρ = −2vλ∂[µτρ] + gνλτ[ρ(L~vg)µ]ν − 2vλX[µρ] + gνλYν[µρ]. (56)

We remember that the torsionless condition imposes L~vg = 0 and Xσ
[µν] = 0, so Yνµρ = 0 too. So

the torsionless condition becomes, projected on τλ

X[µρ] = −∂[µτρ], (57)

the anti-symmetric part of Xµν is fixed. And the condition vρXµρ = 0 fixes the temporal part of
X(µν) :

vρX(µρ) = vρ∂[µτρ]. (58)

Finally we write the torsionless connection that parallel-transports ~v and g, that we denote ∗Γλµρ :

∗Γλµρ = −vλ∂(µτρ) +
1

2
gνλ (∂µgνρ + ∂ρgµν − ∂νgρµ)− vλX(µρ). (59)

We obtain that the knowledge of ~v, τ and g fixes a torsionless, compatible connection up to a
symmetric (d+ 1)-tensor.

2.6 Carroll structure on null surfaces and the null infinity of Kerr

The null infinity of Minkowski is an example of very simple Carroll manifold, quite trivial actually.
It is interesting to study the null infinity of Kerr, where the geometry is less trivial as we are going
to see. The metric, written in Eddington-Finkelstein coordinates, is given by

ds2 =−
(

1− 2mr

r2 + a2cos2θ

)
(du+ a sin2θdφ)2 + 2(du+ a sin2θdφ)(dr + a sin2θdφ)

+ (r2 + a2cos2θ)(dθ2 + sin2θdφ2)

, (60)

where a is the angular momentum and m the mass in suitable units. In these coordinates, the
null infinity I+ is defined to be the region r → ∞ and the metric becomes singular when taking
this limit. In order to resolve this region we have to regularize the metric by multiplying it by a
conformal factor that vanishes on I+. We define the unphysical metric

ds̃2 = r−2ds2. (61)

We also perform the change of coordinate ρ = r−1 so that the null infinity is now situated at ρ = 0
and becomes a generic null hypersurface w.r.t. the unphysical metric. The near I+ geometry
becomes

ds̃2 = −2(du+ a sin2θdφ)dρ+ dθ2 + sin2θdφ2 +O(ρ2). (62)

The bulk metric, when evaluated at ρ = 0 (not the induced one) can be written as

ds̃2
ρ=0 = 2τµdx

µdρ+ gµνdx
µdxν , (63)

which allows to read the Carrollian geometry induced on I+

~v = ∂u,

τ = −(du+ a sin2θdφ),

g = dθ2 + sin2θdφ2,

g−1 = gAB(bA∂u + ∂A)(bB∂u + ∂B),

(64)

where we have defined b = bAdx
A = −a sin2θdφ. It is easy to check that this set of data satisfies

the geometrical definition (43) of a Carroll manifold equipped with an Ehresmann connection τ .
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The fact that a null hypersurface is equipped with a Carroll structure (Carroll manifold together
with an Ehresmann connection) is actually quite general, it relies on the existence of a nowhere
vanishing vector field, transverse to the surface. This is what we show in [32]. Indeed consider a
null hypersurface N embedded in a spacetime that is one higher dimensional,M. The normal to
N , that we denote ~v, is null and therefore belongs to the tangent bundle ofN . This implies that the
rank-1 normal bundle NN is a subbundle of TN . Now suppose there exists a vector ~n, nowhere
vanishing on N , who does not belong to TN and satisfies

g(~n,~v) = 1 and g(~n, ~n) = 0, (65)

where g here is the bulk metric. Then we can define a screening distribution S(N ) canonically
isomorphic to TN/NN such that TN = S(N ) ⊕ NN . It consists of all the vectors X ∈ TN
satisfying

g(~n,X) = 0 (66)

The span of ~n defines a rank-1 subbundle of TM denoted tr(TN ) such that, for points on N ,

TM = tr(TN )⊕NN ⊕ S(N ), (67)

the ⊕’s being defined using the metric projector. Things are starting to become clear : the manifold
N is now equipped with an induced degenerate metric, the normal ~v being in the kernel of the
metric and the splitting TN = NN ⊕ S(N ) will provide the Ehresmann connection.

Consider the local coordinates xa = {ρ, u, xA} and we define xµ = {u, xA}. We now make
the assumption that N is defined through the equation ρ = cst, this implies v = −dρ (defined by
acting on ~v with the metric). The normal ~v being null, this imposes gρρ = 0, so ~v = vµ∂µ = −gρµ∂µ.
Moreover the first equation of (65) imposes nρ = −1, so ~n = −∂ρ +nµ∂µ. The nullity of ~n imposes

gρρ = 2gρµn
µ − gµνnµnν . (68)

We define τµ = gρµ − gµνnν , to write the metric as

ds2 = (2τµn
ν + gµνn

µnν)dρ2 + 2(τµ + gµνn
ν)dρdxµ + gµνdx

µdxν . (69)

We also have

vµgµν = −gρµgµν =
gρρ=0

−gρagaν = −δρν = 0,

vµτµ = −gρµgµρ =
grr=0

−gρagρa = −1,
(70)

which are exactly the consitutive relations of a Carroll structure. The metric duals to ~v and ~n are

v = −dρ and n = −τµ(nµdρ+ dxµ). (71)

We obtain
ds2 = n⊗ v + v ⊗ n+ gµν(dxµ + nνdρ)(dxν + nνdρ). (72)

The inverse of this metric is
gρρ = 0, gµρ = −vµ (73)

and gµν such that gµνgνσ = δµσ + τσv
µ. If we define h = gµν(dxµ + nνdρ)(dxν + nνdρ) we obtain

ds2
N = n⊗ v + v ⊗ n+ h, (74)

with h(~v, .) = h(~n, .) = 0, such that h is a metric on the screening distribution. The subscript N
indicates that is is evaluated on N , not induced. We now see how our Carrollian objects appear
when there exists a nowhere vanishing transverse vector ~n. We have recovered the vector ~v poin-
ting in the null direction of N , therefore belonging to the kernel of the induced metric gµνdxµdxν ,
and the splitting TN = NN ⊕ S(N ) defines the Ehresmann connection τ . There is also an extra
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vector nµ induced on N but it will not play a crucial role in what follows (for more on this object,
see [38]), it will be vanishing for Kerr.

The hypersurface being null, there is no canonical connection induced from the embedding,
but there is a way around, indeed the transverse vector ~n allows for the definition of a connection
∇N on N though,

∇MX Y = ∇NXY +B(X,Y )~n, ∀X,Y ∈ TN . (75)

The null hypersurface is therefore equipped with a strong Carroll structure.
We can now come back to the Kerr example. We can read from (62) that nµ = 0, so the

nowhere vanishing transverse vector is simply ~n = −∂ρ. The metric (63) is actually exaclty (74)
for nµ = 0. This allows also to properly identify the Carroll structure on Kerr’s null infinity (instead
of guessing it as we did before). We recall it here

~v = ∂u,

τ = −(du+ a sin2θdφ),

g = dθ2 + sin2θdφ2 = γABdx
AdxB ,

g−1 = gAB(bA∂u + ∂A)(bB∂u + ∂B),

(76)

where b = −a sin2θdφ. We can also use the transverse vector to induce a connection on I+. Its
Christoffels are simply given by the bulk Christoffel components Γµνρ evaluated on I+. The only
non-vanishing one are

Γθφφ = −cos θ sin θ and Γφθφ = cot θ. (77)

The only contribution comes from the sphere. We could now wonder if this coincides with one of
the compatible, torsionless connections (59) that we have derived ealier. We evaluate ∗Γµνσ on the
Carroll structure associated with Kerr’s null infinity (76), the only non-vanishing components are

∗ΓuAB = −∂(AbB) + bCγ
C
AB −X(AB) and ∗ΓABC = γABC , (78)

where γABC are the sphere Christoffels. When replacing bA by its value, the two first terms of ∗ΓuAB
cancel each other, so that ∗Γ coincides with the induced connection provided

X(AB) = 0. (79)

We conclude that the induced connection (75) on the null infinity of Kerr is torsionless and com-
patible with the corresponding Carroll manifold.

3 Symmetries and charges in gravity

In the previous section we have mentioned the existence of symmetry groups associated with
particular gravitational setups, such as asymptotically flat gravity in 3d or 4d. However, it could
come as a surprise that such a thing exists. Indeed the only apparent symmetry of pure gravity
is reparametrization invariance and unfortunately Noether’s theorem (or at least the one we are
taught in our first classes of mechanics) is of no help for this symmetry as one can show that
the associated currrent vanishes on shell. One is therefore tempted to conclude that all diffeo-
morphisms are pure gauge and that they carry no physical information. This would be true if
the spacetime was compact and had no boundary but we are going to see that when there is a
boundary (in our case a conformal one), the notion of surface charge can then be defined, giving
physical meaning to a particular class of diffeomorphisms i.e. the one acting non trivially on the
boundary. See [6, 7] for complete descriptions of this subject.

Consider a classical system caracterized by its Lagrangian L, functional of its fields φ(xa). For
simplicity we consider only one field, the right indices will be easy to restaure when needed. The
variation of the action w.r.t. the field is

δL =
∂L

∂φ
δφ+

∂L

∂a∂φ
δ∂aφ+ ... =

δL

δφ
δφ+ ∂aΘa. (80)
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To write the last equality we have simply used the Leibniz rule, thus defining a boundary term
in the variation, Θa, called the presymplectic potential. It is a vector, but one can associate a
corresponding (D − 1)-form using Hodge duality

Θ = Θa√−gεab1...bDdxb1 ∧ ... ∧ dxbD . (81)

One can look at the various 1st order variations δφ, δ∂aφ, etc, as a basis of the cotangent plane of
the field configuration space. In that space, the presymplectic potential is a one-form, while in the
total space (or bundle), whose basis is the spacetime and whose fibers are the field configurations,
Θ is a (D − 1, 1)-form. The field configuration space possesses a canonical exterior derivative δ
which allows to define the presymplectic form

ωωω = δΘ. (82)

It is a (D − 1, 2)-form in the total space. Now comes the fundamental theorem of the covariant
phase space formalism. Contracting the presymplectic form with a gauge transformation δξφ,
there exists a (D − 2, 1)-form kξ that satisfies the identity

ωωω(φ, δφ, δξφ) = dkξ(φ, δφ), (83)

where φ solves the equation of motion and δφ solves the linearized equations of motion, around
the solution φ. One notice that the form kξ is defined up to a total spacetime derivative. It is this
very form that will allow for the definition of charges associated with gauge transformations (in our
case diffeomorphisms). We can integrate the (D − 2)-form kξ on a boundary-less codimension 2
surface S to define

/δQξ =

∫

S

kξ(φ, δφ). (84)

It is a (D − 2, 0)-form. We expect this object to define the variation of a charge between the two
solutions φ and φ + δφ. The scalar /δQξ is a one-form in the field space, but nothing ensures that
it is the exterior derivative of a functional Qξ, hence the notation /δ. If it is actually the variation
of a functional, we say that the charges are integrable. It is now obvious that the charge Qξ is
conserved on shell if dkξ(φ, δφ) vanishes on the codimension one surface drawn by the time
evolution of S. Therefore we obtain that the charge Qξ is conserved if and only if

ωωω(φ, δφ, δξφ) = 0, (85)

where φ and δφ are on shell. In gravity, the region where this equality holds is close to the confor-
mal boundary. Indeed we are going to consider infinitesimal diffeomorphisms satisfying the equa-
tion δξφ = 0 but only in the region r = ∞, so that the associated charge will be conserved only
when evaluated at infinity. These symmetries are called asymptotic symmetries. Note that we
have now a procedure that, in principle, can associate a conserved charge to a larger class of
diffeomorphisms than the restricted case of exact Killings.

The whole subtlety of this formalism now resides in finding a good phase space, such that
the charges are well defined and that the true physical symmetries are properly counted. We
now suppose that the field space is subject to boundary conditions, e.g. fall off conditions on the
metric. We say that a diffeomorphism is allowed if it preserves the boundary conditions. Suppose,
moreover, that the boundary conditions enforce the diffeomorphism to be an asymptotic Killing,
i.e. it satisfies δξφ = 0 at r = ∞. Assuming the charge is finite and integrable, we can then
define an associated conserved charge Qξ by choosing S to be in the asymptotic region (the
celestial sphere for example). There are now two possible cases to distinguish : either the charge
is non-zero, therefore the symmetry has a true physical meaning and is really acounting for non-
equivalent solutions, or the charge vanishes and the corresponding symmetry is pure gauge (or
trivial). This distinction allows for a proper definition of the asymptotic symmetry group

Asymptotic symmetry group =
Allowed diffeomorphisms

Pure gauge transformation
. (86)
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One notice that this definition makes sense only if the spacetime possesses a boundary. This
boundary can be the asymptotic region in AdS or in flat space, but it can also be the horizon when
the phase space describes black hole solutions.

Suppose the charges are integrable, we define the following bracket for the charges

{Qχ, Qξ} = δξQχ =

∫

S

kχ(φ, δξφ). (87)

One can show that, on shell, this bracket defines a projective representation of the asymptotic
symmetry algebra

{Qχ, Qξ} = Q[χ,ξ] + Cχ,ξ(φ), (88)

up to a possible central extension C, that in principle can depend on the point φ in the field space.
We are now going to study the case of 3-dimensional gravity, AdS and flat, where all these objects
can be computed explicitly and where the flat limit is tractable. But before going further we would
like to give explicit formulae for the quantities introduced in pure gravity :

δL =

√−g
16πG

(
Rab − 1

2
Rgab − 1

`2
gab
)
δgab + ∂aΘa, (89)

where Θa is given by

Θa =

√−g
16πG

(
∇bδgab − 2∇aδgbb

)
. (90)

From there, after a lengthy computation, one can compute the (D − 2)-form kξ, we report the
result here

kξ(g, δg) =

√−g
8πG

(dD−2x)ab

(
ξa∇cδgbc − ξa∇bδg + ξc∇bδgac +

1

2
δg∇bξa − δgcb∇cξa

)
, (91)

where we have defined δg = δgaa and have used Hodge duality to define the (D − 2)-form

(dD−2x)ab =
1

2!(D − 2)!
εabc2...cDdx

c2 ∧ ... ∧ dxcD . (92)

It is this formula that we are going to use to compute charges in three-dimensional pure gravity.

4 Three-dimensional AdS gravity and its flat limit

In 3 dimensions there is no propagation of the gravitational field strength, the Weyl tensor is
identically zero. But it does not mean that the theory is trivial, it actually possesses many features
in common with 4-dimensional gravity, such as the existence of black holes, particles, gravitational
dressing. The main feature is that any solution is locally diffeomorphic to a homogeneous spa-
cetime with the corresponding constant curvature. The physics will therefore be contained in the
topological properties of the spacetime, for example, black holes in AdS3 are obtained as quotient
of the global homogeneous AdS3 solution under a Killing symmetry (see [39] for a review of three-
dimensional black holes). We would like now to define a proper phase space for 3-dimensional
gravity, we will start with the AdS case. We will then take the flat limit in the bulk and show how it
translates into an ultra-relativistic on the boundary.

4.1 Bondi gauge in AdS

We follow an algorithm that allows for the definition of a proper phase space : we firstly define
the gauge-fixing conditions for the metric called Bondi gauge, then we derive its solution space
and the variation of the latter under residual gauge diffeomorphisms. The Bondi gauge was also
used for the study of AdS3 in [40].
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4.1.1 Definition

In the Bondi gauge, the metric is given by

ds2 =
V

r
e2βdu2 − 2e2βdudr + r2e2ϕ(dφ− Udu)2, (93)

with coordinates (u, r, φ). In this expression, V , β and U are functions of (u, r, φ), and ϕ is function
of (u, φ). The three gauge-fixing conditions are

grr = 0, grφ = 0, gφφ = r2e2ϕ. (94)

Note that gφφ = r2e2ϕ is the unique solution of the determinant condition

∂r

(gφφ
r2

)
= 0, (95)

which can be generalized to define the Bondi gauge in higher dimensions.
The residual gauge diffeomorphisms ξ preserving the Bondi gauge fixing (94) have to satisfy

the three conditions

Lξgrr = 0, Lξgrφ = 0, gφφLξgφφ = 2ω(u, φ). (96)

The explicit solution of these equations is given by

ξu = f, (97)

ξφ = Y − ∂φf e−2ϕ

∫ +∞

r

∆r′

r′2
e2β , (98)

ξr = −r[∂φξφ − ω − U∂φf + ξφ∂φϕ+ f∂uϕ], (99)

where f(u, φ), Y (u, φ) and ω(u, φ) are arbitrary functions of (u, φ).

4.1.2 Solution space

We discuss the most general solution space for three-dimensional general relativity in Bondi
gauge. Interestingly, we do not have to impose any preliminary boundary condition here. This is in
contrast with the procedure followed in the Fefferman–Graham gauge, where one has to impose
fall-offs on the radial expansion of the metric. Therefore, in three dimensions, the gauge conditions
(94) are to some extent stronger than those imposed to define the Fefferman–Graham gauge.

First we impose the Einstein equations leading to the metric radial constraints. Solving Grr −
1
`2 grr = Rrr = 0 gives

β = β0(u, φ). (100)

The equation Grφ − 1
`2 grφ = Rrφ = 0 leads to

U = U0(u, φ) +
1

r
2e2β0e−2ϕ∂φβ0 −

1

r2
e2β0e−2ϕN(u, φ). (101)

Eventually, Gur − 1
`2 gur = 0 gives

V

r
= −r

2

`2
e2β0 − 2r(∂uϕ+DφU0) +M(u, φ) +

1

r
4e2β0e−2ϕN∂φβ0 −

1

r2
e2β0e−2ϕN2, (102)

where DφU0 = ∂φU0 + ∂φϕU0. Taking into account the previous results, the Einstein equation
Gφφ − 1

`2 gφφ = 0 is automatically satisfied at all orders.
We now solve the Einstein equations to get the time evolution constraints on M and N . The

equation Guφ − 1
`2 guφ = 0 returns

(∂u + ∂uϕ)N =

(
1

2
∂φ + ∂φβ0

)
M − 2N∂φU0 − U0(∂φN +N∂φϕ)

+4e2β0−2ϕ[2(∂φβ0)3 − (∂φϕ)(∂φβ0)2 + (∂φβ0)(∂2
φβ0)]. (103)
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Moreover, Guu − 1
`2 guu = 0 imposes

∂uM = (−2∂uϕ+ 2∂uβ0 − 2∂φU0 + U02∂φβ0 − U02∂φϕ− U0∂φ)M

+
2

`2
e4β0−2ϕ[∂φN +N(4∂φβ0 − ∂φϕ)]

−2e2β0−2ϕ{∂φU0[8(∂φβ0)2 − 4∂φβ0∂φϕ+ (∂φϕ)2 + 4∂2
φβ0 − 2∂2

φϕ]− ∂3
φU0

+U0[∂φβ0(8∂2
φβ0 − 2∂2

φϕ) + ∂φϕ(−2∂2
φβ0 + ∂2

φϕ) + 2∂3
φβ0 − ∂3

φϕ]

+2∂u∂φβ0(4∂φβ0 − ∂φϕ) + ∂u∂φϕ(−2∂φβ0 + ∂φϕ)

+2∂u∂
2
φβ0 − ∂u∂2

φϕ}. (104)

The solution space is thus characterized by five arbitrary functions of (u, φ), given by β0, U0,
M , N , ϕ, with two dynamical constraints expressing the time evolution of M and N . The last
two equations (103) and (104) are central. They are not very indicative but their interpretation is
actually simple. Gravitationally speaking, they are constraint equations on the boundary of the
spacetime that ensures that the bulk metric remains a solution when evolving inward radially. If
the radial coordinate is seen as a Hamiltonian time, these equations are nothing but constraint
equations on the r =∞ leaf. Now another way to look at these equations is to interpret them ho-
lographically. We will not go through all the marvelous details of the holographic correspondence
in AdS but rather try to give a flavor.

4.1.3 Holographic energy-momentum tensor

The strong statement of the duality is that the partition function of a gravitational system in
AdS with boundary conditions is exactly equal to the generating functional of CFT correlation
functions. The CFT can be thought of as leaving on the boundary of the gravitational spacetime
and the operators, whose correlation functions are generated, are sourced by the boundary value
of the bulk fields :

ZAdSgrav[φ →
r→∞

φ0] =

〈
exp

(
i

∫
φ0O

)〉

CFT

. (105)

The operator O is said to be dual to the bulk field φ. Now if the boundary value of the metric is
fixed to be g0

µν , it sources its dual operator Tµν which is nothing but the energy-momentum tensor
of the CFT. We may use a saddle point approximation for the gravity partition function such that

exp
(
iSAdSgrav[φ̃ →

r→∞
φ0]
)

=

〈
exp

(
i

∫
φ0O

)〉

CFT

, (106)

where SAdSgrav is the classical gravitational action and φ̃ a solution that asymptotes to φ0 on the
boundary. This tells us that the on-shell action of the bulk, with boundary condition φ0, acts as
a generating functional for correlation functions of an operator O in some CFT that lives in one
dimension less. Of course a lot of things are put under the rack right now, let’s just say that the
CFT is expected to be strongly coupled while the classical limit in the bulk maps to a large central
charge limit in the CFT. 3

From there we can deduce a formula for the expectation value of the energy–momentum tensor
of the boundary CFT

〈Tµν〉 =
−2√
g0
µν

δSAdSgrav

δg0
µν

. (107)

3. The most famous example of duality is between a string theory in AdS5 × S5 and a conformally invariant 4d Yang-
Mills theory (with additional fields), see [1]. The Yang-Mills theory is parametrized by two constants, its coupling λ and the
size of its gauge group SU(N), or equivalently its central charge. On the string theory side, we have the string coupling gs
and the ratio of the string tension with the AdS radius α′

L2 . The string coupling controls the loop expansion for worlsheet
diagrams, therefore taking a small gs limit is like taking a classical limit of the string theory. The string tension is inversely
proportional to the mass of the string modes, therefore asking α′

L2 to be small amounts to consider only the massless
modes of the string. We end up with a classical gravitational theory in 10d that can be compactified to give the left hand
side of (106) in AdS5. Finally on the CFT side, the small gs limit maps to a large N limit (large central charge) and the
small α′ limit maps to a strong coupling – or large λ – limit.
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The action SAdSgrav must be evaluated on a solution that asymptotes to g0
µν on the boundary. The

bare action is usually infinite and a careful treatment of the boundary counter-terms that one
has to add to regularize it is required, see [17]. This procedure is purely classical in the bulk
but hands you the expectation value of an energy-momentum tensor in a strongly coupled, large
central charge, CFT. Now changing the bulk solution amounts to changing the state on which the
expectation value is taken. Two canonical examples are : pure AdS, which preserves the maximum
of symmetries and is therefore dual to the vacuum and black hole geometries who are generically
dual to thermal states such that the temperature matches the Hawking temperature.

We now come back to three-dimensional gravity. The constraint equations (103) and (104) are
interpreted as the conservation of an energy-momentum tensor in the dual theory. A non trivial
computation allows to extract the energy-momentum tensor and rewrite the constraint equations
as

∇µTµν = 0. (108)

The boundary metric – whose Levi-Civita connection appears in the conservation – is

g0
µν =

(
− e4β0`2 + e2ϕU2

0 −e2ϕU0

−e2ϕU0 e2ϕ,

)
(109)

while the expression for Tµν in terms of M , N , ϕ, β0, U0 is

Ttt =
1

16πG`
e−4β0−2ϕ{4e8β0 [2(∂φβ0)2 − ∂φβ0∂φϕ+ ∂2

φβ0] + e4β0+2ϕ[e2β0(M − 4NU0)

−`2((∂φU0)2 + U2
0 (−8∂φβ0∂φϕ+ (∂φϕ)2 + 4∂2

φϕ) + (∂tϕ)2

+2∂φU0(U0(−4∂φβ0 + 3∂φϕ) + ∂tϕ)

+2U0(2∂2
φU0 + (−4∂φβ0 + ∂φϕ)∂tϕ+ 2∂t∂φϕ))] + e4ϕ`2U2

0 [e2β0M + `2((∂φU0)2

+U2
0 (−4∂φβ0∂φϕ+ (∂φϕ)2 + 2∂2

φϕ) + 2∂φϕ∂tU0 + ∂tϕ(−4∂tβ0 + ∂tϕ)

+2∂φU0(2U0(−∂φβ0 + ∂φϕ)

−2∂tβ0 + ∂tϕ) + 2U0(∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ(−2∂tβ0 + ∂tϕ) + 2∂t∂φϕ)

+2(∂t∂φU0 + ∂2
t ϕ))]},

Ttφ =
1

16πG`
e−4β0{2e6β0N − 2e4β0`2[∂φU0(2∂φβ0 − ∂φϕ)− ∂2

φU0 + U0(2∂φβ0∂φϕ− ∂2
φϕ)

+2∂φβ0∂tϕ− ∂t∂φϕ] + e2ϕ`2U0[−e2β0M − `2((∂φU0)2 + U2
0 (−4∂φβ0∂φϕ+ (∂φϕ)2 + 2∂2

φϕ)

+2∂φϕ∂tU0 + ∂tϕ(−4∂tβ0 + ∂tϕ) + 2∂φU0(2U0(−∂φβ0 + ∂φϕ)− 2∂tβ0 + ∂tϕ)

+2U0(∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ(−2∂tβ0 + ∂tϕ) + 2∂t∂φϕ) + 2(∂t∂φU0 + ∂2

t ϕ))]},

Tφφ =
1

16πG`
e−4β0+2ϕ{e2β0`2M + `4[(∂φU0)2 + U2

0 (−4∂φβ0∂φϕ+ (∂φϕ)2 + 2∂2
φϕ) + 2∂φϕ∂tU0

+∂tϕ(−4∂tβ0 + ∂tϕ) + 2∂φU0(2U0(−∂φβ0 + ∂φϕ)− 2∂tβ0 + ∂tϕ)

+2U0(∂2
φU0 − 2∂φβ0∂tϕ+ ∂φϕ(−2∂tβ0 + ∂tϕ) + 2∂t∂φϕ) + 2(∂t∂φU0 + ∂2

t ϕ)]}. (110)

Interestingly we have rercovered the whole solution space of the Fefferman-Graham gauge. In-
deed the latter is characterized by a boundary metric and the extrinsic curvature of the boundary
whose data is the same than the holographic energy-momentum tensor.

4.1.4 Variation of the solution space

As we explained earlier, some diffeomorphisms are expected to carry physical information, i.e.
there exists non trivial associated charges. They correspond to the allowed diffeomorphisms (or
residual diffeomorphisms) but evaluated on-shell. When doing so their action brings a solution to
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another solution. The residual gauge diffeomorphisms (97–99) evaluated on-shell are given by

ξu = f, (111)

ξφ = Y − 1

r
∂φf e

2β0−2ϕ, (112)

ξr = −r[∂φY − ω − U0∂φf + Y ∂φϕ+ f∂uϕ]

+e2β0−2ϕ(∂2
φf − ∂φf∂φϕ+ 4∂φf∂φβ0)− 1

r
e2β0−2ϕ∂φf N. (113)

Under these residual gauge diffeomorphisms, the solution space transforms in a complicated
way. The trick is to consider instead the two new objects we have introduced, g0 and T . Using the
expression for T in (110), one can check that its trace is completely determined by the boundary
metric

Tµµ =
`

16πG
R, (114)

where R is the scalar curvature of g0. This actually tells us that the dual CFT is anomalous and
one can read the conformal anomaly by matching the factor in front of R with c

24π

c =
3`

2G
. (115)

This is the famous result of Brown and Henneaux, see [18]. We conclude that the boundary tensor
T together with g0 correspond to five functions of the boundary coordinates. We also recall that
the solution space of Bondi is parametrized by M , N , ϕ, β0, U0, it is a perfect match.

We would like to compute the variation of the boundary metric and the energy-momentum
tensor under the action of the residual gauge diffeomorphisms, but before that, we define

ξt0 = f,

ξφ0 = Y,

σ = ∂φY − ω − U0∂φf + Y ∂φϕ+ f∂tϕ.

(116)

This will simplify drastically the variations of the solution space. Finally, acting with ξ on the bulk
metric, we deduce the variations of g0 and T

δξg
0
µν = Lξ0g0

µν − 2σg0
µν ,

δξTµν = Lξ0Tµν −
`

16πG

[
L∂σg0

µν − (gρλ0 L∂σg0
ρλ)g0

µν

]
.

(117)

These are the most general variations of the solution space in Bondi gauge. They are key ingre-
dients in the computation of the asymptotic charge algebra.

One can go further by imposing boundary conditions on the gravity phase space, the most
famous one is asking the boundary metric to be flat. It is like asking the spacetime of the dual field
theory to be Minkowski

g0
µν = ηµν ⇔ ϕ = 0, β0 = 0, U0 = 0. (118)

This condition reduces the symmetries of the system, indeed asking the metric to be preserved
by ξ boils down to

Lξ0ηµν − 2σηµν = 0. (119)

Taking the trace of this equation allows to express σ in terms of ξ0. The symmetry algebra is then
uniquely specified by the boundary vector ξ0 that belongs to the conformal algebra according to
(119) (it is the same equation than (26)). One can also check that the transformation of T under
ξ0 becomes exactly the usual transformation of the energy-momentum tensor in an anomalous
CFT. In this context, one can compute the charges.
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4.1.5 Virasoro Charges

With these last boundary conditions, the symmetry algebra reduces to conformal transforma-
tions of the 2d boundary. It is well know that this coincides with two copies of the Witt algebra.
Suppose the boundary coordinate are x+ and x−, such that the boundary metric becomes

g0 = 2dx+dx− = −dt
2

`2
+ dφ2 = −(dx0)2 + (dx1)2. (120)

The conformal symmetries in these coordinates are very simple, they correspond to holomorphic
and anti-holomorphic changes of coordinates

x+ → f+(x+) and x− → f−(x−). (121)

The corresponding Lie algebra is spanned by the vector fields

ξY +,Y − = Y +(x+)∂+ + Y −(x−)∂−. (122)

Now we can define the modes ξ+
n = ξeinx+ ,0 and ξ−n = ξ0,einx− , they form a basis for the Lie

algebra. One can compute their commutators and recover the usual conformal algebra in two
dimensions, the non-zero commutators ae

i[ξ+
m, ξ

+
n ] = (m− n)ξ+

m+n and i[ξ−m, ξ
−
n ] = (m− n)ξ−m+n. (123)

Before computing the charge, we should make some comments on the holographic energy-
momentum tensor , the trace condition (114) becomes

T+− = 0, (124)

while the conservation equation (108) becomes simply

∂−T++ = 0 and ∂+T−− = 0, (125)

such that the functions T++ and T−− are respectively holomorphic and anti-holomorphic. We
conclude that the holographic energy-momentum tensor satisfies all the properties that it has to
satisfy in a 2d CFT.

Using the formalism introduced in Sec. 3 we can finally compute the charges associated to the
corresponding bulk vector fields. The formula (91) for the charge 1-form gives, when integrated
on the boundary spatial coordinate

/δQξ =

∫
dφ(Y +δT++ + Y −δT−−). (126)

These charges are integrable, so we can write an absolute charge by integrating /δQξ and sub-
tracting the vacuum charge

Qξ =

∫
dφ

[
Y +

(
T++ +

`

32πG

)
+ Y −

(
T−− +

`

32πG

)]
. (127)

We can go further and compute the charge algebra. To do so we need the variations of T++ and
T−− under a bulk diffeomorphism. Using (117) we find

δξT++ = Y +∂+T++ + 2T++∂+Y
+ − `

16πG
∂3

+Y
+,

δξT−− = Y −∂−T−− + 2T−−∂−Y
− − `

16πG
∂3
−Y
−.

(128)

The first two terms in the transformations are nothing but the homogeneous action of a conformal
transformation on a CFT energy-momentum tensor while the last term is due to the anomaly (in
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the finite form of this transformation, it would coincide with the Schwarzian derivative). We can
now compute the charge algebra for the bracket (88). We define the modes

Y+
n =

∫
dφ

(
T++ +

`

32πG

)
einx

+

and Y−n =

∫
dφ

(
T−− +

`

32πG

)
einx

−
, (129)

and find the algebra

i{Y+
m,Y+

n } = (m− n)Y+
m+n +

c

12
(m2 − 1)mδm+n,0,

i{Y−m,Y−n } = (m− n)Y−m+n +
c

12
(m2 − 1)mδm+n,0.

(130)

These are the usual two copies of a Virasoro algebra, where the central extension is the same for
both right and left movers and equal to 3`

2G .
Before going further, we would like to point out that the surface charges we have obtained can

be written nicely in covariant way

Qξ =

∫
dφnµJ

µ, (131)

where we have defined the following objects

Jµ = T µρ ξρ0 , n = `−1dt and Tµν =

(
T++ + `

32πG 0
0 T−− + `

32πG .

)
(132)

We recognize the Noether charge on the boundary. This is consistent with the holographic prin-
ciple that sates that gauge symmetries in the bulk correspond to global symmetries on the boun-
dary. It is a charge usually associated to a Killing symmetry or a conformal one. This charge is
time-independent if the current Jµ is conserved. In our case it is conserved for three reasons : the
energy-momentum is conserved, symmetric and the vector ξ0 is a conformal symmetry. Indeed

∂µJ
µ = (∂µT µρ )ξρ0 + T µρ (∂µξ

ρ
0). (133)

The first term vanishes due to the conservation of T , while the symmetry of T allows to replace
the derivative of ξ0 by its symmetric version

∂µJ
µ = T µρ∂(µξ

0
ρ) =

1

2
(∂νξ

ν
0 )T µµ = 0, (134)

where we have used the tracelessness of T for the last equality. We finally show that the charge
is conserved

∂0Qξ =

∫
dφ ∂0J

0 = −
∫
dφ ∂φJ

φ = 0 + corner term (135)

The conservation relies therefore on boundary conditions along the angular direction, for example
it can be compact or if it is not, one can ask the current to be non zero only on a compact support.

4.1.6 Generic boundary metric

When the boundary is not flat, i.e. when g0 is sourced one can also find a covariant formula
for a conserved charge. Indeed suppose there exists a family of spacelike hypersurfaces Σλ on
the boundary (here there are simply lines) and a covariantly conserved current J . We denote the
normalized normal to Σλ by nλ, then the conserved charge is given by

Qλξ =

∫

Σλ

√
hnλµJ

µ, (136)

where h is the metric induced on Σλ. The conservation follows from Gauss theorem, indeed
consider the difference between the value of the charge at λ1 and λ2, from Gauss law we obtain

Qλ1

ξ −Qλ2

ξ =

∫

Σλ1

√
hnλ1

µ J
µ +

∫

Σλ2

√
h (−nλ2

µ )Jµ =

∫

V

√
−g0∇µJµ = 0, (137)
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where we have used the fact that the two line Σλ1
and Σλ1

are the boundary of a volume that
we call V . We conclude that if we are able to build such a current when the boundary metric is
sourced it will also define a conserved charge. Consider again the current associated to the vector
field ξ0

Jµ = Tµρ ξ
ρ
0 , (138)

where T is the energy-momentum tensor for generic value of ϕ, β0 and U0, reported in Eq. (110).
Now we suppose that we are on-shell and that we ask the boundary metric to be preserved. From
(117) we deduce

Lξ0g0
µν − 2σg0

µν = 0. (139)

Taking the trace of this equation fixes σ in terms of ξ0, while ξ0 is asked to be a conformal Killing
of the boundary metric. One can wonder if the current J is then conserved :

∇µJµ = (∇µTµρ )ξρ0 + Tµρ (∇µξρ0) =
1

2
∇ρξρ0 Tµµ . (140)

Again, we have used that T is conserved on-shell and that ξ0 is a conformal Killing of g0. The only
problem this time is that, the boundary metric being non trivial, the second equation of motion
(114) gives a non-zero value to the trace of T . On the boundary this is interpreted as a conformal
anomaly and the current J is generically not conserved

∇µJµ =
`

32πG
∇ρξρ0 R. (141)

We conclude that when the boundary metric is not flat, the Noether charge is generically not
conserved and the non conservation is sourced by the boundary scalar curvature, due to the
conformal anomaly. Nevertheless, one should note that the Noether charge for exact Killings ξ0 is
conserved, since in that case ∇ρξρ0 = 0. It would be interesting to study the surface charges with
these boundary conditions. The answer should be found in [41], this is under investigation.

4.2 Flat limit

In this section we would like to take the flat limit, i.e. ` → +∞, of our construction in AdS.
We will insist on the boundary structure that emerges when taking this limit. Its interpretation will
be that of a Carrollian geometry while the asymptotic symmetries will be shown to isomorphic to
conformal symmetries of this geometry.

4.2.1 Solution space

The full solution space in Bondi gauge for vanishing cosmological constant can be readily
obtained by taking the flat limit of the solution space obtained in section 4.1.2 for non-vanishing
cosmological constant. In practice, we take `→∞ in the equations. The equation Grr = 0 gives

β = β0(u, φ) (142)

Solving Grφ = 0 leads to

U = U0(u, φ) +
1

r
2e2β0e−2ϕ∂φβ0 −

1

r2
e2β0e−2ϕN(u, φ). (143)

Solving Gur = 0 gives

V

r
= −2r(∂uϕ+DφU0) +M(u, φ) +

1

r
4e2β0e−2ϕN∂φβ0 −

1

r2
e2β0e−2ϕN2, (144)
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where DφU0 = ∂φU0 + ∂φϕU0. Taking into account the previous results, the Einstein equation
Gφφ = 0 is satisfied at all orders. Finally, we solve the Einstein equations giving the time evolution
constraints on M and N . The equation Guφ = 0 gives

(∂u + ∂uϕ)N =

(
1

2
∂φ + ∂φβ0

)
M − 2N∂φU0 − U0(∂φN +N∂φϕ)

+4e2β0e−2ϕ[2(∂φβ0)3 − (∂φϕ)(∂φβ0)2 + (∂φβ0)(∂2
φβ0)], (145)

whereas Guu = 0 results in

∂uM = (−2∂uϕ+ 2∂uβ0 − 2∂φU0 + U02∂φβ0 − U02∂φϕ− U0∂φ)M

−2e2β0e−2ϕ{∂φU0[8(∂φβ0)2 + (∂φϕ)2 − 4∂φβ0∂φϕ+ 4∂2
φβ0 − 2∂2

φϕ]

−∂3
φU0 + U0[∂φβ0(8∂2

φβ0 − 2∂2
φϕ) + 2∂3

φβ0 − ∂3
φϕ+ ∂φϕ(−2∂2

φβ0

+∂2
φϕ)] + 2∂u∂φβ0(4∂φβ0 − ∂φϕ) + ∂u∂φϕ(−2∂φβ0 + ∂φϕ)

+2∂u∂
2
φβ0 − ∂u∂2

φϕ}. (146)

These last two equations are obtained by taking the ` → ∞ limit of their AdS counterpart (103)
and (104). The solution space is thus characterized by five arbitrary functions of (u, φ), given by
β0, U0, M , N , ϕ, with two dynamical constraints given by the time evolution equations of M and
N . It is exactly the same thing than in AdS, the only things that have changed are that Vr has lost
one term and the second conservation equation has been simplified. In practice, the flat limit is
very simple to implement, but it changes a lot the interpretation of the boundary structure. Indeed,
the boundary metric is now degenerate, due to the missing term in V

r . As expected the conformal
boundary is a null hypersurface : it is the null infinity. Moreover the two conservation equations
cannot be interpreted anymore as the conservation of an energy-momentum tensor. Of course,
the answer resides in this limit we have taken and the fact that it maps to an ultra-relativistic limit
on the boundary.

4.2.2 From the null infinity to the bulk

Instead of taking the flat limit, one can try to start from a Carroll structure on the boundary,
here the null infinity, and try to build a corresponding bulk Ricci-flat solution. This construction is
based on a paper with Luca Ciambelli, Marios Petropoulos and Romain Ruzziconi, soon to be
published. We recall that a generic Carroll structure was defined in 2.5 in the following way

vµτµ = −1, gµνv
µ = 0, gµνg

νρ = δρµ + τµv
ρ and gµντν = 0. (147)

We recall that xµ = u, φ. We introduce the vielbein τ? and the inverse vielbein v? for the degene-
rate metrics gµν and gµν , such that the constitutive relations become

τ(v) = −1, τ?(v?) = 1, τ?(v) = 0 and τ(v?) = 0. (148)

The metric and its pseudo inverse are related to τ? and v? via

gµν = τ?µτ
?
ν and gµν = vµ? v

ν
? . (149)

We define the Carrollian expansions θ and θ? via

dτ? = θ τ? ∧ τ and dτ = θ? τ? ∧ τ, (150)

or with the Lie bracket of the vectors

[v, v?] = θ?v − θv?. (151)

We define the connection
A = θ?τ? − θτ, (152)
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and its scalar curvature
s = ?dA = v(θ?)− v?(θ), (153)

where we have defined the the ? operator by its action on vectors and forms

(?w)µ = Dεµνwν , (?ω)µ = −D−1εµνων , D = |εµντµτ?ν |. (154)

With these definitions we have
v? = ?τ and v = ?τ?. (155)

Since we do not have a non-degenerate spacetime metric, the notion of Hodge duality has to
be modified. Without the metric we loose the isomorphism between forms and vectors and the
density

√−g that allows to define our usual notion of Hodge duality. The ? operator maps vectors
to forms and forms to vectors, while its density is built out of the two vielbeins of the Carroll
structure.

This concerns the boundary geometry part. Now one would want to introduce the equivalent
of a boundary energy-momentum tensor and write its conservation equations, in order to map
them to the constraint equations of the flat Bondi gauge. Remember that in the relativistic case,
the energy-momentum tensor had two degrees of freedom since it is symmetric and the trace was
fixed by the scalar curvature. We suppose that it is the same in the flat case, that there exists two
quantities ε(u, φ) and q(u, φ) that are the Carrollian equivalent of an energy-momentum tensor.
We call them Carrollian momenta. The quantities ε and q should be interpreted respectively as an
energy density and a momentum flow.

We would like to write conservation for these quantities when they are coupled to the Carroll
structure (148). For the moment we will just postulate them, later on we will explain how they can
be recovered from an ultra-relativistic limit. The two conservation equations are

(vµ∂µ + 2θ)ε+
1

4πG
(vµ? ∂µ + 2θ?)s = 0,

(vµ? ∂µ + 2θ?)ε+ (vµ∂µ + 2θ)q = 0.
(156)

These equations are the Carrollian equivalent of the conservation of Tµν on the boundary of AdS.
The vector v belongs to the kernel of the spatial metric, therefore vµ∂µ should be interpreted as
a time derivative, while vµ? ∂µ is a spatial derivative. The first equation relates the time evolution
of the energy density to the curvature of the Carroll structure and the second one related the
gradient of energy density to the time evolution of the momentum flow. It is these two equations
that are expected to be the same one as (145) and (146). One should remark how compact and
enlightening they are compared to the Bondi ones.

In Bondi AdS, a bulk metric on-shell is entirely characterized by a boundary metric and an
energy-momentum tensor that is conserved and satisfies the trace condition. We expect the same
to happen in Bondi flat : the knowledge of a Carroll structure on the null infinity and the Carrol-
lian momenta should define the bulk metric. This is materialized by the following reconstruction
formula

ds2 = 2 τ ⊗ (dr + rA) + r2τ? ⊗ τ? + 8πGτ ⊗ (ετ + qτ?). (157)

This automatically satisfies Rrr = vµRµr = vµ?Rµr = 0. However, the remaining components of
the bulk Ricci tensor vµvνRµν , vµ? vν?Rµν and vµ? vνRµν vanish if and only if the Carrollian conserva-
tions (156) are satisfied. This is satisfying, we have found a reconstruction formula that associates
a Ricci-flat metric to any Carroll structure together with Carrollian momenta satisfying our conser-
vation equations.

This is not the end since we have not given the dictionary between the solution space of Bondi
gauge and this reconstruction formula. Before doing so we should make a counting of degrees
of freedom. In Bondi, the solution space was parametrized by five functions of the boundary
coordinates : β0, U0, M , N and ϕ. In the reconstruction formula we have ε, q, τ and τ?, which
corresponds to six functions. All the other geometrical objects, v, v?, θ and θ? can be written in
terms of τ and τ?. We conclude that we need to impose a condition on the Carrollian data to really

28



be in one-to-one correspondence with Bondi gauge. This condition can be deduced from the fact
that there is no (rφ)-components in Bondi gauge. Which corresponds to

τφ = 0 (158)

We now write the dictionary between the Carrollian data and the Bondi ones

τ = −e2β0du, τ? = eϕ(dφ− U0du), (159)

and the Carrollian momenta are

8πGε = e−2β0M + 4e−2ϕ(∂φβ0)2,

4πGq = −e−ϕN.
(160)

This result is quite satisfying as it allows to understand the solution space of the flat Bondi gauge in
terms of a robust boundary structure, exactly like in AdS. It also simplifies greatly the expressions
for the bulk metric and the conservation equations.

The last thing to do is to write the asymptotic Killings in terms of our Carrollian data and their
transformations. The asymptotic Killings of the flat Bondi gauge are the same ones than in the
AdS case (111), (112) and (113). We make the same redefinition of the Killing data than we did in
the AdS case

ξt0 = f,

ξφ0 = Y,

σ = ∂φY − ω − U0∂φf + Y ∂φϕ+ f∂tϕ.

(161)

Moreover we define the vector
ξ1 = (Lξ0τ(v?)) v?, (162)

This rewriting therefore trades the functions f , Y and ω for three new functions : a vector ξ0 and a
scalar σ. We have introduced the vector ξ1 to lighten the formula but it is entirely specified by our
three new Killing pieces of data and the Bondi fields. The Killing (111), (112) and (113) becomes

ξµ = ξµ0 +
1

r
ξµ1 ,

ξr = −rσ + d†ξ1 −
4πG

r
qτ?(ξ1).

(163)

where we have defined the divergence operator associated to our Hodge : for a vector w the
divergence is d†w = ? d ? w = −(∂µ + ∂µ logD)wµ. We also rewrite the transformations of M ,
N , β0, U0 and ϕ under the Killing as transformations of τ , τ?, ε and q . The boundary geometry
transforms as

δξτ
? = Lξ0τ? − στ?,

δξτ = h,
(164)

where h is a one-form defined by 4

hu =
D
τ?φ

(Lξ0 logD − Lξ0τ?(v?)− σ) , hφ = 0. (165)

While the variations of the Carrollian momenta are

δξε = Lξ0ε+ 2σε− 1

4πG

[
Lξ1A(v)− θLξ1τ(v) + (v + θ)(d†ξ1)

]
,

δξq = Lξ0q + 2σq + 2τ?(ξ1)ε+
1

4πG

[
Lξ1A(v?)− θ?Lξ1τ(v) + (v? + θ?)(d†ξ1)

]
.

(166)

4. The function D is a density, therefore its Lie derivative has an additional divergence term : Lξ(0) logD =

ξa
(0)
∂a logD + ∂aξa(0).
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It is clear form these transformations that ξ0 correspond to a diffeomorphism on the boundary
while σ is a Weyl transformation. The terms proportional to 1

4πG are the Carrollian equivalent
of the anomalous part in the transformation of the energy-momentum tensor in AdS. From the
transformation of τ? we can deduce the transformation of the boundary degenerate metric

δξgµν = Lξ0gµν − 2σgµν , (167)

which is exactly the same transformation as the one found for the boundary metric in AdS (139).

4.2.3 BMS charges

Finally, we can impose an equivalent of the Brown-Henneaux boundary condition, which consists
in imposing the boundary geometry to be flat

τ? = dφ and τ = du. (168)

In terms of the Bondi data it corresponds to asking ϕ, U0 and β0 to vanish. This boundary condition
must be preserved by the asymptotic Killings, the first equation of (165) tells us that ξ0 must be a
conformal transformation of τ?, this imposes

∂φξ
φ
0 = σ, ∂uξ

φ
0 = 0. (169)

While asking τ to be unchanged imposes ∂uξu0 = ∂φξ
φ
0 . The bulk Killings are therefore entirely

specified by the following boundary vector

ξ0 = (∂φY (φ)u+ T (φ))∂u + Y (φ)∂φ, (170)

for any functions T and Y . We recover the BMS3 algebra that we first described in 2.3. This
algebra coincides with the conformal symmetries of the boundary Carroll manifold, i.e. the null
infinity equipped with the vector v = ∂u and the degenerate metric g = (τ?)2 = dφ2. If the angular
coordinate describes a circle, the corresponding group is

Diff(S1) n C∞(S1). (171)

Now a subgroup of this group is SL(2,R) n T , where T corresponds to the translations in 3d,
i.e. the functions T than turn on only the three first harmonics of the circle. While the SL(2,R)
part corresponds to the two boosts and the rotation, i.e. the Lorentz group. At the level of the
algebra, they also correspond to generators that turn on only the first three harmonics. In 3d, the
asymptotic symmetry is also an infinite-dimensional extension of the Poincaré group. The main
difference being that the Lorentz part of the group receives also an infinite extension, it is now the
infinite dimensional Virasoro group. The corresponding transformations are called superrotations.
The consequences of this symmetry are deep for three-dimensional asymptotically flat gravity and
were extensively studied in [42].

It is satisfying to observe that both in AdS and in flat space, imposing on the phase space that
the boundary geometry is trivial (Minkowski 2d in AdS and flat Carroll manifold in flat space) lead
to an asymptotic symmetry algebra that is isomorphic to the conformal algebra of the correspon-
ding boundary geometry. It turns out to be also the case in four dimensions when similar boundary
conditions are imposed [43, 44]. The only difference is that the asymptotic symmetry group in AdS
is finite-dimensional, it is the three-dimensional conformal group, while in flat space it is the BMS4

group, which is infinite dimensional but corresponds indeed to the conformal symmetries of the
Carroll manifold v = ∂u and g = dθ2 + sin2θdφ2. We should point out that an AdS version of the
BMS group in 4d was found in [45].

With these conditions on the boundary geometry, the Carrollian conservation equations be-
come very simple

∂uε = 0,

∂φε+ ∂φq = 0.
(172)
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The solution is ε(u, φ) = ε0(φ) and q(u, φ) = −∂φε0(φ) + q0(φ). Now one can also compute the
gravitational charges associated to the BMS generators, this was done in [13] and using the
dictionary established earlier in Eq. (160), we can write them in terms of the Carrollian data. With
our boundary conditions they are integrable and their integrated version is

Qξ =
1

2

∫
dφ

(
T (φ)

(
ε0(φ) +

1

8πG

)
− Y (φ)q0(φ)

)
. (173)

We have already shifted ε0 in order to absorb a trivial central charge. The conservation of this
charge is obvious since it depends explicitly only on φ. We can do the same thing than in AdS and
expand these charges into modes

Pn =
1

2

∫
dφ einφ

(
ε0 +

1

8πG

)
, Jn = −1

2

∫
dφ einφq0. (174)

The transformations of ε0 and q0 under a BMS transformation are

δξε0 = 2ε0Y
′ + Y ε′ +

Y ′′′

4πG
,

δξq0 = 2q0Y
′ + Y q′0 − 2T ′ε0 − Tε′0 +

T ′′′

4πG
.

(175)

The third derivative terms in the transformations are going to produce a non-trivial central charge
in the algebra. Indeed, we obtain

i{Jm, Jn} = (m− n)Jm+n, i{Jm, Pn} = (m− n)Pm+n +
c

12
m(m2 − 1)δm+n,0 ,

i{Pm, Pn} = 0,
(176)

with c = 3/G. This central charge is the equivalent of the Brown-Henneaux central charge in
asymptotically flat spacetimes.

4.2.4 Ultra-relativistic limit

Until now, we have studied the asymptotically flat case without referring to a flat limit. We
would like now to understand the flat limit from a boundary perspective. We have postulated the
Carrollian conservation equations, and the the Ricci-flat Einstein equations match indeed with
these two equations for the corresponding metric ansatz (157). But we can also recover them
through a flat limit. In AdS, they clearly correspond to the conservation of the energy-momentum
tensor

∇µTµν = 0. (177)

Therefore it is this equation that we should take the limit of. The boundary data in AdS consist
of a metric g0

µν and an energy-momentum tensor Tµν . Instead, we can consider a vielbeins and
decompose the energy momentum tensor in this basis. Following my paper [30], we write the
metric as

g0 = `2ηiju
iuj , (178)

where we define u0 = u and u1 = u?, such that the metric, in coordinates becomes

g0
µν = `2(−uµuν + u?µu

?
ν). (179)

With the help of this Cartan basis, we can write the energy-momentum tensor in terms of three
scalars, ε̃, χ̃ and τ̃ . They correspond to all the independent components of a symmetric tensor in
2d. We define the energy-momentum tensor as follows

Tµν = `2(ε̃uµuν + χ̃uµu
?
ν + χ̃u?µuν + ε̃u?µu

?
ν + τ̃u?µu

?
ν). (180)
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We know that in AdS, the trace of the energy momentum tensor is fixed by the curvature of the
boundary geometry

R = 2`2(Θ2 −Θ2
? + ~u(Θ)− ~u?(Θ?)), (181)

where ~u and ~u? is a dual basis, satisfying

u(~u) = − 1

`2
, u?(~u?) =

1

`2
, u(~u?) = 0, u?(~u) = 0. (182)

We have also defined the corresponding expansions by computing the exterior derivatives of the
Cartan basis

du? = `2Θ u? ∧ u, du = `2Θ? u? ∧ u. (183)

We conclude that the trace, which corresponds to τ must be

τ =
R

8πG
. (184)

We are left with the two parameters ε̃ and χ̃. Finding their expressions to recover the Carrollian
conservation equations (156) is a little bit tricky so we will just spell out the result. We parametrize
them in the following way

ε̃ = ε+
`2

8πG
(~u(Θ) + ~u?(Θ?))−

R

16πG
,

χ̃ = χ− `2

4πG
~u?(Θ),

(185)

This is just a reparametrization of the two independent components of the energy–momentum
tensor. Now the main point of this section is that if we impose particular scalings for u, u?, ε and χ
(consistent with the their scaling when written in terms of AdS Bondi data) and we take the `→∞
limit of (177), we recover the Carrollian conservations (156). The scalings are

τ = lim
`→∞

`2u,

τ? = lim
`→∞

`u?,

ε = lim
`→∞

ε,

q = lim
`→∞

`χ.

(186)

With these scalings, the boundary metric becomes degenerate in the limit

g0 = `2(−u2 + (u?)2) →
`→∞

(τ?)2, (187)

and coincides exactly with the Carrollian degenerate boundary (149). Exactly like for the flat Bondi
gauge, all the new pieces of data, ε, χ, u and u? can be matched with the five functions parame-
trizing the solution space of AdS Bondi while the bulk metric can be rewritten in terms of these
new objects. To achieve a true bijection between the solution spaces, it is also necessary to fix
the φ-component of u at zero.

4.2.5 Carrollian charges

Earlier we have obtained the gravitational charges for the boundary conditions τ? = dφ and
τ = du. We notice that they can be written as

Qξ =
1

2

∫
dφ
(
ξu0 ε− ξφ0 q

)
, (188)
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in terms of the Carrollian momenta and the boundary vector field that uniquely specifies the
asymptotic Killing in that case. This looks very similar to the formula (131). Indeed, consider
the following energy-momentum tensor

Tµν =
1

2

(
ε q
0 ε

)
. (189)

The charges becomes

Qξ =

∫
dφ ξµ0 T

0
µ , (190)

which looks like a Noether charge again. The only difference is that the vector field is now a
Carrollian conformal Killing, so the true reason for this charge to be conserved has changed. This
is what we would like to understand now. It will be instructive to consider curved Carroll structure
to study in more details the notion of Carrollian charge, but doing it in full generality is slightly
heavy so we are going to consider a specific (but natural) class of Carroll structure. This analysis
is based on my paper [29].

Consider the following parametrization for the boundary geometry

τ = −Ωdu+ bdφ, τ? =
√
adφ, (191)

where Ω, b and a all depend on both u and φ. The corresponding vectors are

v = Ω−1∂u, v? =
1√
a

(∂φ +
b

Ω
∂u) ≡ 1√

a
∂̂φ. (192)

One can check that they satisfy the defining relations (148). This Carroll structure cannot be
captured by the Bondi case since in the Bondi gauge we have τφ = 0. The degenerate metric is
purely spatial

(τ?)2 = adφ2, (193)

and can be used to raise and lower spatial indexes :

wφ = awφ, wφ = a−1wφ. (194)

With this parametrization, the Carrollian conservation equations becomes

(Ω−1∂u + 2θ)ε+
1

4πG
(∂̂φ + 2

√
aθ?)(

√
as) = 0,

(∂̂φ + 2
√
aθ?)ε+ (Ω−1∂u + θ)(

√
a q) = 0,

(195)

where the values for the expansions and the scalar curvature are (these objects were defined in
Sec. 4.2.2)

θ = Ω−1∂u log
√
a,

√
aθ? = Ω−1(∂φΩ + ∂ub),
√
as = Ω−1∂u(

√
aθ?)− θ√aθ? − ∂̂φθ.

(196)

All these objects measure the "curvature" of the Carroll structure. The first one is interpreted as an
expansion of the spatial metric. The second one and third one are harder to interpret physically.
We recall that s is the scalar curvature associated with the Carrollian connection A introduced in
Eq. (152). The only thing to understand is that there are two classes of objects in these Carrollian
conservation equations. The one characterizing the geometry : Ω, b, a, θ, θ?, s and the Carrollian
momenta ε and q. Now we observe that s sources the time evolution of ε in the first equation. When
considering the flat geometry, this term vanishes, we can then interpret (195) as the conservation
of the tensor (189) and the corresponding charges are conserved. We are going to show that
when s 6= 0, the ultra-relativistic equivalent of the Noether charge is not conserved anymore.
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We would like to build an equivalent of the covariant charge (136) in the Carrollian case. The
simplest thing to do is to compute its ultra-relativistic limit using the scalings we have found in the
previous section. This is what we do and we find

Qξ =
1

2

∫
dφ
√
a
(

(Ωξu0 − 2bξφ0 )ε− ξφ0
√
aq
)

+
1

8πG

∫
dφ
√
a(Ωξu0 − 2bξφ0 )b

√
as. (197)

The first thing to notice is that for a flat Carroll structure, which corresponds to the values Ω = 1,
a = 1 and b = 0, the first term coincides with the BMS charge (188), while the second term
vanishes. The conservation (or not) of this charge is far from obvious since all the fields depend
both on u and φ. In AdS, things were simple thanks to the covariance of the formulae.

We would like to know if this charge is conserved or not when ξ0 is a conformal Killing of
the Carroll manifold g = adφ2, v = Ω−1∂u and when the conservation equations are satisfied,
i.e. when we are on-shell (exactly like in AdS where we assumed that the vector field was a
conformal Killing of the boundary metric and the energy-momentum tensor was conserved). The
computation is easy but lengthy. Asking ξ0 to be a conformal Killing imposes three differential
equations

ξu0 ∂uΩ + ξφ0 ∂φΩ + Ω∂uξ
u
0 = σΩ,

∂uξ
φ
0 = 0,

ξu0 ∂ua+ ξφ0 ∂φa+ 2a∂φξ
φ
0 = 2σa

(198)

Using these equations, the conservation (195) and many integrations by part, we finally obtain

∂uQξ ∝
∫
dφ
√
a
(
∂̂φ(Ωξu0 − bξφ0 )−√aθ?(Ωξu0 − bξφ0 )

)√
a s. (199)

We observe that the only thing that is responsible for the non-conservation is this function s
that we interpret as a scalar curvature of the Carroll structure in 4.2.2. It is exactly like in AdS
where the covariant Noether charge was also not conserved and the scalar curvature R was
responsible. It would be interesting to investigate the relationship between the Noether charges
for a sourced Carroll structure and the gravitational charges associated with the corresponding
bulk metric (157).

4.2.6 The parameter τφ

We have shown that if we want to recover the entire solution space of Bondi gauge in flat space,
it is sufficient to consider a boundary Carroll structure with an Ehresmann connection satisfying
τφ = 0. A natural question to ask is : what happens when τφ 6= 0 ? If we believe that the solution
space of Bondi gauge contains all possible solutions of three-dimensional Ricci-flat gravity then
it should mean that τφ is not a real parameter : it is pure gauge and can always be removed by
a diffeomorphism that does not affect the charges. If not then this parameter will carry physical
meaning and holding it fixed but non zero could define a family of non equivalent phase spaces for
three-dimensional gravity. In our future publication, we show that all the solution spaces defined by
different values of τφ can be reached by acting with a diffeomorphism on the Bondi solution space.
Future directions of research include finding a proper gauge fixing procedure in three dimensions
in which this parameter arises naturally, computing the asymptotic symmetries and derive the
corresponding charges.

5 Relativistic and Carrollian conformal hydrodynamics

This section is an introduction to the relativistic dynamics of conformal fluid and its ultra-
relativistic limit. In both cases, we describe the building blocks necessary to the description of
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a fluid and the geometry to which it couples. The latter is simply a pseudo-Riemannian manifold
in the relativistic case, while the ultra-relativistic fluid couples to a Carrollian geometry readily ob-
tained as the c → 0 limit of its relativistic counterpart. The Carrollian fluid dynamics was derived
in full generality (together with its Galilean counterpart), in any dimension, in my paper [27]. Here
we study only the three-dimensional case that will be of central importance when we describe the
flat version of fluid/gravity correspondence in bulk-four dimensions.

5.1 Relativistic hydrodynamics

In hydrodynamics the physics is not described with the usual Lagrangian picture. The action
and its equations of motion are traded for local conservation laws that are supposed to capture
all the essential dynamics. Quantities such as the energy density, the momentum flow, the stress,
the number of particle, the electric charges, etc, can be subject to these conservation laws. The
minimum of ingredients for a fluid with no particular symmetry are the energy density ε(x), the
density of pressure p(x) and the fluid velocity, which is a time-like congruence satisfying uµuµ =
−c2. The energy-momentum tensor is then written as

Tµν = (ε+ p)
uµuν
c2

+ pgµν + τµν +
uµqν
c2

+
uνqµ
c2

, (200)

where τµν and qµ are respectively the viscous stress tensor and the heat current. They are purely
transverse

uµτµν = 0, uµqµ = 0, qν = −εuν − uµTµν . (201)

Now for a given normalized time-like congruence, one can always decompose a symmetric tensor
as we just did. The main difference here is that τµν and qµ are not going to be considered as
independent variables. They are going to be written in terms of spacetime derivatives of p, ε and
the fluid velocity : they are the fluid’s dissipative terms. Doing so, the dynamics is then entirely
capture by the conservation of the energy-momentum tensor

∇µTµν = 0, (202)

and an equation of state p(T ) which relates the pressure and the temperature.
We are going to study holographic fluids, i.e. fluids whose energy-momentum tensor coincide

with the holographic energy-momentum tensor of the corresponding AdS solution, therefore it will
be sufficient to consider conformal fluids. For the latter, the equation of state relates the energy
density and the pressure in a very simple way

ε = 2p. (203)

Moreover, the stress tensor is traceless τµµ . These two equations follow simply from the fact that
the energy-momentum tensor must be traceless for a conformal fluid

Tµµ = 0. (204)

We should comment on the fact that this is true only for even bulk dimension. In odd number of
dimensions there is a conformal anomaly that should be taken into account.

The order of expansion in hydrodynamics is the number of derivatives of the fields, it is assu-
med that every quantities is slowly varying. In principle, at each order in perturbation, the tensors
built out of derivatives of ε and uµ can be classified but it becomes rapidly tedious. As an example
we can give the most generic first order fluid. It is characterized by three quantities : η and ζ that
are the shear and bulk viscosities, and κ the thermal conductivity. They appear in the dissipative
tensors in the following way

τ(1)µν = −2ησµν − ζhµνΘ, (205)

q(1)µ = −κh ν
µ

(
∂νT +

T

c2
aν

)
, (206)
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where hµν is the projector onto the space transverse to the velocity field :

hµν =
uµuν
k2

+ gµν , (207)

and 5

aµ = uν∇νuµ, Θ = ∇µuµ, (208)
σµν = ∇(µuν) + 1

c2u(µaν) − 1
2Θhµν , (209)

ωµν = ∇[µuν] + 1
c2u[µaν], (210)

are the acceleration (transverse), the expansion, the shear and the vorticity (both rank-two tensors
are transverse and traceless).

It is customary to introduce the vorticity two-form

ω =
1

2
ωµν dxµ ∧ dxν =

1

2

(
du +

1

c2
u ∧ a

)
, (211)

as well as the Hodge–Poincaré dual of this form, which is proportional to u (we are in 2 + 1
dimensions) :

cγu = ?ω ⇔ cγuµ =
1

2
ηµνσω

νσ, (212)

where ηµνσ =
√−gεµνσ. In this expression γ is a scalar, that can also be expressed as

γ2 =
1

2c4
ωµνω

µν . (213)

In three spacetime dimensions and in the presence of a vector field, one naturally defines a
fully antisymmetric two-index tensor as

ηµν = −u
ρ

c
ηρµν , (214)

obeying
ηµση

σ
ν = hµν . (215)

With this tensor the vorticity reads :
ωµν = c2γηµν . (216)

5.2 Weyl covariance, Weyl connection and the Cotton tensor

The fluid we are considering is conformal. This means that we assume that the fluid corres-
ponds to the effective theory emerging from a CFT in three dimensions. This means that the whole
description must be covariant under a Weyl rescaling. This will be our guideline when we write
dynamical equations or dissipative tensors. We recall that a Weyl rescaling is a transformation of
the metric

ds2 → ds2

B2
, (217)

At the same time, uµ is traded for uµ/B (velocity one-form), ωµν for ωµν/B (vorticity two-form) and
Tµν for BTµν see [20]. As a consequence, the pressure and energy density have weight 3, the
heat-current qµ weight 2, and the viscous stress tensor τµν weight 1.

Covariantization with respect to rescaling requires to introduce a Weyl connection one-form : 6

A =
1

c2

(
a− Θ

2
u
)
, (218)

5. Our conventions for (anti-) symmetrization are : A(µν) = 1
2

(Aµν +Aνµ) and A[µν] = 1
2

(Aµν −Aνµ).
6. The explicit form of A is obtained by demanding Dµuµ = 0 and uλDλuµ = 0.
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which transforms as A → A − d logB. Ordinary covariant derivatives ∇ are thus traded for Weyl
covariant ones D = ∇+wA, w being the conformal weight of the tensor under consideration. We
provide for concreteness the Weyl covariant derivative of a weight-w form vµ :

Dνvµ = ∇νvµ + (w + 1)Aνvµ +Aµvν − gµνAρvρ. (219)

The Weyl covariant derivative is metric with effective torsion :

Dρgµν = 0, (220)
(DµDν −DνDµ) f = wfFµν , (221)

where
Fµν = ∂µAν − ∂νAµ (222)

is Weyl-invariant.
Commuting the Weyl-covariant derivatives acting on vectors, as usual one defines the Weyl

covariant Riemann tensor

(DµDν −DνDµ)V ρ = RρσµνV
σ + wV ρFµν (223)

(V ρ are weight-w) and the usual subsequent quantities. In three spacetime dimensions, the cova-
riant Ricci (weight 0) and the scalar (weight 2) curvatures read :

Rµν = Rµν +∇νAµ +AµAν + gµν
(
∇λAλ −AλAλ

)
− Fµν , (224)

R = R+ 4∇µAµ − 2AµA
µ. (225)

The Weyl-invariant Schouten tensor 7 is

Sµν = Rµν −
1

4
Rgµν = Sµν +∇νAµ +AµAν −

1

2
AλA

λgµν − Fµν . (226)

Other Weyl-covariant velocity-related quantities are

Dµuν = ∇µuν +
1

c2
uµaν −

Θ

2
hµν

= σµν + ωµν , (227)
Dνω

ν
µ = ∇νωνµ, (228)

Dνη
ν
µ = 2γuµ, (229)

uλRλµ = Dλ

(
σλµ − ωλµ

)
− uλFλµ, (230)

of weights −1, 1, 0 and 1 (the scalar vorticity γ has weight 1).
A geometrical object of central importance in what will follow is the Cotton tensor. It is generi-

cally a three-index tensor with mixed symmetries. In three dimensions, which is the case for our
boundary geometry, the Cotton tensor can be dualized into a two-index, symmetric and traceless
tensor. It is defined as

Cµν = η ρσ
µ Dρ (Sνσ + Fνσ) = η ρσ

µ ∇ρ
(
Rνσ −

R

4
gνσ

)
. (231)

The Cotton tensor is Weyl-covariant of weight 1 (i.e. transforms as Cµν → BCµν), and is identically
conserved :

DρC
ρ
ν = ∇ρCρν = 0, (232)

sharing thereby all properties of the energy–momentum tensor. Following (200) we can decom-
pose the Cotton tensor into longitudinal, transverse and mixed components with respect to the
fluid velocity u :

Cµν =
3C

2

uµuν
c

+ c
C

2
gµν −

cµν
c

+
uµcν
c

+
uνcµ
c

. (233)

7. The ordinary Schouten tensor in three spacetime dimensions is given by Rµν − 1
4
Rgµν .
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Such a decomposition naturally defines the weight-3 Cotton scalar density

C =
1

c3
Cµνu

µuν , (234)

as the longitudinal component. The symmetric and traceless Cotton stress tensor cµν and the
Cotton current cµ (weights 1 and 2, respectively) are purely transverse :

c µ
µ = 0, uµcµν = 0, uµcµ = 0, (235)

and obey

cµν = −c hρµhσνCρσ +
Cc2

2
hµν , cν = −Cuν −

uµCµν
c

. (236)

One can use the definition (231) to further express the Cotton density, current and stress
tensor as ordinary or Weyl derivatives of the curvature. We find

C =
1

c2
uνησρDρ (Sνσ + Fνσ) , (237)

cν = ηρσDρ (Sνσ + Fνσ)− Cuν , (238)

cµν = −hλµ (kη ρσ
ν − uνηρσ)Dρ (Sλσ + Fλσ) +

Cc2

2
hµν . (239)

5.3 Carrollian geometry

In order to properly describe an ultra-relativistic fluid, we need to understand the structure of
the Carrollian geometry to which it couples. This will be done by studying the c → 0 limit of the
pseudo-Riemannian geometry described in the previous section.

We start with the relativistic metric, that we write it in the Randers-Papapetrou parametrization

ds2
bdry = −c2(Ωdu− bAdxA)2 + aABdx

AdxB , (240)

where Ω and bA depend both on u and xA (we recall that the bulk coordinates are xa = {u, r, xA} =
{r, xµ}). We make also a choice of normalized fluid velocity

u = Ω−1∂u, (241)

the fluid is at rest. At this level of the discussion we make this choice for simplicity, a more generic
case was consider in my paper [27]. It is clear that when we are going to take the ultra-relativistic
limit, the resulting Carroll structure (defined in Sec. 2.5) will be composed of

g = aABdx
AdxB , v = u = Ω−1∂u, τ = −(Ωdu− bAdxA). (242)

The boundary metric is indeed degenerate, the Carrollian vector field, which coincides with the
fluid velocity, belongs to its kernel and the Ehresmann connection is given by the second order of
the relativistic metric. Ultimately we would like to write all the equations with a manifest splitting
between the time coordinate u and the spatial ones xA. This is not necessary but it allows for a
simpler physical interpretation. This splitting breaks the full boundary covariance into a smaller
one that we dub Carrollian covariance.

We define the Carrollian diffeomorphisms as

u′ = u′(u,x) and x′ = x′(x) (243)

with Jacobian functions

J(u,x) =
∂u′

∂u
, jA(u,x) =

∂u′

∂xA
, JAB (x) =

∂xA′

∂xB
. (244)
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Those are the diffeomorphisms adapted to the Carrollian geometry we have chosen since under
such transformations, the fluid velocity remains proportional to ∂u. Indeed,

a′AB = aCDJ
−1C
A J
−1D
B , b′C =

(
bA +

Ω

J
jA

)
J−1A

C , Ω′ =
Ω

J
, (245)

whereas the time and space derivatives become

∂′u =
1

J
∂u, ∂′B = J−1A

B

(
∂A −

jA
J
∂t

)
. (246)

We will show in a short while that the Carrollian fluid equations, i.e. the k → 0 limit of the energy-
momentum conservation, are precisely covariant under this particular set of diffeomorphisms.
Expression (246) shows that the ordinary spatial derivative of a scalar function does not transform
as a tensor. To overcome this issue, it is desirable to introduce a Carrollian derivative as

∂̂A = ∂A +
bA
Ω
∂u, (247)

transforming as
∂̂′A = J−1B

A ∂̂B . (248)

Acting on scalars this provides a tensor, whereas for any other tensor it must be covariantized
by introducing a new connection for Carrollian geometry, called Levi–Civita–Carroll connection,
whose coefficients are, 8

γ̂ABC =
aAD

2

(
∂̂BaDC + ∂̂CaDB − ∂̂DaBC

)
= γABC + cABC . (249)

The Levi–Civita–Carroll covariant derivative acts symbolically as ∇̂∇∇ = ∂̂∂∂ + γ̂γγ. It is metric and
torsionless : ∇̂AaBC = 0, t̂CAB = 2γ̂C[AB] = 0. There is however an effective torsion, since the
derivatives ∇̂A do not commute, even when acting of scalar functions Φ – where they are identical
to ∂̂A :

[∇̂A, ∇̂B ]Φ =
2

Ω
$AB∂uΦ. (250)

Here $AB is a two-form identified as the Carrollian vorticity defined using the Carrollian accelera-
tion one-form ϕA :

ϕA =
1

Ω
(∂ubA + ∂AΩ) = ∂u

bA
Ω

+ ∂̂A log Ω, (251)

$AB = ∂[AbB] + b[AϕB] =
Ω

2

(
∂̂A
bB
Ω
− ∂̂B

bA
Ω

)
. (252)

We also define the Carrollian shear and expansion

ξAB =
1

2Ω

(
∂uaAB − aAB∂u log

√
a
)
, (253)

θ = Ω−1∂u log
√
a. (254)

Since the initial relativistic fluid is at rest, the flat limit of the various kinematical quantities such
as the vorticity and the acceleration are purely geometric and originate from the choice Carroll
structure. More precisely, the k → 0 limit of the acceleration, the vorticity and the expansion of the
fluid velocity are respectively ϕA, $AB and θ.

The time derivative transforms as in (246), and acting on any tensor under Carrollian diffeo-
morphisms, it provides another tensor. This ordinary time derivative has nonetheless an unsatis-
factory feature : its action on the metric does not vanish. One is tempted therefore to set a new

8. We remind that the ordinary Christoffel symbols are γABC =
aAD

2
(∂BaDC + ∂CaDB − ∂DaBC).
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time derivative ∂̂u such that ∂̂uaAB = 0, while keeping the transformation rule under Carrollian
diffeomorphisms : ∂̂′u = 1

J ∂̂u. This is achieved by introducing a “temporal Carrollian connection”

γ̂AB =
1

2Ω
aAC∂uaCB , (255)

which allows us to define the time covariant derivative on a vector field :

1

Ω
∂̂uV

A =
1

Ω
∂uV

A + γ̂ABV
B , (256)

while on a scalar the action is as the ordinary time derivative : ∂̂uΦ = ∂uΦ. Leibniz rule allows
extending the action of this derivative to any tensor. Calling γ̂AB a connection is actually mis-
leading because it transforms as a genuine tensor under Carrollian diffeomorphisms : γ̂′CB =
JCDJ

−1A
B γ̂

D
A.

We can define the curvature associated with a connection, by computing the commutator of
covariant derivatives acting on a vector field. We find

[
∇̂C , ∇̂D

]
V A = r̂ABCDV

B +$CD
2

Ω
∂uV

A, (257)

where
r̂ABCD = ∂̂C γ̂

A
DB − ∂̂Dγ̂ACB + γ̂ACE γ̂

E
DB − γ̂ACE γ̂ECB (258)

is a genuine tensor under Carrollian diffeomorphisms, the Riemann–Carroll tensor.
As usual, the Ricci–Carroll tensor is

r̂AB = r̂CACB . (259)

It is not symmetric in general (r̂AB 6= r̂BA) and carries four independent components :

r̂AB = ŝAB + K̂aAB + ÂηAB . (260)

In this expression ŝAB is symmetric and traceless, whereas 9

K̂ =
1

2
aAB r̂AB =

1

2
r̂, Â =

1

2
ηAB r̂AB = ∗$θ (261)

are the scalar-electric and scalar-magnetic Gauss–Carroll curvatures, with

∗$ =
1

2
ηAB$AB . (262)

There are also curvature terms that we can define by computing the commutator of time and
space-derivatives

[
1

Ω
∂̂u, ∇̂A

]
V A = −2r̂AV

A +
(
θδBA − γ̂BA

)
ϕBV

A +

(
ϕA

1

Ω
∂̂u − γ̂BA∇̂B

)
V A. (263)

A Carroll curvature one-form emerges thus as

r̂A =
1

2

(
∇̂BξBA −

1

2
∂̂Aθ

)
. (264)

The Ricci–Carroll curvature tensor r̂AB and the Carroll curvature one-form r̂A appear naturally
in the k → 0 limit of the the Ricci curvature of the AdS boundary Rµν . In the limit, the condition of
shearlessness on the fluid velocity becomes simply

ξAB ∝ ∂uaAB − aAB∂u log
√
a = 0. (265)

9. We use ηAB =
√
aεAB , which matches, in the zero-k limit, with the spatial components of the ηµν introduced in

(214). To avoid confusion we also quote that ηACηBC = δAB and ηABηAB = 2.
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This is the same as asking the spatial metric to be conformally flat, which is always true locally
for a two-dimensional metric. Assuming this holds, one proves that the traceless and symmetric
piece of the Ricci-Carroll tensor is zero,

ŝAB = 0. (266)

The absence of shear will be imposed again in what follows since it plays a crucial role in the
resummation of the flat derivative expansion.

5.4 The conformal Carrollian geometry

The boundary fluid in AdS was a conformal fluid. The main consequence being that every
quantity or equation characterizing the fluid had to be Weyl covariant. This property persists when
taking the flat limit. This because in both cases, the boundary, time-like of null, is only truly a
conformal boundary, therefore we need to study Weyl covariance for the Carrollian geometry
induced on the null infinity.

The action of Weyl transformations on the elements of the Carrollian geometry is inherited
from (217) :

aAB →
aAB
B2

, bA →
bA
B , Ω→ Ω

B , (267)

where B = B(u,x) is an arbitrary function. The Carrollian vorticity and shear transform cova-
riantly : $AB → 1

B$AB , ξAB → 1
B ξAB . However, the Levi–Civita–Carroll covariant derivatives

∇̂∇∇ and ∂̂u defined previously for Carrollian geometry. They must be replaced with Weyl–Carroll
covariant spatial and time derivatives built on the Carrollian acceleration ϕA and the Carrollian
expansion θ, which transform as connections :

ϕA → ϕA − ∂̂A logB, θ → Bθ − 2

Ω
∂uB. (268)

In particular, these can be combined in 10

αA = ϕA −
θ

2
bA, (269)

transforming under Weyl rescaling as :

αA → αA − ∂A logB. (270)

The Weyl–Carroll covariant derivatives D̂A and D̂u are defined according to the pattern (218),
(219). They obey

D̂BaCD = 0, D̂uaCD = 0. (271)

For a weight-w scalar function Φ, or a weight-w vector V A, i.e. scaling with Bw under (267), we
introduce

D̂BΦ = ∂̂BΦ + wϕBΦ, D̂BV
D = ∇̂BV D + (w − 1)ϕBV

D + ϕDVB − δDBV AϕA, (272)

which leave the weight unaltered. Similarly, we define

1

Ω
D̂uΦ =

1

Ω
∂̂uΦ +

w

2
θΦ =

1

Ω
∂uΦ +

w

2
θΦ, (273)

and
1

Ω
D̂uV

D =
1

Ω
∂̂uV

D +
w − 1

2
θV D =

1

Ω
∂uV

D +
w

2
θV D + ξDAV

A, (274)

10. Contrary to ϕA, αA is not a Carrollian one-form, i.e. it does not transform covariantly under Carrollian diffeomor-
phisms (243).

41



where 1
ΩD̂u increases the weight by one unit. The action of D̂A and D̂u on any other tensor is

obtained using the Leibniz rule.
The Weyl–Carroll connection is torsion-free because

[
D̂A, D̂B

]
Φ =

2

Ω
$ABD̂uΦ + w (ϕAB −$ABθ) Φ (275)

does not contain terms of the type D̂CΦ. Here ϕAB = ∂̂AϕB − ∂̂BϕA is a Carrollian two-form, not
conformal though. The commutator acting on a vector defines also curvature elements

[
D̂C , D̂D

]
V A =

(
R̂ABCD − 2ξAB$CD

)
V B +$CD

2

Ω
D̂uV

A + w (ϕCD −$CDθ)V
A. (276)

The combination ϕCD − $CDθ forms a weight-0 conformal two-form, whose dual ∗ϕ − ∗$θ is
conformal of weight 2 (∗$ is defined in (262) and similarly ∗ϕ = 1

2η
ABϕAB). Moreover

R̂ABCD = r̂ABCD − δABϕCD − aBC∇̂DϕA + aBD∇̂CϕA + δAC∇̂DϕB − δAD∇̂CϕC
+ϕA (ϕCaBD − ϕDaBC)−

(
δAk aBD − δADaBC

)
ϕEϕ

E (277)

+
(
δACϕD − δADϕC

)
ϕB

is the Riemann–Weyl–Carroll weight-0 tensor, from which we define

R̂AB = R̂CACB = r̂AB + aAB∇̂CϕC − ϕAB . (278)

We also quote [
1

Ω
D̂u, D̂A

]
Φ = wR̂AΦ− ξBAD̂BΦ (279)

and [
1

Ω
D̂u, D̂A

]
V A = (w − 2)R̂AV

A − V AD̂Bξ
B
A − ξBAD̂BV

A, (280)

with
R̂A = r̂A +

1

Ω
∂̂uϕA −

1

2
∇̂B γ̂BA + ξBAϕB =

1

Ω
∂uϕA −

1

2

(
∂̂A + ϕA

)
θ. (281)

This is a Weyl-covariant weight-1 curvature one-form, where r̂A is given in (264).
The Ricci–Weyl–Carroll tensor (278) is not symmetric in general : R̂AB 6= R̂BA. Using (259)

we can recast it as
R̂AB = ŝAB + K̂aAB + ÂηAB , (282)

where we have introduced the Weyl-covariant scalar-electric and scalar-magnetic Gauss–Carroll
curvatures

K̂ =
1

2
aABR̂AB = K̂ + ∇̂CϕC , Â =

1

2
ηABR̂AB = Â− ∗ϕ (283)

both of weight 2.
All these definitions can seem heavy, but they will be necessary to simplify all the expressions

when taking the c → 0 limit of the conservation equations of the fluid’s energy-momentum tensor
(200).

5.5 The Carrollian fluid

Having described the conformal Carrollian geometry to which the ultra-relativistic fluid will
couple, we would like now to obtain the conservation laws that control its dynamics. To do so we
will simply take the c → 0 limit of their relativistic counterpart . To compute this limit, we need to
assume the c-dependence of the components of the enegy-momentum tensor, exactly like we did
for the relativistic metric when we chose to write it as (240). We make the following choices for the
relativistic quantities 11

11. These choices will be relevant when we consider the holographic fluid.
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— the energy density ε does not depend on c, neither the pressure since ε = 2p,
— the heat current has the following expansion : qA = QA + c2πA,
— the stress tensor admits also an expansion : τAB = −c−2ΣAB − ΞAB .

We recall that all the other components of the dissipative terms can be deduced from qA and
τAB since they are purely transverse (201). Using these scalings for the fluid’s pieces of data, the
choice of metric (240) and the fluid velocity u = Ω−1∂u we obtain the following structure for the
zero-c limit of the relativistic conservation equations

c

Ω
∇µTµ0 =

1

c2
F + E ,

∇µTµA =
1

c2
HA + GA.

(284)

The zero-c limit gives rise two four equations : an energy conservation E = 0, weight-4 Weyl-
covariant

− 1

Ω
D̂uε− D̂AQ

A + ΞABξAB = 0, (285)

a first constraint F = 0, weight-4 also

ΣABξAB = 0, (286)

a momentum conservation GA = 0, weight-3

1

2
D̂Bε+ 2QA$AB +

1

Ω
D̂uπB − D̂AΞAB + πAξ

A
B = 0, (287)

and an additional constraint HA = 0, weight-3 also

1

Ω
D̂uQA − D̂BΣBA +QBξ

B
A = 0. (288)

All these equations are manifestly Carrollian covariant and Weyl covariant. In these equations,
ε, QA, πA, ΞAB and ΣAB are the Carrollian fluid data or Carrollian momenta, they are counter-
part of the quantities ε and q (i.e. energy density and momentum flow) that we had introduced
on the boundary of three-dimensional asymptotically flat spacetimes. The notion of fluid velocity
has disappeared since before taking the limit the fluid was static. Finally it is these conservation
equations that are going to describe the residual gravitational dynamics in the flat version of the
fluid/gravity correspondence, as we are going to see later.

In my work [27], we consider the most generic case, i.e. without assuming the conformal state
equation, in arbitrary dimension and where the initial fluid is not static, allowing for a Carrollian
velocity field called βA. We also study the dual limit, i.e. the Galilean one, with the same level of
generality.

6 Fluid/Gravity correspondence

We now turn our attention to another aspect of gravity, the fluid/gravity correspondence. The
idea that the dynamics of gravity has anything to do with hydrodynamics is not new and stems into
the seminal works of T. Damour [21, 22, 23] who was the first one to notice a striking similarity
between the constraint equations of gravity projected on the horizon of a black hole and the Navier
Stokes equations. This correspondence was revived with the holographic correspondence by V.
Hubeny, S. Minwalla and M. Rangamani [19] who establish a relation between the dynamics of
Einstein equations with negative cosmological constant and the relativistic Navier-Stokes equa-
tions. In the latter, the fluid lives on the boundary of the asympotically AdS spacetime whereas in
Damour’s correspondence, the fluid lives on the horizon. Of course these two fluids are far from
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being the same but the geometric structure on which relies their appearance is quite similar : it is
the existence of a boundary (or simply a special hypersurface).

When we consider the geometry in the vicinity of a codimension-one hypersurface, one can
always gauge fix the metric locally and solve the transverse equations such that the only remaining
Einstein equations are the constraint equations on this surface. This is what we have done for
example in three dimensions : the dynamics of the solution space in Bondi gauge is dictated
by constraint equations that live on the boundary (time-like in AdS, and null-like in flat space). In
AdS, these constraint equations are written as the conservation of a relativistic energy-momentum
tensor. The latter could very-well be the energy-momentum tensor of a relativistic fluid as it is in the
fluid-gravity correspondence. In the case of a horizon, which is a null hypersurface, the constraint
equations can also be interpreted as the conservation equations for a non-relativistic fluid but the
matching is more subtle as we are going to see.

This section is based on my paper [28].

6.1 AdS Fluid/Gravity

This section will be devoted to the study of the Derivative Expansion which is a procedure that
relates a solution of Einstein equations with negative cosmological constant to a relativistic fluid
(see [20] for a review). In AdS, the dual fluid is relativistic, hence the introduction to relativistic
hydrodynamics in the previous section. We are going to work in four dimensions of bulk, therefore
the fluid will be three-dimensional. The hydrodynamical expansion maps onto the Derivative Ex-
pansion in the bulk, i.e. an expansion of the line element whose order is the number of derivatives
of the fields. 12 It is generically an infinite expansion. We describe integrability conditions on the
fluid such that the dual line element is resummed and Einstein.

6.1.1 The Derivative Expansion in AdS

Let gµν , ε and uµ be a boundary metric, an energy density and a vector field that do not depend
on the boundary coordinates, all their derivatives vanish. The boundary velocity is normalized to
−`−2. Now consider the following bulk metric

ds2 = 2`2uµdx
µdr + r2gµνdx

µdxν + `48πGε
uµuν
r

dxµdxν . (289)

One can check that this metric is a solution of Einstein equations with negative cosmological
constant. The scalar curvature is proportional to `−2. This metric corresponds to a boosted black
brane. One can compute the holographic energy-momentum tensor of this solution and the result
is

T black brane
µν =

ε

2

(
3
uµuν
`2

+ gµν

)
. (290)

We recognize the energy-momentum tensor of a perfect conformal fluid. It is trivially conserved
since all the components of this tensor are constants. This amounts to say that, classically, the
boosted black brane is dual to the simplest perfect fluid. Another thing to notice is that the AdS
curvature plays again the role of an effective velocity of light on the boundary c ↔ k. Exactly like
in three dimensions, we are going to make use of this property to interpret the boundary fluid
when taking the flat limit. The idea of fluid gravity is to start from this simple solution and then
modify it by asking the energy and the fluid velocity to depend on the boundary coordinates. This
is achieved by making a Weyl redefinition of the metric and the fluid quantities together with a
coordinate change

r → Br (291)

The bulk spacetime is made out of an ensembles of black brane "tubes" all attached to the boun-
dary. Assuming slow variation of the fluid quantities (i.e. the derivatives w.r.t. the boundary co-
ordinates are small), one can use the resulting metric as an ansatz for the zeroth order in a

12. The term Derivative Expansion will equivalently refer to the concept or the actual line element it produces.
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hydrodynamical expansion, i.e. in number of derivatives of the fluid quantities. The first order is
then a perturbation of the bulk metric.

ds2 = ds2
perfect + ds2

first order +O(2), (292)

where ds2
first order contains only first derivatives of ε and uµ. The quantities present in this term

are dictated by Weyl covariance and the fact that the resulting tensor must be symmetric. The
only things that is not constrained by symmetry are the coefficient in front of each tensor. This
perturbation is then plugged in Einstein equations and linearized in number of derivatives which
allows to extract all these coefficients that ultimately will characterize the fluid. Indeed after that,
one can compute the corresponding holographic energy-momentum tensor and write it as

Tµν = Tµνperfect + Tµνfirst order +O(2), (293)

where Tµνfirst order corresponds exactly to the first order hydrodynamical data presented in Sec.
5.1, except that now, the shear and bulk viscosities and the thermal conductivity are determined
by Einstein equations. For example in our case we obtain [20]

κ = 0, ζ = 0, η =
πT 2

9G
. (294)

Here it is written in terms of the local temperature T . This can be done also for the pressure and
the energy density using Stefan’s law in three dimensions

p =
4π2T 3

27G
, (295)

and the conformal equation of state ε = 2p.
This algorithm can be realized order by order to gravitationally fix all the possible dissipative

coefficients of the dual fluid. The corresponding bulk metric is given by

ds2
bulk = 2

u
k2

(dr + rA) + r2ds2
bdry +

S
k4

+
u2

k4r2

(
1− 1

2k4r2
ωαβω

αβ

)(
8πGTλµu

λuµ

k2
r +

Cλµu
ληµνσωνσ
2k4

)

+ terms with σ, σ2, ∇σ, . . . + O
(
D4u

)
. (296)

In this expression S is a Weyl-invariant tensor :

S = Sµνdxµdxν = −2uDνω
ν
µdxµ − ω λ

µ ωλνdxµdxν − u2R

2
; (297)

We have also defined k = `−1 . The bulk line line element is a priori an infinite expansion in terms
of derivatives of the fluid variable. A question one can ask is if this expansion is resummable,
which would provide an exact solution of Einstein equations. The answer is yes, but for a subclass
of Einstein metrics : the algebraically special class. Moreover we are going to show that this
procedure admits a non-trivial flat limit.

6.1.2 Resummation

To find an ansatz of potential resummation formula for the derivative expansion, we are going
to make a crucial assumption and ask the fluid velocitiy to be shearless. This is asking that

σµν = 0, (298)

where σµν was defined in Eq. (209). This condition has the virtue to simplify drastically the deri-
vative expansion since most of its terms involve the shear ad its derivatives. In other words, the
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number of tensors compatible with Weyl covariance is considerably reduced. The caveat is that
the space of solutions that we are allowed to describe is reduced as we are going to show.

The resummation ansatz is obtained by making the simple change

1− γ2

r2
→ r2

ρ2
, (299)

with
ρ2 = r2 + γ2. (300)

The resummed expansion then reads

ds2
res. = 2

u
k2

(dr + rA) + r2ds2
bdry +

S
k4

+
u2

k4ρ2
(8πGεr + Cγ) , (301)

which is indeed written in a closed form. This line element defines an exact Einstein space with
Λ = −3k2 under a set of conditions on the quantities introduced previously

— The congruence u must be shearless.
— The heat current of the boundary fluid introduced in (200) and (201) is identified with the

transverse-dual of the Cotton current defined in (233) and (236) :

qµ =
1

8πG
ηνµcν =

1

8πG
ηνµη

ρσDρ (Sνσ + Fνσ) , (302)

where we used (238) in the last expression.
— The viscous stress tensor of the boundary conformal fluid introduced in (200) is identified

with the transverse-dual of the Cotton stress tensor defined in (233) and (236). Following
the same pattern as for the heat current, we obtain :

τµν = − 1
8πGk2 η

ρ
µcρν

= 1
8πGk2

(
− 1

2u
ληµνη

ρσ + ηλµ (kη ρσ
ν − uνηρσ)

)
Dρ (Sλσ + Fλσ) ,

(303)

where we also used (239) in the last equality. The viscous stress tensor τµν is transverse
symmetric and traceless because these are the properties of the Cotton stress tensor cµν .

— The energy–momentum tensor defined in (200) with p = ε/2, heat current as in (302) and
viscous stress tensor as in (303) must be conserved. This is because part of Einstein
equations are automatically satisfied by the line element (301) while the residual ones map
onto the conservation equations of the fluid.

We should make a few comments here. Asking u to be shearless is not free of consequences.
Indeed consider the congruence ∂r in the bulk, it is obviously a null congruence. But one can show
that it is also geodesic and shearless (this is a consequence of u being shearless). According to
the Goldberg–Sachs theorem [46], the existence of such a congruence means that the spacetime
is algebraically special (an vice versa), i.e. of Petrov type II, III, D, N or O. This classification refers
to the number of principal null directions of the Weyl tensor. We will not go through its definition
here, see App. A for an introduction or Chap. 4 of [46] for a complete description. For the reader
not familiar with this classification we would like to remark that all famous black hole solutions fall
into Petrov type D.

We should emphasize that the only quantities that are present in the expression (301) are the
energy density ε, the boundary metric gµν and the fluid velocity uµ. All the other quantities are built
out of them. In particular the holographic fluid’s dissipative tensors are dictated by the conformal
curvature of the boundary metric since they are written in terms of the boundary Cotton tensor.
These relations can be seen as self-duality conditions and are necessary for the line element to
be Einstein. The only fluid quantity that is not fixed is the energy density which should be seen as
the mass of the solution, while C characterize the NUT charge.
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6.1.3 The Robinson Trautman family

Our result states that the line element (301) corresponds to an algebraically special Einstein
solution under a set of assumptions on the fluid quantities. We will not prove it in full generality
here but as an example, we will map our construction to a well-known family of solutions that have
been extensively studied in the literature : the Robinson Trautman family.

This family of spacetimes correspond to algebraically special spacetimes whose degenerate
principal null direction is geodesic, shearless and twistless, see Chap. 28 of [46]. We are going to
recover it simply by imposing conditions on the boundary geometry and by finding a compatible
shearless fluid velocity (see [47] and references therein).

Consider the following boundary metric

ds2
bdry = −k2du2 +

2

P (ζ, ζ̄)2
dζdζ̄. (304)

A shearless fluid velocity compatible with this metric is simply the velocity of a static fluid

uµ∂µ = ∂u. (305)

We can compute the dissipative tensors for the fluid using the duality conditions

q = − 1

16πG

(
∂ζKdζ + ∂ζ̄Kdζ̄

)
, (306)

τ =
1

8πGk2P 2

(
∂ζ
(
P 2∂u∂ζ logP

)
dζ2 + ∂ζ̄

(
P 2∂u∂ζ̄ logP

)
dζ̄2
)
, (307)

where K = 2P 2∂ζ̄∂ζ logP is the Gaussian curvature of the spatial part of the boundary metric.
With these data the conservation of the energy–momentum tensor enforces the absence of spatial
dependence in ε = 2p, and leads to a single independent equation, the heat equation :

12M∂u logP + ∆K = 4∂tM, (308)

where ∆ = 2P 2∂ζ∂ζ̄ . This is exactly the Robinson–Trautman equation, here expressed in terms of
M(t) = 4πGε(t). It is not over, indeed we have shown that the conservation of our fluid’s energy-
momentum tensor maps to the Robinson–Trautman equation, but the last thing to do is to plug
these data, i.e. ε = M(u)

4πG and u = ∂u in the resummation formula. Doing so we obtain the line
element

ds2 = −
[
∆ logP − 2r∂u logP − 2M(u)

r
+

Λr2

3

]
du2 − 2dudr +

2r2

P 2
dζdζ̄. (309)

This is exactly the line element of the AdS Robinson–Trautman family of solutions. One thing to
notice is that the Robinson–Trautman equation does not depend on the cosmological constant.

Of course this does not produce exact solutions to Einstein equations, one still needs to solve
this equation to obtain an Einstein metric. Exact solutions are, for example, the AdS Schwarzschild
black hole, given by a constant M and the round metric on the celestial sphere : P = 1 + ζζ̄

2 .
Or the C-metric, a type D solution of the Robinson Trautman equation which corresponds to an
accelerating black hole (see Chap. 28 of [46]).

In terms of fluid gravity this is a non trivial result. Indeed we conclude that the fluid dual to
the Robinson-Trautman family surprisingly satisfies the duality conditions between its dissipation
terms and the boundary Cotton tensor. Moreover, we conclude that the hydrodynamic expansion
of its energy-momentum tensor terminates at third order.

We conclude this section with comments on ongoing works. We have shown that an entire
family of algebraically special spacetimes is recovered with our resumed version of the derivative
expansion. In unpublished work, we have also shown that the whole Plebanski-Demianski family,
i.e. all the type D solutions (which has an intersection with the Robinson–Trautman family by is not
included) can be recovered by adding non-diagonal terms in the boundary metric and assuming
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the existence of two commuting Killing fields, with the same fluid velocity. Finally recently we have
also shown that without assuming the existence of these two Killing fields, we can recover an AdS
version of the twisting vacuum solutions described in Chap. 29 of [46], we expect this family to be
the largest one that we can describe with the resummed derivative expansion.

6.2 The flat limit of fluid/gravity correspondence

An advantage of the Derivative Expansion is that it is written in a coordinate system à la
Eddington-Finkelstein, therefore it admits a proper flat limit. We show that the relationship bet-
ween the bulk and the boundary persists in the limit : we trade the Einstein metric for a Ricci-flat
metric in the bulk, while the relativistic fluid is replaced by a Carrollian fluid on the null infinity.
The flat Derivative Expansion admits also a resummation under a Carrollian equivalent of the
aforementioned integrability conditions.

6.2.1 The Ricci-flat solution and its dual

We start by taking the zero-k limit of the relativistic conservation of the holographic fluid dual
to our resummed derivative expansion, i.e. a fluid whose dissipative tensors are constrained by
the Cotton tensor of the boundary geometry. The k-dependence of qµ in (302) and τµν in (303)
falls exactly in the case described in Sec. 5.5. Which means that the zero-k limit of the conser-
vation equations corresponds exactly to the Carrollian conservation equations (285), (286), (287)
and (288) that we had derived in the same section. Of course this is assuming the exact same
parametrization of the fluid data and the boundary metric (and making the replacement c ↔ k).
Actually for the holographic fluid, the two constraint equations are automatically satisfied and we
are left with two equations that we report again here : the energy conservation

− 1

Ω
D̂uε− D̂AQ

A + ΞABξAB = 0, (310)

and the momentum conservation

1

2
D̂Bε+ 2QA$AB +

1

Ω
D̂uπB − D̂AΞAB + πAξ

A
B = 0. (311)

In these equations, ε, QA, πA and ΞAB are the holographic Carrollian fluid data or Carrollian
momenta, they are counterpart of the quantities ε and q (i.e. energy density and momentum flow)
that we had introduced for the boundary of three-dimensional asymptotically flat spacetimes. The
notion of fluid velocity has disappeared since before taking the limit the fluid was chosen static
(see Sec. 5.3). In [27], we also consider the case where the initial fluid is not static, allowing for
a Carrollian velocity field called βA. In principle this quantity could appear on the boundary when
taking the flat limit but for simplicity we will not consider it here. Moreover the fluid velocity on the
boundary of AdS was initially shearless, therefore the Carrollian metric must satisfy

ξAB = 0, (312)

since the zero-k limit of the relativistic shear σµν , defined in Eq. (209), is σ = ξABdxAdxB .
The dissipative tensors QA, πA and ΞAB , respectively the two Carrollian heat currents and

stress tensor are constrained by the boundary Carrollian geometry, exactly like in AdS. Their
expressions are

QA = − 1

16πG

(
D̂AK̂− ηBAD̂BÂ + 4 ∗$ηBAR̂B

)
,

πA =
3

8πG
ηBA

(
ηCBD̂C ? $

2
)
,

(313)

and

ΞAB =
1

8πG

(
ηDAD̂DD̂B ∗$ +

1

2
ηABD̂DD̂

D ∗$ − aAB
1

Ω
D̂u ∗$2

)
. (314)
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On can show that the expressions for QA, πA and ΞAB are actually dualized version of quantities
that appear in the k → 0 limit of the Cotton tensor (see [28]).

We are now going to give the flat limit of the bulk metric. This metric will be a Ricci-flat solution
provided the Carrollian fluid equations (310) and (311) are satisfied.

The k → 0 limit of the various three-dimensional Riemannian quantities give rise to all the
corresponding Carrollian quantities :

u = −k2 (Ωdu− bbb) (315)

and
ω = k2

2 $ABdxA ∧ dxB ,
γ = ∗$,
Θ = θ,
a = k2ϕAdxA,
A = αAdxA + θ

2Ωdu,
σ = ξABdxAdxB ,

(316)

where the left-hand-side quantities are Riemannian quantities introduced in Sec. 5.1 and 5.2,
while the righ-hand-side quantities are defined in Sec. 5.3 and 5.4. We move now to second-
derivative objects and collect the tensors relevant for the derivative expansion, following the same
pattern (Riemannian vs. Carrollian) :

R =
1

k2
ξABξ

AB + 2K̂ + 2k2 ∗$2, (317)

ω λ
µ ωλνdxµdxν = k4$ D

A $DBdxAdxB , (318)

ωµνωµν = 2k4 ∗$2, (319)

Dνω
ν
µdxµ = k2D̂B$

B
AdxA − 2k4 ∗$2Ωdu+ 2k4 ∗$2bbb. (320)

Using (297) this leads to

S = −k
2

2
(Ωdu− bbb)2

ξABξ
AB + k4sss− 5k6 (Ωdu− bbb)2 ∗$2 (321)

with the Weyl-invariant tensor

sss = 2 (Ωdu− bbb) dxAηBAD̂B ∗$ + ∗$2aABdx
AdxB − K̂ (Ωdu− bbb)2

. (322)

In the derivative expansion (296), two explicit divergences appear at vanishing k. The first
originates from the first term of S, which is the shear contribution to the Weyl-covariant scalar
curvature R of the three–dimensional AdS boundary (Eq. (317)). The second divergence comes
from the Cotton tensor and is also due to the shear. This is fortunate since we are considering the
specific case of vanishing shear. Even though, when the shear is not vanishing, we expect all the
other terms we have ignored when imposing σ = 0 to contribute again and certainly cancel out
the divergences. Indeed it seems quite unnatural that the flat limit of the non resummed derivative
expansion would require a shearless fluid velocity. Vanishing σ in the pseudo-Riemannian boun-
dary implies vanishing ξAB in the Carrollian limit (see (316)), and in this case, the divergent terms
in S and the Cotton are absent. We obtain the flat version of the resummed derivative expansion

ds2
res. flat = −2 (Ωdu− bbb)

(
dr + rααα+

rθΩ

2
du
)

+r2gbdry+sss+
(Ωdu− bbb)2

ρ2

(
8πGεr + Ĉ ∗$

)
, (323)

where
ρ2 = r2 + ∗$2, (324)

and
Ĉ =

(
D̂DD̂

D + 2K̂
)
∗$. (325)
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This last quantity is the zero-k limit of the Cotton density C introduced in Eq. (234).
Exactly like in AdS, this line element defines a Ricci-flat solution provided the conservation

equations for the Carrollian fluid (310) and (311) are satisfied. Notice eventually that the Ricci-flat
line element (323) inherits Weyl invariance from its relativistic ancestor. The set of transformations
(267), (268) and (270), supplemented with ∗$ → B ∗$, ε → B3ε and Ĉ → B3Ĉ, can indeed be
absorbed by setting r → Br (sss is Weyl invariant), resulting thus in the invariance of (323). In the
relativistic case this invariance was due to the AdS conformal boundary. In the case at hand, this
due to the fact the the null infinity is also a conformal boundary.

The class of vacuum solutions we can recover with this formula is again dictated by the exis-
tence of a null, geodesic and shearless congruence in the bulk. This null direction is simply ∂r.
Again, thanks to the Goldberg–Sachs theorem, this means that the solution is algebraically spe-
cial.

In [28], we show that the flat version of the Robinson-Trautman family (i.e. all the twistless
algebraically special vacuum solutions) can be recovered by setting the Ehresmann connection
to τ = −du, which is equivalent to Ω = 1 and bA = 0, together with a vanishing πA. Moreover
in unpublished work, we have also shown that for b 6= 0 and assuming the existence of two
commuting Killings, we recover the full flat Plebanski-Demianski family. Finally if we do not assume
the existence of the two Killings, the resummed derivative expansion actually covers the whole
family of twisting vacuum solutions (see Chap. 29 of [46]), which should be the largest family we
can describe.

7 The membrane paradigm

We conclude our study of the fluid/gravity correspondence by discussing an older relation bet-
ween gravity and fluid dynamics : the membrane paradigm. In the membrane paradigm formalism
[25], the black hole event horizon is seen as a two- dimensional membrane that lives and evolves
in three-dimensional spacetime. This viewpoint was originally motivated by Damour’s seminal ob-
servation that a generic black hole horizon is similar to a fluid bubble with finite values of electrical
conductivity, shear and bulk viscosity [21, 22, 23]. It was moreover shown that the equations go-
verning the evolution of the horizon take the familiar form of an Ohm’s law, Joule heating law, and
Navier-Stokes equation. The membrane paradigm developed by Thorne and Macdonald for the
electromagnetic aspects, and by Price and Thorne for gravitational and mechanical aspects, com-
bines Damour’s results with the 3 + 1 formulation of general relativity, where one trades the true
horizon for a 2+1-dimensional timelike surface located slightly outside it, called “stretched horizon”
or “membrane”. The laws of evolution of the stretched horizon then become boundary conditions
on the physics of the external universe, hence making the membrane picture a convenient tool for
astrophysical purposes. In order to derive the evolution equations of the membrane, a crucial step
in [26] was to renormalize all physical quantities (energy density, pressure, etc) on the membrane,
as they turned out to be divergently large as one approaches the real horizon. We will show that a
better approach to this issue is to interpret the near-horizon limit as an ultra-relativistic limit for the
stretched horizon, where the radial coordinate plays the role of a virtual speed of light. This ultra-
relativistic limit has the same nature than the effect of the flat limit on the conformal boundary, it
leads to Carrollian physics.

7.1 Constraint equations on the horizon

Exactly like in the conventional fluid/gravity correspondence, it is the constraint equations as-
sociated with a particular surface that are going to be interpreted as fluid conservation laws. The
asymptotic boundary is now traded for a regular hypersurface (not so regular since it is a horizon)
in the bulk. The null nature of the horizon will impose the fluid to be non-relativistic, in particu-
lar it will be Carrollian. Here, the ultra-relativistic limit can be understood as a near-horizon limit.
Indeed, we are going to show that if one considers a time-like surface (or membrane), close to
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the horizon, Einstein equations will map onto the conservation of a relativistic energy-momentum
tensor that belongs to the surface and corresponds to the extrinsic curvature of the membrane.
This section is based on my paper [31] with Laura Donnay.

7.1.1 Horizon geometry and Carroll structure

We consider a D-dimensional spacetime whose coordinates are xa = (v, ρ, xA), where v is
the advanced time and ρ the radial coordinate. The surfaces of constant v and ρ are (D − 2)-
dimensional spheres Sv,r and parametrized by xA (A = 3, · · · , D), the set of all these angular
coordinates will be denoted x. When we refer to spatial objects, it will be with respect to the
angular coordinates. The constant v surfaces are null, and constant ρ are timelike. Finally, we
assume the existence of a horizon H sitting at ρ = 0.

FIGURE 2: The horizon is a null hypersurface situated at ρ = 0 and Σρ is a timelike constant ρ
hypersurface near the horizon. We define also four vectors that are useful for our analysis, the null
vector ~L is the normal to the horizon while ~N is transverse but also null. The spacelike vector ~n is
the normal to Σρ and the timelike vector ~̀ is the normal to a constant v section of Σρ.

It is alway possible to find a coordinates system, usually called null Gaussian coordinates,
such that the near-horizon geometry is given by [48]

ds2 = −2κρdv2 + 2dρdv + 2θAρdvdx
A + (GAB + λABρ)dxAdxB +O(ρ2), (326)

where κ, GAB , λAB , θA in principle depend on the coordinates x and v. The spatial metric GAB
can be used to raise and lower spatial indexes.

There are now two types of geometrical objects we can define onH : the first ones are intrinsic
and the others extrinsic. In a Hamiltonian perspective, they are canonical conjugate of each other.
Moreover, the canonical momenta satisfy constraint equations that are imposed by the gravitatio-
nal dynamics [49, 50]. The induced geometry on H is degenerate and reads

ds2
H = 0 · dv2 + 0 · dvdxA +GABdx

AdxB , (327)

the intrinsic geometry being then entirely specified by the spatial metric in this gauge. The metric
induced on H can be interpreted as a Carroll metric. We are going to see that actually all the
elements of a Carroll structure appear on the horizon, simply because it is a null hypersurface.

We now perform a decomposition of the bulk metric adapted to the study of null hypersurfaces :

gab = qab + LaNb +NaLb, (328)

where
~L = La∂a = ∂v − ρθA∂A + κρ∂ρ and N = Nadx

a = dv, (329)
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are respectively a null vector and a null form. They satisfy N(~L) = 1 and will allow us to define all
the extrinsic curvature elements of H. The vector ~L coincides with the normal to the horizon on
H, and has the particularity of being also tangent to the horizon. Besides, the vector ~N ≡ g−1(N)

is transverse to the horizon and together with ~L they define qab, the projector perpendicular to ~L
and ~N .

These two objects complete the Carroll structure (defined in Sec. 2.5), indeed, we can choose
the Carroll vector field to be the null vector ~L evaluated on the horizon, which belong to the kernel
of the induced metric ds2

H, while the Ehresmann connection is simply the one-form induced by
−N on the horizon. To summarize, the Carroll structure induced on the horizon is (M, g, ~v, τ) with

M = {ρ = 0} = H,
g = ds2

H = 0 · dv2 + 0 · dvdxA +GABdx
AdxB ,

~v = ~LH = ∂v,

τ = −NH = dv.

(330)

In the language of Sec. 5.3, it corresponds to

aAB = GAB , bA = 0, Ω = 1. (331)

The simplicity of the Carroll structure is due to our choice of local coordinates around the horizon.
Nevertheless, its existence does not rely on a particular choice of coordinate, the geometry of a
null hypersurface always defines a Carroll structure (see [32]).

In his work [22, 23], T. Damour maps the black hole dynamics to the hydrodynamics of a fluid
living on the horizon, and the vector ~L defines the fluid’s velocity through ~LH = ∂v + vA∂A. We
have vA = 0, as we have chosen comoving coordinates, i.e., in Damour’s interpretation the fluid
would be at rest but on a dynamical surface 13.

The extrinsic geometry of the horizon is captured by a triple (ΣAB , ωA, κ̃) where ΣAB is the
deformation tensor (or second fundamental form), ωA is the twist field (Hajicek one-form) and κ̃
the surface gravity, defined as follows :

ΣAB =
1

2
qaAq

b
BL~Lqab, ωA = qaA(NbDaLb) and LbDbLa = κ̃La, (332)

where L denotes the Lie derivative, and Da is the Levi-Civita associated with gab. Using the bulk
metric (326), these quantities become on H

ΣAB =
1

2
∂vGAB , ωA = −1

2
θA and κ̃ = κ. (333)

We see that κ, the coefficient that appears in the bulk metric, really plays the role of the surface
gravity and that θA, also appearing in the metric, is proportional to the twist. The deformation ten-
sor gives rise to two new extrinsic objects : its trace and its traceless part, which are respectively
the horizon expansion and the shear tensor :

Θ = GABΣAB = ∂v log
√
G,

σAB =
1

2
∂vGAB −

Θ

D − 2
GAB ,

(334)

where
√
G is the volume form of the spatial metric. The scalar expansion Θ measures the rate

of variation of the surface element of the spatial section of H. 14 It is possible to show, under
the assumption that matter fields satisfy the null energy condition and that the null Raychaudhuri

13. As pointed out in [26], one can always set vA = 0, namely the spatial coordinates xA can always be taken to be
comoving, except at caustics.

14. By definition, a non-expanding horizon has Θ = 0.
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equation (see next section) is satisfied, that Θ is positive everywhere on H, which implies that the
surface area of the horizon can only increase with time (see e.g. [51]).

In terms of Carrollian data, we recognize Θ = θ the Carrollian expansion (254) and σAB =
ξAB the Carrollian shear (253). The other quantities θA and κ will appear in the definition of the
Carrollian momenta, i.e. the energy density, pressure and dissipative terms for the Carrollian fluid.

7.1.2 Raychaudhuri and Damour equations

Those quantities being defined, we can deduce from Einstein equations two conservation
laws (or constraint equations) that belong to H : the null Raychaudhuri equation [52] and Damour
equation [22, 23], which are respectively

LaLbRab = 0 and qaAL
bRab = 0; (335)

they are thus given by projections of vacuum Einstein equations on the horizon. The first one is
scalar and the second one is a vector equation w.r.t. the spatial section of H. Using the near-
horizon geometry (326), the null Raychaudhuri equation becomes

∂vΘ− κΘ +
Θ2

D − 2
+ σABσ

AB = 0, (336)

where σAB = GACGBDσCD. This equation describes how the expansion evolves along the null
geodesic congruence ~L and is a key ingredient in the proofs of singularity theorems. Damour
equation becomes

(∂v + Θ) θA + 2∇A
(
κ+

D − 3

D − 2
Θ

)
− 2∇BσBA = 0, (337)

where ∇A is the Levi-Civita connection associated with G. Damour has interpreted this last equa-
tion as a (D − 2)-dimensional Navier-Stokes equation for a viscous fluid ; notice that the fluid
velocity is not appearing here because we have chosen a comoving coordinate system as explai-
ned earlier. We will come back to this since the advent of Carrollian physics, and in particular our
better understanding of Carrollian hydrodynamics, allows for a more accurate interpretation.

It is these two equations that we want to interpret as Carrollian fluid conservation equations.
The Raychaudhuri and Damour equations being interpreted as ulta-relativistic conservation equa-
tions respectively for the energy and the momentum.

7.2 Through the looking glass

In order to motivate the interpretation of the constraint equations in terms of ultra-relativistic
conservation laws it will be useful to introduce the notion of stretched horizon. It consists of a
codimension-one hypersurface Σρ of constant ρ very small, i.e. close to the horizon, see Fig. 2.
The surface Σρ is time-like and when ρ → 0 it becomes null. In other words, for every ρ > 0,
the surface describes a relativistic spacetime and when ρ = 0 it becomes Carrollian. Hence the
interpretation of the near-horizon limit as an ultra-relativistic limit.

More precisely, consider the hypersurface Σρ near ρ = 0. Its normal unit is given by (see Fig.
2)

n =
dρ√
2κρ

, (338)

and allows us to define the extrinsic curvature and the momentum conjugate to the induced me-
tric :

Tab =
1

8πG
(Kpab −Kab), (339)
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where Ka
b = pcbDcna is the extrinsic curvature of Σρ, K = Ka

a its trace and pab = gab − nanb is the
projector on the hypersurface perpendicular to n. The tensor Tab is usually called the “membrane
energy–momentum tensor” [25, 26, 53]. 15 Einstein equations ensure that it is conserved :

∇̄µTµν = 0, (340)

where the index µ refers to {v,x}, and ∇̄µ is the Levi-Civita connection associated with the in-
duced metric on Σρ. The membrane is then interpreted as a fluid whose equations of motion are
given by this conservation law. One notices that (340) describes the dynamics of a relativistic fluid
that lies in the (D−1)-dimensional spacetime given by the constant ρ hypersurface and equipped
with the metric induced on Σρ.

Now taking the ρ → 0 limit has the same effect than taking an ultra-relativistic limit of these
conservation laws, with an effective speed of light c = ρ2, and the resulting equations are the
Raychaudhuri and Damour equations. The first one corresponds to the zero-ρ limit of ∇̄µTµv
while the second one corresponds to the zero-ρ limit of ∇̄µTµA. Indeed, it is easy to show that
these two constraint equations can be written as

(∂v + θ)ε+ pθ − ΞABξAB = 0,

(∂v + θ)πA − ∂Ap−∇BΞBA = 0.
(341)

This corresponds exactly to the Carrollian energy and momentum conservation (285) and (287).
The difference being that now we are not in the conformal case : ε 6= 2p (see [27] for a description
of the non-conformal case). The geometry on which the Carrollian fluid lies is characterized by
the Carrollian structure induced on the horizon

aAB = GAB , bA = 0, Ω = 1. (342)

The corresponding first-derivative terms (see Eqs. (251), (252), (253) and (254)) are simple and
match with intrinsic and extrinsic quantities of the horizon. The Carrollian acceleration and vorticity
vanish

ϕA = $AB = 0, (343)

while the expansion and the shear are

θ = Θ = ∂v log
√
G,

ξAB = σAB =
1

2
∂vGAB −

Θ

D − 2
GAB .

(344)

Finally, the energy density, pressure and dissipative terms are also given in terms of horizon
quantities,

ε = Θ,

p = −
(
κ+

D − 3

D − 2
Θ

)
,

ΞAB = −ξAB ,

πA = −1

2
θA.

(345)

The energy density is simply the expansion of the horizon, the pressure corresponds exactly to the
“gravitational pressure” in [50]. The Carrollian stress is exactly the shear of the horizon while the
heat current corresponds to the twist. We conclude that the Raychaudhuri and Damour equations
map perfectly to Carrollian conservation laws and as we have shown it is not a coincidence.

15. In those papers, the approach is to study this membrane energy–momentum tensor for a small ρ and use it to define
the fluid quantities like the energy density, the pressure, etc. The problem is that those quantities diverge when ρ is sent to
zero. Their solution is to rescale them by hand to obtain finite quantities. We solve this problem by defining the Carrollian
momenta that are already finite on the horizon and well suited for the ultra-relativistic interpretation.
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We should now comment on Damour’s interpretation. In his PhD thesis [22], Damour compares
the equation with the Navier Stokes Stokes equation on curved background, which is just the
Galilean version of the momentum conservation. If the local coordinate are chosen differently one
can produce a vector ~L that is not aligned to ∂v on the horizon, such that

~LH = ∂v + vA∂A. (346)

With this choice, Darmour’s equation becomes

(
∂v + Θ̃

)
ωA + vB∇BωA + ωB∇AvB −∇A

(
κ+

D − 3

D − 2
Θ̃

)
+∇Bσ̃BA = 0, (347)

where Θ̃ and σ̃AB are modified expansion and shear due to the change of ~L :

DAB ≡
1

2
(∇AvB +∇BvA + ∂vGAB) ,

Θ̃ = GABDAB ,

σ̃AB = DAB −
Θ̃

D − 2
GAB .

(348)

This equation should be compared with the Galilean conservation of momentum on curved back-
ground. The four first terms correspond to a material derivative of θA on a background that de-
pends both on space and time and for a fluid velocity vA. The fifth term is interpreted as a deriva-
tive of the pressure while the two last term correspond to the derivative of the stress tensor.

The only caveat to this interpretation (and Damour comments on it) is that in the conservation
of momentum, θA should correspond to a density of momentum, i.e. ωA ∼ ρ vA, where ρ is the
density of matter. But this is obviously not the case here, the twist has no reason to be aligned with
the vector field vA. In the case studied above, vA was vanishing whereas θA could take any value.
Another issue is that if we really insist on keeping the density of momentum and the velocity vA

unrelated, then it should also appear in the conservation of energy, even when vA vanishes. There
should be a term of the type ∇AωA in the energy conservation. All these little issued are solved if
one accept that the fluid should be interpreted as Carrollian. The twist ωA (which corresponds to
θA when vA vanishes) can then be non-zero for a vanishing vA since it is actually the Carrollian
heat current πA. The latter being absent of a Carrollian conservation of energy, which is consistent
with the fact that θA does not appear in the Raychaudhuri equation.
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8 Outlooks

This journey through various aspect of the role of boundaries in gravity has raised interesting
directions of research that we would like to comment on. In three dimensions, AdS and flat, we
have derived the most general solution space in Bondi gauge and the corresponding asympto-
tic Killings. The next step is to compute the corresponding charge and check whether they are
finite/integrable or not and compute their algebra. Also in three dimensions, we have seen that
the right way of parametrizing the solution space of three-dimensional asymptotically flat gravity
seems to be through the notion of Carroll structure accompanied by a couple of Carrollian mo-
menta. Nevertheless, a true gauge fixing procedure, such as the Bondi gauge, produces a solution
space parametrized by five functions only, which is one less than what a Carroll structure (i.e. two
one-forms) together with two momenta would produce. This is why me need to impose a condition
on the form τ , more precisely τφ = 0. The role of this fixation deserves to be deepened. In parti-
cular, what happens when we ask τφ to be fixed but at a different value that zero, does this define
another solution space that can be obtained from another gauge than the Bondi gauge. Does this
change the asymptotic symmetry group and the charges? Is there a large diffeomorphism that
implements the change of value of τφ and is this diffeomorphism pure gauge or not? All these
questions deserve investigation.

In four dimensions, we have built a resummed version of the Derivative Expansion that is valid
under the assumptions that the fluid velocity is shearless and that duality conditions between the
boundary energy-momentum tensor and the Cotton tensor are satisfied. The solution space des-
cribed by the resummed Derivative Expansion corresponds to all the twisting vacuum solutions,
AdS and flat. The duality relations between the dissipative components of the energy-momentum
tensor and the Cotton tensor seem to be related to self duality properties of the boundary value
of the Weyl tensor. Indeed, when taking the r → ∞ limit of the Weyl tensor (in a complex tetrad
basis), the combination Tµν + i

8πGkCµν appears. Therefore our conditions can be translated into
conditions on the boundary value of the bulk Weyl tensor. We would like to further this analysis.

An obvious follow-up question is the status of these integrability conditions in higher dimen-
sions. Indeed the Derivative Expansion exists also in higher dimensions and we expect similar
integrability conditions to exist and lead to a potential resummation. The boundary tensor Cµν
is actually the Cotton-York tensor, i.e. the Hodge dualized version of the true Cotton tensor who
has three indexes. Therefore this object is exists only for three-dimensional boundaries. In higher
dimensions it seems that we should consider the three-indexes one (actually a conformal version
since the Cotton is not Weyl covariant in dimensions higher than three), or more precisely, a par-
ticular contraction of the latter that, together with the boundary energy-momentum tensor, could
be used to write integrability conditions.

Another immediate extension of our work would be to consider additional fields in the bulk,
such as a U(1) gauge field. The latter induces another gauge field on the boundary, that will
source the conservation of the energy-momentum tensor, and a conserved current. In that case
the bulk dynamics is dual to a magneto-hydrodynamical system on the boundary. In AdS the
boundary system is relativistic and relativistic magneto-hydrodynamics is a well understood sub-
ject. Besides, the flat space limit calls for its Carrollian version. This direction seems rich and
worth pursuing.

A last aspect, and probably the most ambitious, that we would like to comment on is the
status of flat holography. Indeed a substantial part of this work was dedicated to the construction
of a proper geometry to describe the boundary of generic flat spaces. One can wonder if this
boundary can be the host of a field theory dual to asymptotically flat gravity. To our knowledge
there is no example of exact duality (where both sides are known) between a theory of gravity in
flat space and a field theory in one dimension less. But let’s suppose that such a duality exists. If
this is true, our analysis seems to show that it should be a conformal Carrollian field theory, and
the flat limit from AdS holography could be interpreted as an ultra-relativistic limit at the level of
the dual CFT. Even if we assume this is true, many conceptual questions remain unanswered :
asymptotically flat spacetimes have two boundaries : the future and past null infinity, therefore
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should we describe the bulk gravity with two copies of Carrollian field theories with some coupling
between them? And most importantly, what would be the fundamental statement of the duality,
i.e., which quantity in the bulk is related to which quantity on the boundary. The natural object to
compute in the bulk is an S-matrix, but maybe not in the usual momentum basis. This is what the
"Celestial Correlators" program is proposing [54], in that case, the field theory is expected to be of
"Celestial" 2d CFT whose correlation functions correspond to the gravitational S-matrix. It would
be interesting to see if, and under which conditions, this celestial CFT fulfills the more general
expectations of conformal Carrollian field theory. Another problem is going beyond perturbation
theory. In three dimensional flat gravity, one can show that the full classical state on a Cauchy
slice is specified by boundary quantities, and this is true even in the full non-linear description,
which indicates a potential holographic nature. In four dimensions, this property breaks down,
one has to include bulk functions to describe a classical state on a Cauchy slice (see [55] for
both cases). This seem like a bad news for flat holography in four dimensions. Maybe a restricted
phase space should then be considered. Finally there is the problem of energy leak in flat space.
The gravitational charges are not generically conserved in four dimensions, and this is due to a
leak of energy through the null infinity. If we still believe in a dual field theory description, this field
theory should then be coupled to a bath where the energy can be transmitted, which calls for
additional structure in the boundary description.
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A Petrov Classification

We provide an introduction to Petrov classification of the Weyl tensor’s principal null directions
(see [46] for a complete description). We introduce the complex null tetrad kkk, lll,mmm,mmm and write the
metric as

ds2 = −2kkklll + 2mmmmmm. (349)

A principal null direction is a null vector field kkk satisfying

k[eCa]bc[dkf ]k
bkc = 0, (350)

and we would like to classify such vectors. Using all the symmetry properties of the Weyl ten-
sor, one can show that its independent components can be described by five complex functions
obtained by contracting C with the various basis forms

ΨΨΨ0 = Cabcdk
ambkcmd (351)

ΨΨΨ1 = Cabcdk
albkcmd (352)

ΨΨΨ2 = Cabcdk
ambmcld (353)

ΨΨΨ3 = Cabcdk
albmcld (354)

ΨΨΨ4 = Cabcdm
albmcld. (355)

Moreover, one can show that if kkk is a p.n.d. then the scalar ΨΨΨ0 vanishes

k[eCa]bc[dkf ]k
bkc = 0 ⇔ ΨΨΨ0 = Cabcdk

ambkcmd = 0. (356)

After applying the most general null rotation controlled by the complex parameter E which keeps
lll fixed, equation (356) becomes

ΨΨΨ0 = ΨΨΨ′0 − 4EΨΨΨ′1 + 6E2ΨΨΨ′2 − 4E3ΨΨΨ′3 + E4ΨΨΨ′4 = 0. (357)

Since this expression is quartic in E, there are four complex roots, they can also be degenerate.
The multiplicity of the solution of this equation will then be also the multiplicity of the principal null
directions, which determine the Petrov class of the spacetime under consideration. The possibili-
ties are

Petrov type Multiplicity
I (1, 1, 1, 1)
D (2, 2)
II (2, 1, 1)
III (3, 1)
N (4)

A Weyl tensor is said algebraically special (and consequently the spacetime will be said of alge-
braically special Petrov class) if it admits at least one degenerate principal null direction. That is, if
it is of Petrov class D, II, III and N. A last class is the type O which corresponds to the conformally
flat case, i.e. when the Weyl tensor vanishes.

Another way to obtain the multiplicity of the principal null directions is to look at the vanishing
components of the Weyl tensor

ΨΨΨ0 = 0, ΨΨΨ1 6= 0, . . . ⇔ Multiplicity 1 ⇔ Petrov I (358)
ΨΨΨ0 = ΨΨΨ1 = 0, ΨΨΨ2 6= 0, . . . ⇔ Multiplicity 2 ⇔ Petrov D, II (359)

ΨΨΨ0 = ΨΨΨ1 = ΨΨΨ2 = 0, ΨΨΨ3 6= 0, . . . ⇔ Multiplicity 3 ⇔ Petrov III (360)
ΨΨΨ0 = ΨΨΨ1 = ΨΨΨ2 = ΨΨΨ3 = 0, ΨΨΨ4 6= 0, . . . ⇔ Multiplicity 4 ⇔ Petrov N. (361)

We conclude with the Goldberg-Sachs theorem (1961) :
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Goldberg-Sachs theorem : a vacuum spacetime is algebraically special if and only if it admits
a shear-free congruence of null geodesics.

That is, if there exists a shearless, null and geodesic vector field, then the spacetime has
Petrov class D, II, III, N or O.
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ABSTRACT

We provide the set of equations for non-relativistic fluid dynamics on arbitrary, possibly
time-dependent spaces, in general coordinates. These equations are fully covariant under
either local Galilean or local Carrollian transformations, and are obtained from standard rel-
ativistic hydrodynamics in the limit of infinite or vanishing velocity of light. All dissipative
phenomena such as friction and heat conduction are included in our description. Part of
our work consists in designing the appropriate coordinate frames for relativistic spacetimes,
invariant under Galilean or Carrollian diffeomorphisms. The guide for the former is the
dynamics of relativistic point particles, and leads to the Zermelo frame. For the latter, the
relevant objects are relativistic instantonic space-filling branes in Randers–Papapetrou back-
grounds. We apply our results for obtaining the general first-derivative-order Galilean fluid
equations, in particular for incompressible fluids (Navier–Stokes equations) and further il-
lustrate our findings with two applications: Galilean fluids in rotating frames or inflating
surfaces and Carrollian conformal fluids on two-dimensional time-dependent geometries.
The first is useful in atmospheric physics, while the dynamics emerging in the second is
governed by the Robinson–Trautman equation, describing a Calabi flow on the surface, and
known to appear when solving Einstein’s equations for algebraically special Ricci-flat or
Einstein spacetimes.
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1 Introduction

Ordinary non-relativistic fluid dynamics is described in terms of a basic set of equations:
continuity, energy conservation and momentum conservation (Euler equation). In most text-
books (as e.g. [1]) the fluid is observed from either inertial, or stationary rotating frames, us-
ing Cartesian or spherical/cylindrical coordinates. Although these set-ups are satisfactory
for most practical purposes, they do not exhaust all possible situations because the equations
at hand are not covariant under Galilean diffeomorphisms i.e. general coordinate transfor-
mations such as t′ = t′(t) and x′ = x′(t,x). Most importantly, the geometry hosting the fluid
is assumed to be three- or two-dimensional Euclidean space. This is a severe limitation, as
we may want to study the fluid moving on a surface, which is neither flat nor static, and
equipped with an arbitrary coordinate system.

Progress has been made over the last decades, sustained by the needs of the space pro-
grams or meteorology [2–7]. The most recent work [7] beautifully highlights the various con-
tributions, and provides a covariant frame-independent formulation. Still, these authors do
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not address the issue of trading Euclidean space for an arbitrary curved and time-dependent
geometry, and subsequent analyses have focused to the case of static surfaces (see e.g. [8]).
Part of our work consists in filling this gap, and presenting the most general equations de-
scribing a non-relativistic viscous fluid moving on a space endowed with a spatial, time-
dependent metric, and observed from an arbitrary frame. Each geometric object involved
in this description has a well-defined transformation rule under Galilean diffeomorphisms,
making the set of equations covariant.

In order to achieve the above program, we carefully analyze the infinite-light-velocity
limit inside the relativistic fluid equations. Although standard (see §125 of [1] for the original
presentation and [9] for a modern approach), this method has been only partially developed
outside the realm of Minkowski spacetime (as e.g. in [10]). Hence, it has mostly led to non-
relativistic fluids on plain Euclidean space in inertial frames. Choosing the form of a general
spacetime metric such that it allows for a non-relativistic limit, enables us to reach our goal.

Considering the infinite-light-velocity limit in a relativistic framework suggests to study
in parallel the alternative zero-light-velocity limit. This is actually ultra-relativistic, but we
will keep on calling it non-relativistic as it decouples time and contracts the Poincaré group
down to the Carroll group, as originally described in [11].

Carrollian physics has attracted some attention over the recent years [12, 13]. Although
kinematically restricted – due to the vanishing velocity of light, the light-cone collapses to
a line and no motion is allowed – the freedom of choosing a frame is as big as for Galilean
physics though. In particular, the single particle has degenerate motion [14], but extended
instantonic1 objects do still exist and have non-trivial dynamics, making this framework rich
and interesting. Following the pattern described above, we study the corresponding general
set of equations for viscous fluids. The form of the spacetime metric appropriate for the
limit at hand is of Randers–Papapetrou, slightly different from the one used in the former
case, which is the Zermelo form.2 The obtained equations are covariant under Carrollian
coordinate transformations, t′ = t′(t,x) and x′ = x′(x). In order to avoid any confusion, we
will refer to the standard non-relativistic fluids as Galilean, whereas the latter will be called
Carrollian.

Our motivation for the present work is twofold. On the one hand, as already mentioned,
stands the need for a fully covariant formulation of Galilean fluid dynamics, on general
spaces and from arbitrary frames, which might have useful physical applications. On the
other hand, viscous Carrollian fluids were never studied and turn out to emerge in the con-
text of asymptotically flat holography [16], in replacement of the relativistic fluids present in
the usual fluid/gravity holographic correspondence of asymptotically anti-de Sitter space-

1In ordinary relativistic spacetime, we would call these objects tachyonic as they extend in space i.e. outside
the local light-cone. Since the latter is everywhere degenerate in Carrollian spacetimes, instantonic is more
illustrative.

2See [15] for an interesting discussion on Zermelo vs. Randers–Papapetrou forms.
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times [17–20]. Performing this analysis in parallel is useful as both Galilean and Carrollian
groups, and Zermelo and Randers–Papapetrou frames turn out to have intimate duality re-
lationships.

We will start our exposition by designing the appropriate forms for relativistic space-
times, hosting naturally the action of – i.e. being stable under – the two diffeomorphism
groups that we want to survive in the infinite-c or zero-c limits, Secs. 2.1, 2.2. Local Galilean
and Carrollian transformations are elegantly implemented in ordinary particle or instantonic
space-filling brane dynamics, respectively. They are subsequently uplifted into Zermelo and
Randers–Papapetrou metrics for the spacetime. The next step consists in studying ordinary
viscous relativistic fluids on these environments and consider the infinite-c or zero-c limits
in their equations. This is performed in Secs. 3.2 and 3.3, following a concise overview on
relativistic fluids, Sec. 3.1. We find generalized continuity, energy-conservation and Euler
equations for the usual Galilean fluids, as well as a set of two scalar (one for the energy)
and two vector equations for the Carrollian ones. We analyze the covariance properties of
the equations in both cases, and show that these transform as expected. Some examples are
collected in Sec. 4: the Galilean fluid from a rotating frame or on an inflating surface, and
the dynamics of a two-dimensional Carrollian viscous fluid. Further technical details, are
provided in the appendix, where we introduce a new time connection for the Galilean geom-
etry, and both temporal and spatial connections for the Carrollian and conformal-Carrollian
geometry, together with their associated curvature tensors, allowing for a more elegant pre-
sentation of the corresponding covariant equations.

2 Galilean and Carrollian Poincaré uplifts

We present here the relativistic uplifts of Newton–Cartan and Carrollian non-relativistic
structures. In these Lorentzian-signature spacetimes, respectively of the Zermelo and Randers–
Papapetrou form, the Galilean and Carrollian diffeomorphisms are naturally realized, and
the dynamics of free objects smoothly matches the ordinary Galilean and Carrollian dynam-
ics, when the velocity of light becomes infinite or vanishes, respectively.

2.1 From Galileo Galilei . . .

Consider a free particle on an arbitrary d-dimensional space S , endowed with a positive-
definite metric

dℓ2 = aijdxidxj, i, j . . . ∈ {1, . . . ,d}, (2.1)

and observed from a frame with respect to which the locally inertial frame has velocity
w = wi∂i. Its classical (as opposed to relativistic) dynamics is captured by the following
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Lagrangian:

L(v,x, t) =
1

2Ω2 aij

(
vi − wi

)(
vj − wj

)
(2.2)

with action
S[x] =

∫

C
dt ΩL(v,x, t). (2.3)

In this expression:

• aij and wi are general functions of (t,x);3

• vi = dxi

dt are the usual components of the velocity v = vi∂i;

• L(v,x, t) appears as a Lagrangian density, with Lagrangian4 L(v,x, t) = ΩL(v,x, t).

Furthermore

• the Lagrange generalized momenta are (indices are lowered and raised with aij and its
inverse)

pi =
∂L
∂vi =

1
Ω
(vi − wi), (2.4)

• H(p,x, t) = pivi − L(v,x, t) is the Hamiltonian with Hamiltonian density H = 1
Ω H:

H =
1
2

(
p2 +

p · w
Ω

)
. (2.5)

The existence of an absolute Newtonian time requires Ω be a function of t only, the absolute
time being thus

∫
dt Ω(t). One should stress that keeping general Ω(t,x) does not spoil

the consistency of the system (2.2), (2.3), but invalidates the interpretation of (2.1) as the
spatial metric. Even though in practical situations we can set Ω = 1, its rôle is important
when dealing with general Galilean diffeomorphisms (see (2.11)–(2.15)), in the framework
underlying the above dynamical system: the Newton–Cartan structures [21].5

We can compute the energy density expressing the Hamiltonian (2.5) in terms of the
velocity:

H =
1

2Ω2 aij

(
vi + wi

)(
vj − wj

)
=

1
2Ω2

(
v2 − w2) . (2.6)

As usual −w2/2Ω2 plays the rôle of the potential for inertial forces. Using the energy theorem
(dH/dt = −∂L/∂t) one finds

dH
dt

= − 1
2Ω2

(
vi − wi

)(
vj − wj

)
∂taij +

vi − wi

Ω
∂t

wi

Ω
. (2.7)

3Here x stands for {x1, . . . , xd}.
4Euler–Lagrange equations are d

dt

(
∂L
∂vi

)
= ∂L

∂xi .
5Some modern references on Newton–Cartan structure are e.g. [22–25].
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The most canonical example of (2.2) is that of a massive particle moving in Euclidean
space E3 with Cartesian coordinates, and observed from a non-inertial frame:

aij = δij, Ω = 1, w(t,x) = x ×ωωω(t)− V(t). (2.8)

Here V(t) is the dragging velocity of the non-inertial frame, ωωω(t) the angular velocity of its
rotating axes, and v − w = v + V +ωωω × x is the velocity as measured in the original inertial
frame (Roberval’s theorem).

The action (2.3) is invariant under general Galilean diffeomorphisms i.e. transformations

t′ = t′(t) and x′ = x′(t,x), (2.9)

for which we define the following Jacobian functions:

J(t) =
∂t′

∂t
, ji(t,x) =

∂xi′

∂t
, Ji

j(t,x) =
∂xi′

∂xj . (2.10)

The metric components transform as a tensor of S :

a′ij = akl J−1k
i J−1l

j , (2.11)

the particle and frame velocities as gauge connections:

v′k =
1
J

(
Jk
i vi + jk

)
, (2.12)

w′k =
1
J

(
Jk
i wi + jk

)
, (2.13)

and the generalized momenta (2.4) as one-form components:

p′i = pk J−1k
i ; (2.14)

Ω is just rescaled:

Ω′ =
Ω
J

. (2.15)

Since J = J(t) and Ω = Ω(t), Galilean transformations lead to Ω′ = Ω′(t′), leaving invariant
the absolute Newtonian time

∫
dt Ω(t) =

∫
dt′ Ω′(t′). Observe also that v−w

Ω is a genuine
vector of S , which ensures the form-invariance of L and thus the covariance of the equa-
tions of motion.

There is a particular Newton–Cartan structure, which is invariant under the Galilean
group: S is the Euclidean space Ed with Cartesian coordinates (aij = δij) and Ω = 1, and the
connection w is constant i.e. independent of (t,x). This system describes the non-relativistic
motion of a free particle in Euclidean space, observed from an inertial frame. The Galilean
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group acts as 



t′ = t + t0,

x′k = Rk
i xi + Vkt + xk

0

(2.16)

with all parameters being (t,x)-independent, and Rk
i the entries of an orthogonal matrix. The

action of these transformations leave the Lagrangian and the equations of motion at hand
invariant. In more general Newton–Cartan structures, the Galilean group acts in the tangent
space equipped with a local orthonormal frame and it is no more a global symmetry.

The Galilean group is an infinite-c contraction of the Poincaré group. The latter acts
locally in general d + 1-dimensional pseudo-Riemannian manifolds M . In order to recover
the above Newton–Cartan structure and its class of diffeomorphisms (2.9) in the infinite-c
limit, there is a natural choice for the form of the metric onM :

ds2 = −Ω2c2dt2 + aij

(
dxi − widt

)(
dxj − wjdt

)
. (2.17)

The form (2.17) is required for the functions Ω, aij and wi to transform as in (2.11), (2.13) and
(2.15) under a Galilean diffeomorphism (2.9). Actually, every metric is compatible with the
gauge (2.17), provided aij, wi and Ω, are free to depend on x = (ct,x) = {xµ,µ = 0,1, . . . ,d}.
The existence of a Galilean limit requires, however, Ω to depend on t only. Indeed, the
proper time element for a physical observer is dτ =

√
−ds2/c2 . When c becomes infinite,

lim
c→∞

dτ = Ω dt must coincide with the absolute Newtonian time, and this requires the ab-
sence of x-dependence in Ω, as expected from our previous discussion on the dynamics of
(2.3).

The spacetime Jacobian matrix associated with (2.9), reads (using (2.10)):

Jµ
ν (x) =

∂xµ′

∂xν
→
(

J(t) 0
Ji(x) Ji

j(x)

)
with Ji =

ji

c
. (2.18)

The metric form (2.17) is refered to as Zermelo (see [15]). A relativistic particle moving in
(2.17) is described by the components of its velocity u, normalized as ‖u‖2 = −c2:

uµ =
dxµ

dτ
⇒ u0 = γc, ui = γvi, (2.19)

where the Lorentz factor γ is defined as usual (although here, it depends also on the space-
time coordinates):6

γ(t,x,v) =
dt
dτ

=
1

Ω
√

1 − ( v−w
cΩ

)2
. (2.20)

6Expressions as v2 stand for aijvivj, not to be confused with ‖u‖2 = gµνuµuν.
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Under a Galilean diffeomorphism (2.18), the transformation of the components of u,

u′0 = Ju0, u′i = Ji
kuk + Jiu0, u′

0 =
1
J

(
u0 − uj J

−1j
k Jk
)

, u′
i = uk J−1k

i , (2.21)

induces a transformation on vi, which matches precisely (2.12).
The dynamics of the relativistic free particle is described using e.g. the length of the

world-line C as an action:

S[x] =
∫

C
dτ =

∫

C

√
−ds2

c2 . (2.22)

This is easily computed in the Zermelo environment (2.17), and expanded for large c:

S[x] =
∫

C
dt Ω

√
1 − 1

c2Ω2 aij (vi − wi)
(
vj − wj

)

=
∫

C
dt Ω

(
1 − 1

2c2Ω2 aij

(
vi − wi

)(
vj − wj

)
+ O (1/c4)

)
. (2.23)

Hence, the dynamics (2.22), disregarding the first term in (2.23), which is a Galilean invari-
ant, coincides in the infinite-c limit with the dynamics of the non-relativistic action displayed
in (2.3). This shows that (2.17) is the natural relativistic spacetime uplift of a Galilean space
S endowed with a Newton–Cartan structure.

2.2 . . . to Lewis Carroll

The Poincaré group admits another contraction at vanishing c [11]. Although this limit may
sound degenerate as particle motion is frozen, it exhibits both an interesting dynamics and
a rich mathematical structure.

A Euclidean space Ed with Cartesian coordinates, accompanied with a real time line t
can be equipped with a structure alternative to Newton–Cartan’s, known as Carrollian. This
structure is left invariant by the Carrollian group acting as





t′ = t + Bixi + t0,

x′k = Rk
i xi + xk

0

(2.24)

with all parameters being (t,x)-independent, and Rk
i the entries of an orthogonal matrix.

Invariant equations of motion can be considered for extended objects i.e. fields rather
than particles. Indeed, at zero velocity of light, a particle cannot move in time but time can
define an x-dependent field. The scalar field t(x) describes a d-brane, in other words a space-
filling object in Ed, extended inside a portion of space V ⊂ Ed.7 Its invariant action can be

7Our guide in this section is symmetry, and our goal the adequate Poincaré uplift. The precise physical system
and the nature of its dynamics are of secondary importance. Other systems with Carrollian symmetry may exist.
It is interesting, though, to maintain a dual formulation for the two sides (Galilean and Carrollian), as for objects
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e.g.

S[t] =
∫

V
ddxL(∂∂∂t) (2.25)

with Lagrangian density

L(∂∂∂t) =
1
2

δij (∂it − bi)
(
∂jt − bj

)
, (2.26)

where bi are constant parameters with inverse-velocity dimension, playing the rôle of a con-
stant gauge-field background, and transforming by shift and rotation under (2.24): b′i =(
bj + Bj

)
R−1j

i .
More general Carrollian structures equip Riemannian manifolds S with metric (2.1) and

time t ∈ R. The Carrollian transformations (2.24) are realized locally, in the tangent space,
and are no longer symmetries. The structure is covariant under Carrollian diffeomorphisms

t′ = t′(t,x) and x′ = x′(x) (2.27)

with Jacobian functions

J(t,x) =
∂t′

∂t
, ji(t,x) =

∂t′

∂xi , Ji
j(x) =

∂xi′

∂xj . (2.28)

The covariant action describing the Carrollian dynamics in the more general case at hand is8

S[t] =
∫

V ⊂S
ddx

√
aL(∂∂∂t, t,x), (2.29)

where a stands for the determinant of the matrix aij and L(∂∂∂t, t,x) is the Lagrangian density:

L(∂∂∂t, t,x) =
1
2

aij (Ω∂it − bi)
(
Ω∂jt − bj

)
. (2.30)

Here the components of the metric, the scale factor Ω, and the components of the back-
ground gauge field bbb = bidxi depend all on (t,x).

Under Carrollian diffeomorphisms, the metric transforms as in (2.11) i.e.

a′ij = Ji
k J j

l akl , (2.31)

Ω is rescaled as in (2.15) – where everything now depends both on t and x – while the field
gradients and the gauge connection obey respectively

∂′kt′ = (J∂it + ji) J−1i
k, (2.32)

with dimension-one and codimension-one world-volumes.
8Notice that actions (2.25), (2.29) and (2.37) are all Euclidean-signature (instantonic) because of vanishing c.
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and
b′k =

(
bi +

Ω
J

ji

)
J−1i

k. (2.33)

Here
βi = Ω∂it − bi (2.34)

transform as components of a one-form onS , making the density Lagrangian form-invariant.
We will now uplift the above structure into a d + 1-dimensional pseudo-Riemannian

manifold M , where the full Poincaré group is realized in the tangent space. Following the
pattern used in the Galilean framework, Sec. 2.1, we can recover the general Carrollian
structure and its class of diffeomorphisms (2.27) in the zero-c limit, starting from a metric on
M of the form:

ds2 = −c2
(

Ωdt − bidxi
)2

+ aijdxidxj. (2.35)

The form (2.35) is known as Randers–Papapetrou. It is universal, as every metric can be recast
in this gauge. Here, it is required for the functions Ω(x), aij(x) and bi(x) to transform as
in (2.15), (2.31) and (2.33) under a Carrollian diffeomorphism (2.27) – again x ≡ (x0 = ct,x).
The spacetime Jacobian matrix associated with transformations (2.27), reads (using (2.28)):

Jµ
ν (x) =

∂xµ′

∂xν
→
(

J(x) Jj(x)
0 Ji

j(x)

)
with Ji = cji. (2.36)

The Carrollian dynamics captured in the action (2.29) is the zero-c limit of a relativistic
instantonic d-brane in a spacetime M with Randers–Papapetrou metric (2.35). As already
mentioned (footnote 1), in this context instantonic means that the world-volume does not
extend in time; it is a kind of codimension-one snap shot materialized in a space-like d-
dimensional hypersurface V , coordinated with yi, i = 1, . . . ,d. Under these assumptions, the
Dirac–Born–Infeld action reads:

S[h] =
∫

V
ddy

√
h , (2.37)

where h is the determinant of the induced metric matrix

hij = gµν
∂xµ

∂yi
∂xν

∂yj (2.38)

with gµν the background metric components.
For the Randers–Papapetrou environment displayed in (2.35), we find:

hij =
∂xk

∂yi
∂xl

∂yj

(
akl − c2 (Ω∂kt − bk) (Ω∂lt − bl)

)
. (2.39)

In this expression, ∂kt stands for ∂t/∂xk. Consequently, we implicitly assume that the functions
xk = xk(yi) are invertible, which is equivalent to saying that one can choose a gauge where

9



yi = xi. This is what happens in practice. Indeed, one can readily compute the root of the
determinant and its expansion in powers of c2. Naming αk

i =
∂xk

∂yi , we obtain:

√
h = detα

√
a
(

1 − c2

2
akl (Ω∂kt − bk) (Ω∂lt − bl) + O

(
c4
))

. (2.40)

Hence (2.37) becomes

S[h] =
∫

V
ddx

√
a
(

1 − c2

2
akl (Ω∂kt − bk) (Ω∂lt − bl) + O

(
c4
))

. (2.41)

Neglecting the first term, which is invariant under Carrollian diffeomorphisms (2.27), (2.28),
in the zero-c limit, (2.41) describes the same dynamics as (2.29), (2.30). This result, in close
analogy with the Galilean discussion in the previous section, shows that the form (2.35) is
well-suited for the zero-c limit.

3 Fluid dynamics in the non-relativistic limits

The aim of the present chapter is to exhibit the general fluid equations in the Galilean and
Carrollian structures. This is achieved starting from plain relativistic viscous-fluid dynamics
in the appropriate background – Zermelo or Randers–Papapetrou – and analyzing the asso-
ciated, infinite or vanishing light-velocity limit. By construction, the equations reached this
way are covariant under the corresponding diffeomorphisms. We study here neutral fluids,
moving freely i.e. subject only to pressure, friction forces and thermal conduction processes.
We conclude with some comments on a duality relating the two limits under consideration.

3.1 Relativistic fluids

Free relativistic viscous fluids are described in terms of their energy–momentum tensor
obeying the set of d + 1 conservation equations

∇µTµν = 0. (3.1)

The time component is the energy conservation, the other d spatial ones, momentum conser-
vation, usually called Euler equations.

The energy–momentum tensor is made of a perfect-fluid piece and terms resulting from
friction and thermal conduction. It reads:

Tµν = (ε + p)
uµuν

c2 + pgµν + τµν +
uµqν

c2 +
uνqµ

c2 , (3.2)

and contains d + 2 dynamical variables:

10



• energy per unit of proper volume (rest density) ε, and pressure p;

• d velocity-field components ui (u0 is determined by the normalization ‖u‖2 = −c2).

A local-equilibrium thermodynamic equation of state9 p = p(T) is therefore needed for com-
pleting the system. We also have the usual Gibbs–Duhem relation for the grand potential
−p = ε − Ts with s = ∂p/∂T. The viscous stress tensor τµν and the heat current qµ are purely
transverse:

uµqµ = 0, uµτµν = 0, uµTµν = −qν − εuν, ε = 1
c2 Tµνuµuν. (3.3)

Hence, they are expressed in terms of ui and their spatial components qi and τij.
The quantities qi and τij capture the physical properties of the out of equilibrium state.

They are usually expressed as expansions in temperature and velocity derivatives, the co-
efficients of which characterize the transport phenomena occurring in the fluid. The trans-
port coefficients can be determined either from the underlying microscopic theory, or phe-
nomenologically. In first-order hydrodynamics

τ(1)µν = −2ησµν − ζhµνΘ, (3.4)

q(1)µ = −κh ν
µ

(
∂νT +

T
c2 aν

)
, (3.5)

where 10

aµ = uν∇νuµ, Θ =∇µuµ, (3.6)

σµν =∇(µuν) +
1
c2 u(µaν) − 1

d Θ hµν, (3.7)

ωµν =∇[µuν] +
1
c2 u[µaν], (3.8)

are the acceleration, the expansion, the shear and the vorticity of the velocity field, with η,ζ
the shear and bulk viscosities, and κ the thermal conductivity. In the above expressions, hµν

is the projector onto the space transverse to the velocity field, and one similarly defines the
longitudinal projector Uµν:

hµν =
uµuν

c2 + gµν, Uµν = −uµuν

c2 . (3.9)

In three spacetime dimensions, the Hall viscosity appears as well in τ(1)µν:

− ζH
uσ

c
ησλ(µ σν)ρ gλρ, (3.10)

with ησλµ =
√−g ǫσλµ.

9We omit here the chemical potential as we assume no independent conserved current.
10Our conventions for (anti-) symmetrization are A(µν) =

1
2
(

Aµν + Aνµ
)

and A[µν] =
1
2
(

Aµν − Aνµ
)
.
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In view of the subsequent steps of our analysis, an important question arises at this stage,
which concerns the behaviour of qi and τij with respect to the velocity of light. Answering
this question requires a microscopic understanding of the fluid i.e. a many-body (quantum-
field-theory and statistical-mechanics) determination of the transport coefficients. In the ab-
sence of this knowledge, we may consider a large-c or small-c expansion of these quantities,
in powers of c2 – irrespective of the derivative expansion. In the same spirit, we could also
work out similar expansions for each of the functions entering the metrics (2.17) or (2.35),
as these possibly carry deep relativistic dynamics. The advantage of such an exhaustive
analysis would be to set-up general conditions on a relativistic fluid and its spacetime envi-
ronment for a large-c or a small-c regime to make sense. As a drawback, this approach would
blur the universality of the equations we want to set. We will therefore adopt a more prag-
matic attitude and assume that Ω, bi, wj and aij are c-independent. Regarding the viscous
stress tensor τij, we will assume the following behaviours:

τij = −ΣG
ij (3.11)

or

τij = −ΣCij

c2 − Ξij. (3.12)

The first is appropriate for the Galilean limit. It is standard and considered e.g. in [1], where
ΣG

ij is named σ′
ij. For the Carrollian dynamics, our choice is inspired by flat-spacetime holog-

raphy (see [16]). Similarly, for the heat current, we will adopt

qi = QG
i, (3.13)

qi = QCi + c2πi, (3.14)

in Galilean and Carrollian dynamics, respectively. Although kinematically poorer – because
at rest, Carrollian fluids carry a richer internal information than their Galilean pendants
since both the heat current and the viscous tensor are doubled in the above ansatz. Observe
the position of the spatial indices, different for the two cases under consideration. They are
designed to be covariant under different classes of diffeomorphisms.

One should finally notice that, in writing the energy–momentum tensor (3.2), we have
not made any assumption regarding the hydrodynamic frame, which is therefore left generic.11

There are two reasons for this. The first is the absence of a conserved relativistic current,
which makes hydrodynamic-frame conditions delicate. Further subtleties arise when study-
ing the system in special limits such as the Galilean, where the relativistic arbitrariness for
the velocity field is lost, due to the decoupling of mass and energy. This is the second reason.

11The freedom of choosing the hydrodynamic frame was raised in [1]. Modern discussions can be found
in [9, 26, 27] (see also [28]).
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3.2 Galilean fluid dynamics from Zermelo background

The essence of the classical limit

We will consider in the following the ordinary non-relativistic limit of fluid equations, for-
mally reached at infinite c. The physical validity of this situation is based on two assump-
tions.

The first is kinematical: it presumes that the global velocity of the fluid with respect to
the observer is small compared to c. This is easily implemented using the Zermelo form of
the metric (2.17), where the control parameter for the validity of the classical limit is

∣∣ v−w
c

∣∣.
We find 




u0 = γc =
c
Ω

+ O (1/c) , u0 = −cΩ + O(1/c) ,

ui = γvi =
vi

Ω
+ O (1/c2) , ui =

vi − wi

Ω
+ O (1/c2) .

(3.15)

The second is microscopic. The internal particle motion should also be Galilean, in other
words the energy density should be large compared to the pressure: ε ≫ p. This sets re-
strictions on the equation of state, as not every equation of state is compatible with such a
microscopic assumption.12

An important consequence of the microscopic assumption is the separation of mass and
energy, now both independently conserved. It is customary to introduce the following:

• ̺ the usual mass per unit of volume (mass density);

• ̺0 the usual mass per unit of proper volume (rest-mass density);

• e the internal energy per unit of mass;

• h the enthalpy per unit of mass.

These local thermodynamic quantities are related as





ε =
(
e + c2)̺0,

h = e + p
̺ ,

̺0 =
̺

Ωγ
= ̺

√
1 − ( v−w

cΩ

)2 ≈ ̺ − ̺
2

( v−w
cΩ

)2 ,

(3.16)

where we have used Eq. (2.20) for the Lorentz factor γ, and expanded it for small
∣∣ v−w

c

∣∣.
12For example, the conformal equation of state, ε = dp is not compatible with the non-relativistic limit at hand.
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The structure of the equations

The fluid equations are the conservation (3.1) of the energy–momentum tensor (3.2), in the
background (2.17). It is computationally wise to split these equations as:

∇µTµ0 = 0, ∇µTµ
i = 0. (3.17)

Indeed, applying a Galilean diffeomorphism (2.9), (2.18), the time components up and space
components down transform faithfully and irreducibly. On the divergence of the energy–
momentum tensor we find:

∇′
µT′µ0 = J∇µTµ0, ∇′

µT′µ
i = J−1l

i∇µTµ
l. (3.18)

Hence, the two sets of equations (3.17) do not mix13 and have furthermore a d-dimensional
covariant transformation, which is our goal for the Galilean fluid dynamics.

The expressions displayed so far are fully relativistic. The next step is to consider the
large-c regime. In this regime, Eqs. (3.17) can be expanded in powers of 1/c. This expansion
must be performed with care as the time equation needs an extra c factor with respect to the
next d spatial equations because it describes the evolution of energy, which is a momentum
multiplied by c. We find:14

c∇µTµ0 = c2 C
Ω

+
E
Ω

+ O
(

1
c2

)
, (3.19)

∇µTµ
i = Mi + O

(
1
c2

)
. (3.20)

At infinite c this leads to d + 2 equations (rather than d + 1, since in the Galilean limit, mass
and energy are separately conserved) for ̺, e, p and vi:

• continuity equation (mass conservation) C = 0;

• energy conservation E = 0;

• momentum conservation Mi = 0;

this system is completed with the equation of state p = p(e,̺).
It is important to stress that Galilean diffeomorphisms (2.9), (2.10) do not involve c, and

consequently they do not mix the various terms in the expansions (3.19) and (3.20). All d + 2

13They do mix for general diffeomorphisms though.
14Had we considered Ω = Ω(t,x), the divergence ∇µTµ

i would have exhibited an extra, dominant term in
the large-c limit: c2∂i ln Ω. The spatial conservation equation, ∇µTµ

i = 0, would then automatically require the
x-independence for Ω. Notice also the rescaling by Ω in (3.19), which guarantees that C and E are invariants
under Galilean diffeomorphisms, see (3.35).
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fluid equations reached this way on general backgrounds15 are guaranteed to be covariant
under Galilean diffeomorphisms, and this was one motivation of our work.

The dissipative tensors in Zermelo background

Before displaying the advertised equations, we would like to elaborate on the two tensors
which capture the deviation of the real fluid with respect to the perfect one: the heat current
and the viscous stress tensor.

Orthogonality conditions (3.3) allow to express every component of these tensors in
terms of qi and τij. We assume here the Zermelo form of the metric (2.17), and a fluid velocity
field as in (2.19), (2.20). We find

q0 = −viqi

c
, q0 =

(
vi − wi)qi

cΩ2 , qi = aijqj +
wi (vj − wj)qj

c2Ω2 . (3.21)

Similarly, the components of the stress tensor are obtained from the τijs. For example:

τ00 =
vkvlτkl

c2 , τ0j = −vkτkj

c
, τ0

j = −
(
vk − wk)τkj

cΩ2 , τ00 =

(
vk − wk)(vl − wl)τkl

c2Ω4 , . . .
(3.22)

We now define QG
i = qi as anticipated in (3.13), and

QGi = aijQG
j. (3.23)

Similarly, calling for ΣG
ij introduced in (3.11), we define

ΣG j
i = ΣG

ikakj, ΣGij = aikΣG j
k . (3.24)

Using the generic transformation rules of qµ and τµν under spacetime diffeomorphisms, we
find that QQQG and ΣΣΣG introduced above, appearing as classical c-independent objects, trans-
form as they should, namely as d-dimensional tensors under Galilean diffeomorphisms (2.9),
(2.18):

QG′
i = QG

k J−1k
i , QG′i = Ji

kQGk, (3.25)

ΣG′
ij = J−1k

i J−1l
j Σ

G
kl , ΣG′ j

i = J−1k
i ΣG l

k J j
l , ΣG′ij = ΣGkl Ji

k J j
l . (3.26)

Continuity and energy conservation

Using Eq. (3.2) for the energy–momentum tensor Tµν with gµν and uµ given in (2.17) and
(2.19), using Eqs. (3.21), (3.23) for the heat current and (3.22), (3.24) for the stress tensor as

15We stress again that here, as for instance in [29, 30], Galilean fluids evolve on general, curved and time-
dependent spaces S , as opposed to other works on non-relativistic fluid dynamics (see e.g. [31]).
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well as the definitions (3.16), we can perform the large-c expansion of the relativistic en-
ergy conservation equation (3.19). This requires the expansion of the Christoffel symbols,
displayed in App. A.1.

We find the following at O(c2):

C =
∂t
√

a ̺

Ω
√

a
+

1
Ω
∇i̺vi, (3.27)

where a stands for the determinant of the d-dimensional metric aij(t,x), and ∇i is the Levi–
Civita covariant derivative associated with aij(t,x) and Christoffel symbols given in (A.9).
The standard continuity equation C = 0 is thus recovered. It is customary to decompose C
in (3.27) as

∂t
√

a ̺

Ω
√

a
+

1
Ω
∇i̺vi =

1
Ω

d̺

dt
+ ̺θG, (3.28)

where
d
dt

= ∂t + vi∇i (3.29)

is the material derivative, and

θG =
1
Ω

(
∂t ln

√
a +∇ivi

)
(3.30)

the effective Galilean fluid expansion. The latter combines the divergence of the fluid congru-
ence with the logarithmic expansion of the volume form to produce a genuine scalar under
Galilean diffeomorphisms (2.9), (2.10) (see Eqs. (2.15) and (A.17)). The material derivative
(3.29), in the form 1

Ω
d
dt , is also an “invariant” when acting on a scalar function. This is due to

(2.12), (A.12) and (A.13). When acting on arbitrary tensors, it should be supplemented with
the appropriate w-connection terms, as shown in the appendix, Eq. (A.24).

At the next O(c0) order, we obtain:

E =
1

Ω
√

a
∂t

(
√

a ̺

(
e +

1
2

(
v − w

Ω

)2
))

+
1
Ω
∇i

(
̺vi

(
e +

1
2

(
v − w

Ω

)2
))

+
1
Ω
∇i

((
vj − wj

)(
pδi

j − ΣG i
j

))
+∇iQGi +

1
Ω

ΠGij
(
∇iwj +

1
2

∂taij

)
(3.31)

=
̺

Ω
d
dt

(
e +

1
2

(
v − w

Ω

)2
)
+

1
Ω
∇i

(
p
(

vi − wi
))

+∇iQGi

− 1
Ω
∇i

((
vj − wj

)
ΣG i

j

)
+

1
Ω

ΠGij
(
∇iwj +

1
2

∂taij

)
, (3.32)

where the alternative expression (3.32) is obtained from (3.31) using the continuity equation
C = 0. Here we introduced

ΠGij = ̺

(
vi − wi)(vj − wj)

Ω2 + paij − ΣGij, (3.33)
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the components of the Galilean energy–momentum tensor, following [1]. They are expressed
in terms of the fluid velocity, measured in an inertial-like frame, i.e. v − w, and transform
under Galilean diffeomorphisms (2.9), (2.10) as a genuine rank-two d-dimensional tensor on
S (one uses (2.11), (2.12), (2.13), (2.15), and (3.26)):

ΠGij′ = Ji
k J j

l ΠGkl . (3.34)

Equation E = 0 is the Galilean energy conservation equation for a viscous fluid in motion
on arbitrary, time-dependent d-dimensional space S , and observed from an arbitrary frame
(moving at velocity −w(t,x) with respect to a local inertial frame). In a short while, we will
recast this equation in a suitable form for recognizing the underlying phenomena. Notice
that both friction and thermal conduction occur, driven by the viscous stress tensor ΣΣΣG and
the heat current QQQG. As opposed to the energy-conservation equation at hand, the continuity
(mass-conservation) equation depends neither on the motion of the observer (w) nor on the
friction properties of the fluid. This is expected because energy is frame-dependent while
mass it is not.

One can check that under Galilean diffeomorphisms (2.9), (2.10):

C ′ = C, E ′ = E . (3.35)

In order to show this, it is convenient to recognize some well-behaved blocks in the expres-
sions at hand, based on the quoted transformation rules. We have gathered this information
in App. A.1, Eqs. (A.16)–(A.19). For (3.35), we also need (3.25), (3.26).

Euler equation

Following the same pattern, we can process the large-c behaviour of the relativistic momentum-
conservation equations. Along with (3.20) we find:

Mi =
1

Ω
√

a
∂t

(√
a ̺

vi − wi

Ω

)
+

1
Ω
∇j

(
̺wj

(
vi − wi

Ω

))
+

̺

Ω

(
vj − wj

Ω

)
∇iwj +∇jΠ

G j
i

(3.36)
with ΠG j

i as in (3.33). The equation Mi = 0 is the ultimate generalization of the standard
Euler equation, displayed e.g. in Ref. [1]. It is remarkably simple. The second and third
terms in (3.36) contribute to inertial forces (Coriolis, centrifugal etc.), and are usually absent
in Euclidean space with inertial frames. Together with the first term, they provide the com-
ponents of a one-form on S transforming as v−w

Ω (see (A.21), (A.22)). This is also how Mi

behave under Galilean diffeomorphisms (2.9), (2.10):

M′
i = J−1l

iMl. (3.37)
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The Euler equation (3.36) contains the acceleration γγγG = γG
idxi of the Galilean fluid. This

is defined covariantly as
ai = γG

i + O(1/c2) (3.38)

with ai the spatial components of the relativistic fluid acceleration as in (3.6). We find:

Ω2γG
i = Ω

dvi/Ω

dt
− Ω∂twi/Ω − 1

2
∂iw2 − vj (∂jwi − ∂iwj

)
(3.39)

with d/dt defined in (3.29). In this expression, γG
i appear as the components of the accel-

eration in the local inertial frame and dvi/Ω
Ωdt are the components of the effectively measured

acceleration in the coordinate frame at hand. In the right hand side, the second term is
the dragging acceleration, the third accounts for the centrifugal acceleration, and the last is
Coriolis contribution. We can alternatively write (3.39) as

γG
i =

d(vi−wi)/Ω

Ωdt
− 1

2
∂i

w2

Ω2 +
vj

Ω
∇i

wj

Ω
=

D(vi−wi)/Ω

Ωdt
, (3.40)

where we used the Galilean covariant time-derivative (A.25) in the second equality.
By construction, the γG

is transform as components of a genuine d-dimensional form and
γGi = aijγG

j as a vector, under Galilean diffeomorphisms (2.9), (2.10):

γG′
i = J−1l

i γ
G

l. (3.41)

One can also check explicitly the covariance of (3.39) using (A.22). Using γG
i in (3.39) and

the expression (3.33) for the Galilean energy–momentum tensor, we can recast Mi in (3.36)
à la Euler:

Mi = ̺γG
i + ∂i p −∇jΣ

G j
i . (3.42)

Energy and entropy

The momentum equation Mi = 0 together with continuity equation C = 0 can also be used
in order to provide a sharper expression for E given in (3.31), and leading to:

1
Ω
√

a
∂t

(√
a ̺

(
e +

v2 − w2

2Ω2

))
= −∇iΠGi − 1

2Ω
ΠGij∂taij + ̺

vj − wj

Ω2 ∂t
wj

Ω
. (3.43)

In this equation, ̺
(

e + v2−w2

2Ω2

)
is the total energy density of the fluid in the natural, non-

inertial frame. The energy density has three contributions: e̺ as internal energy, the kinetic
energy ̺v2/2Ω2, and the potential energy of inertial forces −̺w2/2Ω2 (see (2.6) for the free par-
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ticle paradigm). Furthermore

ΠGi = ̺
vi

Ω

(
h +

v2 − w2

2Ω2

)
+ QGi − vj

Ω
ΣG i

j (3.44)

appears as the Galilean energy flux. It receives contributions from the enthalpy, the kinetic
and inertial-potential energies, as well as from dissipative processes: thermal conduction
and friction, with the corresponding heat current QQQG and viscous stress current −v·ΣΣΣG/Ω.
The general energy conservation equation E = 0 has now a simple interpretation: the time
variation of energy in a local domain is due to the energy flux through the frontier plus the
external work due to the time dependence of aij and wi (as for the free particle (2.7)).

Dissipative processes create entropy. One can readily determine the variation of the latter
by recasting the energy variation in a manner slightly different than (3.43). For that we
compute E − vi−wi

Ω Mi with (3.31), (3.40), (3.42). We find, using continuity and (3.30):

E − vi − wi

Ω
Mi =

̺

Ω
de
dt

+ pθG +∇iQGi − 1
Ω

ΣGij
(
∇ivj +

1
2

∂taij

)
. (3.45)

In this expression, we can trade the energy per mass e, for the entropy per mass s, obeying

de = Tds − pdv = Tds +
p
̺2 d̺, (3.46)

where v = 1/̺. Substituting (3.46) in (3.45), and trading d̺/dt for −Ω̺θG (continuity), we
obtain finally, owing to E =Mi = 0:

̺T
Ω

ds
dt

=
1
Ω

ΣGij
(
∇ivj +

1
2

∂taij

)
−∇iQGi. (3.47)

The entropy is not conserved as a consequence of friction and heat conduction, which encode
dissipative processes. The latter are globally captured in a generalized dissipation function

ψ =
1
Ω

ΣGij
(
∇ivj +

1
2

∂taij

)
−∇iQGi, (3.48)

appearing both in energy and entropy equations (3.45), (3.47). Observe that ψ depends ex-
plicitly on Christoffel symbols as well as on the time variation of the metric. Hence time
dependence and inertial forces contribute the dissipation phenomena.16

16 The effect of inertial forces on dissipation has been recently studied by simulation of flows on curved static
films without heat current (i.e. d = 2, Ω = 1, w = 0, ∂taij = 0, QQQG = 0) [8]. One might consider performing
similar simulations or experiments for probing the more general sources of dissipation present in (3.48).
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First-order Galilean hydrodynamics and incompressible fluids

The viscous stress tensor ΣΣΣG and the heat current QQQG are constructed phenomenologically
as velocity and temperature derivative expansions. Since these objects transform tensori-
ally under Galilean diffeomorphisms (see (3.25), (3.26)), they must be expressed in terms of
tensorial derivative quantities.

At first order, we have θG defined in (3.30), which is an invariant, and

1
Ω

(
∇(kvl) +

1
2

∂takl

)
, (3.49)

which is a rank-two symmetric tensor (see (A.19)). We can therefore set

ΣG
(1)ij = 2ηGξG

ij + ζGaijθ
G, (3.50)

QG
(1)i = −κG∂iT. (3.51)

The transport coefficients are as usual the shear viscosity ηG, coupled to the Galilean shear,

ξG
ij =

1
Ω

(
∇(ivj) +

1
2

∂taij

)
− 1

d
aijθ

G, (3.52)

which receives also contributions from the derivative of the metric; the bulk viscosity ζG,
coupled to the Galilean expansion, and the thermal conductivity κG coupled to the temper-
ature gradient.

Using the definitions of relativistic expansion and shear (3.6), (3.7), we can find their
behaviour at large c in the Zermelo background:

σij = ξG
ij + O (1/c2) , (3.53)

Θ = θG + O (1/c2) . (3.54)

For completeness we also display the leading behaviour of the vorticity (3.8), even though it
plays no rôle in first-order hydrodynamics:

ωij =
1
Ω

(
∂[i(v − w)j]

)
+ O (1/c2) . (3.55)

Since furthermore the transverse projector (3.9) is hij = aij + O (1/c2), using (3.4) and (3.5)
together with (3.11) and (3.38), we find indeed (3.50) and (3.51) (by definition QG

i = qi).
It is important to stress at this point that transport coefficients are determined as modes
of microscopic correlation functions, and are therefore sensitive to the velocity of light. In
writing (3.11), we have assumed the following large-c behaviour:

η = ηG + O(1/c2) , ζ = ζG + O(1/c2) , κ = κG + O (1/c2) . (3.56)
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The case d = 2 is peculiar because ΣG
(1)ij admits an extra term:

ζG
H ηk(i ξG

j)l akl =
ζG

H
2Ω

(
ηk(i ∇j)v

k + ηk(i aj)l

(
∇kvl − ∂t

√
a akl

√
a

− akl∇mvm
))

(3.57)

with ηkl =
√

a ǫkl . This is indeed (up to a global sign) the infinite-c limit of the relativistic
Hall-viscosity contribution in three spacetime dimensions given in (3.10), assuming again
ζH = ζG

H + O (1/c2).
We can now combine the first-derivative contribution (3.50) of the viscous stress tensor

with expression (3.42) for Mi in order to obtain the momentum conservation equation Mi =

0 of first-order Galilean hydrodynamics. We obtain

̺γG
i + ∂i p − ηG

Ω

(
∆vi + r j

i vj + aikajl∂tγ
k
jl

)
−
(

ζG +
d − 2

d
ηG
)

∂iθ
G = 0, (3.58)

where ∆ = ∇i∇i is the Laplacian operator in d dimensions and rij the Ricci tensor of the
d-dimensional Levi–Civita connection γk

ij. Similarly, substituting (3.50), (3.51) and (3.52) in
(3.47), we find the entropy equation in first-order hydrodynamics on general backgrounds:

̺T
Ω

ds
dt

=
2ηG

Ω2

((∇ivj)(∇ivj
)
+
(∇ivj)∂taij −

1
4
(
∂taij)(∂taij

))
+

(
ζG − 2ηG

d

)(
θG
)2

+ κG∆T,

(3.59)
where we assumed κG constant (otherwise the last term would read ∇i(κG∇iT)).

A special class of Galilean fluids deserves further analysis. These are the incompressible
fluids for which ̺(t,x) obeys

d̺(t,x)
dt

= 0 (3.60)

with d/dt the material derivative defined in (3.29). Using the expressions (3.27) and (3.28), we
recast the incompressibility requirement as the vanishing of the effective fluid expansion:

θG = 0. (3.61)

In this case, the bulk viscosity drops from the stress tensor (3.50) and the Galilean shear (3.52)
simplifies. The first-order hydrodynamics momentum equation for an incompressible fluid
thus reads:

̺
dvi/Ω

Ω dt
= ̺

dwi/Ω

Ω dt
+

̺

2
∂i

w2

Ω2 − ̺
vj

Ω
∇i

wj

Ω
− ∂i p +

ηG

Ω

(
∆vi + r j

i vj + aikajl∂tγ
k
jl

)
. (3.62)

We immediately recognize in this expression the generalized covariant Navier–Stokes equation,
valid for incompressible fluids on any space S , observed from an arbitrary frame. The first
three terms in the right-hand side are contributions of frame inertial forces, the fourth is
the pressure force, and next come the friction forces at first-order derivative. For Euclidean
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space with Ω = 1 and w = 0 we recover the textbook form

dv
dt

= −grad p
̺

+
ηG

̺
∆v. (3.63)

3.3 Carrollian fluid dynamics from Randers–Papapetrou background

Preliminary remarks

As Carrollian particles, Carrollian fluids have no motion. From a relativistic perspective
this is an observer-dependent statement, since boosts can turn on velocity. In the limit of
vanishing velocity of light, however, these transformations are no longer permitted. Hence,
being at rest becomes a genuinely intrinsic feature.

The fluid velocity must be set to zero faster than c in order to avoid blow-ups in the
energy–momentum conservation. The appropriate scaling, ensuring a non-trivial kinematic
contribution is

vi = c2Ωβi + O
(

c4
)

, (3.64)

where vi = ui/γ. This leaves the Carrollian fluid with a kinematic variable βββ = βi∂i of inverse-
velocity dimension, as in (2.34) for the one-body Carrollian dynamics studied in Sec. 2.2 –
reason why we keep the same symbol. In order to reach covariant Carrollian fluid equations
by expanding the relativistic fluid equations at small c, we need to define the βis in such a
way that they transform as components of a genuine Carrollian vector under (2.27), (2.36)
already at finite c. This is achieved by setting

vi =
c2Ωβi

1 + c2βjbj
⇔ βi =

vi

c2Ω
(

1 − vjbj
Ω

) , (3.65)

from which one checks that17

βi′ = Ji
j β

j. (3.66)

The full fluid congruence reads then:





u0 = γc =
c
Ω

1 + c2βββ · bbb√
1 − c2βββ2

=
c
Ω

+ O
(
c3) , u0 = − cΩ√

1 − c2βββ2
= −cΩ + O

(
c3) ,

ui = γvi =
c2βi

√
1 − c2βββ2

= c2βi + O
(

c4
)

, ui =
c2 (bi + βi)√

1 − c2βββ2
= c2 (bi + βi) + O

(
c4
)

,

(3.67)

17This is easily proven by observing that βi + bi = −Ωui
cu0

. We define as usual bi = aijbj, βi = aijβ
j, vi = aijvj,

bbb2 = bibi, βββ2 = βiβ
i and bbb · βββ = biβ

i.
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where the Lorentz factor has been obtained by imposing the usual normalization ‖u‖2 = −c2:

γ =
1 + c2βββ · bbb

Ω
√

1 − c2βββ2
=

1
Ω

(
1 +

c2

2
βββ · (βββ + 2bbb) + O

(
c4
))

. (3.68)

In the relativistic regime, i.e. before taking the zero-c limit, in the Randers–Papapetrou back-
ground (2.35) the perfect part of the energy–momentum tensor reads then:





T 0
perf 0 = −ε − c2(ε + p)βk (bk + βk) + O

(
c4
)

,

cΩT 0
perf i = c2(ε + p) (bi + βi) + O

(
c4
)

,
c
Ω

T j
perf 0 = −c2(ε + p)βj + O

(
c4
)

,

T j
perf i = pδ

j
i + c2(ε + p)βj (bi + βi) + O

(
c4
)

.

(3.69)

The non-perfect part is encoded in Eqs. (3.2), (3.12) and (3.14). Notice, on the one hand, that
for vanishing βi, these expressions are exact at finite c: most of the terms of order c2 vanish as
do all non-displayed higher-order contributions in c2; on the other hand, for vanishing c, one
recovers the perfect energy–momentum of a fluid at rest due to the simultaneous vanishing
of vi as a consequence of (3.64).

The eventual absence of motion, macroscopic or microscopic, and the shrinking of the
light-cone raise many fundamental questions regarding the origin of pressure, temperature,
thermalization, entropy etc. One may wonder in particular what causes viscosity and ther-
mal conduction, what replaces the temperature derivative expansion of qi, what justifies its
behaviour (3.12). Even the propagation of a signal such as sound, if possible, should be re-
considered. It is tempting to claim that all this physics will be mostly of geometric nature
rather than many-body statistics, because as we will see the only kinematic Carrollian-fluid
variable βββ enters partly the dynamics.

We have no definite answers to all these questions though, and will not discuss these
important issues here, which might possibly require to elaborate on space-filling branes as
microscopic objects – see Sec. 2.2. Our approach will be kinematical, aiming at writing the
fundamental equations, covariant under Carrollian diffeomorphisms (2.27), (2.36), starting
from the relativistic equations (3.1). Alternative paths may exist, allowing to built some
Carrollian dynamics without using the zero-c limit of a relativistic fluid.18

18In this spirit, one should quote the attempt made in [32], inspired by the membrane paradigm – admittedly
suited for reaching Galilean rather than ultra-relativistic fluid dynamics, as well as Ref. [33], mostly focused on
the structure of the energy–momentum tensor of perfect fluids (3.69), which also touches on Carrollian symme-
try.
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The structure of the equations

The relativistic equations (conservation of the energy–momentum tensor) should now be
presented as

∇µTµ
0 = 0, ∇µTµi = 0. (3.70)

Under Carrollian diffeomorphisms (2.27), (2.36), the divergence of the energy–momentum
tensor transforms as:

∇′
µT′µ

0 =
1
J
∇µTµ

0, ∇′
µT′µi = Ji

l∇µTµl. (3.71)

In analogy with the Galilean case (3.17), the two sets of equations (3.70) have separately a
d-dimensional covariant transformation. This is part of the agenda for the Carrollian dy-
namics.

Equations (3.70) are relativistic. Using the general energy–momentum tensor (3.2) with
perfect part (3.69) and (3.12) as stress tensor, we find generally:

c
Ω
∇µTµ

0 =
1
c2F + E + O

(
c2) , (3.72)

∇µTµi =
1
c2Hi + G i + O

(
c2) . (3.73)

For zero βi, these expressions are exact with extra terms of order c2 only, and requiring they
vanish leads to the d + 1 fully relativistic fluid equations. With βi , 0, (3.72) and (3.73)
are genuinely infinite series. Thanks to the validity of (3.66) at finite c, Carrollian diffeo-
morphisms do not mix the different orders of these series, making each term Carrollian-
covariant. Here, we are interested in the zero-c limit, and in this case Eqs. (3.72) and (3.73)
split into 2 + 2d distinct equations:

• energy conservation E = 0;

• momentum conservation G i = 0;

• constraint equations F = 0 and Hi = 0.

All of these are covariant under Carrollian diffeomorphisms (2.27), (2.36).
The Carrollian fluid, obtained as Carrollian limit of a relativistic fluid in the appropriate

(Randers–Papapetrou) background, is described in terms of the d βis, and the two variables p
and ε.19 The latter are related through an equation of state and the energy-conservation equa-
tion E = 0. As we will see soon, the other 2d+ 1 equations are setting consistency constraints
among the 2d components of the heat currents (QC

i and πi), the d(d + 1) components of the
viscous stress tensors (ΣC

ij and Ξij), the inverse-velocity components βi and the geometric

19The proper energy density cannot be split in mass density and energy per mass, because the limit at hand
is ultra-relativistic. Observe also that bbb is not a fluid variable but a Carrollian-frame parameter as was w in the
Galilean case. The fluid kinematical variable is βββ, playing the rôle v−w

Ω had in the usual non-relativistic case.
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environment. Geometry is therefore expected to interfere more actively in the dynamics of
Carrollian fluids, than it did for Galilean hydrodynamics. Some of the aforementioned con-
straints are possibly rooted to more fundamental microscopic/geometric properties, yet to
be unravelled. Their usage will be illustrated in Sec. 4.2.

The dissipative tensors in Randers–Papapetrou background

For a relativistic fluid in the Randers–Papapetrou background (2.35), using the velocity field
in (3.64) and (3.67) and the components qi, the transversality conditions (3.3) lead to

q0 =
c
Ω

(bi + βi) qi, q0 = −cΩβiqi, qi =
(
aij + c2biβ j

)
qj. (3.74)

Similarly, the components of the viscous stress tensor are obtained from the τijs. For exam-
ple:

τ00 =
c2

Ω2 (bk + βk) (bl + βl)τkl , τ0i =
c
Ω

(bi + βi)τik, τ00 = c2Ω2βkβlτ
kl ,

τ0i = −cΩβ j
(
aik + c2biβk

)
τ jk, τij =

(
aik + c2biβk

)(
ajl + c2bjβl

)
τkl , . . .

(3.75)

Under Carrollian diffeomorphisms (2.27), (2.36), we obtain the following transformation
rules

q′i = qj Ji
j , τ′ij = τkl Ji

k J j
l . (3.76)

This suggests to use qi as components for the Carrolian d-dimensional heat current decom-
posed as QCi + c2πi (see (3.14)), and τij for the Carrolian d-dimensional viscous stress tensors
ΣCij and Ξij defined in (3.12). We introduce as usual

QC
i = aijQCj, ΣC j

i = aikΣCkj, ΣC
ij = ajkΣC k

i , (3.77)

πi = aijπ
j, Ξ j

i = aikΞkj, Ξij = ajkΞ k
i . (3.78)

Using the generic transformations (3.76) under Carrollian diffeomorphisms (2.27), (2.28),
we find that the above quantities transform as they should, for being eligible as d-dimensional
tensors:

QC′
i = QC

j J
−1j

i , QC′i = Ji
j Q

Cj, (3.79)

ΣC′
ij = J−1k

i J−1l
j Σ

C
kl , ΣC′ j

i = J−1k
i ΣC l

k J j
l , ΣC′ij = ΣCkl Ji

k J j
l , (3.80)

and similarly for πi and Ξjk.
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Scalar equations

The computation of the spacetime divergence in (3.72) is straightforward and leads to the
following:

E = −
(

1
Ω

∂t +
d + 1

d
θC
)(

ε + 2βiQCi − βiβ jΣCij
)
+

1
d

θC
(

Ξi
i − βiβ jΣCij + ε − dp

)

−
(
∇̂i + 2ϕi

)(
QCi − β jΣCij

)
−
(

2QCiβj − Ξij
)

ξC
ij, (3.81)

F = ΣCijξC
ij +

1
d

ΣCi
iθ

C, (3.82)

where we have introduced a new covariant derivative ∇̂i, as defined in the appendix, Eqs.
(A.45)–(A.53). It is based on a new torsionless and metric-compatible connection (see (A.61)–
(A.65)) dubbed Levi–Civita–Carroll, which plays for Carrollian geometry the rôle of ordinary
Levi–Civita connection for ordinary geometry, i.e. it allows to built derivatives covariant
under Carrollian diffeomorphisms (2.27), (2.28). Some further properties regarding the cur-
vature of this connection are displayed in (A.66)–(A.78). A deeper investigation of this struc-
ture is out of place here. In (3.81) and (3.82) we have moreover defined

ϕi =
1
Ω

(∂tbi + ∂iΩ) , (3.83)

θC =
1
Ω

∂t ln
√

a . (3.84)

These expressions describe a form and a scalar (see (A.42) and (A.41) for their transformation
rules under Carrollian diffeomorphisms). They play the rôle of inertial acceleration and expan-
sion for the Carrollian fluid. These are both geometrical and the qualifier “inertial” refers to
the frame (i.e. bi and Ω) origin. We shall see in a moment that there is an extra contribution
to the Carrollian fluid acceleration due to the kinematical observable βi, but none for the
expansion (see (3.95), (3.96)). As already stated and readily seen by its equations, most of the
fluid properties are of geometrical nature. One similarly defines an inertial vorticity two-form
with components

̟ij = ∂[ibj] + b[i ϕj], (3.85)

and the traceless and symmetric shear tensor

ξC
ij =

1
Ω

(
1
2

∂taij −
1
d

aij∂t ln
√

a
)

. (3.86)

These quantities will be related in a short while to the ordinary relativistic counterparts (see
(3.98) and (3.97)). The former receives a fluid kinematical contribution, as opposed to the
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latter. Eventually, we can elegantly check that

E ′ = E , F ′ = F (3.87)

(we use for that Eqs. (2.31), (3.79), (3.80), (A.42), (A.43), (A.50)–(A.59)).
Equation F = 0 sets a geometrical constraint on the Carrollian stress tensor ΣΣΣC, whereas

E = 0 is the energy conservation. Using (3.81), the latter can be recast as follows:

(
1
Ω

∂t + θC
)

ee = −(∇̂i + 2ϕi
)

ΠCi − ΠCij
(

ξC
ij +

1
d

θCaij

)
, (3.88)

and in this form it bares some resemblance with the Galilean homologous equation (3.43). It
exhibits three Carrollian tensors, which capture the Carrollian energy exchanges:

ee = ε+ 2βiQCi − βiβ jΣCij, ΠCi = QCi − β jΣCij, ΠCij = QCiβj + βiQCj + paij −Ξij. (3.89)

The first is a scalar ee, which can be interpreted as an effective Carrollian energy density (ob-
serve the absence of kinetic energy, expected from the vanishing velocity). Its time variation,
including the dilution/contraction effects due to the expansion, is driven by the gradient of a
Carrollian energy flux, which is the vector ΠCi, and by the coupling of the shear to a Carrollian
energy–momentum tensor ΠCij.

Vector equations

The vectorial part of the divergence is obtained from (3.73) and has two pieces. The first
reads:

Gj =
(
∇̂i + ϕi

)
ΠCi

j + ϕjee + 2ΠCi̟ij +

(
1
Ω

∂t + θC
)(

πj + β j

(
ee − 2βiΠCi − βiβkΣCik

))

+

(
1
Ω

∂t + θC
)(

βk
(

ΠC
kj −

1
2

βkΠC
j −

1
2

βkβiΣC
ij

))
. (3.90)

The second is as follows:

Hj = −(∇̂i + ϕi
)

ΣCi
j +

(
1
Ω

∂t + θC
)

ΠC
j. (3.91)

Equation Gj = 0 involves ε, p and their temporal and/or spatial derivatives, βββ, the heat
current QQQC, and ΞΞΞ, expressed in terms of the effective energy density ee, the Carrollian energy
flux and energy–momentum tensor ΠΠΠC, as well as πππ and ΣΣΣC. It is a momentum conservation.
Notice also the coupling of the energy flux to the inertial vorticity. Equation Hj = 0 depends
neither on ε nor on p. This is an equation for the Carrollian energy flux ΠΠΠC and the viscous
stress tensor ΣΣΣC, of geometrical nature as it involves the metric aaa, the Carrollian “frame
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velocity” bbb and the inertial acceleration ϕϕϕ.
Under Carrollian diffeomorphisms (2.27), (2.28), using the already quoted equations,

(2.31), (3.79), (3.80), and (A.42)–(A.60), we obtain:

G ′i = Ji
jG j, H′i = Ji

jHj. (3.92)

One should observe at this point that the energy–momentum tensor and energy flux
associated with a Carrollian fluid and defined in (3.89) are merely a repackaging of part of
the dynamical data. They do not capture all perfect and friction quantities, as it happens
for Galilean fluids, Eqs. (3.33) and (3.44). Equation F = 0, as well as the vector equations
need indeed more information than the energy–momentum tensor and energy flux. There is
pressure, energy density and “velocity”, on the one hand, and on the other hand, we find the
two heat currents and the two viscous stress tensors. The zero-c limit produces a decoupling
in the equations, sustained by the scaling assumption (3.12). This is the reason why Hj = 0
appears as an equation for the dissipative pieces of data only, while the non-dissipative ones
mix with the heat currents inside Gj = 0.

Carrollian perfect fluids

We would like to end this chapter with a remark on the case of perfect fluids, namely fluids
with vanishing dissipative tensors. For those, the dynamical variables are ε, p and βi, with
ee = ε, ΠC

j = 0 and ΠC
ij = paij . In this case, F =Hi = 0 identically, and

E = − 1
Ω

∂tε − (ε + p)θC , (3.93)

Gj = (ε + p)
(

ϕj + γC
j + β jθ

C
)
+

β j

Ω
∂t(ε + p) + ∂̂j p. (3.94)

On the one hand, non-trivial energy exchanges can only result from time-dependence of the
metric and pressure gradients. The latter, on the other hand, are bound to non-trivial βββ, γγγC,
bbb and Ω. Here γC

j is the kinematical acceleration defined later in (3.99).
For perfect fluids, only E and Gi survive in the relativistic divergence of the energy–

momentum tensor, Eqs. (3.72) and (3.73). Furthermore, for zero βββ these are actually the only
terms, at finite c. Hence, the relativistic equations are not affected by the vanishing-c limit,
and coincide with the Carrollian ones: E = 0 and Gi = 0. As a consequence, the Carrollian
nature of a fluid at βββ = 0 can only emerge through interactions. This is to be opposed to
the Galilean situation, since Galilean perfect fluids are definitely different from relativistic
perfect fluids, even at rest.
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First-order Carrollian hydrodynamics

In order to acquire a better perspective of Carrollian fluid dynamics, we can study the first-
order in derivative expansion of its viscous tensors and heat currents. The first-derivative
relativistic kinematical tensors as acceleration and expansion (3.6), shear (3.7), and vortic-
ity (3.8), for a fluid with velocity vanishing as (3.64) when c → 0 in Randers–Papapetrou
background (2.35) read (the only independent components are the spatial ones):

ai =
c2

Ω
(∂t (bi + βi) + ∂iΩ) + O

(
c4
)
= c2

(
ϕi + γC

i

)
+ O

(
c4
)

, (3.95)

Θ =
1
Ω

∂t ln
√

a + O
(
c2) = θC + O

(
c2) , (3.96)

σij =
1
Ω

(
1
2

∂taij −
1
d

aij∂t ln
√

a
)
+ O

(
c2) = ξC

ij + O
(
c2) , (3.97)

ωij = c2
(

∂[ibj] +
1
Ω

b[i∂j]Ω +
1
Ω

b[i∂tbj] + wij

)
+ O

(
c4
)
= c2 (̟ij + wij

)
+ O

(
c4
)

. (3.98)

We find the corresponding Carrollian expansion θC and shear ξC
ij, as already anticipated in

(3.84) and (3.86). These quantities are purely geometric and originate from the time depen-
dence of the d-dimensional spatial metric. Similarly, the relativistic acceleration and vorticity
allow to define the already introduced Carrollian, inertial acceleration ϕi and vorticity ̟ij,
as well as the kinematical acceleration γC

i and kinematical vorticity wij defined as:

γC
i =

1
Ω

∂tβi, (3.99)

wij = ∂̂[iβ j] + β[i ϕj] + β
[iγ

C
j]. (3.100)

Starting from the first-order relativistic viscous tensor (3.4) and heat current (3.5), in order to
comply with the behaviours (3.12) and the definition of the Carrollian heat currents (3.14),
we must assume that (up to possible higher orders in c2)

η = η̃ +
ηC

c2 , ζ = ζ̃ +
ζC

c2 , κ = c2κ̃ ++κC. (3.101)

Hence, putting these equations together, we find

ΣC
(1)ij = 2ηCξC

ij + ζCθCaij, (3.102)

QC
(1)i = −κC

Ω
(∂t(biT) + βi∂tT + ∂i(ΩT))

= −κC
(

∂̂iT + T
(

ϕi + γC
i

))
, (3.103)
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and similarly for Ξ(1)ij and π(1)i. These quantities will include respectively terms like 2η̃ξC
ij +

ζ̃θCaij and −κ̃
(

∂̂iT + T
(

ϕi + γC
i

))
, plus extra terms coupled to ηC, ζC and κC, and originat-

ing from higher-order contributions in the c2-expansion of the relativistic shear, acceleration
and expansion. Notice that these are absent for vanishing βi because in this case (3.95)–(3.98)
are exact.

All the above expressions are covariant under Carrollian diffeomorphisms (2.27), (2.28)
(see formulas (A.40)–(A.43) in appendix). The friction phenomena are geometric and due
to time evolution of the background metric aij. The heat conduction, depends also on a
temperature, which has not been defined in Carrollian thermodynamics due to the absence
of kinetic theory.

In the two-dimensional case one should take into account the Hall viscosity (3.10) in the
relativistic viscous tensor at first order. Assuming again ζH = ζC

H/c2 + ζ̃H, the extra term to be
added to ΣC

(1)ij in (3.102) reads:

ζC
H
√

a ǫk(iξ
C

j)la
kl , (3.104)

and similarly for Ξ(1)ij with transport coefficients ζ̃H and ζC
H as already explained.

The final first-order Carrollian equations are obtained by substituting ΣC
(1)ij and QC

(1)i
given in (3.102) and (3.103), and similarly for Ξ(1)ij, and π(1)i, inside the general expressions
for E , F , Gi and Hi, Eqs. (3.81), (3.82), (3.90) and (3.91).

Conformal Carrollian fluids

Carrollian fluids are ultra-relativistic and are thus compatible with conformal symmetry. For
conformal relativistic fluids the energy–momentum tensor (3.2) is traceless and this requires

ε = dp, τ
µ
µ = 0. (3.105)

In the Carrollian limit, the latter reads:

Ξi
i = βiβ jΣCij, ΣCi

i = 0. (3.106)

In particular, we find ee = ΠCi
i.

The dynamics of conformal fluids is covariant under Weyl transformations. Those act on
the fluid variables as

ε →Bd+1ε, πi →Bdπi, QC
i →BdQC

i, Ξij →Bd−1Ξij, ΣC
ij →Bd−1ΣC

ij, (3.107)

where B = B(t,x) is an arbitrary function. The elements of the Carrollian geometry behave
as follows:

aij →
1
B2 aij, bi →

1
B bi, Ω → 1

BΩ, (3.108)
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and similarly for the kinematical variable βi, the inertial and kinematical vorticity (3.85) and
the shear (3.86):

βi →
1
B βi, ̟ij →

1
B̟ij, wij →

1
Bwij, ξC

ij →
1
B ξC

ij. (3.109)

The Carrollian inertial and kinematical accelerations (3.83) and (3.99), and the Carrollian
expansion (3.84) transform as connections:

ϕi → ϕi − ∂̂i lnB, γC
i → γC

i −
βi

Ω
∂t lnB, θC →BθC − d

Ω
∂tB. (3.110)

The first and the latter enable to define Weyl–Carroll covariant derivatives D̂i and D̂t, as
discussed in App. A.2, Eqs. (A.82)–(A.93). With these derivatives, Carrollian expressions
(3.81), (3.82), (3.90) and (3.91) read for a conformal fluid:

E = − 1
Ω
D̂tee − D̂iΠCi − ΠCijξC

ij, (3.111)

F = ΣCijξC
ij, (3.112)

Gj = D̂iΠCi
j + 2ΠCi̟ij +

(
1
Ω
D̂tδ

i
j + ξCi

j

)(
πi + βi

(
ee − 2βkΠCk − βkβlΣCkl

))

+

(
1
Ω
D̂tδ

i
j + ξCi

j

)(
βk
(

ΠC
ki −

1
2

βkΠC
i −

1
2

βkβlΣC
li

))
, (3.113)

Hj = −D̂iΣCi
j +

1
Ω
D̂tΠC

j + ΠC
iξ

Ci
j. (3.114)

These equations are Weyl-covariant of weights d + 2, d + 2, d + 1 and d + 1.
The case of conformal Carrollian perfect fluids is remarkably simple. As quoted earlier

F =Hi = 0, and here

E = − 1
Ω
D̂tε, Gj =

1
d
D̂jε +

d + 1
d

(
1
Ω
D̂tδ

i
j + ξCi

j

)
εβi. (3.115)

For these fluids the energy density is covariantly constant with respect to the Weyl–Carroll
time derivative.

3.4 A self-dual fluid

A duality relationship between the Zermelo and the Randers–Papapetrou background met-
rics exist and can be stated as follows [15]: the contravariant form of Zermelo matches the
covariant expression of Randers–Papapetrou and vice-versa (see Eqs. (A.1) and (A.28)).

This property is actually closely related to the duality among the Galilean and Carrollian
contractions of the Poincaré group [12], and has many simple manifestations. For example,
the reduction of a spacetime vector representation with respect to Galilean diffeomorphisms
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(2.9), (2.10), (2.18) is performed with the components V0 and Vi. Indeed, these transform as

V ′0 = JV0, V ′
i = Vk J−1k

i . (3.116)

When reducing under Carrollian diffeomorphisms (2.27), (2.28), (2.36), one should instead
use V0 and V i since

V ′
0 =

1
J

V0, V ′i = Ji
kVk. (3.117)

The remarkable values wi = bi = 0 and Ω = 1 define a sort of self-dual background. If
furthermore we require the fluid to be at rest, no distinction survives between perfect Galilean
and Carrollian fluids, as one readily checks that their equations are identical. The velocity of
light is immaterial in this case. As soon as the system is driven away from perfection, this
property does not hold any longer, because interactions are sensitive to c.

4 Examples

We will now illustrate our general formalism with examples for Galilean and Carrollian
fluids. The latter is the first instance of a fluid obeying exact Carrollian dynamics. It is
important both mathematically, as it makes contact with Calabi flows, and physically, for it
is relevant in gravity and holography.

4.1 Galilean fluids

We provide here two applications: the flat space in rotating frame, which is well known and
has the virtue of giving confidence to our methods, and the inflating space, combining both
time-dependence and non-flatness of the host S .

Euclidean three-dimensional space in rotating frame

We will present the hydrodynamical equations for a non-perfect fluid moving in Euclidean
space E3 with Cartesian coordinates, and observed from a uniformly rotating frame (see
(2.8)):

aij = δij, Ω = 1, w(x) = x ×ωωω. (4.1)

For this fluid, the continuity equation is simply

d̺

dt
+ ̺div v = 0. (4.2)
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The Euler equation in first-order hydrodynamics, Eq. (3.58) reads:

dv
dt

= (ωωω × x)×ωωω + 2v ×ωωω − grad p
̺

+
ηG

̺
∆v +

1
̺

(
ζG +

ηG

3

)
grad(div v), (4.3)

and we recognize the various, already spelled contributions to the dynamics. This equation
has been obtained and used in many instances, see e.g. [7, 34, 35]. We also find the energy
conservation equation (3.43):

∂t

(
̺

(
e +

v2 −ωωω2x2 + (ωωω · x)2

2

))
= −divΠΠΠG, (4.4)

with

ΠΠΠG = ̺v
(

h +
v2 −ωωω2x2 + (ωωω · x)2

2

)
− κG grad T − v ·ΣΣΣG

(1) (4.5)

and
ΣG
(1)ij = ηG (∂ivj + ∂jvi

)
+

(
ζG − 2

3
ηG
)

δij∂kvk. (4.6)

Alternatively, using (3.32), the energy equation reads:

̺
d
dt

(
e +

v2 −ωωω2x2 + (ωωω · x)2

2

)
= −divpv + κG∆T + div

(
v ·ΣΣΣG

(1)

)
. (4.7)

The temporal variation of the total energy per mass is given by the divergences of the pres-
sure, the thermal conduction and the viscous stress fluxes.

Inflating space

The dynamics of a non-perfect fluid moving on an inflating space can be studied considering:

aij(t,x) = exp(α(t)) ãij(x), Ω = 1, w = 0. (4.8)

The space dimension d is arbitrary here, therefore:

ln
√

a = d
α

2
+ ln

√
ã . (4.9)

The fluid equations obtained from (3.27), (3.32) and (3.42) become

∂t̺ +
α′

2
d̺ + div̺v = 0, (4.10)

̺
d
dt

(
e +

v2

2

)
+

α′

2

(
̺v2 + dp − TrΣΣΣG

)
+ div

(
pv +QQQG − v ·ΣΣΣG

)
= 0, (4.11)

̺
dvi

dt
+ α′̺vi +∇i p −∇jΣGij = 0. (4.12)
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where α′ = dα/dt and TrΣΣΣG = aijΣG
ij.

The continuity equation (4.10) has an extra term proportional to ̺. This reflects the
change of density due to α′. For a static fluid one finds the familiar result ̺ = ̺0e−dα/2: for
a space expanding in time, the density is getting diluted. In Euler’s equation (4.12), a sim-
ilar term creates a force proportional to the velocity field. For positive α′, time dependence
acts effectively like a friction. A similar conclusion is drawn from the energy conservation
equation (4.11).

4.2 Two-dimensional Carrollian fluids and the Robinson–Trautman dynamics

Consider now a two-dimensional surface S , endowed with a complex chart (ζ, ζ̄) and a
time-dependent metric of the form

dℓ2 =
2

P(t,ζ, ζ̄)2 dζdζ̄. (4.13)

In this case the Carrollian shear ξξξC (3.86) vanishes. We assume that the Carrollian frame
has bbb = 0 and Ω = 1, and that the Carrollian kinematical variable βββ also vanishes. Hence,
the Carrollian inertial acceleration ϕϕϕ (3.83) and inertial vorticity ̟̟̟ (3.85) vanish together
with the kinematical acceleration γγγC (3.99) and kinematical vorticity www (3.100). We further
assume that πππ and ΞΞΞ vanish, so that the friction and heat-transport phenomena are captured
exclusively by QQQC and ΣΣΣC. Hence ee = ε, ΠC

j = QC
j and ΠC

ij = paij.
We will here study a conformal Carrollian fluid. In this case (see (3.106)), the Gibbs–

Duhem equation reads
ε(t,ζ, ζ̄) = 2p(t,ζ, ζ̄), (4.14)

and the viscous tensor is traceless:
ΣCζζ̄ = 0. (4.15)

The generic set of equations of motion for the Carrollian fluid at hand is (see (3.111), (3.113),
(3.114))

E = 3ε∂t ln P − ∂tε − divQQQC = 0, (4.16)

GGG = grad p = 0, (4.17)

HHH = ∂tQQQC − 2QQQC∂t ln P − divΣΣΣC = 0, (4.18)

together with Eq. (3.112), F = 0, identically satisfied due to the absence of shear. Equations
(4.16), (4.17) and (4.18) are covariant under Weyl transformations mapping P(t,ζ, ζ̄) onto
B(t,ζ, ζ̄)P(t,ζ, ζ̄) with B(t,ζ, ζ̄) an arbitrary function.

The momentum equation (4.17) states that the pressure p is space-independent, which is
not a surprise for a fluid at βββ = 0 in a Carrollian frame with vanishing bbb and constant Ω. The
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same holds for the energy, due to the equation of state.
In order to proceed we must introduce some further assumptions regarding the heat cur-

rent and the viscous stress tensor. These quantities are rooted to the unknown microscopic
properties of the Carrollian fluids. As already mentioned earlier in Sec. 3.3, due to the ab-
sence of motion even at a microscopic level, it is tempting to assign a geometric rather than
a statistical or kinetic origin to Carrollian thermodynamics. We may therefore define the
Carrollian temperature as

κCT(t,ζ, ζ̄) =
〈

κCT
〉
(t) + κ′K(t,ζ, ζ̄)− κ′ 〈K〉 (t), (4.19)

where K the Gaussian curvature of (4.13):

K = ∆ ln P (4.20)

with ∆ = 2P2∂ζ̄∂ζ the ordinary two-dimensional Laplacian operator. The thermal conductiv-
ity κC is not constant in general because the identification with the curvature scalar endows
the product κCT with a conformal weight 2, whereas the temperature T has weight 1. We
also introduced a constant κ′ for matching the dimensions. In expression (4.19),

〈
κCT

〉
(t)

is an a priori arbitrary time-dependent reference temperature (times thermal conductivity),
and the brackets are meant to average over S :20

〈 f 〉(t) = 1
A

∫

S

d2ζ

P2 f (t,ζ, ζ̄), A =
∫

S

d2ζ

P2 . (4.21)

Equipped with a temperature, we define next the heat current as its gradient

QQQC = −gradκCT = −κ′ grad K, (4.22)

following first-order Carrollian hydrodynamics, Eq. (3.103). Here, we assume this expres-
sion be exact, i.e. without higher-derivative contributions. With these definitions, the heat
equation (4.16) for the Carrollian fluid at hand reads:

3ε∂t ln P − ∂tε + κ′∆K = 0, (4.23)

where we have used the equation of state (4.14). This is a dynamical equation for P(t,ζ, ζ̄),
given ε(t). Carrollian dynamics, within the framework set by our definitions of temperature
and heat current, is therefore purely geometrical and describes the evolution of the hosting
space S rather than the fluid itself. This is not a surprise because the fluid does not move.
Going in the Carrollian limit from a relativistic set-up, amounts to trading the dynamics of
the fluid for that of the supporting geometry.

20Here d2ζ = −i dζ ∧ dζ̄. If S is non-compact a limiting procedure is required for defining the integrals.
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We must finally impose Eq. (4.18). As we mentioned in the general discussion of Sec.
3.3, this is not an evolution equation, but instead a constraint among the heat current, the
viscous stress tensor and the ambient geometry. Thus, we can integrate it using (4.22). We
find

ΣΣΣC = −2κ′

P2

(
∂ζ

(
P2∂t∂ζ ln P

)
dζ2 + ∂ζ̄

(
P2∂t∂ζ̄ ln P

)
dζ̄2
)

, (4.24)

up to a divergence-free, trace-free symmetric tensor. The viscous stress tensor for the Carrol-
lian fluid at hand is therefore geometric, as is the heat current, and both appear as third-order
derivatives of the metric. Actually, the effective expansion generally defined for Carrollian
fluids as in (3.96), reads here:

θC = −2∂t ln P. (4.25)

It enables to view ΣΣΣC as a velocity third derivative through the writing

ΣC
ij = κ′

(
∇i∇jθ

C − 1
2

aij∇k∇kθC
)

. (4.26)

Notice that in the two-dimensional background under consideration (4.13), the viscous ten-
sor ΣΣΣC could not have received an ηC-induced first-order derivative correction as in (3.102)
because the Carrollian shear ξC

ij given in (3.97) vanishes here identically. However, since the
Carrollian expansion θC is non-zero, the absence of first-order derivative correction (3.102)
implies that for the fluid at hand ζC = 0.

Equation (4.23), which is at the heart of two-dimensional conformal Carrollian fluid dy-
namics, is actually known as Robinson–Trautman. It emerges when solving four-dimensional
Einstein equations, assuming the existence of a null, geodesic and shearless congruence [36].
In vacuum or in the presence of a cosmological constant, Goldberg–Sachs theorems state that
the corresponding spacetime is algebraically special and the whole dynamics boils down to
the Robinson–Trautman equation with ε(t) = 4κ′M(t) and κ′ = 1/16πG (using (4.20)):

∆∆ ln P + 12M∂t ln P − 4∂t M = 0. (4.27)

In that framework, the time dependence of the mass function M(t) can be reabsorbed by
an appropriate coordinate transformation (see e.g. [37]) and Robinson–Trautman equation
becomes then

2∂ζ̄ ∂ζ P2∂ζ̄∂ζ ln P = 3M∂t

(
1
P2

)
(4.28)

with M constant related to the Bondi mass. This is a parabolic equation describing a Calabi
flow on a two-surface [38].

The reason why Robinson–Trautman appears both as a heat equation in conformal Car-
rollian fluids and as a remnant of four-dimensional Einstein equations is the holographic
relationship between gravity and fluid dynamics. The two-dimensional conformal Carrol-
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lian fluid studied here originates from flat Robinson–Trautman spacetime holography [16].
Similarly Robinson–Trautman equation is the heat equation for 2+ 1-dimensional relativistic
boundary fluids emerging holographically from four-dimensional anti-de Sitter Robinson–
Trautman spacetimes [28].

5 Conclusions

We can summarize our method and results as follows.
A general relativistic spacetime metric is covariant under diffeomorphisms. When put in

Zermelo form, the data Ω(t), wi(t,x) and aij(t,x) transform under Galilean diffeomorphisms
t′ = t′(t) and x′ = x′(t,x) as they should to comply with the infinite-c non-relativistic expec-
tations. This observation is made by analyzing the relativistic particle motion and its classi-
cal limit. It provides the appropriate framework for studying the general non-relativistic
Galilean fluid dynamics as an infinite-c limit of the relativistic one. In this manner, we
have obtained the general equations i.e. continuity, energy-conservation and Euler, valid on
any spatial background, potentially time-dependent, and observed from an arbitrary frame.
These equations transform covariantly under Galilean diffeomorphisms.

Alternatively, one can study relativistic instantonic space-filling branes and the small-
c behaviour of their dynamics. The latter is invariant under Carrollian diffeomorphisms
t′ = t′(t,x) and x′ = x′(x), and Randers–Papapetrou form is the best designed spacetime
metric because the data Ω(t,x), bi(t,x) and aij(t,x) transform as expected from the non-
relativistic limit (which is actually ultra-relativistic). In Randers–Papapetrou backgrounds
one can study relativistic fluids and their Carrollian limit at vanishing velocity of light. This
limit exhibits a new connection, which naturally fits into the emerging Carrollian geometry.
One obtains in this way the general equations for the Carrollian fluids, manifestly covariant
under Carrollian diffeomorphisms.

Several comments are in order here.
The Carrollian set we have reached is made of two scalar and two vector equations. The

first scalar is an energy conservation, whereas the first vector is a momentum conserva-
tion. As there is no motion (due to c = 0), there is no velocity field. Nonetheless there is a
kinematical fluid variable (an “inverse velocity”) accompanied by the pressure and energy
density, related through an equation of state. We also find two heat currents and two viscous
stress tensors. The Carrollian-fluid data cannot be naturally encapsulated all together in an
energy–momentum tensor or an energy flux, as it happens in the Galilean case. Half of the
equations concern exclusively the heat currents and the viscous stress tensors, relating them
intimately to the ambient geometry and the Carrollian frame. We should stress here that we
have made a specific assumption on the small-c behaviour of the relativistic viscous stress
tensor and heat current, or equivalently of the transport coefficients. The number and the
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structure of the equations finally obtained reflects this unavoidable ansatz, inspired from the
holographic Carrollian fluids met in flat-space gravity/fluid correspondence [16].21 Going
further in understanding this ansatz, and the physics behind the equations of motion, would
require a microscopic analysis of Carrollian fluids.

Despite the absence of velocity field in Carrollian hydrodynamics, the concept of deriva-
tive expansion still holds. At each order one can define covariant tensors build on time and
space derivatives of aij, bi and βi, as we met at first order with the shear and the expansion.
The heat current and the viscous stress tensor can be expanded in these tensors, introducing
phenomenological transport coefficients of increasing order.

Regarding Carrollian hydrodynamics, one could exploit a radically different perspec-
tive. Instead of defining a Carrollian fluid as the zero-c limit of a relativistic fluid in some
Randers–Papapetrou background, one could simply try to build a fluid-like – i.e. continu-
ous – generalization of an instantonic d-brane, directly within a Carrollian structure. This
would promote the “inverse velocity” ∂it of the elementary d-brane described by t = t(x)
into an “inverse velocity field” reminiscent of βi + bi and transforming as in (2.32) under a
Carrollian diffeomorphism. This could be the starting point for designing the dynamics of
this new continuous Carrollian medium. Irrespective of the viewpoint chosen for describing
Carrollian continuous media, zero-c limit of ordinary relativistic fluids or d-brane contin-
uums, a great deal of fundamental thermodynamics, kinetic theory, derivative expansions,
equilibrium and transport dynamics remains to be unravelled.

In conclusion of our general work, we have presented some examples. Those on Galilean
hydrodynamics illustrate the power of the formalism for handling general, time-dependent
and curved host spaces, potentially observed from non-inertial frames. The example of two-
dimensional Carrollian fluid is interesting because it introduces the concept of geometric
temperature and treats dissipative phenomena exactly i.e. by solving explicitly all the equa-
tions but one, finally brought in the canonical form of a Calabi flow on the two-dimensional
surface. The Carrollian fluid dynamics translates into a dynamics for the geometry. This
example has important implications in asymptotically flat holography [16] of Robinson–
Trautman spacetimes.
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A Christoffel symbols, transformations and connections

We provide here a toolbox for working out the Galilean and Carrollian limits in the Zermelo
and Randers–Papapetrou backgrounds, and checking the covariance properties of the set
of equations reached by this method. These properties are bound to the emergence of novel
Galilean and Carrollian connections, and covariant derivatives, which are discussed together
with the associated curvature tensors. In the Carrollian case, an extra conformal connection
is also presented, relevant when studying conformal Carrollian fluids.

A.1 Zermelo metric

Christoffel symbols

The Zermelo metric (2.17) has components (in the coframe
{

dx0 = cdt,dxi}):

gZ
µν →

(
−Ω2 + w2

c2 −wk
c

−wi
c aik

)
, gZµν → 1

Ω2

(
−1 −wj

c

−wi

c Ω2aij − wiwj

c2

)
, (A.1)

where wk = akjwj. Its determinant reads:

√
−g = Ω

√
a , (A.2)

where a is the determinant of aij. We remind that Ω depends on time only, whereas aij and
wi also depend on space.

The Christoffel symbols are easily computed. We are interested in their large-c behaviour
for which one obtains the following:

Γ0
00 =

1
c

∂t lnΩ ++
wi

2c3Ω2

(
∂iw2 + wj∂taij

)
+ O (1/c5) , (A.3)

Γ0
0i = − 1

2c2Ω2

(
wj∂iwj + wj∂jwi + wj∂taij

)
+ O(1/c4) , (A.4)

Γ0
ij =

1
cΩ2

(
1
2
(
∂iwj + ∂jwi + ∂taij

)− wkγk
ij

)
, (A.5)

Γi
00 =

1
c2

(
wi∂t lnΩ − aik

(
∂twk + ∂k

w2

2

))
+ O (1/c4) , (A.6)

Γi
j0 =

aik

2c
(
∂kwj − ∂jwk + ∂tajk

)
+ O (1/c3) , (A.7)

Γi
jk = γi

jk + O(1/c2) , (A.8)

where

γi
jk =

ail

2
(
∂jalk + ∂kalj − ∂lajk

)
(A.9)
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are the Christoffel symbols for the d-dimensional metric aij. Note also

Γµ
µ0 =

1
c

∂t ln
(√

a Ω
)

, Γµ
µi = ∂i ln

√
a . (A.10)

With these data it is possible to compute the divergence of the fluid energy–momentum
tensor (3.19) and (3.20).

Covariance

In order to check the covariance (3.35) and (3.37),

C ′ = C, E ′ = E M′
i = J−1l

iMl ,

for the Galilean fluid dynamics under Galilean diffeomorphisms (2.9)

t′ = t′(t) and x′ = x′(t,x),

with Jacobian functions (2.10)

J(t) =
∂t′

∂t
, ji(t,x) =

∂xi′

∂t
, Ji

j(t,x) =
∂xi′

∂xj ,

we can use several simple covariant blocks. We first remind (2.11), (2.12), (2.13), (2.15):

a′ij = akl J−1k
i J−1l

j , v′k =
1
J

(
Jk
i vi + jk

)
, w′k =

1
J

(
Jk
i wi + jk

)
, Ω′ =

Ω
J

,

implying in particular

v′k =
J−1i

k
J

(
vi + aij J

−1j
l jl
)

, w′
k =

J−1i
k

J

(
wi + aij J

−1j
l jl
)

(A.11)

with

∂′t =
1
J

(
∂t − jk J−1i

k∂i

)
, (A.12)

∂′j = J−1i
j∂i. (A.13)

Consider now Ak and Bk, the components of fields transforming like vk or wk (gauge-like
transformation) and Vk a field transforming like vk−wk

Ω i.e. like a genuine vector:

A′k =
1
J

(
Jk
i Ai + jk

)
, B′k =

1
J

(
Jk
i Bi + jk

)
, V ′k = Jk

i V i. (A.14)

40



Consider also a scalar and a rank-two tensor

Φ′ = Φ, S′
ij = Skl J−1k

i J−1l
j . (A.15)

The basic transformation rules are as follows:

A′k − B′k

Ω′ = Jk
i

Ai − Bi

Ω
, (A.16)

1√
a′

∂′t
(√

a′ Φ′
)
+∇′

i

(
Φ′A′i

)
=

1
J

(
1√
a

∂t
(√

a Φ
)
+∇i

(
ΦAi

))
, (A.17)

∇′
iV

′i = ∇iV i, (A.18)

∇′
(i A

′
j) +

1
2

∂′ta
′
ij =

1
J

(
∇(k Al) +

1
2

∂takl

)
J−1k

i J−1l
j , (A.19)

∇′(i A′j) − 1
2

∂′ta
′ij =

1
J

(
∇(k Al) − 1

2
∂takl

)
Ji
k J j

l , (A.20)

∇′
iS

′ij = J j
l∇iSil, (A.21)

1
Ω′

(
∂′tV

′
i + A′j∇′

jV
′
i + V ′

j ∇′
iB

′j
)

=
J−1k

i
Ω

(
∂tVk + Aj∇jVk + Vj∇kBj

)
, (A.22)

∆′A′
i + r′mi A′

m + a′ika′mn∂′tγ
′k
mn =

J−1j
i

J

(
∆Aj + r m

j Am + ajkamn∂tγ
k
mn

)
. (A.23)

In the above expressions, ∇i, ∆ and rij are associated with the d-dimensional Levi–Civita
connection γi

jk displayed in (A.9).
As a final comment regarding Galilean covariance properties, we would like to stress that

the action of ∂t spoils the transformation rules displayed in (A.14) and (A.15). This is both
due to the transformation property of the partial time derivative (A.12), and to the time de-
pendence of the Jacobian matrix Ji

j . A Galilean covariant time-derivative can be introduced,
acting as follows on a vector:22

1
Ω

DV i

dt
=

1
Ω

[(
∂t + vj∇j

)
V i − V j∇jwi

]
=

1
Ω

dV i

dt
− 1

Ω
V j∇jwi, (A.24)

and resulting in a genuine vector under Galilean diffeomorphisms. Here, the frame velocity
wk plays the rôle of a connection, and the Galilean covariant time-derivative generalizes the
material derivative d/dt introduced in (3.29). The latter is covariant only when acting on
scalar functions f , hence we set D f

dt = d f
dt . Expression (A.24) is easily extended for tensors of

arbitrary rank using the Leibniz rule, as e.g. for one-forms:

1
Ω

DVi

dt
=

1
Ω

dVi

dt
+

1
Ω

Vj∇iwj. (A.25)

22For a detailed and general presentation of Galilean affine connections see [23, 24].
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Notice that the Galilean covariant time-derivative at hand is not “metric compatible”:

1
Ω

Daij

dt
=

1
Ω

(
∂taij + 2∇(iwj)

)
. (A.26)

This result is actually expected because a covariant time-derivative of the metric should be
interpreted as an extrinsic curvature. Indeed, expression (A.26) divided by 2c is exactly
identified with the spatial components Kij of constant-t hypersurfaces extrinsic curvature in
the Zermelo background (2.17), (A.1).

The commutator of covariant time and space derivatives reveals a new piece of curva-
ture, which appears in Galilean geometries, on top of the standard Riemann tensor associ-
ated with the spatial covariant derivative ∇i. It is encapsulated in a one-form dθG, as one
observes from: [

1
Ω

D
dt

,∇i

]
V i = V i∂iθ

G +∇j

(
V i∇i

(
wj − vj

Ω

))
, (A.27)

where θG is a scalar function introduced in (3.30) as the Galilean effective expansion:

θG =
1
Ω

(
∂t ln

√
a +∇ivi

)
.

This extra piece of curvature should not come as a surprise. It is a Galilean remnant of some
ordinary components of Riemannian curvature in the original Zermelo spacetime.

A.2 Randers–Papapetrou metric

Christoffel symbols

The Randers–Papapetrou metric (2.35) has components (in the coframe
{

dx0 = cdt,dxi}):

gRP
µν →

(
−Ω2 cΩbj

cΩbi aij − c2bibj

)
, gRPµν → 1

Ω2

(
−1 + c2bbb2 cΩbk

cΩbi Ω2aik

)
, (A.28)

where bk = akjbj. The metric determinant is again given in (A.2):

√
−g = Ω

√
a . (A.29)

Here, Ω, aij and bi depend on time t and space x.
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The Christoffel symbols are computed exactly in the present case:

Γ0
00 =

1
c

∂t lnΩ + c
(

bi∂iΩ +
1
2

(
∂tbbb2 − bibj∂taij

))
, (A.30)

Γ0
0i =

(
1 − 1

2
c2bbb2

)
∂i lnΩ +

1
2

c2bj (∂ibj − ∂jbi − bi∂j ln Ω
)

+
1

2Ω
bj∂t

(
aij − c2bibj

)
, (A.31)

Γ0
ij = − c

2Ω

(
∂ibj + ∂jbi + c2bk (bi

(
∂jbk − ∂kbj

)
+ bj (∂ibk − ∂kbi)

))

+
cbk

Ω
γk

ij +
1 − c2bbb2

2Ω2

(
1
c

∂taij − cbj (∂tbi + ∂iΩ)− cbi
(
∂tbj + ∂jΩ

))
, (A.32)

Γi
00 = Ωaij (∂tbj + ∂jΩ

)
, (A.33)

Γi
j0 =

1
2c

aik (∂t
(
akj − c2bkbj

)
+ c2Ω

(
∂jbk − ∂kbj

)− c2 (bk∂jΩ + bj∂kΩ
))

, (A.34)

Γi
jk =

c2

2

(
bi

Ω
(
bj (∂tbk + ∂kΩ) + bk

(
∂tbj + ∂jΩ

))
− ail (bj (∂kbl − ∂lbk) + bk

(
∂jbl − ∂lbj

)))

+γi
jk −

bi

2Ω
∂tajk, (A.35)

where γk
ij are the d-dimensional Christoffel symbols:

γi
jk =

ail

2
(
∂jalk + ∂kalj − ∂lajk

)
. (A.36)

Note also
Γµ

µ0 =
1
c

∂t ln
(√

a Ω
)

, Γµ
µi = ∂i ln

(√
a Ω
)

. (A.37)

With these data it is possible to compute the divergence of the fluid energy–momentum
tensor (3.72) and (3.73).

Covariance and the Levi–Civita–Carroll connection

In order to check the covariance (3.87) and (3.92),

E ′ = E , F ′ = F , G ′i = Ji
jG j, H′i = Ji

jHj

for the Carrollian fluid dynamics under Carrollian diffeomorphisms (2.27)

t′ = t′(t,x) and x′ = x′(x),

with Jacobian functions (2.28)

J(t,x) =
∂t′

∂t
, ji(t,x) =

∂t′

∂xi , Ji
j(x) =

∂xi′

∂xj ,
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we can use several simple covariant blocks. We first remind (2.15), (2.31), (2.33):

a′ij = akl J−1k
i J−1l

j , b′k =
(

bi +
Ω
J

ji

)
J−1i

k, Ω′ =
Ω
J

,

and

∂′t =
1
J

∂t, (A.38)

∂′j = J−1i
j

(
∂i −

ji
J

∂t

)
. (A.39)

From the above transformation rules we obtains:

1
Ω′ ∂

′
ta

′
ij =

1
Ω

∂takl J−1k
i J−1l

j , (A.40)

1
Ω′ ∂

′
t ln

√
a′ =

1
Ω

∂t ln
√

a , (A.41)

∂′tb
′
i + ∂′iΩ

′ =
1
J

J−1j
i

(
∂tbj + ∂jΩ

)
, (A.42)

∂̂′i = J−1j
i ∂̂j, (A.43)

where we have defined
∂̂i = ∂i +

bi

Ω
∂t. (A.44)

In view of the basic rules (A.38), (A.39) and (A.40)–(A.43), it is tempting to introduce a
new connection for Carrollian geometry that we will call Levi–Civita–Carroll, whose coeffi-
cients will be generalizations of the Christoffel symbols (A.36):

γ̂i
jk =

ail

2

(
∂̂jalk + ∂̂kalj − ∂̂lajk

)

=
ail

2

((
∂j +

bj
Ω ∂t

)
alk +

(
∂k +

bk
Ω ∂t

)
alj −

(
∂l +

bl
Ω ∂t

)
ajk

)

= γi
jk + ci

jk

(A.45)

with γi
jk and ∂̂i defined in (A.36) and (A.44). We will refer to those as Christoffel–Carroll

symbols. They transform under Carrollian diffeomorphisms as ordinary Christoffel symbols
under ordinary diffeomorphisms:

γ̂′k
ij = Jk

n J−1l
i J−1m

j γ̂n
lm − J−1l

i J−1n
j ∂l Jk

n. (A.46)

The emergence of this new set of connection coefficients should not be a surprise. Indeed
one readily shows that

h µ
i Γk

µνhν
j = γ̂k

ij, (A.47)
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where Γk
µν are the d+ 1-dimensional Randers–Papapetrou Christoffel symbols (A.30)–(A.35),

and h µ
ν the projector orthogonal to u = ∂t/Ω (as in (3.9), (3.67)).

The Levi–Civita–Carroll covariant derivative acts symbolically as

∇̂∇∇ = ∂̂∂∂ + γ̂γγ = ∂∂∂ +
bbb
Ω

∂t +γγγ + ccc =∇∇∇+
bbb
Ω

∂t + ccc. (A.48)

For example, consider Φ, Vk and Skl, the components of a scalar, a vector, and rank-two
symmetric tensor:

Φ′ = Φ, V ′i = Ji
jV

j, S′
ij = Skl J−1k

i J−1l
j , (A.49)

the action of this new covariant derivative is

∂̂iΦ = ∂iΦ +
bi

Ω
∂tΦ, (A.50)

∇̂iV j = ∂iV j +
bi

Ω
∂tV j + γ̂

j
ilV

l

= ∇iV j +
bi

Ω
∂tV j + cj

ilV
l, (A.51)

∇̂iV i =
1√
a

∂̂i

(√
a V i

)
(A.52)

∇̂iSjk = ∂iSjk +
bi

Ω
∂tSjk − γ̂l

ijSlk − γ̂l
ikSjl

= ∇iSjk +
bi

Ω
∂tSjk − cl

ijSlk − cl
ikSjl. (A.53)

All these transform as genuine tensors, namely:

∂̂′iΦ
′ = J−1j

i ∂̂jΦ, (A.54)

∇̂′
iV

′j = J−1k
i J j

l ∇̂kV l, (A.55)

∇̂′
iV

′i = ∇̂iV i, (A.56)

∇̂′
iS

′
jk = J−1m

i J−1n
j J−1l

k∇̂mSnl. (A.57)

Further elementary transformation rules are as follows:

1
Ω′ ∂

′
tΦ

′ =
1
Ω

∂tΦ,
1

Ω′ ∂
′
tV

′i = Ji
j

1
Ω

∂tV j,
1

Ω′ ∂
′
tS

′ij = Ji
k J j

l
1
Ω

∂tSkl , (A.58)

as well as

∇′
iV

′i +
b′i

Ω′ √a′
∂′t
(√

a′ V ′i
)
= ∇̂′

iV
′i = ∇̂iV i =∇iV i +

bi

Ω
√

a
∂t

(√
a V i

)
, (A.59)
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and

∇′
kS′ki +

b′k
Ω′ √a′

(
∂′t
(√

a′ S′ki
)
−

√
a′ S′k

j∂
′
ta

′ij
)
− b′i

2Ω′ S′kl∂′ta
′
kl = ∇̂′

kS′ki =

= Ji
j∇̂kSkj = Ji

j

(
∇kSkj + bk

Ω
√

a

(
∂t
(
Skj √a

)
− √

a Sk
l∂tajl)− b j

2Ω Skl∂takl

)
. (A.60)

Curvature, effective torsion and further properties of the Levi–Civita–Carroll connection

The Levi–Civita–Carroll connection is metric,

∇̂iajk = 0. (A.61)

Furthermore, the usual torsion tensor vanishes:23

t̂k
ij = 2γ̂k

[ij] = 0. (A.62)

However, the new ordinary (as opposed to covariant) derivatives ∂̂i defined in (A.44) do not
commute. Indeed, acting on any arbitrary function they lead to

[
∂̂i, ∂̂j

]
Φ =

2
Ω

̟ij∂tΦ, (A.63)

where ̟ij are the components of the Carrollian vorticity defined in (3.85) (explicitly in (3.98))
using the Carrollian acceleration ϕi (3.83):

̟ij = ∂[ibj] + b[i ϕj], ϕi =
1
Ω

(∂tbi + ∂iΩ) . (A.64)

Therefore, the Levi–Civita–Carroll connection has an effective torsion as one can see from

[
∇̂i,∇̂j

]
Φ = ̟ij

2
Ω

∂tΦ, (A.65)

where Φ is a scalar.
Similarly, one can compute the commutator of the Levi–Civita–Carroll covariant deriva-

tives acting on a vector field:

[
∇̂k,∇̂l

]
V i =

(
∂̂kγ̂i

lj − ∂̂lγ̂
i
kj + γ̂i

kmγ̂m
lj − γ̂i

lmγ̂m
kj

)
V j +

[
∂̂k, ∂̂l

]
V i

= r̂i
jklV

j + ̟kl
2
Ω ∂tV i.

(A.66)

In this expression we have defined r̂i
jkl , which are by construction components of a gen-

uine tensor under Carrollian diffeomorphisms in d dimensions. This should be called the
Riemann–Carroll tensor. It is made of several pieces, among which ∂kγi

lj − ∂lγ
i
kj + γi

kmγm
lj −

23Discussions on Carrollian affine connections can be found e.g. in [24, 39, 40]. In particular, Ref. [24] provides
a general classification of connections with or without torsion.
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γi
lmγm

kj, which is not covariant under Carrollian diffeomorphisms – it is under ordinary d-
dimensional diffeomorphisms though. The Ricci–Carroll tensor and the Carroll scalar cur-
vature are thus

r̂ij = r̂k
ikj, r̂ = aij r̂ij. (A.67)

Notice that the Ricci–Carroll tensor is not symmetric in general: r̂ij , r̂ji.
We would like to close this part with two remarks regarding Carrollian geometry and

in particular Carrollian time. As readily seen in (A.58), acting on any object tensorial under
Carrollian diffeomorphisms, the time derivative ∂t provides another tensor. For this reason,
it was not necessary to define any “temporal covariant derivative”. Our first remark is that
the ordinary time derivative has an unsatisfactory feature: its action on the metric does not
vanish. One is tempted therefore to set a new time derivative ∂̂t such that

∂̂tajk = 0, (A.68)

while keeping the transformation rule under Carrollian diffeomorphisms:

∂̂′t =
1
J

∂̂t. (A.69)

This is achieved by introducing a “temporal Carrollian connection”

γ̂i
j =

1
2Ω

aik∂takj. (A.70)

Calling this a connection is actually inappropriate because it transforms as a genuine tensor
under Carrollian diffeomorphisms:

γ̂′k
j = Jk

n J−1m
j γ̂n

m. (A.71)

In fact, the trace of this object is the Carrollian expansion introduced in (3.84):

θC =
1
Ω

∂t ln
√

a = γ̂i
i, (A.72)

whereas its traceless part is the Carrollian shear defined in (3.86):

ξCi
j = γ̂i

j −
1
d

δi
jγ̂

i
i = γ̂i

j −
1
d

δi
jθ

C. (A.73)

The temporal connection γ̂i
j appears also as the zero-c remnant of the mixed projected rela-

tivistic Randers–Papapetrou Christoffel symbols, as in (A.47):

c
Ω

U µ
0 Γk

µνhν
j = γ̂k

j. (A.74)
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The action of ∂̂t on scalars is simply ∂t:

∂̂tΦ = ∂tΦ, (A.75)

whereas on vectors or forms it is defined as

1
Ω

∂̂tV i =
1
Ω

∂tV i + γ̂i
jV

j,
1
Ω

∂̂tVi =
1
Ω

∂tVi − γ̂
j
iVj. (A.76)

Leibniz rule generalizes the latter to any tensor and allows to demonstrate the property
(A.68). Indices can now be raised and lowered with the metric passing through ∂̂t.

The above Riemann–Carroll curvature tensor of a Carrollian geometry appears actu-
ally as the zero-c limit of the spatial components of the ordinary Riemann curvature in
the Randers–Papapetrou background.24 In the same spirit, one may also wonder what the
Carrollian limit is for the temporal components of the relativistic Randers–Papapetrou cur-
vature, and this is our second and last remark. In order to answer this question, we must
compute the commutator of time and space covariant derivatives acting on scalar and vector
fields, as in (A.65) and (A.66). We find:

[
1
Ω

∂̂t, ∂̂i

]
Φ =

(
ϕi

1
Ω

∂t − γ̂
j
i∂̂j

)
Φ, (A.77)

and
[

1
Ω

∂̂t,∇̂i

]
V i =

(
∂̂iθ

C − ∇̂jγ̂
j
i

)
V i +

(
θCδ

j
i − γ̂

j
i

)
ϕjV i +

(
ϕi

1
Ω

∂̂t − γ̂
j
i∇̂j

)
V i (A.78)

with ϕi and θC the Carrollian acceleration and expansion (A.64), (A.72). We can define from
this expression the components of a time-curvature Carrollian form:

r̂i =
1
d

(
∇̂jγ̂

j
i − ∂̂iθ

C
)
=

1
d

(
∇̂j ξ̂

Cj
i +

1 − d
d

∂̂iθ
C
)

. (A.79)

Using ̟kl, r̂i and time derivative in the framework at hand, many new curvature-like (i.e.
two-derivative) tensorial objects can be defined. We will not elaborate any longer on these
issues, which would naturally fit in a more thorough analysis of Carrollian geometry.

24This statement is accurate but comes without a proof. Evaluating the zero-c (or infinite-c, as we would
do in the Galilean counterpart) limit is a subtle task because in this kind of limits several components of the
curvature usually diverge (see e.g. [16], where the rôle of curvature is prominent). From the perspective of the
final geometry this does not produce any harm because the involved components decouple.
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The Weyl–Carroll connection

The Levi–Civita–Carroll covariant derivatives ∇̂∇∇ and ∂̂t defined in (A.48), (A.75) and (A.76)
for Carrollian geometry are not covariant with respect to Weyl transformations (3.108),

aij →
1
B2 aij, bi →

1
B bi, Ω → 1

BΩ. (A.80)

We can define Weyl–Carroll covariant spatial and time derivatives using the Carrollian accel-
eration ϕi defined in (A.64) and the Carrollian expansion (A.72), which transform as connec-
tions (see (3.109)):

ϕi → ϕi − ∂̂i lnB, θC →BθC − d
Ω

∂tB. (A.81)

For a weight-w scalar function Φ, i.e. a function scaling with Bw under (A.80), we intro-
duce

D̂jΦ = ∂̂jΦ + wϕjΦ, (A.82)

such that under a Weyl transformation

D̂jΦ →BwD̂jΦ. (A.83)

Similarly, for a vector with weight-w components V l:

D̂jV l = ∇̂jV l + (w − 1)ϕjV l + ϕlVj − δl
jV

i ϕi. (A.84)

The action on any other tensor is obtained using the Leibniz rule, as in example for rank-two
tensors:

D̂jtkl = ∇̂jtkl + (w + 2)ϕjtkl + ϕktjl + ϕltkj − ajl tki ϕ
i − ajktil ϕ

i. (A.85)

The Weyl–Carroll spatial derivative does not modify the weight of the tensor it acts on.
Furthermore, it is metric as (akl has weight −2):

D̂jakl = 0. (A.86)

It has an effective torsion because

[
D̂i,D̂j

]
Φ =

2
Ω

̟ijD̂tΦ + wΩijΦ, (A.87)

although this expression does not contain terms of the type D̂kΦ. We have introduced here

Ωij = ϕij −
2
d

̟ijθ
C, (A.88)
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where ̟ij are the components of the Carrollian vorticity defined in (A.64), and

ϕij = ∂̂i ϕj − ∂̂j ϕi. (A.89)

Both Ωij and ̟ij are components of genuine Carrollian two-forms, and Weyl-covariant of
weight 0 and −1. However, ϕij are not Weyl-covariant, although they are also by construc-
tion components of a good Carrollian two-form.

In Eq. (A.87), we have used a Weyl–Carroll derivative with respect to time D̂t. Its action
on a weight-w function Φ is defined as:

1
Ω
D̂tΦ =

1
Ω

∂̂tΦ +
w
d

θCΦ =
1
Ω

∂tΦ +
w
d

θCΦ, (A.90)

which is a scalar of weight w + 1 under (A.80):

1
Ω
D̂tΦ →Bw+1 1

Ω
D̂tΦ. (A.91)

Accordingly, on a weight-w vector the action of the Weyl–Carroll time derivative is

1
Ω
D̂tV l =

1
Ω

∂̂tV l +
w − 1

d
θCV l =

1
Ω

∂tV l +
w
d

θCV l + ξCl
iV

i. (A.92)

These are the components of a genuine Carrollian vector of weight w + 1 (the tensor ξCl
i is

Weyl-covariant of weight 1). We have used (A.75), (A.76) and (A.73) for the second equal-
ities in (A.90) and (A.92). The same pattern applies for any tensor by Leibniz rule, and in
particular:

D̂takl = 0. (A.93)

We will close the present appendix with the Weyl–Carroll curvature tensors, obtained by
studying the commutation of Weyl–Carroll covariant derivatives acting on vectors. We find

[
D̂k,D̂l

]
V i =

(
R̂ i

jkl − 2ξCi
j̟kl

)
V j + ̟kl

2
Ω
D̂tV i + wΩklV i, (A.94)

where

R̂ i
jkl = r̂i

jkl − δi
j ϕkl − ajk∇̂l ϕ

i + ajl∇̂k ϕi + δi
k∇̂l ϕj − δi

l∇̂k ϕj

+ϕi (ϕkajl − ϕlajk
)−

(
δi

kajl − δi
lajk

)
ϕm ϕm +

(
δi

k ϕl − δi
l ϕk

)
ϕj (A.95)

are the components of the Riemann–Weyl–Carroll weight-0 tensor, from which we define

R̂ij = R̂
k
ikj, R̂ = aijR̂ij. (A.96)

Notice that the Ricci–Weyl–Carroll tensor is not symmetric in general: R̂ij , R̂ji.
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Eventually, we quote [
1
Ω
D̂t,D̂i

]
Φ = wR̂iΦ − ξ

Cj
iD̂jΦ (A.97)

and [
1
Ω
D̂t,D̂i

]
V i = (w − d)R̂iV i − V iD̂jξ

Cj
i − ξ

Cj
iD̂jV i, (A.98)

with
R̂i = r̂i +

1
Ω

∂̂t ϕi −
1
d
∇̂jγ̂

j
i + ξ

Cj
i ϕj =

1
Ω

∂t ϕi −
1
d

(
∂̂i + ϕi

)
θC (A.99)

the components of a Weyl-covariant weight-1 Carrollian curvature one-form, where r̂i is
given in (A.79).

References

[1] L. D. Landau et E. M. Lifchitz, Physique Théorique, Vol. 6 Mécanique des fluides, Editions
Mir, Moscou, 1969.

[2] M. Vinokur, A new formulation of the conservation equations of fluid dynamics, Technical
Report NASA-TM-X-62415 (1974), National Aeronautics and Space Administration:
Ames Research Center, Moffett Field, CA.

[3] L. M. Avis, A spacetime tensor formulation for continuum mechanics in general curvilinear,
moving, and deforming coordinate systems, Technical Report NASA-TR-R-462 (1976), Na-
tional Aeronautics and Space Administration: Langley Research Center, Hampton, VA.

[4] R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Courier Dover Publi-
cations: Mineola, NY (1989).

[5] H. A. Carlson, G. Berkooz and J. L. Lumley, Direct numerical simulation of flow in a chan-
nel with complex, time-dependent wall geometries: a pseudospectral method, J. Comput. Phys.
121 (1995) 155.

[6] H. Luo and T. R. Bewley, On the contravariant form of the Navier–Stokes equations in time-
dependent curvilinear coordinate systems, J. Comput. Phys. 199 (2004) 355.

[7] M. Charron, A. Zadra and C. Girard, Four-dimensional tensor equations for a classical fluid
in an external gravitational field, Q.J.R. Meteorol. Soc. 140 (2014) 908.

[8] J.-D. Debus, M. Mendoza, S. Succi, H. J. Herrmann, Energy dissipation in flows through
curved spaces, Scientific reports 7, 42350 (2017), arXiv:1511.08031 [physics.flu-dyn].

[9] L. Rezzolla and O. Zanotti, Relativistic hydrodynamics, Oxford University Press, Oxford
UK, 2013.

51



[10] K. Jensen and A. Karch, Revisiting non-relativistic limits, JHEP 1504 (2015) 155,
arXiv:1412.2738 [hep-th].

[11] J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, A. Inst.
Henri Poincaré III (1965) 1.

[12] C. Duval, G. W. Gibbons, P. A. Horvathy and P. M. Zhang, Carroll versus Newton and
Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016,
arXiv:1402.0657 [gr-qc].

[13] C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups and BMS symme-
try, Class. Quant. Grav. 31 (2014) 092001, arXiv:1402.5894 [gr-qc].

[14] E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quant. Grav.
31 (2014) 205009, arXiv:1405.2264 [hep-th].

[15] G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick and M. C. Werner, Stationary
metrics and optical Zermelo–Randers–Finsler geometry, Phys. Rev. D79 (2009) 044022,
arXiv:0811.2877 [gr-qc].

[16] L. Ciambelli, C. Marteau, A. C. Petkou, P. M. Petropoulos and K. Siampos, Flat hologra-
phy and Carrollian fluids, arXiv:1802.06809 [hep-th].

[17] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynam-
ics from gravity, JHEP 0802 (2008) 045, arXiv:0712.2456 [hep-th].

[18] M. Haack and A. Yarom, Nonlinear viscous hydrodynamics in various dimensions using
AdS/CFT, JHEP 0810 (2008) 063, arXiv:0806.4602 [hep-th].

[19] S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Confor-
mal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 0812 (2008) 116,
arXiv:0809.4272 [hep-th].

[20] V. E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence,
arXiv:1107.5780 [hep-th].

[21] E. Cartan, Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première
partie), Ann. École norm. 41 (1924) 1.

[22] C. Duval and P. A. Horvathy, Non-relativistic conformal symmetries and Newton–Cartan
structures, J. Phys. A42 (2009) 465206, arXiv:0904.0531 [math-ph].

[23] X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised Newton–
Cartan gravity I. An intrinsic view, J. Math. Phys. 57 (2016) 022507, arXiv:1412.8212 [hep-
-th].

52



[24] X. Bekaert and K. Morand, Connections and dynamical trajectories in generalised Newton–
Cartan gravity II. An ambient perspective, arXiv:1505.03739 [hep-th].

[25] G. Festuccia, D. Hansen, J. Hartong and N. A. Obers, Torsional Newton–Cartan geometry
from the Nœther procedure, Phys. Rev. D94 (2016) 105023, arXiv:1607.01926 [hep-th].

[26] P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys.
E19 (2010) 1, arXiv:0902.3663 [hep-th].

[27] P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A45 (2012)
473001, arXiv:1205.5040 [hep-th].

[28] L. Ciambelli, A. C. Petkou, P. M. Petropoulos and K. Siampos, The Robinson–Trautman
spacetime and its holographic fluid, PoS CORFU2016 (2016) 076, arXiv:1707.02995 [hep-
-th].

[29] K. Jensen, Aspects of hot Galilean field theory, JHEP 1504, 123 (2015), arXiv:1411.7024
[hep-th].

[30] M. Geracie, K. Prabhu and M. M. Roberts, Fields and fluids on curved non-relativistic
spacetimes, JHEP 1508 (2015) 042, arXiv:1503.02680 [hep-th].

[31] N. Banerjee, S. Dutta, A. Jain and D. Roychowdhury, Entropy current for non-relativistic
fluid, JHEP 1408 (2014) 037, arXiv:1405.5687 [hep-th].

[32] R. F. Penna, BMS3 invariant fluid dynamics at null infinity, Class. Quant. Grav. 35 (2018)
044002, arXiv:1708.08470 [hep-th].

[33] J. de Boer, J. Hartong, N. A. Obers, W. Sybesma and S. Vandoren, Perfect fluids,
arXiv:1710.04708 [hep-th].

[34] J. Pedolský, Geophysical fluid dynamics, Springer, Berlin, 1987.

[35] O. Regev, O.M. Umurhan and P.A. Yecko, Modern fluid dynamics for physics and astro-
physics, Graduate Texts in Physics, Springer, Berlin, 2016.

[36] I. Robinson and A. Trautman, Spherical gravitational waves, Phys. Rev. Lett. 4 (1960) 431;
Some spherical gravitational waves in general relativity, Proc. Roy. Soc. A265 (1962) 463.

[37] J. B. Griffiths and J. Podolský, Exact space–times in Einstein’s general relativity, Cambridge
monographs on mathematical physics, 2009, Cambridge UK.

[38] K. P. Tod, Analogues of the past horizon in the Robinson–Trautman metrics, Class. Quant.
Grav. 6 (1989) 1159.

53



[39] C. Duval, G. W. Gibbons and P. A. Horvathy, Conformal Carroll groups, J. Phys. A47
(2014) 335204, arXiv:1403.4213 [hep-th].

[40] J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity, JHEP 1508 (2015) 069,
arXiv:1505.05011 [hep-th].

54



ar
X

iv
:1

80
2.

06
80

9v
3 

 [
he

p-
th

] 
 1

1 
D

ec
 2

01
8

Flat holography and Carrollian fluids

Luca Ciambelli,1 Charles Marteau,1 Anastasios C. Petkou,2,3

P. Marios Petropoulos1 and Konstantinos Siampos3,4

1 CPHT – Centre de Physique Théorique
Ecole Polytechnique, CNRS UMR 7644
Université Paris–Saclay
91128 Palaiseau Cedex, France

2 Department of Physics
Institute of Theoretical Physics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

3 Theoretical Physics Department
CERN
1211 Geneva 23, Switzerland

4 Albert Einstein Center for Fundamental Physics
Institute for Theoretical Physics
University of Bern
Sidlerstrasse 5, 3012 Bern, Switzerland

CPHT-RR049.082017
CERN-TH-2017-229

ABSTRACT

We show that a holographic description of four-dimensional asymptotically locally flat
spacetimes is reached smoothly from the zero-cosmological-constant limit of anti-de Sitter
holography. To this end, we use the derivative expansion of fluid/gravity correspondence.
From the boundary perspective, the vanishing of the bulk cosmological constant appears as
the zero velocity of light limit. This sets how Carrollian geometry emerges in flat holography.
The new boundary data are a two-dimensional spatial surface, identified with the null infin-
ity of the bulk Ricci-flat spacetime, accompanied with a Carrollian time and equipped with
a Carrollian structure, plus the dynamical observables of a conformal Carrollian fluid. These
are the energy, the viscous stress tensors and the heat currents, whereas the Carrollian geom-
etry is gathered by a two-dimensional spatial metric, a frame connection and a scale factor.
The reconstruction of Ricci-flat spacetimes from Carrollian boundary data is conducted with
a flat derivative expansion, resummed in a closed form in Eddington–Finkelstein gauge un-
der further integrability conditions inherited from the ancestor anti-de Sitter set-up. These
conditions are hinged on a duality relationship among fluid friction tensors and Cotton-like
geometric data. We illustrate these results in the case of conformal Carrollian perfect fluids
and Robinson–Trautman viscous hydrodynamics. The former are dual to the asymptotically
flat Kerr–Taub–NUT family, while the latter leads to the homonymous class of algebraically
special Ricci-flat spacetimes.
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1 Introduction

Ever since its conception, there have been many attempts to extend the original holographic
anti-de Sitter correspondence along various directions, including asymptotically flat or de
Sitter bulk spacetimes. Since the genuine microscopic correspondence based on type IIB
string and maximally supersymmetric Yang–Mills theory is deeply rooted in the anti-de Sit-
ter background, phenomenological extensions such as fluid/gravity correspondence have
been considered as more promising for reaching a flat spacetime generalization.

The mathematical foundations of holography are based on the existence of the Fefferman–
Graham expansion for asymptotically anti-de Sitter Einstein spaces [1, 2]. Indeed, on the
one hand, putting an asymptotically anti-de Sitter Einstein metric in the Fefferman–Graham
gauge allows to extract the two independent boundary data i.e. the boundary metric and
the conserved boundary conformal energy–momentum tensor. On the other hand, given a
pair of suitable boundary data the Fefferman–Graham expansion makes it possible to recon-
struct, order by order, an Einstein space.
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More recently, fluid/gravity correspondence has provided an alternative to Fefferman–
Graham, known as derivative expansion [3–6]. It is inspired from the fluid derivative expan-
sion (see e.g. [7, 8]), and is implemented in Eddington–Finkelstein coordinates. The metric
of an Einstein spacetime is expanded in a light-like direction and the information on the
boundary fluid is made available in a slightly different manner, involving explicitly a veloc-
ity field whose derivatives set the order of the expansion. Conversely, the boundary fluid
data, including the fluid’s congruence, allow to reconstruct an exact bulk Einstein spacetime.

Although less robust mathematically, the derivative expansion has several advantages
over Fefferman–Graham. Firstly, under some particular conditions it can be resummed lead-
ing to algebraically special Einstein spacetimes in a closed form [9–14]. Such a resummation
is very unlikely, if at all possible, in the context of Fefferman–Graham. Secondly, bound-
ary geometrical terms appear packaged at specific orders in the derivative expansion, which
is performed in Eddington–Finkelstein gauge. These terms feature precisely whether the
bulk is asymptotically globally or locally anti-de Sitter. Thirdly, and contrary to Fefferman–
Graham again, the derivative expansion admits a consistent limit of vanishing scalar curva-
ture. Hence it appears to be applicable to Ricci-flat spacetimes and emerges as a valuable tool
for setting up flat holography. Such a smooth behaviour is not generic, as in most coordinate
systems switching off the scalar curvature for an Einstein space leads to plain Minkowski
spacetime.1

The observations above suggest that it is relevant to wonder whether a Ricci-flat space-
time admits a dual fluid description. This can be recast into two sharp questions:

1. Which surface S would replace the AdS conformal boundary I , and what is the
geometry that this new boundary should be equipped with?

2. Which are the degrees of freedom hosted by S and succeeding the relativistic-fluid
energy–momentum tensor, and what is the dynamics these degrees of freedom obey?

Many proposals have been made for answering these questions. Most of them were in-
spired by the seminal work [17, 18], where Navier–Stokes equations were shown to capture
the dynamics of black-hole horizon perturbations. This result is taken as the crucial evi-
dence regarding the deep relation between gravity, without cosmological constant, and fluid
dynamics.

A more recent approach has associated Ricci-flat spacetimes in d + 1 dimensions with
d-dimensional fluids [19–24]. This is based on the observation that the Brown–York energy–
momentum tensor on a Rindler hypersurface of a flat metric has the form of a perfect fluid
[25]. In this particular framework, one can consider a non-relativistic limit, thus showing

1This phenomenon is well known in supergravity, when studying the gravity decoupling limit of scalar man-
ifolds. For this limit to be non-trivial, one has to chose an appropriate gauge (see [15, 16] for a recent discussion
and references).
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that the Navier–Stokes equations coincide with Einstein’s equations on the Rindler hyper-
surface. Paradoxically, it has simultaneously been argued that all information can be stored
in a relativistic d-dimensional fluid.

Outside the realm of fluid interpretation, and on the more mathematical side of the prob-
lem, some solid works regarding flat holography are [26–28] (see also [29]). The dual theories
reside at null infinity emphasizing the importance of the null-like formalisms of [30–32]. In
this line of thought, results where also reached focusing on the expected symmetries, in
particular for the specific case of three-dimensional bulk versus two-dimensional bound-
ary [33–39].2 These achievements are not unconditionally transferable to four or higher di-
mensions, and can possibly infer inaccurate expectations due to features holding exclusively
in three dimensions.

The above wanderings between relativistic and non-relativistic fluid dynamics in rela-
tion with Ricci-flat spacetimes are partly due to the incomplete understanding on the rôle
played by the null infinity. On the one hand, it has been recognized that the Ricci-flat limit
is related to some contraction of the Poincaré algebra [33–37, 40, 41]. On the other hand,
this observation was tempered by a potential confusion among the Carrollian algebra and
its dual contraction, the conformal Galilean algebra, as they both lead to the decoupling of
time. This phenomenon was exacerbated by the equivalence of these two algebras in two
dimensions, and has somehow obscured the expectations on the nature and the dynamics of
the relevant boundary degrees of freedom. Hence, although the idea of localizing the lat-
ter on the spatial surface at null infinity was suggested (as e.g. in [42–45]), their description
has often been accustomed to the relativistic-fluid or the conformal-field-theory approaches,
based on the revered energy–momentum tensor and its conservation law.3

From this short discussion, it is clear that the attempts implemented so far follow dif-
ferent directions without clear overlap and common views. Although implicitly addressed
in the literature, the above two questions have not been convincingly answered, and the
treatment of boundary theories in the zero cosmological constant limit remains nowadays
tangled.

In this work we make a precise statement, which clarifies unquestionably the situation.
Our starting point is a four-dimensional bulk Einstein spacetime with Λ = −3k2, dual to
a boundary relativistic fluid. In this set-up, we consider the k → 0 limit, which has the
following features:

• The derivative expansion is generically well behaved. We will call its limit the flat
derivative expansion. Under specified conditions it can be resummed in a closed form.

• Inside the boundary metric, and in the complete boundary fluid dynamics, k plays the

2 Reference [37] is the first where a consistent and non-trivial k → 0 limit was taken, mapping the entire family
of three-dimensional Einstein spacetimes (locally AdS) to the family of Ricci–flat solutions (locally flat).

3This is manifest in the very recent work of Ref. [46].
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rôle of velocity of light. Its vanishing is thus a Carrollian limit.

• The boundary is the two-dimensional spatial surface S emerging as the future null in-
finity of the limiting Ricci-flat bulk spacetime. It replaces the AdS conformal boundary
and is endowed with a Carrollian geometry i.e. is covariant under Carrollian diffeomor-
phisms.

• The degrees of freedom hosted by this surface are captured by a conformal Carrollian
fluid : energy density and pressure related by a conformal equation of state, heat cur-
rents and traceless viscous stress tensors. These macroscopic degrees of freedom obey
conformal Carrollian fluid dynamics.

Any two-dimensional conformal Carrollian fluid hosted by an arbitrary spatial surface S ,
and obeying conformal Carrollian fluid dynamics on this surface, is therefore mapped onto
a Ricci-flat four-dimensional spacetime using the flat derivative expansion. The latter is
invariant under boundary Weyl transformations. Under a set of resummability conditions
involving the Carrollian fluid and its hostS , this derivative expansion allows to reconstruct
exactly algebraically special Ricci-flat spacetimes. The results summarized above answer in
the most accurate manner the two questions listed earlier.

Carrollian symmetry has sporadically attracted attention following the pioneering work
or Ref. [47], where the Carroll group emerged as a new contraction of the Poincaré group:
the ultra-relativistic contraction, dual to the usual non-relativistic one leading to the Galilean
group. Its conformal extensions were explored latterly [48–51], showing in particular its
relationship to the BMS group, which encodes the asymptotic symmetries of asymptotically
flat spacetimes along a null direction [53–56].4

It is therefore quite natural to investigate on possible relationships between Carrollian
asymptotic structure and flat holography and, by the logic of fluid/gravity correspondence,
to foresee the emergence of Carrollian hydrodynamics rather than any other, relativistic or
Galilean fluid. Nonetheless searches so far have been oriented towards the near-horizon
membrane paradigm, trying to comply with the inevitable BMS symmetries as in [59, 60].
The power of the derivative expansion and its flexibility to handle the zero-k limit has been
somehow dismissed. This expansion stands precisely at the heart of our method. Its actual
implementation requires a comprehensive approach to Carrollian hydrodynamics, as it em-
anates from the ultra-relativistic limit of relativistic fluid dynamics, made recently available
in [52].

The aim of the present work is to provide a detailed analysis of the various statements
presented above, and exhibit a precise expression for the Ricci-flat line element as recon-
structed from the boundary Carrollian geometry and Carrollian fluid dynamics. As already

4Carroll symmetry has also been explored in connection to the tensionless-string limit, see e.g. [57, 58].
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stated, the tool for understanding and implementing operationally these ideas is the deriva-
tive expansion and, under conditions, its resummed version. For this reason, Sec. 2 is de-
voted to its thorough description in the framework of ordinary anti-de Sitter fluid/gravity
holography. This chapter includes the conditions, stated in a novel fashion with respect
to [12, 13], for the expansion to be resummed in a closed form, representing generally an
Einstein spacetime of algebraically special Petrov type.

In Sec. 3 we discuss how the Carrollian geometry emerges at null infinity and describe in
detail conformal Carrollian hydrodynamics following [52]. The formulation of the Ricci-flat
derivative expansion is undertaken in Sec. 4. Here we discuss the important issue of re-
summing in a closed form the generic expansion. This requires the investigation of another
uncharted territory: the higher-derivative curvature-like Carrollian tensors. The Carrollian
geometry on the spatial boundary S is naturally equipped with a (conformal) Carrollian
connection, which comes with various curvature tensors presented in Sec. 3. The relevant
object for discussing the resummability in the anti-de Sitter case is the Cotton tensor, as re-
viewed in Sec. 2. It turns out that this tensor has well-defined Carrollian descendants, which
we determine and exploit. With those, the resummability conditions are well-posed and set
the framework for obtaining exact Ricci-flat spacetimes in a closed form from conformal-
Carrollian-fluid data.

In order to illustrate our results, we provide examples starting from Sec. 3 and pursu-
ing systematically in Sec. 5. Generic Carrollian perfect fluids are meticulously studied and
shown to be dual to the general Ricci-flat Kerr–Taub–NUT family. The non perfect Carrollian
fluid called Robinson–Trautman fluid is discussed both as the limiting Robinson–Trautman
relativistic fluid (Sec. 3), and alternatively from Carrollian first principles (Sec. 5, follow-
ing [52]). It is shown to be dual to the Ricci-flat Robinson–Trautman spacetime, of which the
line element is obtained thanks to our flat resummation procedure.

One of the resummability requirements is the absence of shear for the Carrollian fluid.
This is a geometric quantity, which, if absent, makes possible for using holomorphic coordi-
nates. In App. A, we gather the relevant formulas in this class of coordinates.

2 Fluid/gravity in asymptotically locally AdS spacetimes

We present here an executive summary of the holographic reconstruction of four-dimensional
asymptotically locally anti-de Sitter spacetimes from three-dimensional relativistic bound-
ary fluid dynamics. The tool we use is the fluid-velocity derivative expansion. We show that
exact Einstein spacetimes written in a closed form can arise by resumming this expansion. It
appears that the key conditions allowing for such an explicit resummation are the absence
of shear in the fluid flow, as well as the relationship among the non-perfect components of
the fluid energy–momentum tensor (i.e. the heat current and the viscous stress tensor) and
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the boundary Cotton tensor.

2.1 The derivative expansion

The spirit

Due to the Fefferman–Graham ambient metric construction [61], asymptotically locally anti-
de Sitter four-dimensional spacetimes are determined by a set of independent boundary
data, namely a three-dimensional metric ds2 = gµνdxµdxν and a rank-2 tensor T = Tµνdxµdxν,
symmetric (Tµν = Tνµ), traceless (Tµ

µ = 0) and conserved:

∇µTµν = 0. (2.1)

Perhaps the most well known subclass of asymptotically locally AdS spacetimes are
those whose boundary metrics are conformally flat (see e.g. [62, 63]). These are asymptot-
ically globally anti-de Sitter. The asymptotic symmetries of such spacetimes comprise the
finite dimensional conformal group, i.e. SO(3,2) in four dimensions [64], and AdS/CFT is
at work giving rise to a boundary conformal field theory. Then, the rank-2 tensor Tµν is
interpreted as the expectation value over a boundary quantum state of the conformal-field-
theory energy–momentum tensor. Whenever hydrodynamic regime is applicable, this ap-
proach gives rise to the so-called fluid/gravity correspondence and all its important spinoffs
(see [4] for a review).

For a long time, all the work on fluid/gravity correspondence was confined to asymp-
totically globally AdS spacetimes, hence to holographic boundary fluids that flow on con-
formally flat backgrounds. In a series of works [9–14] we have extended the fluid/gravity
correspondence into the realm of asymptotically locally AdS4 spacetimes. In the following,
we present and summarize our salient findings.

The energy–momentum tensor

Given the energy–momentum tensor of the boundary fluid and assuming that it represents
a state in a hydrodynamic regime, one should be able to pick a boundary congruence u,
playing the rôle of fluid velocity. Normalizing the latter as5 ‖u‖2 = −k2 we can in general
decompose the energy–momentum tensor as

Tµν = (ε + p)
uµuν

k2 + pgµν + τµν +
uµqν

k2 +
uνqµ

k2 . (2.2)

5 This unconventional normalization ensures that the derivative expansion is well-behaved in the k → 0 limit.
In the language of fluids, it naturally incorporates the scaling introduced in [37] – see footnote 2.
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We assume local thermodynamic equilibrium with p the local pressure and ε the local energy
density:

ε =
1
k2 Tµνuµuν. (2.3)

A local-equilibrium thermodynamic equation of state p = p(T) is also needed for completing
the system, and we omit the chemical potential as no independent conserved current, i.e. no
gauge field in the bulk, is considered here.

The symmetric viscous stress tensor τµν and the heat current qµ are purely transverse:

uµτµν = 0, uµqµ = 0, qν = −εuν − uµTµν. (2.4)

For a conformal fluid in 3 dimensions

ε = 2p, τ
µ
µ = 0. (2.5)

The quantities at hand are usually expressed as expansions in temperature and velocity
derivatives, the coefficients of which characterize the transport phenomena occurring in the
fluid. In first-order hydrodynamics

τ(1)µν = −2ησµν − ζhµνΘ, (2.6)

q(1)µ = −κh ν
µ

(
∂νT +

T
k2 aν

)
, (2.7)

where hµν is the projector onto the space transverse to the velocity field:

hµν =
uµuν

k2 + gµν, (2.8)

and6

aµ = uν∇νuµ, Θ =∇µuµ, (2.9)

σµν =∇(µuν) +
1
k2 u(µaν) − 1

2 Θhµν, (2.10)

ωµν =∇[µuν] +
1
k2 u[µaν], (2.11)

are the acceleration (transverse), the expansion, the shear and the vorticity (both rank-two
tensors are transverse and traceless). As usual, η,ζ are the shear and bulk viscosities, and κ

is the thermal conductivity.
It is customary to introduce the vorticity two-form

ω =
1
2

ωµν dxµ ∧ dxν =
1
2

(
du +

1
k2 u ∧ a

)
, (2.12)

6Our conventions for (anti-) symmetrization are: A(µν) =
1
2
(

Aµν + Aνµ
)

and A[µν] =
1
2
(

Aµν − Aνµ
)
.
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as well as the Hodge–Poincaré dual of this form, which is proportional to u (we are in 2 + 1
dimensions):

kγu = ⋆ω ⇔ kγuµ =
1
2

ηµνσωνσ, (2.13)

where ηµνσ =
√−g ǫµνσ. In this expression γ is a scalar, that can also be expressed as

γ2 =
1

2k4 ωµνωµν. (2.14)

In three spacetime dimensions and in the presence of a vector field, one naturally defines
a fully antisymmetric two-index tensor as

ηµν = −uρ

k
ηρµν, (2.15)

obeying
ηµση σ

ν = hµν. (2.16)

With this tensor the vorticity reads:

ωµν = k2γηµν. (2.17)

Weyl covariance, Weyl connection and the Cotton tensor

In the case when the boundary metric gµν is conformally flat, it was shown that using the
above set of boundary data it is possible to reconstruct the four-dimensional bulk Einstein
spacetime order by order in derivatives of the velocity field [3–6]. The guideline for the
spacetime reconstruction based on the derivative expansion is Weyl covariance: the bulk ge-
ometry should be insensitive to a conformal rescaling of the boundary metric (weight −2)

ds2 → ds2

B2 , (2.18)

which should correspond to a bulk diffeomorphism and be reabsorbed into a redefinition of
the radial coordinate: r → B r. At the same time, uµ is traded for uµ/B (velocity one-form),
ωµν for ωµν/B (vorticity two-form) and Tµν for BTµν. As a consequence, the pressure and
energy density have weight 3, the heat-current qµ weight 2, and the viscous stress tensor τµν

weight 1.
Covariantization with respect to rescaling requires to introduce a Weyl connection one-

form:7

A =
1
k2

(
a − Θ

2
u
)

, (2.19)

which transforms as A → A − dlnB. Ordinary covariant derivatives ∇ are thus traded

7The explicit form of A is obtained by demandingDµuµ = 0 and uλDλuµ = 0.
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for Weyl covariant ones D = ∇ + w A, w being the conformal weight of the tensor under
consideration. We provide for concreteness the Weyl covariant derivative of a weight-w
form vµ:

Dνvµ =∇νvµ + (w + 1)Aνvµ + Aµvν − gµν Aρvρ. (2.20)

The Weyl covariant derivative is metric with effective torsion:

Dρgµν = 0, (2.21)
(
DµDν −DνDµ

)
f = w f Fµν, (2.22)

where
Fµν = ∂µ Aν − ∂ν Aµ (2.23)

is Weyl-invariant.
Commuting the Weyl-covariant derivatives acting on vectors, as usual one defines the

Weyl covariant Riemann tensor

(
DµDν −DνDµ

)
Vρ =R

ρ
σµνVσ + wVρFµν (2.24)

(Vρ are weight-w) and the usual subsequent quantities. In three spacetime dimensions, the
covariant Ricci (weight 0) and the scalar (weight 2) curvatures read:

Rµν = Rµν +∇ν Aµ + Aµ Aν + gµν

(
∇λ Aλ − AλAλ

)
− Fµν, (2.25)

R = R + 4∇µ Aµ − 2Aµ Aµ. (2.26)

The Weyl-invariant Schouten tensor8 is

Sµν =Rµν −
1
4
Rgµν = Sµν +∇ν Aµ + Aµ Aν −

1
2

AλAλgµν − Fµν. (2.27)

Other Weyl-covariant velocity-related quantities are

Dµuν = ∇µuν +
1
k2 uµaν −

Θ
2

hµν

= σµν + ωµν, (2.28)

Dνων
µ = ∇νων

µ, (2.29)

Dνην
µ = 2γuµ, (2.30)

uλRλµ = Dλ

(
σλ

µ − ωλ
µ

)
− uλFλµ, (2.31)

of weights −1, 1, 0 and 1 (the scalar vorticity γ has weight 1).
The remarkable addition to the fluid/gravity dictionary came with the realization that

8The ordinary Schouten tensor in three spacetime dimensions is given by Rµν − 1
4 Rgµν.
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the derivative expansion can be used to reconstruct Einstein metrics which are asymptoti-
cally locally AdS. For the latter, the boundary metric has a non zero Cotton tensor [9–13].
The Cotton tensor is generically a three-index tensor with mixed symmetries. In three di-
mensions, which is the case for our boundary geometry, the Cotton tensor can be dualized
into a two-index, symmetric and traceless tensor. It is defined as

Cµν = η
ρσ

µ Dρ (Sνσ + Fνσ) = η
ρσ

µ ∇ρ

(
Rνσ −

R
4

gνσ

)
. (2.32)

The Cotton tensor is Weyl-covariant of weight 1 (i.e. transforms as Cµν → BCµν), and is
identically conserved:

DρCρ
ν =∇ρCρ

ν = 0, (2.33)

sharing thereby all properties of the energy–momentum tensor. Following (2.2) we can de-
compose the Cotton tensor into longitudinal, transverse and mixed components with respect
to the fluid velocity u:9

Cµν =
3c
2

uµuν

k
+

ck
2

gµν −
cµν

k
+

uµcν

k
+

uνcµ

k
. (2.34)

Such a decomposition naturally defines the weight-3 Cotton scalar density

c =
1
k3 Cµνuµuν, (2.35)

as the longitudinal component. The symmetric and traceless Cotton stress tensor cµν and the
Cotton current cµ (weights 1 and 2, respectively) are purely transverse:

c µ
µ = 0, uµcµν = 0, uµcµ = 0, (2.36)

and obey

cµν = −khρ
µhσ

νCρσ +
ck2

2
hµν, cν = −cuν −

uµCµν

k
. (2.37)

One can use the definition (2.32) to further express the Cotton density, current and stress
tensor as ordinary or Weyl derivatives of the curvature. We find

c =
1
k2 uνησρDρ (Sνσ + Fνσ) , (2.38)

cν = ηρσDρ (Sνσ + Fνσ)− cuν, (2.39)

cµν = −hλ
µ

(
kη

ρσ
ν − uνηρσ

)
Dρ (Sλσ + Fλσ) +

ck2

2
hµν. (2.40)

9Notice that the energy–momentum tensor has an extra factor of k with respect to the Cotton tensor, see (2.60),
due to their different dimensions.
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The bulk Einstein derivative expansion

Given the ingredients above, the leading terms in a 1/r expansion for a four-dimensional
Einstein metric are of the form:10

ds2
bulk = 2

u
k2 (dr + rA) + r2ds2 +

S
k4

+
u2

k4r2

(
1 − 1

2k4r2 ωαβωαβ

)(
8πGTλµuλuµ

k2 r +
Cλµuληµνσωνσ

2k4

)

+ terms with σ, σ2, ∇σ, . . . + O
(
D 4u

)
. (2.41)

In this expression

• S is a Weyl-invariant tensor:

S = Sµνdxµdxν = −2uDνων
µdxµ − ω λ

µ ωλνdxµdxν − u2R

2
; (2.42)

• the boundary metric is parametrized à la Randers–Papapetrou:

ds2 = −k2
(

Ωdt − bidxi
)2

+ aijdxidxj; (2.43)

• the boundary conformal fluid velocity field and the corresponding one form are

u =
1
Ω

∂t ⇔ u = −k2
(

Ωdt − bidxi
)

, (2.44)

i.e. the fluid is at rest in the frame associated with the coordinates in (2.43) – this is not
a limitation, as one can always choose a local frame where the fluid is at rest, in which
the metric reads (2.43) (with Ω, bi and aij functions of all coordinates);

• ωµν is the vorticity of u as given in (2.11), which reads:

ω =
1
2

ωµνdxµ ∧ dxν =
k2

2

(
∂ibj +

1
Ω

bi∂jΩ +
1
Ω

bi∂tbj

)
dxi ∧ dxj; (2.45)

• γ2 = 1
2 aikajl

(
∂[ibj] +

1
Ω b[i∂j]Ω + 1

Ω b[i∂tbj]

)(
∂[kbl] +

1
Ω b[k∂l]Ω + 1

Ω b[k∂tbl]

)
;

10We have traded here the usual advanced-time coordinate used in the quoted literature on fluid/gravity
correspondence for the retarded time, spelled t (see (2.44)).
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• the expansion and acceleration are

Θ =
1
Ω

∂t ln
√

a , (2.46)

a = k2
(

∂i ln Ω +
1
Ω

∂tbi

)
dxi, (2.47)

leading to the Weyl connection

A =
1
Ω

(
∂iΩ + ∂tbi −

1
2

bi∂t ln
√

a
)

dxi +
1
2

∂t ln
√

a dt , (2.48)

with a the determinant of aij;

• 1
k2 Tµνuµuν is the energy density ε of the fluid (see (2.3)), and in the Randers–Papapetrou
frame associated with (2.43), (2.44), q0, τ00 , τ0i = τi0 entering in (2.2) all vanish due to
(2.4);

• 1
2k4 Cλµuληµνσωνσ = cγ, where we have used (2.13) and (2.35), and similarly c0 = c00 =

c0i = ci0 = 0 as a consequence of (2.36) with (2.43), (2.44);

• σ, σ2, ∇σ stand for the shear of u and combinations of it, as computed from (2.10):

σ =
1

2Ω
(
∂taij − aij∂t ln

√
a
)

dxidxj. (2.49)

We have not exhibited explicitly shear-related terms because we will ultimately assume the
absence of shear for our congruence. This raises the important issue of choosing the fluid
velocity field, not necessary in the Fefferman–Graham expansion, but fundamental here. In
relativistic fluids, the absence of sharp distinction between heat and matter fluxes leaves a
freedom in setting the velocity field. This choice of hydrodynamic frame is not completely
arbitrary though, and one should stress some reservations, which are often dismissed, in
particular in the already quoted fluid/gravity literature.

As was originally exposed in [65] and extensively discussed e.g. in [7], the fluid-velocity
ambiguity is well posed in the presence of a conserved current J, naturally decomposed into
a longitudinal perfect piece and a transverse part:

Jµ = ̺uµ + jµ. (2.50)

The velocity freedom originates from the redundancy in the heat current q and the non-
perfect piece of the matter current j. One may therefore set j = 0 and reach the Eckart frame.
Alternatively q = 0 defines the Landau–Lifshitz frame. In the absence of matter current,
nothing guarantees that one can still move to the Landau–Lifshitz frame, and setting q = 0
appears as a constraint on the fluid, rather than a choice of frame for describing arbitrary flu-
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ids. This important issue was recently discussed in the framework of holography [66], from
which it is clear that setting q = 0 in the absence of a conserved current would simply inhibit
certain classes of Einstein spaces to emerge holographically from boundary data, and possi-
bly blur the physical phenomena occurring in the fluids under consideration. Consequently,
we will not make any such assumption, keeping the heat current as part of the physical data.

We would like to close this section with an important comment on asymptotics. The
reconstructed bulk spacetime can be asymptotically locally or globally anti-de Sitter. This
property is read off directly inside terms appearing at designated orders in the radial expan-
sion, and built over specific boundary tensors. For d+ 1-dimensional boundaries, the bound-
ary energy–momentum contribution first appears at order 1/rd−1, whereas the boundary Cot-
ton tensor11 emerges at order 1/r2. This behaviour is rooted in the Eddington–Finkelstein
gauge used in (2.41), but appears also in the slightly different Bondi gauge. It is however
absent in the Fefferman–Graham coordinates, where the Cotton cannot be possibly isolated
in the expansion.

2.2 The resummation of AdS spacetimes

Resummation and exact Einstein spacetimes in closed form

In order to further probe the derivative expansion (2.41), we will impose the fluid velocity
congruence be shearless. This choice has the virtue of reducing considerably the number of
terms compatible with conformal invariance in (2.41), and potentially making this expan-
sion resummable, thus leading to an Einstein metric written in a closed form. Nevertheless,
this shearless condition reduces the class of Einstein spacetimes that can be reconstructed
holographically to the algebraically special ones [10–14]. Going beyond this class is an open
problem that we will not address here.

Following [6, 10–14], it is tempting to try a resummation of (2.41) using the following
substitution:

1 − γ2

r2 → r2

ρ2 (2.51)

with
ρ2 = r2 + γ2. (2.52)

The resummed expansion would then read

ds2
res. Einstein = 2

u
k2 (dr + rA) + r2ds2 +

S
k4 +

u2

k4ρ2 (8πGεr + cγ) , (2.53)

which is indeed written in a closed form. Under the conditions listed below, the metric (2.53)

11 Actually, the object appearing in generic dimension is the Weyl divergence of the boundary Weyl tensor,
which contains also the Cotton tensor (see [67] for a preliminary discussion on this point).
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defines the line element of an exact Einstein space with Λ = −3k2.

• The congruence u is shearless. This requires (see (2.49))

∂taij = aij∂t ln
√

a . (2.54)

Actually (2.54) is equivalent to ask that the two-dimensional spatial section S de-
fined at every time t and equipped with the metric dℓ2 = aijdxidxj is conformally flat.
This may come as a surprise because every two-dimensional metric is conformally flat.
However, aij generally depends on space x and time t, and the transformation required
to bring it in a form proportional to the flat-space metric might depend on time. This
would spoil the three-dimensional structure (2.43) and alter the a priori given u. Hence,
dℓ2 is conformally flat within the three-dimensional spacetime (2.43) under the condi-
tion that the transformation used to reach the explicit conformally flat form be of the
type x′ = x′(x). This exists if and only if (2.54) is satisfied.12 Under this condition, one
can always choose ζ = ζ(x), ζ̄ = ζ̄(x) such that

dℓ2 = aij dxidxj =
2

P2 dζdζ̄ (2.55)

with P = P(t,ζ, ζ̄) a real function. Even though this does not hold for arbitrary u = ∂t/Ω,
one can show that there exists always a congruence for which it does [68], and this will
be chosen for the rest of the paper.

• The heat current of the boundary fluid introduced in (2.2) and (2.4) is identified with
the transverse-dual of the Cotton current defined in (2.34) and (2.37). The Cotton cur-
rent being transverse to u, it defines a field on the conformally flat two-surface S , the
existence of which is guaranteed by the absence of shear. This surface is endowed with
a natural hodge duality mapping a vector onto another, which can in turn be lifted back
to the three-dimensional spacetime as a new transverse vector. This whole process is
taken care of by the action of ην

µ defined in (2.15):

qµ =
1

8πG
ην

µcν =
1

8πG
ην

µηρσDρ (Sνσ + Fνσ) , (2.56)

where we used (2.39) in the last expression. Using holomorphic and antiholomorphic
coordinates ζ, ζ̄ as in (2.55)13 leads to η

ζ
ζ = i and η

ζ̄

ζ̄
= −i, and thus

q =
i

8πG

(
cζdζ − cζ̄dζ̄

)
. (2.57)

12A peculiar subclass where this works is when ∂t is a Killing field.
13Orientation is chosen such that in the coordinate frame η0ζζ̄ =

√−g ǫ0ζζ̄ =
iΩ
P2 , where x0 = kt.

14



• The viscous stress tensor of the boundary conformal fluid introduced in (2.2) is iden-
tified with the transverse-dual of the Cotton stress tensor defined in (2.34) and (2.37).
Following the same pattern as for the heat current, we obtain:

τµν = − 1
8πGk2 η

ρ
µcρν

= 1
8πGk2

(
− 1

2 uληµνηρσ + ηλ
µ

(
kη

ρσ
ν − uνηρσ

))
Dρ (Sλσ + Fλσ) ,

(2.58)

where we also used (2.40) in the last equality. The viscous stress tensor τµν is transverse
symmetric and traceless because these are the properties of the Cotton stress tensor cµν.
Similarly, we find in complex coordinates:

τ = − i
8πGk2

(
cζζdζ2 − cζ̄ ζ̄dζ̄2

)
. (2.59)

• The energy–momentum tensor defined in (2.2) with p = ε/2, heat current as in (2.56)
and viscous stress tensor as in (2.58) must be conserved, i.e. obey Eq. (2.1). These are
differential constraints that from a bulk perspective can be thought of as a generaliza-
tion of the Gauss law.

Identifying parts of the energy–momentum tensor with the Cotton tensor may be viewed
as setting integrability conditions, similar to the electric–magnetic duality conditions in elec-
tromagnetism, or in Euclidean gravitational dynamics. As opposed to the latter, it is here
implemented in a rather unconventional manner, on the conformal boundary.

It is important to emphasize that the conservation equations (2.1) concern all bound-
ary data. On the fluid side the only remaining unknown piece is the energy density ε(x),
whereas for the boundary metric Ω(x), bi(x) and aij(x) are available and must obey (2.1),
together with ε(x). Given these ingredients, (2.1) turns out to be precisely the set of equa-
tions obtained by demanding bulk Einstein equations be satisfied with the metric (2.53). This
observation is at the heart of our analysis.

The bulk algebraic structure and the physics of the boundary fluid

The pillars of our approach are (i) the requirement of a shearless fluid congruence and (ii) the
identification of the non-perfect energy–momentum tensor pieces with the corresponding
Cotton components by transverse dualization.

What does motivate these choices? The answer to this question is rooted to the Weyl
tensor and to the remarkable integrability properties its structure can provide to the system.

Let us firstly recall that from the bulk perspective, u is a manifestly null congruence
associated with the vector ∂r . One can show (see [13]) that this bulk congruence is also
geodesic and shear-free. Therefore, accordingly to the generalizations of the Goldberg–Sachs
theorem, if the bulk metric (2.41) is an Einstein space, then it is algebraically special, i.e. of
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Petrov type II, III, D, N or O. Owing to the close relationship between the algebraic structure
and the integrability properties of Einstein equations, it is clear why the absence of shear in
the fluid congruence plays such an instrumental rôle in making the tentatively resummed
expression (2.53) an exact Einstein space.

The structure of the bulk Weyl tensor makes it possible to go deeper in foreseeing how
the boundary data should be tuned in order for the resummation to be successful. Indeed the
Weyl tensor can be expanded for large-r, and the dominant term (1/r3) exhibits the following
combination of the boundary energy–momentum and Cotton tensors [69–73]:

T±
µν = Tµν ±

i
8πGk

Cµν, (2.60)

satisfying a conservation equation, analogue to (2.1)

∇µT±
µν = 0. (2.61)

For algebraically special spaces, these complex-conjugate tensors simplify considerably
(see detailed discussions in [10–14]), and this suggests the transverse duality enforced be-
tween the Cotton and the energy–momentum non-perfect components. Using (2.57) and
(2.59), we find indeed for the tensor T+ in complex coordinates:

T+ =

(
ε +

ic
8πG

)(
u2

k2 +
1
2

dℓ2
)
+

i
4πGk2

(
2cζdζu − cζζdζ2) , (2.62)

and similarly for T− obtained by complex conjugation with

ε± = ε ± ic
8πG

. (2.63)

The bulk Weyl tensor and consequently the Petrov class of the bulk Einstein space are en-
coded in the three complex functions of the boundary coordinates: ε+, cζ and cζζ .

The proposed resummation procedure, based on boundary relativistic fluid dynamics
of non-perfect fluids with heat current and stress tensor designed from the boundary Cot-
ton tensor, allows to reconstruct all algebraically special four-dimensional Einstein spaces.
The simplest correspond to a Cotton tensor of the perfect form [10]. The complete class of
Plebański–Demiański family [74] requires non-trivial bi with two commuting Killing fields
[13], while vanishing bi without isometry leads to the Robinson–Trautman Einstein spaces
[12]. For the latter, the heat current and the stress tensor obtained from the Cotton by the
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transverse duality read:

q = − 1
16πG

(
∂ζKdζ + ∂ζ̄Kdζ̄

)
, (2.64)

τ =
1

8πGk2P2

(
∂ζ

(
P2∂t∂ζ ln P

)
dζ2 + ∂ζ̄

(
P2∂t∂ζ̄ ln P

)
dζ̄2
)

, (2.65)

where K = 2P2∂ζ̄∂ζ ln P is the Gaussian curvature of (2.55). With these data the conservation
of the energy–momentum tensor (2.1) enforces the absence of spatial dependence in ε = 2p,
and leads to a single independent equation, the heat equation:

12M∂t ln P + ∆K = 4∂t M. (2.66)

This is the Robinson–Trautman equation, here expressed in terms of M(t) = 4πGε(t).
The boundary fluids emerging in the systems considered here have a specific physical

behaviour. This behaviour is inherited from the boundary geometry, since their excursion
away from perfection is encoded in the Cotton tensor via the transverse duality. In the hy-
drodynamic frame at hand, this implies in particular that the derivative expansion of the
energy–momentum tensor terminates at third order. Discussing this side of the holography
is not part of our agenda. We shall only stress that such an analysis does not require to
change hydrodynamic frame. Following [66], it is possible to show that the frame at hand is
the Eckart frame. Trying to discard the heat current in order to reach a Landau–Lifshitz-like
frame (as in [75–78] for Robinson–Trautman) is questionable, as already mentioned earlier,
because of the absence of conserved current, and distorts the physical phenomena occurring
in the holographic conformal fluid.

3 The Ricci-flat limit I: Carrollian geometry and Carrollian fluids

The Ricci-flat limit is achieved at vanishing k. Although no conformal boundary exists in
this case, a two-dimensional spatial conformal structure emerges at null infinity. Since the
Einstein bulk spacetime derivative expansion is performed along null tubes, it provides the
appropriate arena for studying both the nature of the two-dimensional “boundary” and the
dynamics of the degrees of freedom it hosts as “holographic duals” to the bulk Ricci-flat
spacetime.

3.1 The Carrollian boundary geometry

The emergence of a boundary

For vanishing k, time decouples in the boundary geometry (2.43). There exist two decoupling
limits, associated with two distinct contractions of the Poincaré group: the Galilean, reached
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at infinite velocity of light and referred to as “non-relativistic”, and the Carrollian, emerging
at zero velocity of light [47] – often called “ultra-relativistic”. In (2.43), k plays effectively the
rôle of velocity of light and k → 0 is indeed a Carrollian limit.

This very elementary observation sets precisely and unambiguously the fate of asymp-
totically flat holography: the reconstruction of four-dimensional Ricci-flat spacetimes is based on
Carrollian boundary geometry.

The appearance of Carrollian symmetry, or better, conformal Carrollian symmetry at null
infinity of asymptotically flat spacetimes is not new [48–51]. It has attracted attention in the
framework of flat holography, mostly from the algebraic side [79, 80], or in relation with its
dual geometry emerging in the Galilean limit, known as Newton–Cartan (see [81]). The nov-
elties we bring in the present work are twofold. On the one hand, the Carrollian geometry
emerging at null infinity is generally non-flat, i.e. it is not isometric under the Carroll group,
but under a more general group associated with a time-dependent positive-definite spatial
metric and a Carrollian time arrow, this general Carrollian geometry being covariant under
a subgroup of the diffeomorphisms dubbed Carrollian diffeomorphisms. On the other hand,
the Carrollian surface is the natural host for a Carrollian fluid, zero-k limit of the relativistic
boundary fluid dual to the original Einstein space of which we consider the flat limit. This
Carrollian fluid must be considered as the holographic dual of a Ricci-flat spacetime, and its
dynamics (studied in Sec. 3.2) as the dual of gravitational bulk dynamics at zero cosmolog-
ical constant. From the hydrodynamical viewpoint, this gives a radically new perspective
on the subject of flat holography.

The Carrollian geometry: connection and curvature

The Carrollian geometry consists of a spatial surface S endowed with a positive-definite
metric

dℓ2 = aijdxidxj, (3.1)

and a Carrollian time t ∈ R.14 The metric on S is generically time-dependent: aij = aij(t,x).
Much like a Galilean space is observed from a spatial frame moving with respect to a local
inertial frame with velocity w, a Carrollian frame is described by a form bbb = bi(t,x)dxi. The
latter is not a velocity because in Carrollian spacetimes motion is forbidden. It is rather an
inverse velocity, describing a “temporal frame” and plays a dual rôle. A scalar Ω(t,x) is also
introduced (as in the Galilean case, see [52] – this reference will be useful along the present
section), as it may naturally arise from the k → 0 limit.

14We are genuinely describing a spacetime R ×S endowed with a Carrollian structure, and this is actually
how the boundary geometry should be spelled. In order to make the distinction with the relativistic pseudo-
Riemannian three-dimensional spacetime boundary I of AdS bulks, we quote only the spatial surface S when
referring to the Carrollian boundary geometry of a Ricci-flat bulk spacetime. For a complete description of such
geometries we recommend [82].
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We define the Carrollian diffeomorphisms as

t′ = t′(t,x) and x′ = x′(x) (3.2)

with Jacobian functions

J(t,x) =
∂t′

∂t
, ji(t,x) =

∂t′

∂xi , Ji
j(x) =

∂xi′

∂xj . (3.3)

Those are the diffeomorphisms adapted to the Carrollian geometry since under such trans-
formations, dℓ2 remains a positive-definite metric (it does not produce terms involving dt′).
Indeed,

a′ij = akl J−1k
i J−1l

j , b′k =
(

bi +
Ω
J

ji

)
J−1i

k, Ω′ =
Ω
J

, (3.4)

whereas the time and space derivatives become

∂′t =
1
J

∂t, ∂′j = J−1i
j

(
∂i −

ji
J

∂t

)
. (3.5)

We will show in a short while that the Carrollian fluid equations are precisely covariant
under this particular set of diffeomorphisms.

Expression (3.5) shows that the ordinary exterior derivative of a scalar function does
not transform as a form. To overcome this issue, it is desirable to introduce a Carrollian
derivative as

∂̂i = ∂i +
bi

Ω
∂t, (3.6)

transforming as
∂̂′i = J−1j

i ∂̂j. (3.7)

Acting on scalars this provides a form, whereas for any other tensor it must be covariantized
by introducing a new connection for Carrollian geometry, called Levi–Civita–Carroll connec-
tion, whose coefficients are the Christoffel–Carroll symbols,15

γ̂i
jk =

ail

2

(
∂̂jalk + ∂̂kalj − ∂̂lajk

)
= γi

jk + ci
jk. (3.8)

The Levi–Civita–Carroll covariant derivative acts symbolically as ∇̂∇∇ = ∂̂∂∂ + γ̂γγ. It is metric
and torsionless: ∇̂iajk = 0, t̂k

ij = 2γ̂k
[ij] = 0. There is however an effective torsion, since the

derivatives ∇̂i do not commute, even when acting of scalar functions Φ – where they are
identical to ∂̂i :

[∇̂i,∇̂j]Φ =
2
Ω

̟ij∂tΦ. (3.9)

15 We remind that the ordinary Christoffel symbols are γi
jk =

ail

2

(
∂jalk + ∂kal j − ∂l ajk

)
.
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Here ̟ij is a two-form identified as the Carrollian vorticity defined using the Carrollian
acceleration one-form ϕi:

ϕi =
1
Ω

(∂tbi + ∂iΩ) = ∂t
bi

Ω
+ ∂̂i ln Ω, (3.10)

̟ij = ∂[ibj] + b[i ϕj] =
Ω
2

(
∂̂i

bj

Ω
− ∂̂j

bi

Ω

)
. (3.11)

Since the original relativistic fluid is at rest, the kinematical “inverse-velocity” variable po-
tentially present in the Carrollian limit vanishes.16 Hence the various kinematical quantities
such as the vorticity and the acceleration are purely geometric and originate from the tem-
poral Carrollian frame used to describe the surface S . As we will see later, they turn out to
be k → 0 counterparts of their relativistic homologues defined in (2.9), (2.10), (2.11) (see also
(3.14) for the expansion and shear).

The time derivative transforms as in (3.5), and acting on any tensor under Carrollian
diffeomorphisms, it provides another tensor. This ordinary time derivative has nonetheless
an unsatisfactory feature: its action on the metric does not vanish. One is tempted therefore
to set a new time derivative ∂̂t such that ∂̂tajk = 0, while keeping the transformation rule
under Carrollian diffeomorphisms: ∂̂′t =

1
J ∂̂t. This is achieved by introducing a “temporal

Carrollian connection”
γ̂i

j =
1

2Ω
aik∂takj, (3.12)

which allows us to define the time covariant derivative on a vector field:

1
Ω

∂̂tV i =
1
Ω

∂tV i + γ̂i
jV

j, (3.13)

while on a scalar the action is as the ordinary time derivative: ∂̂tΦ = ∂tΦ. Leibniz rule allows
extending the action of this derivative to any tensor.

Calling γ̂i
j a connection is actually misleading because it transforms as a genuine tensor

under Carrollian diffeomorphisms: γ̂′k
j = Jk

n J−1m
j γ̂n

m. Its trace and traceless parts have a
well-defined kinematical interpretation, as the expansion and shear, completing the acceler-
ation and vorticity introduced earlier in (3.10), (3.11):

θ = γ̂i
i =

1
Ω

∂t ln
√

a , ξ i
j = γ̂i

j −
1
2

δi
jθ =

1
2Ω

aik (∂takj − akj∂t ln
√

a
)

. (3.14)

We can define the curvature associated with a connection, by computing the commutator

16 A Carrollian fluid is always at rest, but could generally be obtained from a relativistic fluid moving at
vi = k2βi + O

(
k4). In this case, the “inverse velocity” βi would contribute to the kinematics and the dynamics

of the fluid (see [52]). Here, vi = 0 before the limit k → 0 is taken, so βi = 0.
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of covariant derivatives acting on a vector field. We find

[
∇̂k,∇̂l

]
V i = r̂i

jklV
j + ̟kl

2
Ω

∂tV i, (3.15)

where
r̂i

jkl = ∂̂kγ̂i
lj − ∂̂lγ̂

i
kj + γ̂i

kmγ̂m
lj − γ̂i

lmγ̂m
kj (3.16)

is a genuine tensor under Carrollian diffeomorphisms, the Riemann–Carroll tensor.
As usual, the Ricci–Carroll tensor is

r̂ij = r̂k
ikj. (3.17)

It is not symmetric in general (r̂ij , r̂ji) and carries four independent components:

r̂ij = ŝij + K̂aij + Âηij. (3.18)

In this expression ŝij is symmetric and traceless, whereas17

K̂ =
1
2

aij r̂ij =
1
2

r̂, Â =
1
2

ηij r̂ij = ∗̟θ (3.19)

are the scalar-electric and scalar-magnetic Gauss–Carroll curvatures, with

∗ ̟ =
1
2

ηij̟ij. (3.20)

Since time and space are intimately related in Carrollian geometry, curvature extends
also in time. This can be seen by computing the covariant time and space derivatives com-
mutator:

[
1
Ω

∂̂t,∇̂i

]
V i = −2r̂iV i +

(
θδ

j
i − γ̂

j
i

)
ϕjV i +

(
ϕi

1
Ω

∂̂t − γ̂
j
i∇̂j

)
V i. (3.21)

A Carroll curvature one-form emerges thus as

r̂i =
1
2

(
∇̂jξ

j
i −

1
2

∂̂iθ

)
. (3.22)

The Ricci–Carroll curvature tensor r̂ij and the Carroll curvature one-form r̂i are actually
the Carrollian vanishing-k contraction of the ordinary Ricci tensor Rµν associated with the
original three-dimensional pseudo-Riemannian AdS boundary I , of Randers–Papapetrou
type (2.43). The identification of the various pieces is however a subtle task because in this

17We use ηij =
√

a ǫij, which matches, in the zero-k limit, with the spatial components of the ηµν introduced in
(2.15). To avoid confusion we also quote that ηilηjl = δi

j and ηijηij = 2.
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kind of limit, where the size of one dimension shrinks, the curvature usually develops di-
vergences. From the perspective of the final Carrollian geometry this does not produce any
harm because the involved components decouple.

The metric (3.1) of the Carrollian geometry onS may or may not be recast in conformally
flat form (2.55) using Carrollian diffeomorphisms (3.2), (3.3). A necessary and sufficient
condition is the vanishing of the Carrollian shear ξij, displayed in (3.14). Assuming this
holds, one proves that the traceless and symmetric piece of the Ricci-Carroll tensor is zero,

ŝij = 0. (3.23)

We gather in App. A various expressions when holomorphic coordinates are used and the
metric is given in conformally flat form. The absence of shear will be imposed again in Sec.
4, where it plays a crucial rôle in the resummation of the derivative expansion.

The conformal Carrollian geometry

In the present set-up, the spatial surface S appears as the null infinity of the resulting Ricci-
flat geometry i.e. as I +. This is not surprising. The bulk congruence tangent to ∂r is light-
like. Hence the holographic limit r → ∞ is lightlike, already at finite k, which is a well known
feature of the derivative expansion, expressed by construction in Eddington–Finkelstein-like
coordinates [3, 4, 6]. What is specific about k = 0 is the decoupling of time.

The geometry of I + is equipped with a conformal class of metrics rather than with
a metric. From a representative of this class, we must be able to explore others by Weyl
transformations, and this amounts to study conformal Carrollian geometry as opposed to
plain Carrollian geometry (see [48]).

The action of Weyl transformations on the elements of the Carrollian geometry on a sur-
face S is inherited from (2.18):

aij →
aij

B2 , bi →
bi

B , Ω → Ω
B , (3.24)

where B = B(t,x) is an arbitrary function. The Carrollian vorticity (3.11) and shear (3.14)
transform covariantly under (3.24): ̟ij → 1

B̟ij, ξij → 1
B ξij. However, the Levi–Civita–

Carroll covariant derivatives ∇̂∇∇ and ∂̂t defined previously for Carrollian geometry are not
covariant under (3.24). Following [52], they must be replaced with Weyl–Carroll covariant
spatial and time derivatives built on the Carrollian acceleration ϕi (3.10) and the Carrollian
expansion (3.14), which transform as connections:

ϕi → ϕi − ∂̂i lnB, θ →Bθ − 2
Ω

∂tB. (3.25)
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In particular, these can be combined in18

αi = ϕi −
θ

2
bi, (3.26)

transforming under Weyl rescaling as:

αi → αi − ∂i lnB. (3.27)

The Weyl–Carroll covariant derivatives D̂i and D̂t are defined according to the pattern
(2.19), (2.20). They obey

D̂jakl = 0, D̂takl = 0. (3.28)

For a weight-w scalar function Φ, or a weight-w vector V i, i.e. scaling with Bw under (3.24),
we introduce

D̂jΦ = ∂̂jΦ + wϕjΦ, D̂jV l = ∇̂jV l + (w − 1)ϕjV l + ϕlVj − δl
jV

i ϕi, (3.29)

which leave the weight unaltered. Similarly, we define

1
Ω
D̂tΦ =

1
Ω

∂̂tΦ +
w
2

θΦ =
1
Ω

∂tΦ +
w
2

θΦ, (3.30)

and
1
Ω
D̂tV l =

1
Ω

∂̂tV l +
w − 1

2
θV l =

1
Ω

∂tV l +
w
2

θV l + ξ l
iV

i, (3.31)

where 1
ΩD̂t increases the weight by one unit. The action of D̂i and D̂t on any other tensor is

obtained using the Leibniz rule.
The Weyl–Carroll connection is torsion-free because

[
D̂i,D̂j

]
Φ =

2
Ω

̟ijD̂tΦ + w
(

ϕij − ̟ijθ
)

Φ (3.32)

does not contain terms of the type D̂kΦ. Here ϕij = ∂̂i ϕj − ∂̂j ϕi is a Carrollian two-form, not
conformal though. Connection (3.32) is accompanied with its own curvature tensors, which
emerge in the commutation of Weyl–Carroll covariant derivatives acting e.g. on vectors:

[
D̂k,D̂l

]
V i =

(
R̂ i

jkl − 2ξ i
j̟kl

)
V j + ̟kl

2
Ω
D̂tV i + w (ϕkl − ̟klθ)V i. (3.33)

The combination ϕkl − ̟klθ forms a weight-0 conformal two-form, whose dual ∗ϕ − ∗̟θ is

18Contrary to ϕi, αi is not a Carrollian one-form, i.e. it does not transform covariantly under Carrollian diffeo-
morphisms (3.2).
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conformal of weight 2 (∗̟ is defined in (3.20) and similarly ∗ϕ = 1
2 ηij ϕij). Moreover

R̂ i
jkl = r̂i

jkl − δi
j ϕkl − ajk∇̂l ϕ

i + ajl∇̂k ϕi + δi
k∇̂l ϕj − δi

l∇̂k ϕj

+ϕi (ϕkajl − ϕlajk
)−

(
δi

kajl − δi
lajk

)
ϕm ϕm +

(
δi

k ϕl − δi
l ϕk

)
ϕj (3.34)

is the Riemann–Weyl–Carroll weight-0 tensor, from which we define

R̂ij = R̂
k
ikj = r̂ij + aij∇̂k ϕk − ϕij. (3.35)

We also quote [
1
Ω
D̂t,D̂i

]
Φ = wR̂iΦ − ξ

j
iD̂jΦ (3.36)

and [
1
Ω
D̂t,D̂i

]
V i = (w − 2)R̂iV i − V iD̂jξ

j
i − ξ

j
iD̂jV i, (3.37)

with
R̂i = r̂i +

1
Ω

∂̂t ϕi −
1
2
∇̂jγ̂

j
i + ξ

j
i ϕj =

1
Ω

∂t ϕi −
1
2

(
∂̂i + ϕi

)
θ. (3.38)

This is a Weyl-covariant weight-1 curvature one-form, where r̂i is given in (3.22).
The Ricci–Weyl–Carroll tensor (3.35) is not symmetric in general: R̂ij , R̂ji. Using (3.17)

we can recast it as
R̂ij = ŝij + K̂ aij + ˆA ηij, (3.39)

where we have introduced the Weyl-covariant scalar-electric and scalar-magnetic Gauss–
Carroll curvatures

K̂ =
1
2

aijR̂ij = K̂ + ∇̂k ϕk, ˆA =
1
2

ηijR̂ij = Â − ∗ϕ (3.40)

both of weight 2.
Before closing the present section, it is desirable to make a clarification: Weyl transfor-

mations (3.24) should not be confused with the action of the conformal Carroll group, which
is a subset of Carrollian diffeomorphisms defined as19

CCarr2
(
R ×S ,dℓ2,u

)
=

{
φ ∈ Diff(R ×S ), dℓ2 φ−→ e−2Φdℓ2 u

φ−→ eΦu
}

, (3.41)

where Φ ∈ C∞(R ×S ), dℓ2 is the spatial metric onS as in (3.1), and u = 1
Ω ∂t the Carrollian

time arrow. This group is actually the zero-k contraction of CIsom
(
I ,ds2

)
, the group of

conformal isometries of the original finite-k relativistic metric ds2 on the boundary I of the

19The subscript 2 stands for level-2 conformal Carroll group. For a detailed discussion, see [49] .
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corresponding AdS bulk:

CIsom
(
I ,ds2) =

{
φ ∈ Diff(I ), ds2 φ−→ e−2Φds2

}
(3.42)

with Φ ∈ C∞(I ). Indeed, consider the Lie algebra of conformal symmetries of ds2, denoted
cisom

(
I ,ds2

)
and spanned by vector fields X = X0∂0 + Xi∂i such that

LXds2 = −2λds2 (3.43)

for some function λ on I . In order to perform the zero-k contraction we write the gener-
ators as X = kXt∂0 + Xi∂i (here x0 = kt, thus X0 = kXt) and the metric ds2 in the Randers–
Papapetrou form (2.43). At zero k Eq. (3.43) splits into:20

LXu = λu, LXdℓ2 = −2λdℓ2. (3.44)

These are the equations the field X must satisfy for belonging to ccarr2
(
R ×S ,dℓ2,u

)
, the

Lie algebra of the corresponding conformal Carroll group. This confirms that

CIsom
(
I ,ds2) −→

k→0
CCarr2

(
R ×S ,dℓ2,u

)
. (3.45)

At last, if S is chosen to be the two-sphere and dℓ2 the round metric, it can be shown (see
[49]) that the corresponding conformal Carroll group is precisely the BMS(4) group, which
describes the asymptotic symmetries of an asymptotically flat 3 + 1-dimensional metric.

3.2 Carrollian conformal fluid dynamics

Physical data and hydrodynamic equations

More on the physics underlying the Carrollian limit can be found in [52], with emphasis on
hydrodynamics. This is precisely what we need here, since the original asymptotically AdS
bulk Einstein spacetime is the holographic dual of a relativistic fluid hosted by its 2 + 1-
dimensional boundary. This relativistic fluid satisfying Eq. (2.1), will obey Carrollian dy-
namics at vanishing k. Even though the fluid has no velocity, it has non-trivial hydrodynam-
ics based on the following data:

• the energy density ε(t,x) and the pressure p(t,x), related here through a conformal
equation of state ε = 2p;

20In coordinates, defining χ = ΩXt − bjX j , these equations are written as:

1
Ω

∂tχ + ϕjX j = −λ,
1
Ω

∂tXi = 0, ∇̂(iX j) + χ

(
ξ ij +

1
2

aijθ

)
= −λaij,

which are manifestly covariant under Carrollian diffeomorphisms.
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• the heat currents QQQ = Qi(t,x)dxi and πππ = πi(t,x)dxi;

• the viscous stress tensors ΣΣΣ = Σij(t,x)dxidxj and ΞΞΞ = Ξij(t,x)dxidxj.

The latter quantities are inherited from the relativistic ones (see (2.2)) as the following limits:

Qi = lim
k→0

qi, πi = lim
k→0

1
k2 (qi − Qi) , (3.46)

Σij = − lim
k→0

k2τij, Ξij = − lim
k→0

(
τij +

1
k2 Σij

)
. (3.47)

Compared with the corresponding ones in the Galilean fluids, they are doubled because two
orders seem to be required for describing the Carrollian dynamics. They obey

Σij = Σji, Σi
i = 0, Ξij = Ξji, Ξi

i = 0. (3.48)

The Carrollian energy and pressure are just the zero-k limits of the corresponding relativistic
quantities. In order to avoid symbols inflation, we have kept the same notation, ε and p.

All these objects are Weyl-covariant with conformal weights 3 for the pressure and en-
ergy density, 2 for the heat currents, and 1 for the viscous stress tensors (when all indices are
lowered). They are well-defined in all examples we know from holography. Ultimately they
should be justified within a microscopic quantum/statistical approach, missing at present
since the microscopic nature of a Carrollian fluid has not been investigated so far, except
for [52], where some elementary issues were addressed.

Following this reference, the equations for a Carrollian fluid are as follows:

• a set of two scalar equations, both weight-4 Weyl-covariant:

− 1
Ω
D̂tε − D̂iQi + Ξijξij = 0, (3.49)

Σijξij = 0; (3.50)

• two vector equations, Weyl-covariant of weight 3:

D̂j p + 2Qi̟ij +
1
Ω
D̂tπj − D̂iΞi

j + πiξ
i
j = 0, (3.51)

1
Ω
D̂tQj − D̂iΣi

j + Qiξ
i
j = 0. (3.52)

Equation (3.49) is the energy conservation, whereas (3.50) sets a geometrical constraint on
the Carrollian viscous stress tensor Σij. Equations (3.51) and (3.52) are dynamical equations
involving the pressure p = ε/2, the heat currents Qi and πi, and the viscous stress tensors Σij

and Ξij. They are reminiscent of a momentum conservation, although somewhat degenerate
due to the absence of fluid velocity.
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An example of Carrollian fluid

The simplest non-trivial example of a Carrollian fluid is obtained as the Carrollian limit of
the relativistic Robinson–Trautman fluid, studied at the end of Sec. 2.2 (see also [66] and [52]
for the relativistic and Carrollian approaches, respectively).

The geometric Carrollian data are in this case

dℓ2 =
2

P2 dζdζ̄, (3.53)

bi = 0 and Ω = 1. Hence the Carrollian shear vanishes (ξij = 0), whereas the expansion
reads:

θ = −2∂t ln P. (3.54)

Similarly ̟ij = 0, ϕi = 0, ϕij = 0, and using results from App. A, we find

K̂ = 2P2∂ζ̄∂ζ ln P, ˆA = 0 (3.55)

(in fact K̂ = K̂ = K), while

R̂ζ̄ = ∂ζ̄ ∂t ln P, R̂ζ̄ = ∂ζ̄ ∂t ln P. (3.56)

From the relativistic heat current q and viscous stress tensor τ displayed in (2.64) and (2.65),
we obtain the Carrollian descendants:21

QQQ = − 1
16πG

(
∂ζKdζ + ∂ζ̄Kdζ̄

)
, πππ = 0, (3.57)

ΣΣΣ = − 1
8πGP2

(
∂ζ

(
P2∂t∂ζ ln P

)
dζ2 + ∂ζ̄

(
P2∂t∂ζ̄ ln P

)
dζ̄2
)

, ΞΞΞ = 0. (3.58)

Due to the absence of shear, the hydrodynamic equation (3.50) is identically satisfied, whereas
(3.49), (3.51), (3.52) are recast as:

3ε∂t ln P − ∂tε −∇iQi = 0, (3.59)

∂i p = 0, (3.60)

∂tQi − 2Qi∂t ln P −∇jΣ
j
i = 0. (3.61)

In agreement with the relativistic Robinson–Trautman fluid, the pressure p (and so the en-
ergy density, since the fluid is conformal) must be space-independent. Furthermore, as ex-
pected from the relativistic case, Eq. (3.61) is satisfied with Qi and Σij given in (3.57) and
(3.58). Hence we are left with a single non-trivial equation, Eq. (3.59), the heat equation of

21Notice a useful identity: ∂t

(
∂2

ζ P
P

)
= 1

P2 ∂ζ

(
P2∂t∂ζ ln P

)
.
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the Carrollian fluid:
3ε∂t ln P − ∂tε +

1
16πG

∆K = 0 (3.62)

with ∆ =∇j∇j the Laplacian operator on S .
Equation (3.62) is exactly Robinson–Trautman’s, Eq. (2.66). We note that the relativistic

and the Carrolian dynamics lead to the same equations – and hence to the same solutions
ε = ε(t). This is specific to the case under consideration, and it is actually expected since
the bulk Einstein equations for a geometry with a shearless and vorticity-free null congru-
ence lead to the Robinson–Trautman equation, irrespective of the presence of a cosmological
constant, Λ = −3k2: asymptotically locally AdS or locally flat spacetimes lead to the same
dynamics. This is not the case in general though, because there is no reason for the relativistic
dynamics to be identical to the Carrollian (see [52] for a detailed account of this statement).
For example, when switching on more data, as in the case of the Plebański–Demiański fam-
ily, where all bi, ϕi, ̟ij, as well as πi and Ξij, are on, the Carrollian equations are different
from the relativistic ones.

4 The Ricci-flat limit II: derivative expansion and resummation

We can summarize our observations as follows. Any four-dimensional Ricci-flat spacetime
is associated with a two-dimensional spatial surface, emerging at null infinity and equipped
with a conformal Carrollian geometry. This geometry is the host of a Carrollian fluid, obey-
ing Carrollian hydrodynamics. Thanks to the relativistic-fluid/AdS-gravity duality, one can
also safely claim that, conversely, any Carrollian fluid evolving on a spatial surface with
Carrollian geometry is associated with a Ricci-flat geometry. This conclusion is reached by
considering the simultaneous zero-k limit of both sides of the quoted duality. In order to
make this statement operative, this limit must be performed inside the derivative expan-
sion. When the latter is resummable in the sense discussed in Sec. 2.2, the zero-k limit will
also affect the resummability conditions, and translate them in terms of Carrollian fluid dy-
namics.

4.1 Back to the derivative expansion

Our starting point is the derivative expansion of an asymptotically locally AdS spacetime,
Eq. (2.41). The fundamental question is whether the latter admits a smooth zero-k limit.

We have implicitly assumed that the Randers–Papapetrou data of the three-dimensional
pseudo-Riemannian conformal boundaryI associated with the original Einstein spacetime,
aij, bi and Ω, remain unaltered at vanishing k, providing therefore directly the Carrollian data
for the new spatial two-dimensional boundary S emerging at I +.22 Following again the

22Indeed our ultimate goal is to set up a derivative expansion (in a closed resummed form under appropriate
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detailed analysis performed in [52], we can match the various three-dimensional Rieman-
nian quantities with the corresponding two-dimensional Carrollian ones:

u = −k2 (Ωdt − bbb) (4.1)

and
ω = k2

2 ̟ijdxi ∧ dxj,
γ = ∗̟,
Θ = θ,
a = k2 ϕidxi,

A = αidxi + θ
2 Ωdt,

σ = ξijdxidxj,

(4.2)

where the left-hand-side quantities are Riemannian (given in Eqs. (2.45), (2.46), (2.47), (2.48),
(2.49)), and the right-hand-side ones Carrollian (see (3.10), (3.11), (3.14), (3.20)).

In the list (4.2), we have dealt with the first derivatives, i.e. connexion-related quantities.
We move now to second-derivative objects and collect the tensors relevant for the derivative
expansion, following the same pattern (Riemannian vs. Carrollian):

R =
1
k2 ξijξ

ij + 2K̂ + 2k2 ∗ ̟2, (4.3)

ω λ
µ ωλνdxµdxν = k4̟ l

i ̟ljdxidxj, (4.4)

ωµνωµν = 2k4 ∗ ̟2, (4.5)

Dνων
µdxµ = k2D̂j̟

j
idxi − 2k4 ∗ ̟2Ωdt + 2k4 ∗ ̟2bbb. (4.6)

Using (2.42) this leads to

S = − k2

2
(Ωdt − bbb)2 ξijξ

ij + k4sss − 5k6 (Ωdt − bbb)2 ∗ ̟2 (4.7)

with the Weyl-invariant tensor

sss = 2(Ωdt − bbb)dxiη
j
iD̂j ∗ ̟ + ∗̟2dℓ2 − K̂ (Ωdt − bbb)2 . (4.8)

In the derivative expansion (2.41), two explicit divergences appear at vanishing k. The
first originates from the first term of S, which is the shear contribution to the Weyl-covariant

assumptions) for building up four-dimensional Ricci-flat spacetimes from a boundary Carrollian fluid, irrespec-
tive of its AdS origin. For this it is enough to assume aij, bi and Ω k-independent (as in [52]), and use these
data as fundamental blocks for the Ricci-flat reconstruction. It should be kept in mind, however, that for general
Einstein spacetimes, these may depend on k with well-defined limit and subleading terms. Due to the absence
of shear and to the particular structure of these solutions, the latter do not alter the Carrollian equations. This
occurs for instance in Plebański–Demiański or in the Kerr–Taub–NUT sub-family, which will be discussed in
Sec. 5.1. In the following, we avoid discussing this kind of sub-leading terms, hence saving further technical
developments.
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scalar curvatureR of the three–dimensional AdS boundary (Eq. (4.3)).23 The second diver-
gence comes from the Cotton tensor and is also due to the shear. It is fortunate – and expected
– that counterterms coming from equal-order (non-explicitly written) σ2 contributions, can-
cel out these singular terms. This is suggestive that (2.41) is well-behaved at zero-k, showing
that the reconstruction of Ricci-flat spacetimes works starting from two-dimensional Carrol-
lian fluid data.

We will not embark here in proving finiteness at k = 0, but rather confine our analysis
to situations without shear, as we discussed already in Sec. 2.2 for Einstein spacetimes.
Vanishing σ in the pseudo-Riemannian boundary I implies indeed vanishing ξij in the
Carrollian (see (4.2)), and in this case, the divergent terms in S and C are absent. Of course,
other divergences may occur from higher-order terms in the derivative expansion. To avoid
dealing with these issues, we will focus on the resummed version of (2.41) i.e. (2.53), valid
for algebraically special bulk geometries. This closed form is definitely smooth at zero k and
reads:

ds2
res. flat = −2(Ωdt − bbb)

(
dr + rααα +

rθΩ
2

dt
)
+ r2dℓ2 + sss +

(Ωdt − bbb)2

ρ2 (8πGεr + c ∗ ̟) .

(4.9)
Here

ρ2 = r2 + ∗̟2, (4.10)

dℓ2, Ω, bbb = bidxi, ααα = αidxi, θ and ∗̟ are the Carrollian geometric objects introduced earlier,
while c and ε are the zero-k (finite) limits of the corresponding relativistic functions. Expres-
sion (4.9) will grant by construction an exact Ricci-flat spacetime provided the conditions
under which (2.53) was Einstein are fulfilled in the zero-k limit. These conditions are the set
of Carrollian hydrodynamic equations (3.49), (3.50), (3.51) and (3.52), and the integrability
conditions, as they emerge from (2.56) and (2.58) at vanishing k. Making the latter explicit is
the scope of next section.

Notice eventually that the Ricci-flat line element (4.9) inherits Weyl invariance from its
relativistic ancestor. The set of transformations (3.24), (3.25) and (3.27), supplemented with
∗̟ → B ∗ ̟, ε → B3ε and c → B3c, can indeed be absorbed by setting r → Br (sss is Weyl
invariant), resulting thus in the invariance of (4.9). In the relativistic case this invariance was
due to the AdS conformal boundary. In the case at hand, this is rooted to the location of the
two-dimensional spatial boundary S at null infinity I +.

23This divergence is traced back in the Gauss–Codazzi equation relating the intrinsic and extrinsic curvatures
of an embedded surface, to the intrinsic curvature of the host. When the size of a fiber shrinks, the extrinsic-
curvature contribution diverges.
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4.2 Resummation of the Ricci-flat derivative expansion

The Cotton tensor in Carrollian geometry

The Cotton tensor monitors from the boundary the global asymptotic structure of the bulk
four-dimensional Einstein spacetime (for higher dimensions, the boundary Weyl tensor is
also involved, see footnote 11). In order to proceed with our resummability analysis, we
need to describe the zero-k limit of the Cotton tensor (2.32) and of its conservation equation
(2.33).

As already mentioned, at vanishing k divergences do generally appear for some compo-
nents of the Cotton tensor. These divergences are no longer present when (2.54) is satisfied
(see footnote 23), i.e. in the absence of shear, which is precisely the assumption under which
we are working with (4.9). Every piece of the three-dimensional relativistic Cotton tensor
appearing in (2.34) has thus a well-defined limit. We therefore introduce

χi = lim
k→0

ci, ψi = lim
k→0

1
k2 (ci − χi) , (4.11)

Xij = lim
k→0

cij, Ψij = lim
k→0

1
k2

(
cij − Xij

)
. (4.12)

The time components c0, c00 and c0i = ci0 vanish already at finite k (due to (2.36)), and χi, ψi,
Xij and Ψij are thus genuine Carrollian tensors transforming covariantly under Carrollian
diffeomorphisms. Actually, in the absence of shear the Cotton current and stress tensor are
given exactly (i.e. for finite k) by ci = χi + k2ψi and cij = Xij + k2Ψij.

The scalar c(t,x) is Weyl-covariant of weight 3 (like the energy density). As expected, it
is expressed in terms of geometric Carrollian objects built on third-derivatives of the two-
dimensional metric dℓ2, bi and Ω:

c =
(
D̂lD̂

l + 2K̂
)
∗ ̟. (4.13)

Similarly, the forms χi and ψi, of weight 2, are

χj =
1
2

ηl
jD̂lK̂ +

1
2
D̂j ˆA − 2 ∗ ̟R̂j, (4.14)

ψj = 3ηl
jD̂l ∗ ̟2. (4.15)

Finally, the weight-1 symmetric and traceless rank-two tensors read:

Xij =
1
2

ηl
jD̂lR̂i +

1
2

ηl
iD̂jR̂l , (4.16)

Ψij = D̂iD̂j ∗ ̟ − 1
2

aijD̂lD̂
l ∗ ̟ − ηij

1
Ω
D̂t ∗ ̟2. (4.17)

Observe that c and the subleading terms ψi and Ψij are present only when the vorticity is
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non-vanishing (∗̟ , 0). All these are of gravito-magnetic nature.
The tensors c, χi, ψi, Xij and Ψij should be considered as the two-dimensional Carrollian

resurgence of the three-dimensional Riemannian Cotton tensor. They should be referred
to as Cotton descendants (there is no Cotton tensor in two dimensions anyway), and obey
identities inherited at zero k from its conservation equation.24 These are similar to the hy-
drodynamic equations (3.49), (3.50), (3.51) and (3.52), satisfied by the different pieces of the
energy–momentum tensor ε, Qi, πi, Σij and Ξij, and translating its conservation. In the case
at hand, the absence of shear trivializes (3.50) and discards the last term in the other three
equations:

1
Ω
D̂tc + D̂iχ

i = 0, (4.18)

1
2
D̂jc + 2χi̟ij +

1
Ω
D̂tψj − D̂iΨi

j = 0, (4.19)

1
Ω
D̂tχj − D̂iXi

j = 0. (4.20)

One appreciates from these equations why it is important to keep the subleading corrections
at vanishing k, both in the Cotton current cµ and in the Cotton stress tensor cµν. As for the
energy–momentum tensor, ignoring them would simply lead to wrong Carrollian dynamics.

The resummability conditions

We are now ready to address the problem of resummability in Carrollian framework, for
Ricci-flat spacetimes. In the relativistic case, where one describes relativistic hydrodynamics
on the pseudo-Riemannian boundary of an asymptotically locally AdS spacetime, resumma-
bility – or integrability – equations are Eqs. (2.56) and (2.58). These determine the friction
components of the fluid energy–momentum tensor in terms of geometric data, captured
by the Cotton tensor (current and stress components), via a sort of gravitational electric–
magnetic duality, transverse to the fluid congruence. Equipped with those, the fluid equa-
tions (2.1) guarantee that the bulk is Einstein, i.e. that bulk Einstein equations are satisfied.

Correspondingly, using (3.46), (3.47), (4.11) and (4.12), the zero-k limit of Eq. (2.56) sets
up a duality relationship among the Carrollian-fluid heat current Qi and the Carrollian-
geometry third-derivative vector χi:

Qi =
1

8πG
η

j
iχj = − 1

16πG

(
D̂iK̂ − η

j
iD̂j ˆA + 4 ∗ ̟η

j
iR̂j

)
, (4.21)

while Eqs. (2.58) allow to relate the Carrollian-fluid quantities Σij and Ξij, to the Carrollian-

24Observe that the Cotton tensor enters in Eq. (2.60) with an extra factor 1/k, the origin of which is explained
in footnote 9. Hence, the advisable prescription is to analyze the small-k limit of 1

k∇µCµν = 0.
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geometry ones Xij and Ψij:

Σij =
1

8πG
ηl

iXlj =
1

16πG

(
ηk

jη
l
iD̂kR̂l − D̂jR̂i

)
, (4.22)

and

Ξij =
1

8πG
ηl

iΨlj =
1

8πG

(
ηl

iD̂lD̂j ∗ ̟ +
1
2

ηijD̂lD̂
l ∗ ̟ − aij

1
Ω
D̂t ∗ ̟2

)
. (4.23)

One readily shows that (3.48) is satisfied as a consequence of the symmetry and tracelessness
of Xij and Ψij.

One can finally recast the Carrollian hydrodynamic equations (3.49), (3.50), (3.51) and
(3.52) for the fluid under consideration. Recalling that the shear is assumed to vanish,

ξij =
1

2Ω
(
∂taij − aij∂t ln

√
a
)
= 0, (4.24)

Eq. (3.50) is trivialized. Furthermore, Eq. (3.52) is automatically satisfied with Qj and Σi
j

given above, thanks also to Eq. (4.20). We are therefore left with two equations for the
energy density ε and the heat current πi:

• one scalar equation from (3.49):

− 1
Ω
D̂tε +

1
16πG

D̂ i
(
D̂iK̂ − η

j
iD̂j ˆA + 4 ∗ ̟η

j
iR̂j

)
= 0; (4.25)

• one vector equation from (3.51):

D̂jε + 4 ∗ ̟ηi
jQi +

2
Ω
D̂tπj − 2D̂iΞi

j = 0 (4.26)

with Qi and Ξi
j given in (4.21) and (4.23).

These last two equations are Carrollian equations, describing time and space evolution
of the fluid energy and heat current, as a consequence of transport phenomena like heat
conduction and friction. These phenomena have been identified by duality to geometric
quantities, and one recognizes distinct gravito-electric (like K̂ ) and gravito-magnetic contri-
butions (like ˆA ). It should also be stressed that not all the terms are independent and one can
reshuffle them using identities relating the Carrollian curvature elements. In the absence of
shear, (3.23) holds and all information about R̂ij in (3.39) is stored in K̂ and ˆA , while other
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geometrical data are supplied by R̂i in (3.38). All these obey

2
ΩD̂t ∗ ̟ + ˆA = 0,

1
ΩD̂tK̂ − aijD̂iR̂j = 0,
1
ΩD̂t ˆA + ηijD̂iR̂j = 0,

(4.27)

which originate from three-dimensional Riemannian Bianchi identities and emerge along
the k-to-zero limit.

Summarizing

Our analysis of the zero-k limit in the derivative expansion (2.53), valid assuming the absence
of shear, has the following salient features.

• As the general derivative expansion (2.41), this limit reveals a two-dimensional spa-
tial boundary S located at I +. It is endowed with a Carrollian geometry, encoded
in aij, bi and Ω, all functions of t and x. This is inherited from the conformal three-
dimensional pseudo-Riemannian boundary I of the original Einstein space.

• The Carrollian boundary S is the host of a Carrollian fluid, obtained as the limit of a
relativistic fluid, and described in terms of its energy density ε, and its friction tensors
Qi, πi, Σij and Ξij.

• When the friction tensors Qi, Σij and Ξij of the Carrollian fluid are given in terms of the
geometric objects χi, Xij and Ψij using (4.21), (4.22) and (4.23), and when the energy
density ε and the current πi obey the hydrodynamic equations (4.25) and (4.26), the
limiting resummed derivative expansion (4.9) is an exact Ricci-flat spacetime.

• The bulk spacetime is in general asymptotically locally flat. This property is encoded
in the zero-k limit of the Cotton tensor, i.e. in the Cotton Carrollian descendants c, χi

and Xij.

The bulk Ricci-flat spacetime obtained following the above procedure is algebraically
special. We indeed observe that the bulk congruence ∂r is null. Moreover, it is geodesic and
shear-free. To prove this last statement, we rewrite the metric (4.9) in terms of a null tetrad
(k, l,m,m̄):

ds2
res. flat = −2kl + 2mm̄ , k · l = −1, m · m̄ = 1, (4.28)

where k = − (Ωdt − bbb) is the dual of ∂r and

l = −dr − rααα − rθΩ
2

dt +
ψψψ

6 ∗ ̟
+

Ωdt − bbb
2ρ2

(
8πGεr + c ∗ ̟ − ρ2K̂

)
, (4.29)
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(here ψψψ = ψidxi), along with
2mm̄ = ρ2dℓ2 . (4.30)

Using the above results and repeating the analysis of App. A.2 in [13], we find that ∂r is
shear-free due to (4.24).

According to the Goldberg–Sachs theorem, the bulk spacetime (4.9) is therefore of Petrov
type II, III, D, N or O. The precise type is encoded in the Carrollian tensors ε±, Q±

i and Σ±
ij

ε± = ε ± i
8πG c,

Q±
i = Qi ± i

8πG χi,
Σ±

ij = Σij ± i
8πG Xij.

(4.31)

Working again in holomorphic coordinates, we find the compact result

QQQ+ =
i

4πG
χζdζ, (4.32)

ΣΣΣ+ =
i

4πG
Xζζdζ2, (4.33)

and their complex-conjugates QQQ− and ΣΣΣ−. These Carrollian geometric tensors encompass the
information on the canonical complex functions describing the Weyl-tensor decomposition
in terms of principal null directions – usually referred to as Ψa, a = 0, . . . ,4.

5 Examples

There is a plethora of Carrollian fluids that can be studied. We will analyze here the class of
perfect conformal fluids, and will complete the discussion of Sec. 3.2 on the Carrollian Robinson–
Trautman fluid. In each case, assuming the integrability conditions (4.21), (4.22) and (4.23) are
fulfilled and the hydrodynamic equations (4.25) and (4.26) are obeyed, a Ricci-flat spacetime
is reconstructed from the Carrollian spatial boundary S at I +. More examples exist like
the Plebański–Demiański or the Weyl axisymmetric solutions, assuming extra symmetries
(but not necessarily stationarity) for a viscous Carrollian fluid. These would require a more
involved presentation.

5.1 Stationary Carrollian perfect fluids and Ricci-flat Kerr–Taub–NUT families

We would like to illustrate our findings and reconstruct from purely Carrollian fluid dy-
namics the family of Kerr–Taub–NUT stationary Ricci-flat black holes. We pick for that the
following geometric data: aij(x), bi(x) and Ω = 1. Stationarity is implemented in these fluids
by requiring that all the quantities involved are time independent.

Under this assumption, the Carrollian shear ξij vanishes together with the Carrollian
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expansion θ, whereas constant Ω makes the Carrollian acceleration ϕi vanish as well (Eq.
(3.10)). Consequently

ˆA = 0, R̂i = 0, (5.1)

and we are left with non-trivial curvature and vorticity:

K̂ = K̂ = K, ̟ij = ∂[ibj] = ηij ∗ ̟. (5.2)

The Weyl–Carroll spatial covariant derivative D̂i reduces to the ordinary covariant deriva-
tive ∇i, whereas the action of the Weyl–Carroll temporal covariant derivative D̂t vanishes.

We further assume that the Carrollian fluid is perfect: Qi, πi, Σij and Ξij vanish. This
assumption is made according to the pattern of Ref. [10], where the asymptotically AdS
Kerr–Taub–NUT spacetimes were studied starting from relativistic perfect fluids. Due to
the duality relationships (4.21), (4.22) and (4.23) among the friction tensors of the Carrollian
fluid and the geometric quantities χi, Xij and Ψij, the latter must also vanish. Using (4.14),
(4.16) and (4.17), this sets the following simple geometric constraints:

χi = 0 ⇔ ∂iK = 0, (5.3)

and
Ψij = 0 ⇔

(
∇i∇j −

1
2

aij∇l∇l
)
∗ ̟ = 0, (5.4)

whereas Xij vanishes identically without bringing any further restriction. These are equa-
tions for the metric aij(x) and the scalar vorticity ∗̟, from which we can extract bi(x). Using
(4.13), we also learn that

c = (∆ + 2K) ∗ ̟, (5.5)

where ∆ =∇l∇l is the ordinary Laplacian operator on S . The last piece of the geometrical
data, (4.15), it is non-vanishing and reads:

ψj = 3ηl
j∂l ∗ ̟2. (5.6)

Finally, we must impose the fluid equations (4.25) and (4.26), leading to

∂tε = 0, ∂iε = 0. (5.7)

The energy density ε of the Carrollian fluid is therefore a constant, which will be identified
to the bulk mass parameter M = 4πGε.

Every stationary Carrollian geometry encoded in aij(x) and bi(x) with constant scalar
curvature K hosts a conformal Carrollian perfect fluid with constant energy density, and is
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associated with the following exact Ricci-flat spacetime:

ds2
perf. fl. = −2(dt − bbb)dr +

2Mr + c ∗ ̟ − Kρ2

ρ2 (dt − bbb)2 + (dt − bbb)
ψψψ

3 ∗ ̟
+ ρ2dℓ2, (5.8)

where ρ2 = r2 + ∗̟2. The vorticity ∗̟ is determined by Eq. (5.4), solved on a constant-
curvature background.

Using holomorphic coordinates (see App. A), a constant-curvature metric on S reads:

dℓ2 =
2
P2 dζdζ̄ (5.9)

with
P = 1 +

K
2

ζζ̄ , K = 0,±1, (5.10)

corresponding to S2 and E2 or H2 (sphere and Euclidean or hyperbolic planes). Using these
expressions we can integrate (5.4). The general solution depends on three real, arbitrary
parameters, n, a and ℓ:

∗ ̟ = n + a − 2a
P

+
ℓ

P
(1 − |K|) ζζ̄ . (5.11)

The parameter ℓ is relevant in the flat case exclusively. We can further integrate (3.11) and
find thus

bbb =
i
P

(
n − a

P
+

ℓ

2P
(1 − |K|) ζζ̄

)(
ζ̄dζ − ζdζ̄

)
. (5.12)

It is straightforward to determine the last pieces entering the bulk resumed metric (5.8):

c = 2Kn + 2ℓ (1 − |K|) (5.13)

and
ψψψ

3 ∗ ̟
= 2η

j
i∂j ∗ ̟dxi = 2i

Ka + ℓ (1 − |K|)
P2

(
ζ̄dζ − ζdζ̄

)
. (5.14)

In order to reach a more familiar form for the line element (5.8), it is convenient to trade
the complex-conjugate coordinates ζ and ζ̄ for their modulus25 and argument

ζ = ZeiΦ, (5.15)

and move from Eddington–Finkelstein to Boyer–Lindquist by setting

dt → dt − r2 + (n − a)2

∆r
dr , dΦ → dΦ − Ka + ℓ(1 − |K|)

∆r
dr (5.16)

25 The modulus and its range depend on the curvature. It is commonly expressed as: Z =
√

2 tan Θ
2 , 0 < Θ < π

for S2; Z = R√
2

, 0 < R < +∞ for E2; Z =
√

2 tanh Ψ
2 , 0 < Ψ < +∞ for H2.
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with
∆r = −2Mr + K

(
r2 + a2 − n2)+ 2ℓ(n − a)(|K| − 1). (5.17)

We obtain finally:

ds2
perf. fl. = −∆r

ρ2

(
dt +

2
P

(
n − a

P
+

ℓ

2P
(1 − |K|)Z2

)
Z2dΦ

)2

+
ρ2

∆r
dr2

+
2ρ2

P2 dZ2 +
2Z2

ρ2P2

(
(Ka + ℓ (1 − |K|))dt −

(
r2 + (n − a)2

)
dΦ
)2

(5.18)

with

P = 1 +
K
2

Z2, ρ2 = r2 +

(
n + a − 2a

P
+

ℓ

P
(1 − |K|)Z2

)2

. (5.19)

This bulk metric is Ricci-flat for any value of the parameters M, n, a and ℓ with K = 0,±1.
For vanishing n, a and ℓ, and with M > 0 and K = 1, one recovers the standard asymptoti-
cally flat Schwarzschild solution with spherical horizon. For K = 0 or −1, this is no longer
Schwarzschild, but rather a metric belonging to the A class (see e.g. [83]). The parameter a
switches on rotation, while n is the standard nut charge. The parameter ℓ is also a rotational
parameter available only in the flat-S case. Scanning over all these parameters, in combina-
tion with the mass and K, we recover the whole Kerr–Taub–NUT family of black holes, plus
other, less familiar configurations, like the A-metric quoted above.

For the solutions at hand, the only potentially non-vanishing Carrollian boundary Cotton
descendants are c and ψψψ, displayed in (5.13) and (5.14). The first is non-vanishing for asymp-
totically locally flat spacetimes, and this requires non-zero n or ℓ. The second measures the
bulk twist. In every case the metric (5.18) is Petrov type D.

We would like to conclude the example of Carrollian conformal perfect fluids with a
comment regarding the isometries of the associated resummed Ricci-flat spacetimes with
line element (5.18). For vanishing a and ℓ, there are four isometry generators and the field is
in this case a stationary gravito-electric and/or gravito-magnetic monopole (mass and nut
parameters M, n). Constant-r hypersurfaces are homogeneous spaces in this case. The num-
ber of Killing fields is reduced to two (∂t and ∂Φ) whenever any of the rotational parameters
a or ℓ is non-zero. These parameters make the gravitational field dipolar.

The bulk isometries are generally inherited from the boundary symmetries, i.e. the sym-
metries of the Carrollian geometry and the Carrollian fluid. The time-like Killing field ∂t is
clearly rooted to the stationarity of the boundary data. The space-like ones have legs on ∂Φ

and ∂Z, and are associated to further boundary symmetries. From a Riemannian viewpoint,
the metric (5.9) with (5.10) on the two-dimensional boundary surface S admits three Killing
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vector fields:

XXX1 = i
(

ζ∂ζ − ζ̄∂ζ̄

)
, (5.20)

XXX2 = i
((

1 − K
2

ζ2
)

∂ζ −
(

1 − K
2

ζ̄2
)

∂ζ̄

)
, (5.21)

XXX3 =

(
1 +

K
2

ζ2
)

∂ζ +

(
1 +

K
2

ζ̄2
)

∂ζ̄ , (5.22)

closing in so(3), e2 and so(2,1) algebras for K = +1,0 and −1 respectively. The Carrollian
structure is however richer as it hinges on the set

{
aij,bi,Ω

}
. Hence, not all Riemannian

isometries generated by a Killing field XXX of S are necessarily promoted to Carrollian sym-
metries. For the latter, it is natural to further require the Carrollian vorticity be invariant:

LXXX ∗ ̟ = XXX (∗̟) = 0. (5.23)

Condition (5.23) is fulfilled for all fields XXXA (A = 1,2,3) in (5.20), (5.21) and (5.22), only as
long as a = ℓ= 0, since ∗̟ = n. Otherwise ∗̟ is non-constant and only XXX1 = i

(
ζ∂ζ − ζ̄∂ζ̄

)
=

∂Φ leaves it invariant. This is in line with the bulk isometry properties discussed earlier,
while it provides a Carrollian-boundary manifestation of the rigidity theorem.

5.2 Vorticity-free Carrollian fluid and the Ricci-flat Robinson–Trautman

The zero-k limit of the relativistic Robinson–Trautman fluid presented in Sec. (3.2) (Eqs.
(3.53)–(3.56)) is in agreement with the direct Carrollian approach of Sec. 4.2. Indeed, it is
straightforward to check that the general formulas (4.13)–(4.17) give c = 0 together with

χχχ =
i
2

(
∂ζKdζ − ∂ζ̄Kdζ̄

)
, XXX =

i
P2

(
∂ζ

(
P2∂t∂ζ ln P

)
dζ2 − ∂ζ̄

(
P2∂t∂ζ̄ ln P

)
dζ̄2
)

, (5.24)

while ψi = 0 = Ψij. These expressions satisfy (4.18)–(4.20), and the duality relations (4.21),
(4.22) and (4.23) lead to the friction components of the energy–momentum tensor Qi, Σij and
Ξij, precisely as they appear in (3.57), (3.58). The general hydrodynamic equations (4.25),
(4.26), are solved with26 πi = 0 and ε = ε(t) satisfying (3.59), i.e. Robinson–Trautman’s (3.62).

Our goal is to present here the resummation of the derivative expansion (4.9) into a Ricci-
flat spacetime dual to the fluid at hand. The basic feature of the latter is that bi = 0 and Ω = 1,
hence it is vorticity-free – on top of being shearless. With these data, using (4.9), we find

ds2
RT = −2dt (dr + Hdt) + 2

r2

P2 dζdζ̄, (5.25)

26Since πi is not related to the geometry by duality as the other friction and heat tensors, it can a priori assume
any value. It is part of the Carrollian Robinson–Trautman fluid definition to set it to zero.
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where
2H = −2r∂t ln P + K − 2M(t)

r
, (5.26)

with K = 2P2∂ζ̄∂ζ ln P the Gaussian curvature of (3.53). This metric is Ricci-flat provided the
energy density ε(t) = M(t)/4πG and the function P = P(t,ζ, ζ̄) satisfy (3.62). These are alge-
braically special spacetimes of all types, as opposed to the Kerr–Taub–NUT family studied
earlier (Schwarzschild solution is common to these two families). Furthermore they never
have twist (ψψψ = ΨΨΨ = 0) and are generically asymptotically locally but not globally flat due to
χχχ and XXX.

The specific Petrov type of Robinson–Trautman solutions is determined by analyzing the
tensors (4.31), or (4.32) and (4.33) in holomorphic coordinates:

ε+ =
M(t)
4πG

, QQQ+ = − 1
8πG

∂ζKdζ, ΣΣΣ+ = − 1
4πGP2 ∂ζ

(
P2∂t∂ζ ln P

)
dζ2. (5.27)

We find the following classification (see [12]):

II generic;

III with ε+ = 0 and ∇iQ+i = 0;

N with ε+ = 0 and Q+
i = 0;

D with 2Q+
i Q+

j = 3ε+Σ+
ij and vanishing traceless part of ∇(i Q

+
j) .

6 Conclusions

The main message of our work is that starting with the standard AdS holography, there is a
well-defined zero-cosmological-constant limit that relates asymptotically flat spacetimes to
Carrollian fluids living on their null boundaries.

In order to unravel this relationship and make it operative for studying holographic du-
als, we used the derivative expansion. Originally designed for asymptotically anti-de Sitter
spacetimes with cosmological constant Λ = −3k2, this expansion provides their line element
in terms of the conformal boundary data: a pseudo-Riemannian metric and a relativistic
fluid. It is expressed in Eddington–Finkelstein coordinates, where the zero-k limit is unam-
biguous: it maps the pseudo-Riemannian boundary I onto a Carrollian geometry R × S ,
and the conformal relativistic fluid becomes Carrollian.

The emergence of the conformal Carrollian symmetry in the Ricci-flat asymptotic is not a
surprise, as we have extensively discussed in the introduction. In particular, the BMS group
has been used for investigating the asymptotically flat dual dynamics. What is remarkable
is the efficiency of the derivative expansion to implement the limiting procedure and deliver
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a genuine holographic relationship between Ricci-flat spacetimes and conformal Carrollian
fluids. These are defined on S but their dynamics is rooted in R ×S .

Even though proving that the derivative expansion is unconditionally well-behaved in
the limit under consideration is still part of our agenda, we have demonstrated this property
in the instance where it is resummable.

The resummability of the derivative expansion has been studied in our earlier works
about anti-de Sitter fluid/gravity correspondence. It has two features:

• the shear of the fluid congruence vanishes;

• the heat current and the viscous stress tensor are determined from the Cotton current
and stress tensor components via a transverse (with respect to the velocity) duality.

The first considerably simplifies the expansion. Together with the second, it ultimately dic-
tates the structure of the bulk Weyl tensor, making the Einstein spacetime of special Petrov
type. The conservation of the energy–momentum tensor is the only requirement left for the
bulk be Einstein. It involves the energy density (i.e. the only fluid observable left unde-
termined) and various geometric data in the form of partial differential equations (as is the
Robinson–Trautman for the vorticity-free situation).

This pattern survives the zero-k limit, taken in a frame where the relativistic fluid is at
rest. The corresponding Carrollian fluid – at rest by law – is required to be shearless, but has
otherwise acceleration, vorticity and expansion. Since the fluid is at rest, these are geometric
data, as are the descendants of the Cotton tensor used again to formulate the duality that
determines the dissipative components of the Carrollian fluid.

The study of the Cotton tensor and its Carrollian limit is central in our analysis. In Car-
rollian geometry (conformal in the case under consideration) it opens the pandora box of
the classification of curvature tensors, which we have marginally discussed here. Our obser-
vation is that the Cotton tensor grants the zero-k limiting Carrollian geometry on S with a
scalar, two vectors and two symmetric, traceless tensors, satisfying a set of identities inher-
ited from the original conservation equation.

In a similar fashion, the relativistic energy–momentum tensor descends in a scalar (the
energy density), two heat currents and two viscous stress tensors. This doubling is sug-
gested by that of the Cotton. The physics behind it is yet to be discovered, as it requires a
microscopic approach to Carrollian fluids, missing at present. Irrespective of its microscopic
origin, however, this is an essential result of our work, in contrast with previous attempts.
Not only we can state that the fluid holographically dual to a Ricci-flat spacetime is nei-
ther relativistic, nor Galilean, but we can also exhibit for the actually Carrollian fluid the
fundamental observables and the equations they obey.27 These are quite convoluted, and

27 From this perspective, trying to design four-dimensional flat holography using two-dimensional confor-
mal field theory described in terms of a conserved two-dimensional energy–momentum tensor [42–44] looks
inappropriate.
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whenever satisfied, the resummed metric is Ricci-flat.
Our analysis, amply illustrated by two distinct examples departing from Carrollian hy-

drodynamics and ending on widely used Ricci-flat spacetimes, raises many questions, which
deserve a comprehensive survey.

As already acknowledged, the Cotton Carrollian descendants enter the holographic re-
construction of a Ricci-flat spacetime, along with the energy–momentum data. It would be
rewarding to explore the information stored in these objects, which may carry the boundary
interpretation of the Bondi news tensor as well as of the asymptotic charges one can extract
from the latter.

We should stress at this point that Cotton and energy–momentum data (and the charges
they transport) play dual rôles. The nut and the mass provide the best paradigm of this
statement. Altogether they raise the question on the thermodynamic interpretation of mag-
netic charges. Although we cannot propose a definite answer to this question, the tools of
fluid/gravity holography (either AdS or flat) may turn helpful. This is tangible in the case
of algebraically special Einstein solutions, where the underlying integrability conditions set
a deep relationship between geometry and energy–momentum i.e. between geometry and
local thermodynamics. To make this statement more concrete, observe the heat current as
constructed using the integrability conditions, Eq. (4.21):

Qi = − 1
16πG

(
D̂iK̂ − η

j
iD̂j ˆA + 4 ∗ ̟η

j
iR̂j

)
.

In the absence of magnetic charges, only the first term is present and it is tempting to set
a relationship between the temperature and the gravito-electric curvature scalar K̂ . This
was precisely discussed in the AdS framework when studying the Robinson–Trautman rel-
ativistic fluid, in Ref. [66]. Magnetic charges switch on the other terms, exhibiting natural
thermodynamic potentials, again related with curvature components ( ˆA and R̂j).

We would like to conclude with a remark. On the one hand, we have shown that the
boundary fluids holographically dual to Ricci-flat spacetimes are of Carrollian nature. On
the other hand, the stretched horizon in the membrane paradigm seems to be rather de-
scribed in terms of Galilean hydrodynamics [17,18,84]. Whether and how these two pictures
could been related is certainly worth refining.
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A Carrollian boundary geometry in holomorphic coordinates

Using Carrollian diffeomorphisms (3.2), the metric (3.1) of the Carrollian geometry on the
two-dimensional surface S can be recast in conformally flat form,

dℓ2 =
2
P2 dζdζ̄ (A.1)

with P = P(t,ζ, ζ̄) a real function, under the necessary and sufficient condition that the Car-
rollian shear ξij displayed in (3.14) vanishes. We will here assume that this holds and present
a number of useful formulas for Carrollian and conformal Carrollian geometry. These ge-
ometries carry two further pieces of data: Ω(t,ζ, ζ̄) and

bbb = bζ(t,ζ, ζ̄)dζ + bζ̄(t,ζ, ζ̄)dζ̄ (A.2)

with bζ̄(t,ζ, ζ̄) = b̄ζ(t,ζ, ζ̄). Our choice of orientation is inherited from the one adopted for
the relativistic boundary (see footnote 13) with aζζ̄ = 1/P2 is28

ηζζ̄ = − i
P2 . (A.3)

The first-derivative Carrollian tensors are the acceleration (3.10), the expansion (3.14) and
the scalar vorticity (3.20):

ϕζ = ∂t
bζ

Ω
+ ∂̂ζ lnΩ, ϕζ̄ = ∂t

bζ̄

Ω
+ ∂̂ζ̄ lnΩ, (A.4)

θ = − 2
Ω

∂t ln P, ∗̟ =
iΩP2

2

(
∂̂ζ

bζ̄

Ω
− ∂̂ζ̄

bζ

Ω

)
(A.5)

with

∂̂ζ = ∂ζ +
bζ

Ω
∂t, ∂̂ζ̄ = ∂ζ̄ +

bζ̄

Ω
∂t. (A.6)

28This amounts to setting
√

a = i/P2 in coordinate frame and ǫζζ̄ = −1.
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Curvature scalars and vector are second-derivative (see (3.19), (3.22)):29

K̂ = P2
(

∂̂ζ̄ ∂̂ζ + ∂̂ζ ∂̂ζ̄

)
ln P, Â = iP2

(
∂̂ζ̄ ∂̂ζ − ∂̂ζ ∂̂ζ̄

)
ln P, (A.7)

r̂ζ =
1
2

∂̂ζ

(
1
Ω

∂t ln P
)

, r̂ζ̄ =
1
2

∂̂ζ̄

(
1
Ω

∂t ln P
)

, (A.8)

and we also quote:

∗ϕ = iP2
(

∂̂ζ ϕζ̄ − ∂̂ζ̄ ϕζ

)
, (A.9)

∇̂k ϕk = P2
[
∂̂ζ∂t

bζ̄

Ω + ∂̂ζ̄∂t
bζ

Ω +
(

∂̂ζ ∂̂ζ̄ + ∂̂ζ̄ ∂̂ζ

)
ln Ω

]
. (A.10)

Regarding conformal Carrollian tensors we remind the weight-2 curvature scalars (3.40):

K̂ = K̂ + ∇̂k ϕk, ˆA = Â − ∗ϕ, (A.11)

and the weight-1 curvature one-form (3.38):

R̂ζ =
1
Ω

∂t ϕζ −
1
2

(
∂̂ζ + ϕζ

)
θ, R̂ζ̄ =

1
Ω

∂t ϕζ̄ −
1
2

(
∂̂ζ̄ + ϕζ̄

)
θ. (A.12)

The three-derivative Cotton descendants displayed in (4.13)–(4.17) are a scalar

c =
(
D̂lD̂

l + 2K̂
)
∗ ̟ (A.13)

of weight 3 (∗̟ is of weght 1), two vectors

χζ =
i
2D̂ζK̂ + 1

2D̂ζ
ˆA − 2 ∗ ̟R̂ζ , χζ̄ = − i

2D̂ζ̄K̂ + 1
2D̂ζ̄

ˆA − 2 ∗ ̟R̂ζ̄ , (A.14)

ψζ = 3iD̂ζ ∗ ̟2, ψζ̄ = −3iD̂ζ̄ ∗ ̟2, (A.15)

of weight 2, and two symmetric and traceless tensors

Xζζ = iD̂ζR̂ζ , Xζ̄ ζ̄ = −iD̂ζ̄R̂ζ̄ , (A.16)

Ψζζ = D̂ζD̂ζ ∗ ̟, Ψζ̄ ζ̄ = D̂ζ̄D̂ζ̄ ∗ ̟, (A.17)

of weight 1. Notice that in holomorphic coordinates a symmetric and traceless tensor Sij has
only diagonal entries: Sζζ̄ = 0 = Sζ̄ζ .

We also remind for convenience some expressions for the determination of Weyl–Carroll

29We also quote for completeness (useful e.g. in Eq. (A.11)):

K̂ = K + P2

[
∂ζ

bζ̄

Ω
+ ∂ζ̄

bζ

Ω
+ ∂t

bζbζ̄

Ω2 + 2
bζ̄

Ω
∂ζ + 2

bζ

Ω
∂ζ̄ + 2

bζbζ̄

Ω2 ∂t

]
∂t ln P

with K = 2P2∂ζ̄∂ζ ln P the ordinary Gaussian curvature of the two-dimensional metric (A.1).
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covariant derivatives. If Φ is a weight-w scalar function

D̂ζΦ = ∂̂ζ Φ + wϕζΦ, D̂ζ̄Φ = ∂̂ζ̄ Φ + wϕζ̄Φ. (A.18)

For weight-w form components Vζ and Vζ̄ the Weyl–Carroll derivatives read:

D̂ζVζ = ∇̂ζVζ + (w + 2)ϕζVζ , D̂ζ̄Vζ̄ = ∇̂ζ̄Vζ̄ + (w + 2)ϕζ̄Vζ̄ , (A.19)

D̂ζVζ̄ = ∇̂ζVζ̄ + wϕζVζ̄ , D̂ζ̄Vζ = ∇̂ζ̄Vζ + wϕζ̄Vζ , (A.20)

while the Carrollian covariant derivatives are simply:

∇̂ζVζ =
1

P2 ∂̂ζ

(
P2Vζ

)
, ∇̂ζ̄Vζ̄ =

1
P2 ∂̂ζ̄

(
P2Vζ̄

)
, (A.21)

∇̂ζVζ̄ = ∂̂ζVζ̄ , ∇̂ζ̄Vζ = ∂̂ζ̄Vζ . (A.22)

Finally,

D̂kD̂
kΦ = P2

(
∂̂ζ ∂̂ζ̄ Φ + ∂̂ζ̄ ∂̂ζΦ + wΦ

(
∂̂ζ ϕζ̄ + ∂̂ζ̄ ϕζ

)
+ 2w

(
ϕζ ∂̂ζ̄Φ + ϕζ̄ ∂̂ζΦ + wϕζ ϕζ̄Φ

))
.

(A.23)
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ABSTRACT

We construct the Carrollian equivalent of the relativistic energy–momentum tensor, based on
variation of the action with respect to the elementary fields of the Carrollian geometry. We
prove that, exactly like in the relativistic case, it satisfies conservation equations that are im-
posed by general Carrollian covariance. In the flat case we recover the usual non-symmetric
energy–momentum tensor obtained using Nœther procedure. We show how Carrollian con-
servation equations emerge taking the ultra-relativistic limit of the relativistic ones. We in-
troduce Carrollian Killing vectors and build associated conserved charges. We finally apply
our results to asymptotically flat gravity, where we interpret the boundary equations of mo-
tion as ultra-relativistic Carrollian conservation laws, and observe that the surface charges
obtained through covariant phase-space formalism match the ones we defined earlier.



Contents

1 Introduction 2

2 Carrollian momenta 3
2.1 A relativistic synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Carrollian geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Carrollian momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Weyl covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 The flat case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 A Carrollian scalar-field action 10

4 Ultra-relativistic limit: the emergence of Carrollian physics 12

5 Charges 14
5.1 Conserved Carrollian current and associated charge . . . . . . . . . . . . . . . 14
5.2 Carrollian Killing vectors and associated conserved currents . . . . . . . . . . 15
5.3 Charges for Bi = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Application to the scalar field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Carrollian conservation laws in Ricci-flat gravity 18
6.1 Asymptotically flat spacetimes in three dimensions . . . . . . . . . . . . . . . 19
6.2 Linearized gravity in four dimensions . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Black hole solutions: Robinson–Trautman and Kerr–Taub–NUT . . . . . . . . 24

7 Conclusions 27

A Carrollian Charges algebra 28

1



1 Introduction

The Carroll group was firstly introduced in [1] as a contraction of the Poincaré group for
vanishing speed of light and this is referred to as the ultra-relativistic limit. The main fea-
ture is that, as opposed to the Galilean case, this group allows for boosts only in the time
direction: space is absolute.

We could wonder what happens when we take the zero-c limit of a relativistic general-
covariant theory. The resulting theory ends up being covariant only under a subset of the
diffeormorphisms, as illustrated in [2] , the so-called Carrollian diffeormorphisms

t′ = t′(t,x), x′ = x′(x). (1.1)

The ultra-relativistic limit breaks the spacetime metric into three independent data, a scalar
density, a connection and a spatial metric. These geometric fields are nicely interpreted
as constituents of a Carrollian geometry, as we will show in Sec. 2. Now considering an
action defined on such a geometry, covariant under (1.1), we are facing a problem in defining
the energy–momentum tensor. Indeed, in general-covariant theories it is obtained as the
variation of the action with respect to the metric. This requires the existence of a regular
metric i.e. of a pseudo-Riemannian manifold, but in the Carrollian case, as we mentioned,
there is no spacetime non-degenerate metric. Therefore, we must introduce new objects.
The core of Sec. 2 will be dedicated to the definition of these new objects, dubbed Carrollian
momenta, and obtained as the variation of the action with respect to the 3 geometric fields
mentioned above.

General covariance usually ensures that the energy–momentum tensor is conserved. In
the context of Carroll-covariant theories, we will derive similar conservation equations for
the Carrollian momenta. In order to gain confidence with these new definitions, we will
study a simple Carrollian action, and show that, on a flat geometrical background, the Car-
rollian momenta are packaged in a spacetime energy–momentum tensor which coincides
with the Nœther current associated with spacetime translations. This will be done in Sec. 3.

We will further discuss the intrinsic Carrollian nature of the ultra-relativistic limit. In-
deed, in Sec. 4, starting from the conservation equations of an energy–momentum tensor,
covariant under all changes of coordinates, we reach conservation laws that look strikingly
similar to the ones we derived for the Carrollian momenta, which are covariant only under
(1.1).

In general-covariant theories, the existence of a Killing vector allows to build a conserved
current by projecting the energy–momentum tensor on the Killing field. This ultimately
leads to a conserved charge. After briefly introducing the notion of conserved current in
the Carrollian context, we define in Sec. 5 the Carrollian Killing vectors and build their
associated currents and charges.
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There are by now different instances in which the Carrollian framework has found appli-
cations. For instance, it has been used in electromagnetism [3] and to discuss the so-called
Carroll strings [4]. The last part of this paper is devoted to yet another application of the Car-
rollian framework: flat holography. The latter is a holographic correspondence between a
theory of asymptotically flat gravity and a non-gravitational theory leaving on its boundary,
see [5–12] for recent progresses in this direction. Asymptotically anti-de-Sitter spacetimes
enjoy a timelike pseudo-Riemannian boundary and the associated metric sources its dual
operator: the boundary energy–momentum tensor. For asymptotically flat spacetimes, the
dual theory leaves on the null infinity I+. Nevertheless this surface does not carry the same
geometrical structure, it is a null hypersurface thus equipped with a Carrollian geometry [9]
and this will be the source for the Carrollian momenta. The conservation of the latter will
be shown to correspond to the gravitational dynamics in the bulk.1 As a cross check, it
has been shown [14] that the conformal Carroll group has a particular realization which is
nothing but the Bondi–Metzner–Sachs (BMS) group [15]: the symmetries associated with a
Carrollian structure match the asymptotic symmetries of the bulk.

In Secs. 6.1 and 6.2 we focus on the Carrollian theory on I+ and its relevance for grav-
itational asymptotically flat duals in 3 and 4 dimensions, and in Sec. 6.3 we study explicit
solutions, namely the Robinson–Trautman and the Kerr–Taub–NUT families.

2 Carrollian momenta

We start with a brief reminder on the energy–momentum tensor in the relativistic case, and
then define its counterpart, that we call Carrollian momenta, on a general Carrollian back-
ground. This requires the study of Carrollian geometry and covariance, which will be even-
tually the guideline for obtaining the conservation equations of these momenta. We also
extend our results for a scale invariant theory (Weyl invariant) and write the conservation
equations in a Weyl-covariant way. Finally, we focus on the flat case and show how, in this
case only, one can promote the Carrollian momenta to a "non-symmetric energy–momentum
tensor".

2.1 A relativistic synopsis

In a relativistic theory, the energy–momentum tensor is usually defined as

Tµν =
−2√−g

δS
δgµν

. (2.1)

1Some attention has been recently given to the interpretation of the bulk dynamics in terms of null conserva-
tion laws, see e.g. [13].
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For a general-covariant theory, it is easy to prove that it is conserved. Indeed, considering
the variation of the action under an infinitesimal coordinate transformation xµ → xµ + ξµ,
we have

δξS =
∫

dd+1x
(

δS
δgµν

δξ gµν +
δS
δφ

δξφ

)
+ b. t., (2.2)

where d+ 1 is the spacetime dimension and φ stands for the various other fields of the theory.
We assume that we are on-shell so δS

δφ = 0. Moreover, δξ is the Lie derivative, which for a Levi
Civita reads

δξ gµν =∇µξν +∇νξµ. (2.3)

We thus obtain

δξS = −
∫

dd+1x
√
−g Tµν∇µξν =

∫
dd+1x

√
−g∇µTµνξν + b. t.. (2.4)

If the theory is general-covariant, δξS = 0 for all ξ. From this we deduce that ∇µTµν vanishes
on shell, which is the usual conservation law of the energy–momentum tensor.

2.2 Carrollian geometry

We briefly introduce here the Carrollian geometry, as it emerges from an ultra-relativistic
(c → 0) limit of the relativistic metric. It has been shown in [2, 12] that the conservation
equations of a relativistic energy–momentum tensor, covariant under all diffeomorphisms,
lead, in the c → 0 limit, to equations covariant under a subset called Carrollian diffeomorphisms

t′ = t′(t,x), x′ = x′(x). (2.5)

An adequate parametrization for taking this limit is the so-called Randers–Papapetrou, in
which the various components transform nicely under this subset of diffeomorphisms. The
metric takes the form2

g =

(
−Ω2 cΩbi

cΩbj aij − c2bibj

)

{cdt,dxi}
(2.6)

where i = {1, . . . ,d}. Indeed, under (2.5)

a′ij = akl J−1k
i J−1l

j , b′k =
(

bi +
Ω
J

ji

)
J−1i

k, Ω′ =
Ω
J

, (2.7)

where Jk
i =

∂x′k
∂xi , ji = ∂t′

∂xi and J = ∂t′
∂t . In the c → 0 limit the metric becomes degenerate, hence

we cannot package the different metric fields in a spacetime tensor gµν, but instead we have
to treat those three fields separately: time and space decouple as (2.5) clearly suggests. We

2Every metric can be parametrized in this way. The alternative parametrization, known as Zermelo, turns
out to be useful for the Galilean limit (see [2, 16]).
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therefore trade the metric gµν for the time lapse Ω(t,x), connection bi(t,x) and spatial metric
aij(t,x),3 which we refer to as Carrollian metric fields, defining a Carrollian geometry. On
the derivatives, (2.5) infers

∂′t =
1
J

∂t, ∂′i = J−1k
i

(
∂k −

jk
J

∂t

)
, (2.8)

which implies that the spatial derivative is not a Carrollian tensor and the temporal one
is a density. Therefore we introduce the Carroll-covariant derivatives 1

Ω ∂t and ∇̂i. In the
temporal one the role of Ω as a time lapse is clear, and the spatial one is defined through its
action on scalars as

∂̂i = ∂i +
bi

Ω
∂t. (2.9)

On Carrollian tensors, it acts as usual with the following Christoffel symbols

γ̂i
jk =

ail

2

(
∂̂jalk + ∂̂kalj − ∂̂lajk

)
. (2.10)

By construction, ∂̂i transforms as a Carrollian tensor

∂̂′i = J−1k
i ∂̂k, (2.11)

and thus we also see clearly the role of bi as connection. Out of the Carrollian metric fields,
we can build first-order derivative geometrical objects

ϕi =
1
Ω

(∂tbi + ∂iΩ) , (2.12)

θ =
1
Ω

∂t ln
√

a , (2.13)

ξij =
1
Ω

(
1
2

∂taij −
1
d

aij∂t ln
√

a
)

, (2.14)

̟ij = ∂[ibj] +
1
Ω

b[i∂j]Ω +
1
Ω

b[i∂tbj]. (2.15)

They are all Carrollian tensors and they encode the non-flatness of the Carrollian geomet-
rical structure we are defining. They will turn out very useful in writing the conservation
equations of the Carrollian momenta defined in the next section.

3Hence, we will use aij to raise and lower spatial indexes in the Carrollian geometry.
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2.3 Carrollian momenta

We define the Carrollian equivalent of the energy–momentum tensor as the three following
pieces of data:

O =
1

Ω
√

a
δS
δΩ

, Bi =
1

Ω
√

a
δS
δbi

and Aij =
1

Ω
√

a
δS
δaij

. (2.16)

Here Ω
√

a is the Carrollian counterpart of the relativistic
√−g and the variations are taken

with respect to the 3 fields that replace the metric in the Carrollian setting. From now on, we
call (2.16) the Carrollian momenta. Before continuing, notice that these quantities transform
under Carrollian diffeomorphisms as

O′ = JO −Bi ji, Bi′ = Ji
jB j, and Aij′ = Ji

k J j
lAkl . (2.17)

The spatial vector Bi and matrix Aij are indeed Carrollian tensors. However, O is not a scalar
and, as we will see and use, it is wiser to introduce the scalar combination E = ΩO + biBi.

Given a Carroll-covariant theory, the action is invariant under Carrollian diffeomor-
phisms, generated by the spacetime vector ξ

δξS = 0, ξ = ξt(t,x)∂t + ξ i(x)∂i. (2.18)

Notice that ξ i only depends on x, this is the infinitesimal translation of (2.5). Under such an
infinitesimal coordinate transformation we have

δξS =
∫

dd+1x
(

δS
δΩ

δξΩ +
δS
δbi

δξbi +
δS
δaij

δξaij +
δS
δφ

δξφ

)
+ b.t., (2.19)

and the on-shell condition ensures δS
δφ = 0. We need to compute δξΩ, δξbi and δξaij. In order

to do so we compute the infinitesimal version of (2.7). If x′µ = xµ − ξµ, then

δξΩ = ξ (Ω) + Ω∂tξ
t, (2.20)

δξbi = ξ (bi)− Ω∂iξ
t + bj∂iξ

j, (2.21)

δξ aij = ξ
(

aij
)
+ ∂iξ

kakj + ∂jξ
kaik, (2.22)

where ξ( f ) ≡ ξt∂t f + ξ i∂i f . We would like to write these transformations in terms of man-
ifestly Carroll-covariant objects, so we define X = Ωξt − biξ

i. By noticing that the compo-
nents of a spacetime vector transform as

ξt′ = Jξt + jiξ i, ξ i′ = Ji
kξk, (2.23)

it is straightforward to show that X is the right combination for obtaining a scalar. We thus
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rewrite (2.20), (2.21) and (2.22) in terms of X, ξ i and the Carrollian geometrical tensors intro-
duced above

δξΩ = ∂tX + Ωϕjξ
j, (2.24)

δξbi = −∂̂iX + ϕiX − 2̟ijξ
j +

bi

Ω

(
∂tX + Ωϕjξ

j
)

, (2.25)

δξ aij = ∇̂iξ j + ∇̂jξi +
X
Ω

∂taij. (2.26)

This rewriting hints toward Carrollian covariance, as it replaces ξt with X. Therefore, we
obtain δξS = δXS + δξ i S with

δXS =
∫

dd+1xΩ
√

a
(
O∂tX −Bi∂̂iX + Bi ϕiX + Bi bi

Ω
∂tX +Aij X

Ω
∂taij

)
, (2.27)

δξ i S =
∫

dd+1xΩ
√

a
(
OΩϕjξ

j − 2Bi̟ijξ
j + Bibi ϕjξ

j + 2Aij∇̂iξ j

)
. (2.28)

Finally, demanding δXS and δξ i S be zero separately and manipulating them, we obtain two
conservation equations which are manifestly Carroll-covariant:4

(
1
Ω

∂t + θ

)
E − (∇̂i + 2ϕi

)Bi −Aij 1
Ω

∂taij = 0, (2.29)

2
(
∇̂i + ϕi

)
Ai

j + 2Bi̟ij − Eϕj = 0, (2.30)

where we used the already introduced scalar combination E = ΩO + biBi.
Let us briefly summarize. By strict comparison with the relativistic situation, we have

defined the momenta of our Carrollian theory to be the variation of the action under the
geometrical set of data that characterizes the background. Exploiting the underlying Carrol-
lian symmetry we reached a set of two equations which encode the conservation properties
of the momenta. As expected, these equations are fully Carroll-covariant.

2.4 Weyl covariance

At the relativistic level, Weyl invariance merges when the theory is invariant under a rescal-
ing gµν → gµν

B2 for any B function of spacetime coordinates.5 The transformations of Ω, bi and
aij under Weyl rescaling are deduced from the relativistic Randers–Papapetrou metric (2.6)

Ω → Ω
B , bi →

bi

B and aij →
aij

B2 . (2.31)

4A useful relation is Bi ∂̂iX = −X
(
∇̂i + ϕi

)
Bi, valid up to total derivatives and for any scalar X and vector

Bi.
5This conformal symmetry has important consequences in hydrodynamical holographic theories, [17, 18].
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If the action is invariant under such transformations,

δλS =
∫

dd+1xΩ
√

a
(
OδλΩ + Biδλbi +Aijδλaij

)
=
∫

dd+1xΩ
√

a λ
(
OΩ + Bibi + 2Aijaij

)

(2.32)
has to vanish for every λ(t,x). Therefore

δλS = 0 ⇒ E = −2Ai
i. (2.33)

We will refer to this condition as the conformal state equation, it is the equivalent of the trace-
lessness of the energy–momentum tensor in the relativistic case. From (2.31) we deduce the
following transformations of the Carrollian momenta

O → Bd+2O, Bi →Bd+2Bi and Aij →Bd+3Aij. (2.34)

This implies also E → Bd+1E .
We would like to write the conservation equations in a manifestly Weyl-covariant form.

To do so, we decompose Aij = − 1
2

(
Paij − Ξij) with Ξij traceless, such that the constraint

(2.33) becomes E = dP . This enable us rewriting (2.29) and (2.30) as

(
1
Ω

∂t +
d + 1

d
θ

)
E − (∇̂i + 2ϕi

)Bi − Ξijξij = 0, (2.35)

(
∇̂i + ϕi

)
Ξi

j −
1
d

(
∂̂j + (d + 1)ϕj

)
E + 2Bi̟ij = 0. (2.36)

The Carrollian derivatives are not covariant under Weyl rescaling, since the latter brings
extra shift terms. In order to reach manifestly Weyl-Carroll-covariant equations, we can
upgrade the Carroll derivatives to Weyl-Carroll ones. Among the Carrollian first derivative
tensors introduced above, ϕi and θ are Weyl connections as

ϕi → ϕi − ∂̂i lnB, θ →Bθ − d
Ω

∂tB. (2.37)

Therefore, they can be used for defining the Weyl-Carroll derivative. For a weight-w scalar
function Φ, i.e. a function scaling with Bw under Weyl, and a weight-w vector, the Weyl-
Carroll spatial and temporal derivatives are defined as

D̂jΦ = ∂̂jΦ + wϕjΦ, (2.38)
1
Ω
D̂tΦ =

1
Ω

∂tΦ +
w
d

θΦ, (2.39)

D̂jV l = ∇̂jV l + (w − 1)ϕjV l + ϕlVj − δl
jV

i ϕi, (2.40)

1
Ω
D̂tV l =

1
Ω

∂tV l +
w
d

θV l + ξ l
iV

i, (2.41)
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such that under a Weyl transformation

D̂jΦ → BwD̂jΦ, (2.42)
1
Ω
D̂tΦ → Bw+1 1

Ω
D̂tΦ, (2.43)

D̂jV l → BwD̂jV l, (2.44)
1
Ω
D̂tV l → Bw+1 1

Ω
D̂tV l. (2.45)

The action on any other tensor is obtained using the Leibniz rule.
Eventually, we can write (2.35) and (2.36) using these derivatives as

1
Ω
D̂tE − D̂iBi − Ξijξij = 0, (2.46)

−1
d
D̂jE + 2Bi̟ij + D̂iΞi

j = 0. (2.47)

Not only these equations are now very compact, they are also manifestly Weyl-Carroll-
covariant.

2.5 The flat case

So far we have worked on general Carrollian geometry, i.e. we did not impose any particular
value of Ω, bi and aij. We now restrict our attention to the flat Carrollian background.6

At the relativistic level, the Poincaré group is defined as the set of coordinate transfor-
mations that leave the Minkowski metric invariant. By strict analogy, the Carroll group is
defined as the set of transformations that preserve the Carrollian flatness, [16]. Therefore,
the Carroll group corresponds to the transformations satisfying

∂t → ∂t, δijdxidxj → δijdxidxj, b0i → Rj
i

(
b0j + β j

)
, (2.48)

with b0i constant. The resulting change of coordinates is

t′ = t + βixi + t0, x′i = Ri
jx

j + xi
0, (2.49)

where t0 ∈ R, {xi
0, βi} ∈ Rd and Ri

j ∈ O(d). This group is known in the literature as the
Carroll group. 7

6We refer here to flat Carrollian geometry as the geometry for which the Carroll group is an isometry, see
e.g. [16].

7The Carroll group was already shown to be the symmetry group of flat zero signature geometries in the
precursory work [19].
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Recasting (2.29) and (2.30) for aij(t,x) = δij, Ω(t,x) = 1 and bi(t,x) = b0i, we obtain

∂tO − ∂iBi = 0, (2.50)

2∂iAi
j + 2b0i∂tAi

j = 0. (2.51)

The momenta appearing in these two equations can be packaged in a spacetime energy–
momentum tensor (where spacetime does not mean relativistic)

Tµν =

(
O −2b0kAki

−B j −2Aij

)
. (2.52)

The usual conservation of this tensor ∂µTµν = 0 is ensured by the conservation equations
of the momenta, namely (2.50) and (2.51). This tensor is not symmetric, but this should not
come as a surprise: it is not defined throughout the variation of the action with respect to
the spacetime metric (symmetric by construction), instead it is defined using the Carrollian
metric fields.8 Finally notice that this spacetime lifting procedure was possible here due to
the flatness of the Carrollian geometry. In general backgrounds, this is not possible, and the
very concept of spacetime energy–momentum tensor is ambiguous–whereas the Carrollian
momenta are by construction well suited.

As a conclusive remark notice that the Carroll group contains spacetime translations, so if
a theory is invariant under this group, there will be a set of d + 1 Nœther currents associated
with spacetime translations. Packaging them in a d+ 1-dimensional kind of Nœther energy–
momentum tensor, enables us comparing it with (2.52), as we do in the next section.

3 A Carrollian scalar-field action

In order to probe our results, we start with the example of a single scalar field φ(t,x). We be-
gin the study on a general Carrollian background and show that the momenta are conserved.
Then, we restrict the geometry to the flat case, where spacetime translational invariance of
the theory allows us to compare our energy–momentum tensor (defined only in the flat case,
as in Sec. 2.5) to the conserved current computed using Nœther procedure. The two energy–
momentum tensors will turn out to be equivalent up to divergence-free terms.

In order to ensure Carroll invariance of the scalar-field action, we need to trade the usual
derivatives for the Carrollian ones. So we consider the action

S[φ] =
1
2

∫
dd+1xΩ

√
a aij∂̂iφ∂̂jφ =

∫
dd+1xL, (3.1)

8Although the construction is different, another example of non-symmetric Carrollian energy–momentum
tensor can be found in [20].
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which is manifestly covariant. The equations of motion are readily determined

(∇̂i + ϕi
)

∂̂iφ = 0. (3.2)

The Carrollian momenta are

E =
1
2

∂̂iφ∂̂iφ, (3.3)

Bi =
1
Ω

∂tφ∂̂iφ, (3.4)

Aij =
1
2

(
1
2

aij ∂̂kφ∂̂kφ − ∂̂iφ∂̂jφ

)
. (3.5)

These momenta are conserved on shell since the conservation equations (2.29) and (2.30) are
automatically satisfied given the equations of motion (3.2). This last result shows unam-
biguously the relevance of these objects. Notice moreover that these momenta satisfy the
conformal state equation (2.33) only for d = 1. In fact this action can be recovered from an
ultra-relativistic limit of the free relativistic scalar theory, which is known to be conformal
only in 2 spacetime dimensions.

We now impose the Carrollian background to be flat. In this case, the action (3.1) becomes

S[φ] =
∫

dd+1xL =
1
2

∫
dd+1xδij (∂i + b0i∂t)φ

(
∂j + b0j∂t

)
φ, (3.6)

which is invariant under spacetime translations. In the flat case, we can lift the Carrollian
momenta into a spacetime energy–momentum tensor (2.52), which here takes the form

Tµν =

(
1
2 ∂̂iφ∂̂iφ − b0i∂tφ∂̂iφ − bi

0
2 ∂̂kφ∂̂kφ + b0k∂̂kφ∂̂iφ

−∂tφ∂̂iφ − 1
2 aij ∂̂kφ∂̂kφ + ∂̂iφ∂̂jφ

)
, (3.7)

and it is conserved.
The action (3.6) is invariant under spacetime translations. As stated in the previous sec-

tion, we therefore have d + 1 associated Nœther currents

T̂µν =
∂L

∂∂µφ
∂νφ − ηµνL, (3.8)

which explicitly read:

T̂tt =
1
2

∂̂iφ∂̂iφ − b0i∂̂
iφ∂tφ, (3.9)

T̂it = −∂̂iφ∂tφ, (3.10)

T̂ti = b0j∂̂
jφ∂iφ, (3.11)

T̂ij = ∂̂iφ∂jφ − 1
2

δij∂̂kφ∂̂kφ. (3.12)
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The conservation ∂µT̂µν = 0, is achieved thanks to the equations of motion (3.2) for flat ge-
ometry ∂̂i∂̂iφ = 0.

We can now compare the energy–momentum tensor (3.7) with (3.9), (3.10), (3.11) and
(3.12). We obtain

T̂µν = Tµν + Bµν, (3.13)

with

Btt = 0, (3.14)

Bit = 0, (3.15)

Bti = −bi
0bj

0∂̂jφ∂tφ +
1
2

bi
0∂̂kφ∂̂kφ, (3.16)

Bij = −bj
0∂tφ∂̂iφ. (3.17)

As anticipated, the tensor Bµν is divergenceless on-shell ∂µBµν = 0, which implies that the
two energy–momentum tensors carry the same physical information on the theory.

4 Ultra-relativistic limit: the emergence of Carrollian physics

In the previous sections, we have intrinsically defined the Carrollian momenta starting from
the metric fields of a Carrollian geometry. The Carrollian geometry was inspired by an ultra-
relativistic contraction of the relativistic metric. We will see now how the ultra-relativistic
limit can be directly taken at the level of the conservation equation of the relativistic energy–
momentum tensor. This limit provides a richer structure, with more equations and fields.
This is neither surprising nor contradictory. It is suggested by the dual Galilean limit, [12].
Indeed, in the non-relativistic case, on top of the momentum and energy conservation, an
extra equation arises, which is ultimately identified with the continuity equation. A similar
phenomenon occurs in the Carrollian case: additional fields and equations survive in the
limit, and this is controlled by our choice of c-dependence of the fields.

Given a vector field uµ, normalized as u2 = −c2 with respect to the relativistic metric
(2.6), the energy–momentum tensor can always be decomposed as9

Tµν = (E + P)
uµuν

c2 + Pgµν + τµν +
qµuν

c2 +
qνuµ

c2 . (4.1)

In the hydrodynamic interpretation, E and P are the energy density and pressure of the fluid,
gµν is the spacetime metric and τµν and qµ are the transverse dissipative tensors, named
viscous stress tensor and heat current. We choose to adapt the velocity to the geometry
uµ =

( c
Ω , 0

)
: the fluid is at rest. The advantage of this choice is that the dissipative tensors,

9Reminder of the conventions: xµ = (x0, xi) = (ct, xi).
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since transverse, have only spatial independent components. Inspired by flat holography
[12], we choose a particular scaling of these tensors in c, namely

τij = −Σij

c2 − Ξij and qi = −Bi + c2πi. (4.2)

A more general dependence could have been considered. This would add new fields and
new equations to the resulting Carrollian theory, whereas the present choice will be sufficient
for the examples we want to analyze. Notice that the c-independent situation is recovered
for Σij = 0 = πi. We now perform the zero-c limit of ∇µTµν = 0. Defining again Aij =

− 1
2

(
Paij − Ξij), we obtain the following set of equations10

(
1
Ω

∂t + θ

)
E − (∇̂i + 2ϕi

)Bi −Aij 1
Ω

∂taij = 0, (4.3)

2
(
∇̂i + ϕi

)
Ai

j + 2Bi̟ij − Eϕj −
(

1
Ω

∂t + θ

)
πj = 0, (4.4)

(
1
Ω

∂t + θ

)
Bj +

(
∇̂i + ϕi

)
Σi

j = 0, (4.5)

Σijξij +
θ

d
Σi

i = 0. (4.6)

As advertised, we immediately recognize (4.5) and (4.6) as the Carrollian counterpart of
the continuity equation: these are two consistency equations of the limit. Notice moreover
how these equations reduce to the Carrollian equations (2.29) and (2.30) when the dissi-
pative terms have no c-dependence, Σij = 0 = πi, together with the additional constraint( 1

Ω ∂t + θ
)
Bj = 0. This result undoubtedly shows the nature of the ultra-relativistic limit: it

is a Carrollian limit. Conversely, this analysis gives credit to our intrinsic Carrollian con-
struction of the previous sections.

Summarizing, we have shown how the ultra-relativistic expansion gives rise to a lead-
ing Carrollian behavior. Furthermore, we have analyzed the extra inputs this limit brings
and the associated conservation equations. It is remarkable how the Carrollian momenta
intrinsically defined using Carrollian geometry match the ultra-relativistic limit.

We conclude with an aside important remark: we have taken the ultra-relativistic limit
of the conservation equations because it would have been inconsistent to compute directly
the limit of the energy–momentum tensor itself. Indeed we would have lost information on
the fields which survive and the conservation equations they satisfy. This confirms that we
have to give up the concept of spacetime energy–momentum tensor on general Carrollian
backgrounds, as anticipated in [2] but sometimes disregarded in the current literature.

10This limit is performed using the decomposition (4.1) and the Randers–Papapetrou parametrization of the
spacetime metric. For the detailed derivation of these equations, see [2].
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5 Charges

This section is dedicated to the definition of charges in the Carrollian framework. Charges
are conserved quantities associated with a symmetry of the theory. Relativistically, the latter
can be generated by a Killing vector field. By projecting the energy–momentum tensor on
the Killing vector, we obtain a conserved current. We will show here how to implement this
procedure in the Carrollian case. In order to do so, we firstly derive charges starting from a
conserved Carrollian current. Secondly, we define Carrollian Killing and conformal Killing
vectors. Thirdly, we build conserved charges associated with conformal Killing vectors. This
will be useful for the forthcoming examples involving asymptotically flat gravity. Finally, we
give another example of Carrollian action and compute the charges to illustrate our results.

5.1 Conserved Carrollian current and associated charge

We show here a way to define a conserved charge starting from a conserved current. In this
derivation we never impose the current to be associated with a Killing vector, therefore our
construction is very general. Whenever we have a scalar J and a vector J i satisfying

(
1
Ω

∂t + θ

)
J +

(
∇̂i + ϕi

)
J i = 0, (5.1)

we can build the conserved charge

Q =
∫

Σt

ddx
√

a
(
J + biJ i

)
, (5.2)

where Σt is a constant-time slice. A way to derive this formula is to start from the relativistic
level: consider a conserved current Jµ, the charge is then

Q =
∫

Σt

ddx
√

σ nµ Jµ. (5.3)

Here nµ is the unit vector normal to Σt and σµν is the induced metric on Σt. In order to
perform the zero-c limit, we decompose Jµ in an already Carroll-covariant basis

J = J
( c

Ω
∂0

)
+ J i

(
∂i +

cbi

Ω
∂0

)
. (5.4)

Then, using the Randers–Papapetrou parametrization for the relativistic spacetime metric
ds2 = −c2(Ωdt − bidxi)2 + aijdxidxj, we obtain

√
σ =

√
a +O

(
c2) , n0 = cΩ +O

(
c3) , J0 =

c
Ω

(
J + biJ i

)
. (5.5)

Therefore, we find Q →
c→0

c2Q, showing the relevance of the proposed Carrollian charge (5.2).
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5.2 Carrollian Killing vectors and associated conserved currents

A Killing vector is usually defined as a vector field that preserves the metric. Analogously,
we define the Carrollian Killing vector ξ to be the vector satisfying11

δξΩ = 0 = δξaij, (5.6)

where δξ is the Lie derivative. This gives rise to two Killing equations on ξ, which are exactly
(2.24) and (2.26),12

∂tX + Ωϕjξ
j = 0, (5.7)

∇̂iξ j + ∇̂jξi +
X
Ω

∂taij = 0, (5.8)

where we recall X = Ωξt − biξ
i. Notice that these equations do not actually depend on bi.

The generalization to conformal Carrollian Killing vectors is straightforward. We call ξ a
conformal Carrollian Killing vector if

δξΩ = λΩ and δξ aij = 2λaij. (5.9)

It obeys the following conformal Killing equations:

∂tX + Ωϕjξ
j = λΩ, (5.10)

∇̂iξ j + ∇̂jξi +
X
Ω

∂taij = 2λaij. (5.11)

In particular from the last equation we obtain λ = 1
d

(
∇̂iξ

i + X
Ω ∂t ln

√
a
)
. This general con-

struction is very useful, as we will shortly confirm.
We now build a conserved current by projecting the Carrollian momenta on a Carrollian

Killing vector, exactly like in the relativistic case. Indeed consider the following Carrollian
current:

J = ξiBi, J i = ξ jΣij. (5.12)

It is conserved provided ξ satisfies (5.8), and the Carrollian conservation equations (4.5) and
(4.6) are verified. According to Sec. 5.1, the corresponding conserved charge is

Qξ =
∫

Σt

ddx
√

a ξi

(
Bi + bjΣji

)
, (5.13)

This charge is also conserved when ξ satisfies (5.11), if we further impose the condition
Σi

i = 0.

11This is the translation in our language of LXg = 0 and LXξ = 0 of (III.6) in [16].
12On top of these equations, a Carrollian Killing vector has a time independent spatial part, i.e. ∂tξ

i = 0.
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5.3 Charges for Bi = 0

We will show in Sec. 6 that the equations describing the dynamics of asymptotically flat
spacetimes in 3 and 4 dimensions can be related to Carrollian conservation laws for Bi = 0.
For this reason we focus here on this particular case and build other conserved currents
associated with conformal Killing vectors. In Sec. 6 we will observe that the corresponding
charges match the surface charges obtained through covariant phase-space formalism.

The Carrollian conservation equations obtained from the ultra-relativistic limit (4.3) and
(4.4), for Bi = 0, become

(
1
Ω

∂t + θ

)
E −Aij 1

Ω
∂taij = 0, (5.14)

2
(∇̂i + ϕi

)Ai
j − Eϕj −

(
1
Ω

∂t + θ

)
πj = 0. (5.15)

We could have also reported the two equations on Σij, (4.5) and (4.6), but they are immaterial
here. Consider a Killing vector ξ, the following charge, up to boundary terms, is conserved

Cξ =
∫

Σt

ddx
√

a
(

XE − ξ iπi + 2biξ
jAi

j

)
, (5.16)

assuming only (5.14) and (5.15). This charge is also conserved when ξ is a conformal Killing
vector, if we further impose the conformal state equation E = −2Ai

i. According to Sec. 5.1,
the corresponding conserved current reads13

J = XE − ξ iπi, J i = 2ξ jAi
j. (5.17)

It is interesting to investigate the flat case aij(t,x) = δij, Ω(t,x) = 1 and bi(t,x) = b0i. Here,
(5.14) and (5.15) can be written as ∂µTµν = 0 with14

Tµν =

(
O −2b0kAki + πi

0 −2Aij

)
, (5.18)

and we notice that the charge, up to a divergenceless term, takes the usual form

CFlat
ξ =

∫

Σt

ddx
(

ξtO − ξ ib0iO − ξ iπi + 2b0iξ
jAi

j

)
= −

∫

Σt

ddxT0µξµ + C̃ξ i , (5.19)

with C̃ξ i = −
∫

Σt
ddxξ ib0iO, which is separately conserved.

13Its conservation (5.1) is ensured thanks to the Killing equations together with (5.14) and (5.15).
14We recall that for Bi = 0, E = ΩO. Thus in the flat case E =O.
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For ξ and η Killing vectors, we define the brackets

{Qξ ,Qη} ≡
∫

Σt

ddxδη

[√
a ξi

(
Bi + bjΣji

)]
,

{Cξ ,Cη} ≡
∫

Σt

ddxδη

[√
a
(

XE − ξ iπi + 2biξ
jAi

j

)]
.

(5.20)

Here δη is the Lie derivative acting on the metric fields and the momenta, but not on ξt and
ξ i. A lengthly computation (see appendix A) shows that the charges Qξ and Cξ equipped
with these brackets form two representations of the Carrollian Killing algebra:

{Qξ ,Qη} =Q[ξ,η] and {Cξ ,Cη} = C[ξ,η]. (5.21)

We can extend these results to the conformal Killing algebra when imposing the conformal
state equation E = −2Ai

i for the charge Cξ and the condition Σi
i = 0 for the charge Qξ .

5.4 Application to the scalar field

We close this section with an example of scalar-field action whose Carrollian momenta re-
produce exactly the conservation equations described in Sec. 5.3. Consider a scalar field
φ(t,x) and the following Carroll-covariant action:

S [φ] =
1
2

∫
dd+1x

√
a

φ̇2

Ω
=
∫

dd+1xL, (5.22)

where φ̇ = ∂tφ. The equation of motion reads

(
1
Ω

∂t + θ

)(
φ̇

Ω

)
= 0, (5.23)

and we find the following Carrollian momenta through the variational definition (2.16)

E = − 1
2Ω2 φ̇2, Bi = 0 and Aij =

1
4Ω2 φ̇2aij. (5.24)

Carrollian conservation equations of the type (5.14) and (5.15) are satisfied provided πi =
1
Ω φ̇∂̂iφ. In the flat case the energy–momentum tensor (5.18) computed earlier becomes:

Tµν =

(
− 1

2 φ̇2 1
2 bi

0φ̇2 + φ̇∂iφ

0 − 1
2 φ̇2δij

)
. (5.25)

As in the other example of scalar-field action (Sec. 3), this object coincides with the Nœther
current associated with spacetime translations, up to a divergenceless term.

We can now focus on the charges in the Hamiltonian formalism. Defining the conjugate
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momentum ψ =
∂L
∂φ̇

=

√
a

Ω
φ̇, and writing the Carrollian momenta in terms of φ and ψ, we

obtain

E = −1
2

(
ψ√

a

)2

, πi =
ψ√

a

(
∂iφ + bi

ψ√
a

)
and Aij =

1
4

(
ψ√

a

)2

aij. (5.26)

Therefore, the charges (5.16) become

Cξ = −
∫

Σt

ddx
(

ξt

2
Ω√

a
ψ2 + ξ iψ∂iφ

)
. (5.27)

These charges are expressed in Hamiltonian formalism. They are indeed conserved thanks
to the equation of motion and together with the Poisson bracket they realize a representation
of the Carrollian Killing algebra:

{Cξ ,Cη}Poisson =
∫

Σt

ddx
[

δCη

δφ

δCξ

δψ
− δCξ

δφ

δCη

δψ

]
= C[ξ,η]. (5.28)

This result confirms that the charges (5.16) previously introduced are the correct ones. Fi-
nally, we notice that when d = 1 the conformal state equation (2.33) is satisfied and the
representation can be extended to conformal Killing vectors.

6 Carrollian conservation laws in Ricci-flat gravity

We will now turn our attention to Ricci-flat gravity. When the bulk metric is expressed in an
appropriate gauge, usually given by imposing the radial coordinate be null, Einstein equa-
tions can reduce in some instances to equations defined on null infinity I+.15 Its null nature
makes it a natural host for a Carrollian geometry and the gravitational dynamics will be
shown to match with Carrollian conservation laws. This section can be considered as a pre-
cursor of a full asymptotically flat holographic scheme. Indeed, the putative dual boundary
theory would be Carrollian and live on I+. This theory would be coupled to a Carrollian
geometry and satisfy Carrollian conservation laws that we map here to the gravitational dy-
namics. In gravity, the covariant phase-space formalism allows to compute surface charges,
those will be shown to be given exactly or partially by the conserved charges defined in
Sec. 5.3, depending whether the gravitational solution has radiation or not. To compute the
charges explicitly, we use the code [21].

15It will be the case for the three families of solutions we study in this section: the 3-dimensional asymptotically
flat spacetimes, the weak field approximation of 4-dimensional asymptotically flat spacetimes in Bondi gauge
and the Robinson Trautman solutions. The reduction of Einstein equations to equations on I+ would not be
true, for example, for non-linearized 4-dimensional asymptotically flat gravity in Bondi gauge.
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6.1 Asymptotically flat spacetimes in three dimensions

Three-dimensional asymptotically flat spacetimes are often studied in the Bondi gauge which,
as we will shortly describe, imposes by definition the corresponding two-dimensional Car-
rollian manifold be flat. Here we want to show that we can source the geometric boundary
fields, in order to create a general Carrollian structure [10].

Consider the following bulk metric

ds2 = gabdxadxb = −2u (dr + r (ϕxdx + θu)) + r2axxdx2 + 8πGu (Eu − πxdx) . (6.1)

The bulk coordinates are {u,r, x ∈ S1}, u = Ωdu − bxdx, axx is the one-dimensional bound-
ary spatial metric, E and πx are the Carrollian momenta and θ and ϕx correspond to (2.13)
and (2.12) defined earlier:

θ =
1
Ω

∂u ln
√

axx and ϕx =
1
Ω

(∂xΩ + ∂ubx) . (6.2)

All the fields appearing in the bulk metric depend only on u and x. From this metric we
can extract the corresponding Carrollian geometry on I+ = {r → ∞}. The following pro-
cedure is general but we will use the specific case of three-dimensional asymptotically flat
spacetimes as an illustration. Consider the conformal extension of (6.1)

ds̃2 = r−2ds2, (6.3)

the factor r−2 is present to regularize the metric on I+. We perform the change of variable
ω = r−1 in the conformal metric, it becomes16

ds̃2 = g̃abdxadxb = −2u (−dω + ω (ϕxdx + θu)) + axxdx2 + 8πGω2u (Eu − πxdx) . (6.4)

We can deduce the Carrollian geometry on I+

g̃−1 (.,dω)|I+ =
1
Ω

∂u, ds̃2
|I+ = axxdx2 and g̃ (.,∂ω)|I+ = Ωdu − bidxi. (6.5)

We now move to the dynamics. In the following, we restrict our attention to the bulk line
element (6.1) with the additional geometrical constraint

D̂xsx = ∇̂xsx + 2ϕxsx = 0, (6.6)

where sx = 1
Ω ∂u ϕx − θϕx − ∂̂xθ is a Weyl-weight 1 two-derivative object. The Carrollian

momenta do not appear in this equation, it is just a constraint on the boundary geometri-
cal background as it involves only the Carrollian metric fields. Using this ansatz, Einstein

16The null asymptote is thus I+ = {ω → 0}.
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equations reduce to

(
1
Ω

∂u + 2θ

)
E = 0, (6.7)

(
∂̂x + 2ϕx

)
E +

(
1
Ω

∂u + θ

)
πx = 0. (6.8)

We interpret them as the Carrollian conservation equations (4.3), (4.4), (4.5) and (4.6) for
Σxx = Bx = 0 and E = P (conformal case). Furthermore Ξxx is automatically zero due to its
tracelessness. Therefore, the gravitational dynamics of this metric ansatz coincides with the
Carrollian conservation equations that fall into the case described in Sec. 5.3.17

We would like at this point to obtain the surface charges. We thus compute the asymp-
totic Killing vectors of ds2 whose leading orders in r−1 are

ξ̂r = −rλ(u, x) +O(1), ξ̂u = ξu(u, x) +O(r−1) and ξ̂x = ξx(x) +O(r−1). (6.9)

Here λ = ∇̂xξx + X
Ω ∂u ln

√
axx and ξ = ξu∂u + ξx∂x is a conformal Killing vector (i.e. satisfy-

ing (5.10) and (5.11)) of the corresponding Carrollian geometry {Ω, axx,bx}. We calculate the
associated surface charge through covariant phase-space formalism and obtain that they are
integrable and have exactly the same expression as the conserved charges defined in Sec. 5.3
out of purely Carrollian considerations

Qξ̂ [ds2] =
∫

S1
dx

√
axx ((Ωξu − 2bxξx)E − ξxπx) = Cξ . (6.10)

There is no gravitational radiation in three dimensions, the charges are thus conserved. We
will see that things are slightly different in four dimensions, where we have to consider the
radiation at null infinity.

If we restrict our attention to the case Ω = 1, axx = 1 and bx = 0, we recover the usual
Bondi gauge for asymptotically flat spacetimes and Carrollian conservation becomes

∂uE = 0, (6.11)

∂xE = −∂uπx. (6.12)

This set-up was extensively studied for instance in [22]. Here, the solutions to the Carrollian
Killing equations are exactly the bms3 algebra vectors ξ = ξu∂u + ξx∂x with ξu = ∂xξxu + α,
for any smooth functions ξx(x) and α(x) on S1. Moreover the solutions to (6.11) and (6.12)
are

E(u, x) = E0(x) and πx(u, x) = −∂xE0u + π0(x). (6.13)

17With respect to Sec. 5.3, we trade here t with u, to empathize that it is a retarded time.
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Hence, the charges become the usual ones

CBondi
ξ =

∫

S1
dx (αE0 − ξxπ0) , (6.14)

which are manifestly conserved. These were obtained in [6, 22]. 18

6.2 Linearized gravity in four dimensions

We can perform the same kind of analysis in the case of asymptotically flat spacetimes in four
dimensions, where asymptotic charges have been computed. We show that the boundary
equations of motion, which are the linearized Einstein equations after gauge fixing, can be
interpreted as a Carrollian conservation, and that the asymptotic charges are also charges
associated with conformal Carrollian Killing vectors.

The bulk metric is gab = ηab + hab with

η = −du2 − 2dudr + r2γijdxidxj,

huu =
2
r

mB +O
(
r−2) ,

huj =
1
2
∇iCij +

1
r

Nj +O (r−2) ,

hij = rCij +O(1),

hra = 0.

(6.15)

where a = {r,µ} = {r,u, xi}, i = 1,2. The perturbation hab is traceless, so γijCij = 0, where
γij is the metric of the two-sphere and ∇i the associated covariant derivative. We recognize
the mass aspect mB, the angular momentum aspect Ni and the gravitational wave aspect Cij,
all depending on u and xi. In this gauge, the linearized Einstein equations become:19

∂umB =
1
4

∂u∇i∇jCij, (6.16)

∂u Ni =
2
3

∂imB − 1
6

[
(∆ − 1)∇jCji −∇i∇k∇jCjk

]
. (6.17)

We first consider the case
∇i∇jCij = 0. (6.18)

Then (6.16) and (6.17) admit a Carrollian interpretation and are recovered from (2.29) and

18To compare, we have to identify φ = x, Ξ(φ) = −4πGπ0(x), Θ(φ) = 8πGE0(x), Y(φ) = ξx(x) and T(φ) =
α(x).

19Solving empty linearized Einstein equations order by order in r−1 allows to express the various subleading
coefficients in terms of mB, Cij and Ni. The only residual equations are then the ones that we present here.
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(2.30) with the following metric data

Ω = 1, bi = 0, aij = γij, (6.19)

and Carrollian momenta

Σij = Bi = Ξi
i = 0, (6.20)

E = 4mB, Aij = −1
2

(E
2

aij − Ξij
)

, πi = −3Ni, Ξi
j =

1
2
(∆ − 4)Ci

j, (6.21)

where E = −2Ai
i and Ξi

i = 0–we are in the conformal case. We obtain the following conser-
vation equations:

∂uE = 0, (6.22)

∂uπi +∇j

(E
2

γ
j
i − Ξj

i

)
= 0. (6.23)

This type of Carrollian conservation falls again into the class described in Sec. 5.3.
The asymptotic Killing vectors ξ̂ = ξ̂r∂r + ξ̂u∂u + ξ̂ i∂i associated with the gauge (6.15)

have the following leading order in r−1

ξ̂r = −λ(x)r +O(1), ξ̂u = ξu(t,x) +O(r−1) and ξ̂ i = ξ i(x) +O(r−1), (6.24)

where ξ = ξu∂u + ξ i∂i is a conformal Killing vector (i.e. satisfying (5.10) and (5.11)) of the
Carrollian geometry given by {Ω = 1, aij = γij,bi = 0} and λ is the conformal factor. The
solutions to the corresponding conformal Killing equations reproduce exactly the bms4 al-
gebra: ξu = u

2∇iξ
i + α(x), α being any function on S2, ξ i a conformal Killing of S2 and

λ = 1
2∇iξ

i. We compute the corresponding surface charges. When ∇i∇jCij = 0 they take the
form

Qξ̂ [g] =
∫

S2
d2x

√
γ
(

ξuE − ξ iπi

)
= Cξ , (6.25)

with E and πi given by (6.21). We recognize again the charges defined from purely Car-
rollian considerations in Sec. 5.3, associated with the data (6.19), (6.20) and (6.21). These
charges are automatically conserved. Physically, this is due to the fact that part of the effect
of gravitational radiation has suppressed by demanding ∇i∇jCij = 0. We will find shortly
that relaxing this condition has an effect on the charge conservation.

Integrating (6.22) and (6.23) we obtain

E = E0(x), πi = −1
2

∂iE0u +
∫

du′∇jΞ
j
i + π0i(x). (6.26)
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The charges become

Cξ =
∫

S2
d2x

√
γ

((∇iξ
i

2
u + α

)
E0 − ξ i

(
−1

2
∂iE0u +

∫
du′∇jΞ

j
i + π0i

))

= u
∫

S2
d2x

√
γ

(
1
2
∇i(ξ

iE0)

)
+
∫

S2
d2x

√
γ

(
αE0 − ξ i

(∫
du′∇jΞ

j
i + π0i

))

=
∫

S2
d2x

√
γ
(

αE0 − ξ iπ0i

)
−
∫

du′
∫

S2
d2x

√
γ ξ i∇jΞ

j
i + b.t.

=
∫

S2
d2x

√
γ
(

αE0 − ξ iπ0i

)
+ b.t..

(6.27)

The last step follows from the fact that ξ i is a conformal Killing vector on S2 and Ξi
j is trace-

less. We observe that Cξ is now manifestly conserved.
When ∇i∇jCij , 0, on the gravity side the radiation affects the surface charges and spoils

their conservation. Therefore, these charges do not match those we defined earlier. This
situation can be further investigated and recast in Carrollian language. To this end, we
define σ =∇i∇jCij and rewrite (6.16) and (6.17)

∂uE = 0, (6.28)

∂uπi +∇j

(
Pγ

j
i − Ξj

i

)
= 0. (6.29)

Here, the metric fields are
Ω = 1, bi = 0, aij = γij, (6.30)

together with the Carrollian momenta

Σij = Bi = 0, (6.31)

E = 4mB − σ, P =
E
2
+ σ, πi = −3Ni, Ξi

j =
1
2
(∆ − 4)Ci

j. (6.32)

Hence turning on σ can be interpreted as spoiling the conformal state equation: E = −2
(
Ai

i + σ
)
.

It appears as a sort of conformal anomaly in the boundary theory. The surface charges become

Qξ̂ [g](u) =
∫

S2
d2x

√
γ
(

ξu(E + σ)− ξ iπi

)
, (6.33)

and, as already stated, they are no longer conserved

∂uQξ̂ [g] =
∫

S2
d2x

√
γ
(
δξ + λ

)
σ, (6.34)

where δξ is the usual Lie derivative and λ = 1
2∇iξ

i the conformal factor. These charges were
obtained in [23].20 For non linear gravity see [24], where the charges are now non-integrable.

20See the n = 2 case of Sec. 3. Their charges coincide with (6.33) with α = T, ξ i = vi, E0 = 4M and πi
0 = −3N i.
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6.3 Black hole solutions: Robinson–Trautman and Kerr–Taub–NUT

For asymptotically AdS solutions, Einstein equations lead to the conservation of an energy–
momentum tensor on the timelike boundary with the cosmological constant playing the role
of the velocity of light [12]. Taking the flat limit in the bulk therefore corresponds to an ultra-
relativistic limit on the boundary, and this is how Carrollian dynamics emerges. We illustrate
this for the specific examples of Robinson–Trautman and Kerr–Taub–NUT, and analyze their
charges.

Robinson–Trautman

The Robinson–Trautman ansatz is

ds2 =
2r2

P2 dzdz̄ − 2dudr −
(

∆ ln P − 2r∂u ln P − 2m
r

)
du2, (6.35)

where m and P depend on the boundary coordinates {u,z, z̄}. This metric is Ricci-flat pro-
vided the Robinson–Trautman equations are satisfied:

∆∆ ln P + 12M∂u ln P − 4∂u M = 0, (6.36)

∂z M = 0, (6.37)

∂z̄ M = 0, (6.38)

where we have defined ∆ = ∇i∇i, for i = {z, z̄}, and ∇i is the Levi Civita covariant deriva-
tive of the spatial metric a = 2

P2 dzdz̄. These equations can be interpreted as Carrollian conser-
vation laws (4.3), (4.4), (4.5) and (4.6) with the metric data Ω = 1, bi = 0 and a = 2

P(u,z,z̄)2 dzdz̄
and the Carrollian momenta

Ξij = πi = Σi
i = 0, (6.39)

E = 4M, Bi =∇iK, Aij = −Maij, Σij =∇i∇jθ − 1
2

aij∇k∇kθ. (6.40)

Here we have introduced the Gaussian curvature K = ∆ ln P. Weyl covariance is ensured
by the conformal state equation E = −2Ai

i, together with Σi
i = 0. With this set of data, the

conservation equations are

(
∂u +

3θ

2

)
E −∇iBi = 0, (6.41)

∂jE = 0, (6.42)

(∂u + θ)Bj +∇iΣi
j = 0, (6.43)

Σijξij +
θ

d
Σi

i = 0. (6.44)
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Equations (4.5) and (4.6) do not appear in the Robinson–Trautman equations because they
are geometrical constraints on the spatial metric, which are automatically satisfied when
imposing a = 2

P2 dzdz̄.
We want to interpret the charges we have introduced in Secs. 5.2 and 5.3 for the Robinson–

Trautman spacetime. To this end, we introduce a conformal Carrollian Killing vector ξ, with
(5.10) and (5.11) here given by

∂uξu = λ, (6.45)

∇iξ j +∇jξi + ξu∂uaij = 2λaij . (6.46)

The solution is the following vector21

ξ =
(√

a
) 1

2

(
α(x) +

1
2

∫
du
(√

a
)− 1

2 ∇iξ
i
)

∂u + ξ i(x)∂i, (6.47)

where ξ i is a spatial conformal Killing vector, i.e. it satisfies

∇iξ j +∇jξi =∇kξkaij. (6.48)

The associated charges (5.13) become

Qξ =
∫

S2
d2z

√
a ξ jB j =

∫

S2
d2zP−2 (ξz∂zK + ξ z̄∂z̄K

)
. (6.49)

They are conserved by construction.
Even though the second family of charges (5.16) were defined only for Bi = 0, we can

nevertheless study what their expression is for the solution at hand. We find

Cξ =
∫

S2
d2z

√
a ξuE =

∫

S2
d2zP−3

(
α(z, z̄) +

1
2

∫
duP∇iξ

i
)

4M. (6.50)

As expected, they are not generically conserved, and using (6.41) we find

∂uCξ = −
∫

S2
d2z

√
a ∂iξ

uBi. (6.51)

Their conservation holds in two instances. The first, expected by construction, is when Bi =

∂iK = 0, and corresponds to a uniform curvature of the boundary sphere at all times. The
second, which is a new condition, occurs when the conformal Killing vectors satisfy also
∂iξ

u = 0. This can be written as
δξbi = 0, (6.52)

21The metric (6.35) is not in the Bondi gauge unless P is time independent. Therefore, the conformal Killing
vector ξ does not satisfy the usual bms4 algebra, but a generalized version of it.
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when considering the Robinson–Trautman Carrollian geometry Ω = 1, bi = 0 and a =
2

P2 dzdz̄.22

Kerr–Taub–NUT family

The interesting feature of the Kerr–Taub–NUT family is that, although stationary, it has a
non-trivial metric field bi. Its line element, in {t,r,θ,φ} coordinates, is given by

ds2 = −∆r

ρ2 (dt − b)2 +
ρ2

∆r
dr2 + ρ2 (dθ2 + sin2 θdφ2)+ sin2 θ

ρ2

(
αdt −

(
r2 + (n − α)2)dφ

)2
,

(6.53)
where

∆r = −2Mr + r2 + α2 − n2, (6.54)

ρ2 = r2 + (n − αcos θ)2, (6.55)

b =
(
2n(cos θ − 1) + αsin2 θ

)
dφ. (6.56)

In this solution, M is interpreted as the black hole mass, α its angular parameter and n
its NUT charge. The Carrollian geometrical data are Ω = 1, bi as in (6.56) and a = dθ2 +

sin2 θdφ2. The bulk Einstein equations are satisfied for a constant mass. We can interpret this
result as given by the following Carrollian data

Ξij = πi = Σij = Bi = 0 E = M Aij = −M
4

aij, (6.57)

such that Carrollian conservation equations give straightforwardly M constant. From the
hydrodynamical viewpoint, these data describe a perfect fluid.

The conformal Carrollian Killing equations can be solved with the result

ξ =

(
T(x) +

1
2

t∇iξ
i
)

∂t + ξ i(x)∂i. (6.58)

where T is any smooth function on S2 and ξ i a Killing vector of the sphere. This is precisely
the bms4 generator. The charges (5.13) are identically zero in this case. Conversely, the
charges (5.16) are non-trivial

Cξ = M
∫

S2
dθdφ sinθ

(
T − 3

2
ξ ibi

)
. (6.59)

They explicitly depend on the Kerr–Taub–NUT parameters thanks to the presence of the
metric field bi, and they are manifestly conserved.

22Actually, it is possible to show that, even when Bi , 0, the charges (5.16) are generically conserved if the
vectors ξ satisfy δξ aij = 0, δξ Ω = 0 and δξ bi = 0.
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7 Conclusions

We are now ready to summarize our achievements.
In the framework of Carrollian dynamics we have defined Carrollian momenta as the

variation of the action with respect to the Carrollian metric fields Ω,bi, aij. These momenta
obey conservation laws ensuing the invariance of the action under Carrollian diffeomor-
phisms. We have carefully stressed that this set of Carrollian momenta plays the role the
energy–momentum tensor has in relativistic theories, since such an object cannot be defined
in general Carrollian dynamics. In the very particular instance of flat Carrollian geome-
try, due to the existence of global symmetries, the on-shell Carrollian momenta are indis-
tinguishable from the Nœther conserved currents. In this case they can be packaged in a
non-symmetric spacetime energy–momentum tensor.

We have proven that the general conservation equations of the set of Carrollian momenta
are recovered as the ultra-relativistic limit of the relativistic energy–momentum tensor con-
servation equations. This is expected and shows in passing that the Carrollian limit of the
energy–momentum tensor outside its conservation equations is non sensible.

As usual in theories with local symmetries, volume conserved charges cannot be defined
from plain conserved momenta. Killing fields are needed, in order to construct conserved
currents and extract conserved charges, which encode the physical information stored in
the fields at hand. We performed all these steps in a general Carrollian geometry, starting
with the definition of the Killing vectors and proceeding with currents (projections of the
Carrollian momenta) and charges.

All these concepts and techniques have been finally illustrated in concrete examples in-
spired from flat holography. Indeed, the null infinity of an asymptotically flat spacetime is
a natural host for Carrollian geometry, and Carrollian conservation equations on I+ emerge
as part of the bulk Einstein dynamics. More specifically, we have shown that in three bulk
dimensions the Carrollian charges match the surface charges obtained from standard bulk
methods. However, in four-dimensional linearized gravity, the presence of gravitational ra-
diation spoils the conservation of surface charges. At the level of the Carrollian conservation
equations, this is interpreted as a conformal anomaly, the radiation sourcing the anomalous
factor. The subsequent analysis of the Robinson–Trautman and Kerr–Taub–NUT exact solu-
tions nicely confirms these expectations and the interplay among the bulk and the boundary
dynamics.

Our analysis triggers many questions. Among others, the two examples of exact Ricci-flat
spacetimes treated here suggest to further investigate the Carrollian interpretation of four-
dimensional gravity in full generality, i.e. without assuming linearity. More generally, this
work may help in paving the road toward the Carrollian understanding of flat holography,
already discussed in several instances in the literature.
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A Carrollian Charges algebra

We have defined two types of conserved charges in 5.2 and 5.3, Qξ and Cξ . The first one is
conserved for any type of Carrollian conservation laws given by (4.3), (4.4), (4.5) and (4.6),
while the second is conserved only when the Carrollian momenta Bi vanishes. We recall
their expression:

Qξ =
∫

Σt

ddx
√

a ξi

(
Bi + bjΣji

)
and Cξ =

∫

Σt

ddx
√

a
(

XE − ξ iπi + 2biξ
jAi

j

)
. (A.1)

In this appendix we show that both of them are also representations of the (conformal) Car-
rollian Killing algebra.

Consider two Carrollian Killing vectors ξ and η. It is possible to decompose them in a
coordinate basis,

ξ = ξt(t,x)∂t + ξ i(x)∂i and η = ηt(t,x)∂t + ηi(x)∂i, (A.2)

or in a Carroll-covariant one,

ξ =
X
Ω

∂t + ξ i∂̂i and η =
Y
Ω

∂t + ηi∂̂i, (A.3)

where X = Ωξt − biξ
i, Y = Ωηt − biη

i and ∂̂i is the Carroll-covariant spatial derivative de-
fined in 2.2. The commutator of ξ and η is given by

λ ≡ [ξ,η] =
(

ξt∂tη
t − ηt∂tξ

t + ξk∂kηt − ηk∂kξt
)

∂t +
(

ξk∂kηi − ηk∂kξ i
)

∂i =
L
Ω

∂t + λi∂̂i.

(A.4)
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For ξ and η Carrollian Killing vectors, we define the two following quantities

{Qξ ,Qη} ≡
∫

Σt

ddxδη

[√
a ξi

(
Bi + bjΣji

)]
,

{Cξ ,Cη} ≡
∫

Σt

ddxδη

[√
a
(

XE − ξ iπi + 2biξ
jAi

j

)]
,

(A.5)

where δη is the Lie derivative w.r.t. η acting on the metric fields and the momenta, but not
on ξt and ξ i. We want to show that, up to boundary terms,

{Qξ ,Qη} =Q[ξ,η] and {Cξ ,Cη} = C[ξ,η], (A.6)

the first result being true for any type of Carrollian conservation laws while the second one
holds only when Bi = 0.

We start with the first one, we have

{Qξ ,Qη} =
∫

Σt

ddx
[

δη

√
a ξi

(
Bi + bjΣji

)
+

√
a (δηaik)ξ

k
(
Bi + bjΣji

)

+
√

a ξi

(
δηBi + δηbjΣji + bjδηΣji

)]
.

(A.7)

We compute the infinitesimal variations of the geometric fields and the Carrollian momenta:

δηaik = ηt∂taik + η j∂jaik + ∂iη
jakj + ∂kη jaij = 0, (A.8)

δη

√
a = ηi∂i

√
a + ηt∂t

√
a + ∂iη

i √a = 0, (A.9)

δηbi = ηt∂tbi + η j∂jbi − Ω∂iη
t + bj∂iη

j, (A.10)

δηBi = ηt∂tBi + η j∂jBi −B j∂jη
i, (A.11)

δηΣij = ηt∂tΣij + ηk∂kΣij − Σkj∂kηi − Σik∂kη j. (A.12)

The variation of aik and
√

a vanish because η is a Carrollian Killing vector. Then we elimi-
nate every temporal derivative of the Carrollian momenta using the conservation laws (4.5)
and (4.6). Finally performing integration by parts and using properties of the Carrollian
Killing vectors (5.7) and (5.8), we suppress every spatial derivative of the Carrollian mo-
menta to obtain:

{Qξ ,Qη} =
∫

Σt

ddx
√

a λi

(
Bi + bjΣji

)
+ b.t. =Qλ + b.t.. (A.13)

This proves that the charges Qξ form a representation of the Carrollian Killing algebra.
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We now prove the second relation. We have

{Cξ ,Cη}=
∫

Σt

ddx
[

δη

√
a
(
(Ωξt − biξ

i)E − ξ iπi + 2biξ
jAi

j

)

+
√

a
(
(δηΩξt − δηbiξ

i)E + (Ωξt − biξ
i)δηE − ξ iδηπi + 2δηbiξ

jAi
j + 2biξ

jδηAi
j

)]
.

(A.14)

We compute the infinitesimal variations of the geometric fields and the Carrollian momenta:

δηΩ = ηt∂tΩ + ηi∂iΩ + Ω∂tη
t = 0, (A.15)

δη

√
a = ηi∂i

√
a + ηt∂t

√
a + ∂iη

i √a = 0, (A.16)

δηbi = ηt∂tbi + η j∂jbi − Ω∂iη
t + bj∂iη

j, (A.17)

δηE = ηi∂iE + ηt∂tE , (A.18)

δηπi = ηt∂tπi + η j∂jπi + πj∂iη
j, (A.19)

δηAi
j = ηt∂tAi

j + ηk∂kAi
j −Ak

j ∂kηi +Ai
k∂jη

k. (A.20)

The variations of Ω and
√

a are vanishing because η is a Carrollian Killing vector. Then
we eliminate every temporal derivative of the Carrollian momenta using the conservation
laws (5.14) and (5.15). Finally performing integration by parts and using properties of the
Carrollian Killings, (5.7) and (5.8), we suppress every spatial derivative of the Carrollian
momenta to obtain:

{Cξ ,Cη} =
∫

Σt

ddx
√

a
[(

Ω(ξt∂tη
t − ηt∂tξ

t + ξk∂kηt − ηk∂kξt)− bi(ξ
k∂kηi − ηk∂kξ i)

)
E

− (ξk∂kηi − ηk∂kξ i)πi + 2bi(ξ
k∂kη j − ηk∂kξ j)Ai

j

]
+ b.t.,

(A.21)
which corresponds to

{Cξ ,Cη}=
∫

Σt

ddx
√

a
(

LE − ξ iπi + 2biλ
jAi

j

)
+ b.t. = Cλ + b.t.. (A.22)

Therefore, up to boundary terms, the charges Cξ form a representation of the Carrollian
Killing algebra.

We can extend the previous results to the conformal Carrollian Killing algebra when
imposing Σi

i = 0 and the conformal state equation E = −2Ai
i.
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ABSTRACT

We describe the dynamics of two-dimensional relativistic and Carrollian fluids. These are
mapped holographically to three-dimensional locally anti-de Sitter and locally Minkowski
spacetimes, respectively. To this end, we use Eddington–Finkelstein coordinates, and grant
general curved two-dimensional geometries as hosts for hydrodynamics. This requires to
handle the conformal anomaly, and the expressions obtained for the reconstructed bulk met-
rics incorporate non-conformal-fluid data. We also analyze the freedom of choosing arbitrar-
ily the hydrodynamic frame for the description of relativistic fluids, and propose an invari-
ant entropy current compatible with classical and extended irreversible thermodynamics.
This local freedom breaks down in the dual gravitational picture, and fluid/gravity cor-
respondence turns out to be sensitive to dissipation processes: the fluid heat current is a
necessary ingredient for reconstructing all Bañados asymptotically anti-de Sitter solutions.
The same feature emerges for Carrollian fluids, which enjoy a residual frame invariance,
and their Barnich–Troessaert locally Minkowski duals. These statements are proven by
computing the algebra of surface conserved charges in the fluid-reconstructed bulk three-
dimensional spacetimes.
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1 Introduction

Fluid/gravity correspondence is a macroscopic spin-off of holography, originally mapping
relativistic fluid configurations onto Einstein spacetimes, i.e. spacetimes whose Ricci tensor
is proportional to the metric. These are obtained in the form of a derivative expansion [1–4],
inspired from the fluid homonymous expansion (see e.g. [5,6]). An alternative reconstruction
of Einstein spacetimes from boundary data is based on the Fefferman–Graham theorem [7,8],
which provides an expansion in powers of a radial space-like coordinate in the so-called
Fefferman–Graham gauge.

Compared to the radial Fefferman–Graham expansion, the derivative expansion has sev-
eral distinctive features listed hereafter.

• The boundary data in the Fefferman–Graham expansion are the first and second fun-
damental forms, interpreted as the boundary metric and the boundary fluid energy–
momentum tensor. For the derivative expansion, the boundary data include also a
vector congruence, whose derivatives set the order of the expansion. This congruence
is interpreted as the boundary fluid velocity field.

• The derivative expansion is not built along a spatial but rather a null radial coordinate,
whose differential form is the dual of the fluid velocity vector. It is implemented in
Eddington–Finkelstein coordinates, and provides radial fall-offs which are slightly less
restrictive than those of the Bondi gauge [9, 10].
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• The derivative expansion is well behaved in the Ricci-flat limit (vanishing bulk scalar
curvature, i.e. cosmological constant).

The last property has recently allowed to set up a derivative expansion for asymptotically
flat spacetimes, establishing thereby, at least macroscopically, a holographic correspondence
among Ricci-flat bulk solutions and boundary Carrollian hydrodynamics [11], which is the
ultra-relativistic (vanishing velocity of light) limit of fluid dynamics. The derivative expan-
sion in Eddington–Finkelstein coordinates has been instrumental in reaching this result, be-
cause the Fefferman–Graham expansion is ill-defined in the limit of vanishing cosmological
constant.

The first of the above three features raises another important question, regarding the role
played by the boundary fluid congruence. In this respect, we remind that the velocity field
of a relativistic fluid can be chosen freely, altering neither the energy–momentum tensor nor
the entropy current, but only transforming the various pieces that enter the decomposition
of these quantities with respect to its longitudinal and transverse directions [12]. This is
usually referred to as the hydrodynamic-frame invariance.

The fluid congruence appears explicitly in the derivative expansion, as we will discuss
in the following. Conforming to the above fluid-dynamics logic, one could consider an-
other fluid frame. This would leave the boundary metric and energy–momentum tensor
unchanged, and the corresponding reconstructed bulk metric would be amenable to its for-
mer expression by an appropriate bulk diffeomorphism. Still, this diffeomorphism might
be large, in which case the two boundary hydrodynamic frames would lead to definitely
distinct dual spacetimes with different global properties.

Analyzing the role of the velocity field in the fluid/gravity derivative expansion is not an
easy task. Generically this derivative expansion is organized in the form of a series, whose
order is set by the derivatives of the velocity field, and which is designed to comply with
Weyl covariance. Furthermore, in the original works [1–4], this series was expressed using
a specific hydrodynamic frame known as Landau–Lifshitz. In this context it is difficult to
investigate the global behaviour under a congruence transformation, since typically only
the first few orders in the expansion are available. In some more specific classes, it is pos-
sible to resum the derivative expansion (see [13–17]), which could help circumventing the
latter difficulty. In order to resum the expansion, one needs to abandon the Landau–Lifshitz
frame, and impose integrability conditions relating the heat current and stress tensor (i.e.
the non-perfect components of the energy–momentum tensor) to the boundary geometry.
The integrability conditions, however, are not covariant under changes of fluid congruence.
Hence, the benefit of adopting resummed expressions is tempered when coming to the point
of hydrodynamic-frame transformations.

Substantial simplifications occur in three bulk dimensions. On the one hand, all expan-
sions, Fefferman–Graham or derivative, are naturally truncated to a finite number of terms.
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On the other hand, asymptotically anti-de Sitter spacetimes are locally anti-de Sitter. As a
consequence the distinction among Einstein solutions is exclusively encoded in their global
properties, labeled unambiguously by their conserved surface charges, as e.g. in Bañados
solutions [18]. Probing the fluid/gravity hydrodynamic-frame invariance amounts there-
fore to analyze the conserved charges and their algebra in different fluid frames. This is one
of the aims of the present work, and we will show that contrary to the naive expectation,1

changing fluid frame can alter the global properties of the reconstructed Einstein spacetime.
As already mentioned, the derivative expansion in Eddington–Finkelstein coordinates

admits a well-defined limit of vanishing cosmological constant. This limit generalizes the
customary fluid/gravity correspondence to a duality between Ricci-flat spacetimes and Car-
rollian hydrodynamics emerging at null infinity [19]. In some instances, Carrollian fluids
possess a residual frame invariance involving a kinematical parameter reminiscent of the
relativistic velocity field. The latter enters the flat derivative expansion, and it is legitimate
to ask the same questions about the role of frame invariance as for anti-de Sitter spacetimes.
Again, answering is possible in three dimensions, where the derivative expansion admits a
finite number of terms, and all Ricci-flat spaces are locally Minkowskian. These are globally
distinguishable by conserved surface charges, as e.g. for the family obtained in [20] with
appropriate fall-off conditions that will be referred to as Barnich–Troessaert solutions.

In order to undertake the above analysis we will set up the fluid/gravity derivative ex-
pansions in three dimensions.2 In other words, we will obtain expressions providing the
bulk dual (Einstein or Ricci-flat) of an arbitrary fluid, hosted by any two-dimensional ge-
ometry. Such expressions were not available in full generality for the relativistic fluids, and
were unknown for Carrollian (i.e. ultra-relativistic) fluids.

In the relativistic case, we exhibit a universal resummation formula, which turns out to be
a BMS-like (Bondi–Metzner–Sachs, [9,10]) alternative to the existing Fefferman–Graham ex-
pression [20,21]. The prime virtue of our practice is to accommodate the conformal anomaly
arising from the curvature of the boundary, which has been ignored in earlier fluid/gravity
literature [2,3] and has a detectable counterpart in the Carrollian situation. For the latter, our
fluid reconstruction of flat spacetimes resembles the general formulas given in BMS gauge
in [20].

After having settled the derivative expansions, we express the asymptotic charges3 of the
reconstructed spacetimes in terms of the fluid data and we prove that the choice of frame
may affect the global properties of the solutions. Indeed, we show that the holographic

1The question of global versus local properties of bulk solutions in relation with the dual boundary fluid
was mentioned in the Appendix B of Ref. [3]. This discussion is not conclusive though, in particular because
of the absence of any charge computation, which would have allowed to make concrete statements about the
landscape of locally anti-de Sitter spacetimes and their dual fluids.

2Expansion is an abuse of terminology in three dimensions because there, it is naturally truncated. We will
often make it, and use the word resummation for simple sums.

3Useful references for the analysis of asymptotic charges are e.g. [22, 23]. Our surface-charge computations
have been performed with the package [24], built using the conventions of the papers just quoted.
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reconstruction of all Bañados and Barnich–Troessaert solutions requires the boundary fluid
(relativistic or Carrollian) have a non-vanishing heat current. In this instance, the charge
algebra is either Virasoro or BMS with the expected central charges. Setting the heat current
to zero, the solutions carry surface charges obeying algebras of the same type, where the
central charges can be trivially reabsorbed though.

In Sec. 2 we review two-dimensional relativistic conformal fluid dynamics, and expand
its Carrollian limit, insisting on the hydrodynamic-frame invariance. Section 3 is devoted to
the general method of holographic reconstruction of asymptotically AdS and flat spacetimes.
This method is applied in Sec. 4 for flat two-dimensional boundary metrics, without loosing
generality, and followed by the computation of charges, which enables us to reach a clear
image of the solutions under investigation.

Before moving to the main part of the paper, we should add that Sec. 2.1 includes a part
dedicated to the entropy current of relativistic two-dimensional conformal fluids. Contrary
to the energy–momentum tensor the entropy current has no general microscopic definition
for systems that are only at local thermodynamic equilibrium. It is usually constructed phe-
nomenologically, in a given hydrodynamic frame, order by order in the velocity and temper-
ature derivative expansion, and subject to several physical conditions. We propose here an
entropy current, which fulfills all known criteria, has a closed form that can be expanded in
a non-trivial infinite series, and is explicitly hydrodynamic-frame invariant. This last feature
is the backbone of fluid frame invariance.

2 Two-dimensional fluids

2.1 Relativistic fluids

General properties

We consider a two-dimensional geometryM equipped with a metric ds2 = gµνdxµdxν. The
dynamics of a relativistic fluid is captured by the energy–momentum tensor T = Tµνdxµdxν,
which is symmetric (Tµν = Tνµ) and generally obeys:

∇µTµν = fν, (2.1)

where fν is an external force density. Together with the equation of state (local thermody-
namic equilibrium is assumed), this set of equations provide the hydrodynamic equations of
motion. Normalizing the velocity congruence u as ‖u‖2 = −k2 (k plays the role of velocity
of light), we can in general decompose the energy–momentum tensor as

Tµν = (ε + p)
uµuν

k2 + pgµν + τµν +
uµqν

k2 +
uνqµ

k2 (2.2)
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with p the local pressure and ε the local energy density:

ε =
1
k2 Tµνuµuν. (2.3)

The symmetric viscous stress tensor τµν and the heat current qµ are purely transverse:

uµτµν = 0, uµqµ = 0, qν = −εuν − uµTµν. (2.4)

In two dimensions, the transverse direction with respect to u is entirely supported by the
Hodge-dual ∗u:4

∗ uρ = uσησρ. (2.5)

This dual congruence is space-like and normalized as ‖ ∗ u‖2 = k2. Therefore

q = χ ∗ u with χ = − 1
k2 ∗ uµTµνuν, (2.6)

the local heat density, appearing here as the magnetic dual of the energy density. Similarly,
the viscous stress tensor has a unique component encoded in the viscous stress scalar τ:5

τµν = τhµν with hµν =
1
k2 ∗ uµ ∗ uν (2.7)

the projector onto the space transverse to the velocity field. The trace reads: Tµ
µ = p − ε + τ.

The pressure p and the viscous stress scalar τ appear in the fully transverse component
of the energy–momentum tensor. Their sum is therefore the total stress. If the system is free
and at global equilibrium, τ vanishes and the stress is given by the thermodynamic pressure p
alone. Hence, the viscous stress scalar τ is usually expressed as an expansion in temperature
and velocity gradients, and this distinguishes it from p. The same holds for the heat current
q. The coefficients of these expansions characterize the transport phenomena occurring in
the fluid.

The shear and the vorticity vanish identically in two spacetime dimensions. The only
non-vanishing first-derivative tensors of the velocity are the acceleration and the expansion

aµ = uν∇νuµ, Θ =∇µuµ, (2.8)

and one defines similarly the expansion of the dual congruence as6

Θ∗ =∇µ ∗ uµ, (2.9)

4Our conventions are: ησρ =
√

g ǫσρ with ǫ01 = +1. Hence ηµσησν = δ
µ
ν .

5This component of the energy–momentum tensor is also referred to as the viscous bulk pressure, or the dynamic
pressure, or else the non-equilibrium pressure.

6The hodge-dual of a scalar is a two-form and would spell with a suffix star. Instead, Θ∗ is just another scalar.
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which enables us expressing the acceleration:

aµ = Θ∗ ∗ uµ. (2.10)

In first-order hydrodynamics7

τ(1) = −ζΘ, (2.11)

χ(1) = − κ

k2 (∗u(T) + TΘ∗) . (2.12)

As usual, ζ is the bulk viscosity and κ is the thermal conductivity – assumed constant in this
expression.

It is convenient to use the orthonormal Cartan frame {u/k, ∗u/k}. Then the metric reads:

ds2 =
1
k2

(−u2 + ∗u2) , (2.13)

while the energy–momentum tensor takes the form:

T =
1

2k2

(
(ε + χ) (u + ∗u)2 + (ε − χ) (u − ∗u)2

)
+

1
k2 (p − ε + τ) ∗ u2. (2.14)

In holographic systems, the boundary enjoys remarkable conformal properties as it de-
fines a conformal class, rather than a specific metric. Under Weyl transformations

ds2 → ds2

B2 , (2.15)

the velocity form components uµ are traded for uµ/B, the energy and heat densities have
weight 2, and the local-equilibrium equation of state is conformal

ε = p, (2.16)

which is accompanied by Stefan’s law (σ is the Stefan–Boltzmann constant):

ε = σT2. (2.17)

Hence, the trace of the energy–momentum tensor is τ. In the absence of anomalies it van-
ishes and Tµν is invariant under (2.15). If τ is non-vanishing, the fluid is not conformal and
τ is an anomalous weight-2 quantity.

Covariantization with respect to rescalings requires to introduce a Weyl connection one-

7For any vector v and a function f , v( f ) stands for vµ∂µ f . We remind the following identities: d†d f = −� f
with d†w = ∗d ∗ w = −∇µwµ and d f = 1

k2 (∗u( f ) ∗ u − u( f )u), ∗d f = 1
k2 (∗u( f )u − u( f ) ∗ u).
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form [26, 27], see also Appendix D of [28]:8

A =
1
k2 (a − Θu) =

1
k2 (Θ

∗ ∗ u − Θu) , (2.18)

which transforms as A → A − dlnB. Ordinary covariant derivatives ∇ are thus traded for
the Weyl covariant combination D = ∇+ w A, w being the conformal weight of the tensor
under consideration. We provide for concreteness the Weyl covariant derivative of a form
vµ and of a scalar function Φ, both of weight w:

Dνvµ =∇νvµ + (w + 1)Aνvµ + Aµvν − gµν Aρvρ,

DνΦ = ∂νΦ + wAνΦ.
(2.19)

The Weyl covariant derivative is metric-compatible with effective torsion:

Dρgµν = 0, (2.20)
(
DµDν −DνDµ

)
Φ = wΦFµν, (2.21)

where
Fµν = ∂µ Aν − ∂ν Aµ (2.22)

is the Weyl-invariant field strength. Its dual

F = ∗dA = ηµν∂µ Aν =
1
k2 (∗u(Θ)− u(Θ∗)) (2.23)

is a weight-2 scalar.
Commuting the Weyl-covariant derivatives acting on vectors, one defines the Weyl co-

variant Riemann tensor

(
DµDν −DνDµ

)
Vρ =R

ρ
σµνVσ + wFµνVρ (2.24)

(Vρ are weight-w) and the usual subsequent quantities. In two spacetime dimensions, the
covariant Ricci tensor (weight-0) and the scalar (weight-2) curvatures read:

Rµν = Rµν + gµν∇λ Aλ − Fµν, (2.25)

R = R + 2∇µ Aµ. (2.26)

It turns out that Rµν + gµν∇λ Aλ vanishes identically. Hence

R = 0 ⇔ R = 2d†A and Rµν = −Fµν. (2.27)

8The explicit form of A is obtained by demandingDµuµ = 0 and uλDλuµ = 0.
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The ordinary scalar curvature has a weight-2 anomalous transformation

R →B2 (R + 2� lnB) (2.28)

(the box operator is here referring to the metric before the Weyl transformation).

Hydrodynamic equations and the hydrodynamic-frame covariance

Using the above tools as well as the identity

∇µTµν =D
µTµν − AνTµ

µ, (2.29)

(based on Eqs. (2.19) and Leibniz rule, for a weight-0, rank-2 symmetric tensor), the general
fluid equations (2.1) with ε = p, projected on the light-cone directions u ± ∗u read:9




(uµ + ∗uµ)Dµ (ε + χ) + (uµ − ∗uµ) fµ = −Θτ − Θ∗τ − ∗u(τ),

(uµ − ∗uµ)Dµ (ε − χ) + (uµ + ∗uµ) fµ = −Θτ + Θ∗τ + ∗u(τ).
(2.30)

Equivalently, these equations are expressed as





d
(√

ε + χ + τ/2 (u + ∗u)
)
+

1
2
√

ε + χ + τ/2
(u − ∗u) ∧ ∗

(
f − 1

2dτ
)
= 0,

d
(√

ε − χ + τ/2 (u − ∗u)
)
− 1

2
√

ε − χ + τ/2
(u + ∗u) ∧ ∗(f − 1

2dτ
)
= 0.

(2.31)

Changing hydrodynamic frame, i.e. the fluid velocity field, amounts to perform an arbi-
trary local Lorentz transformation on the Cartan mobile frame

(
u′

∗u′

)
=

(
coshψ(x) sinhψ(x)
sinhψ(x) coshψ(x)

)(
u
∗u

)
, (2.32)

or for the null directions u′ ± ∗u′ = (u ± ∗u) e±ψ. This affects the Weyl connection and Weyl
curvature scalar as follows

A′ = A − ∗dψ (2.33)

F′ = F + �ψ. (2.34)

The transformation (2.32) keeps the energy–momentum tensor invariant provided the
energy density and the heat density transform appropriately. Imposing that in the new frame

9Notice that any congruence with w = −1 in two dimensions obeysDµuν = ∇µuν +
1
k2 uµaν − Θhµν = 0 due

to the absence of shear and vorticity, and similarlyDµ ∗ uν = 0.
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(2.16) holds, i.e. ε′ = p′, we conclude that

(
ε′

χ′

)
=

(
cosh2ψ(x) −sinh2ψ(x)
−sinh2ψ(x) cosh2ψ(x)

)(
ε

χ

)
+ τ sinhψ(x)

(
sinhψ(x)
−coshψ(x)

)
, (2.35)

while, due to the invariance of the trace,

τ′ = τ. (2.36)

Equivalently one can use
√(

ε′ ± χ′ + τ′
2

)
=
√(

ε ± χ + τ
2

)
e∓ψ.

The energy–momentum tensor can be diagonalized with a specific local Lorentz transfor-
mation. By definition, the corresponding hydrodynamic frame is the Landau–Lifshitz frame,
where the heat current χLL is vanishing. We find

T =
εLL

k2 u2
LL +

εLL + τ

k2 ∗ u2
LL (2.37)

since τLL = τ and χLL = 0. The latter condition allows to find the local boost towards the
Landau–Lifshitz frame

e4ψLL =
ε + χ + τ/2

ε − χ + τ/2
. (2.38)

With this, the eigenvalues are easily computed. One finds the Landau–Lifshitz energy den-
sity

εLL =

√(
ε + χ +

τ

2

)(
ε − χ +

τ

2

)
− τ

2
. (2.39)

It exhibits an upper bound for χ2, χ2
max = (ε + τ/2)2, which translates causality and unitarity

properties of the underlying microscopic field theory. The eigenvalue10 εLL is supported by
the time-like eigenvector

uLL =
1
2

((
ε + χ + τ/2

ε − χ + τ/2

)1/4

(u + ∗u) +
(

ε − χ + τ/2

ε + χ + τ/2

)1/4

(u − ∗u)

)
, (2.40)

whereas

ε∗LL = εLL + τ =

√(
ε + χ +

τ

2

)(
ε − χ +

τ

2

)
+

τ

2
(2.41)

is the eigenvalue along the space-like eigenvector ∗uLL. Using the above expressions in the

10We make the reasonable assumption that the fluid energy density is positive. This is generically true, al-
though some exceptions exist. One of those is global AdS3, indeed realized with a negative-energy dual fluid,
whereas the conventional zero-energy fluid reconstructs one Poincaré patch of AdS3.
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Landau–Lifshitz frame, the fluid equations (2.31) are recast as follows





2
√

εLL d† (
√

εLL uLL)− uLL · f − ΘLLτ = 0,

2
√

ε∗LL d† (√ε∗LL ∗ uLL
)
+ ∗uLL · f + Θ∗

LLτ = 0.
(2.42)

A non-anomalous conformal fluid in two dimensions is defined through the relations
(2.16), (2.17) and

τ = 0. (2.43)

Under these assumptions, the last term of (2.14) drops, whereas following the fluid equations
(2.31) at zero external force (f = fµdxµ = 0), the forms

√
ε ± χ (u± ∗u) are closed, and can be

used to define a privileged light-cone coordinate system, adapted to the fluid configuration.
In this specific case, the on-shell Weyl scalar curvature reads

F = −1
2
� ln

√
ε + χ

ε − χ
. (2.44)

For conformal fluids, the hydrodynamic-frame transformation (2.32) acts on the energy and
heat densities as a spin-two electric–magnetic boost, the energy being electric and the heat
magnetic.

The entropy current

We would like to close this overview on two-dimensional conformal fluids with the entropy
current. The entropy appears in Gibbs–Duhem equation

Ts = p + ε, (2.45)

and is easily computed for conformal fluids in terms of the energy density, using Eq. (2.16)
and Stefan’s law (2.17):

s = 2
√

σε . (2.46)

The entropy current is an involved concept because, among other reasons, no micro-
scopic definition is available for out-of-global-equilibrium systems. In arbitrary dimension,
there is no generic and closed expression in terms of the dissipative tensors for this current,
which is generally constructed order by order as a derivative expansion (see [29]). Whether
this expansion can be hydrodynamic-frame invariant, and at the same time compatible with
the underlying already quoted microscopic laws (unitarity and causality) as well as with the
second law of thermodynamics is not known in full generality, although this is in principle
part of the rationale behind frame invariance.

In two dimensions, the ingredients for building a hydrodynamic-frame-invariant en-
tropy current are the time-like invariant vector uLL (given in (2.40)) and its space-like dual
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∗uLL, plus the invariant scalars εLL and ε∗LL (or any combination, see (2.39) and (2.41)). The
entropy current should have non-negative divergence, vanishing for a free (i.e. at zero exter-
nal force) perfect fluid. In the case at hand, a perfect fluid is necessarily conformal since it
must have vanishing τ.

A good candidate for a hydrodynamic-frame-invariant entropy current is

S0 = sLLuLL = 2
√

σεLL uLL, (2.47)

which can be expressed in any frame using Eqs. (2.39) and (2.40). This is usually adopted
as the entropy current of a perfect fluid, and in that case it is divergence-free when external
forces vanish. Here, it obeys (see (2.42))

∇ · S0 = −
√

σ

εLL
(ΘLLτ + uLL · f) = − 1

TLL
(ΘLLτ + uLL · f) , (2.48)

which can be recast in terms of arbitrary-frame data using the already quoted (2.39), (2.40)
and the divergence of the latter. Expanding this result up to first order for χ,τ ≪ ε, we find
for a free fluid

∇ · S0(1) = − 1
T

Θτ =
ζ

T
Θ2 , (2.49)

where we have used in the last equality the first-order derivative expansion of τ, given in
(2.11). For this to be positive one finds the usual requirement ζ > 0. From this perspective,
the current S0 seems fine.

The expansion of S0 up to second order in χ,τ ≪ ε,

S0 = 2
√

σε u + χ

√
σ

ε
∗ u − χ2

4ε

√
σ

ε
u − τχ

2ε

√
σ

ε
∗ u + · · · = su +

q
T
− χ2

4εT
u − τ

2εT
q + · · · ,

(2.50)
is in agreement with the usual expectations dictated by extended irreversible thermodynamics
(completing the first-order classical irreversible thermodynamics) [29]. These can be summa-
rized as follows, the order referring to the dissipative expansion:

1. free perfect limit: S|χ=τ=0 = S(0) = su = 2
√

σε u;

2. stability ∂S·u
∂τ

∣∣∣
χ=τ=0

= 0;

3. first-order (CIT) correction: S(1) =
q
T ;

4. second-order (EIT) corrections: S(2) might contain τ2

εT u, χ2

εT u and τ
εT q;

5. second law: ∇ · S > 0.

Other invariant terms may be considered in the definition of S as long as the above require-
ments are satisfied. In the absence of a concrete proposal for selecting other terms, we will
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not pursue the argument any further. Related discussions can be found in [30–33].11

Light-cone versus Randers–Papapetrou frames

Light-cone frame Every two-dimensional metric is amenable by diffeomorphisms to a con-
formally flat form. This suggests to use:12

ds2 = e−2ωdx+dx− (2.51)

(with usual time and space coordinates defined as x± = x ± kt), where ω is an arbitrary
function of x+ and x−.

Any normalized congruence has the following form:

u = u+dx+ + u−dx− ⇔ ∗u = −u+dx+ + u−dx−, (2.52)

where u±, functions of x+ and x−, are related by the normalization condition

u+u− = − k2

4
e−2ω. (2.53)

We can parameterize the velocity field as

u+ = − k
2

e−ω
√

ξ , u− =
k
2

e−ω 1√
ξ

, (2.54)

where ξ = ξ(x+, x−) is defined as the ratio

ξ = −u+

u−
. (2.55)

The choice ξ = 1 corresponds to a comoving fluid because in this case u = −k2e−ωdt.
For the congruence at hand

Θ ± Θ∗ = ±2ke2ω∂±e−(ω±ln
√

ξ ). (2.56)

We can also determine the Weyl connection and field strength:

A = −dω + ∗d ln
√

ξ and F = −� ln
√

ξ = −2e2ω∂+∂− lnξ, (2.57)

whereas the ordinary (non Weyl-covariant) scalar curvature reads (see (2.27))

11It should be quoted that S as defined in (2.47) does not coincide with the entropy current proposed in Ref.
[33]. Hydrodynamic-frame invariance and CIT/EIT arguments were not part of the agenda in this work, based
essentially on the second law of thermodynamics.

12With this choice, g+− = 1/2 e−2ω , η+− = 1/2e−2ω, η+− = −2e2ω , η +
+ = 1, η −

− = −1. Notice also that
∗(dx+ ∧ dx−

)
= η+− = −2e2ω .
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R = 2�ω = 8e2ω∂+∂−ω. (2.58)

In the present light-cone frame {dx+,dx−}, a general energy–momentum tensor with
ǫ = p has components

T++ =
ξ

2

(
ε − χ +

τ

2

)
e−2ω, T−− =

1
2ξ

(
ε + χ +

τ

2

)
e−2ω,

T+− = T−+ =
τ

4
e−2ω.

(2.59)

For a conformal fluid Eqs. (2.43) lead to T+− = T−+ = 0 and

(ε + χ)(ε − χ) = 4e4ωT++T−−,
ε + χ

ε − χ
=

T−−
T++

ξ2. (2.60)

In the latter case, and in the absence of external forces, the forms (2.31) are closed, which in
light-cone coordinates implies that (ε − χ)e−2ωξ is locally a function of x+, and (ε + χ) e−2ω

ξ

a function of x−. Observe that in the Landau–Lifshitz frame (χLL = 0)

ξ2
LL =

T++

T−−
, ε2

LL = 4e4ωT++T−−. (2.61)

In this frame, on-shell, F vanishes. Moving from a given hydrodynamic frame to another by
a local Lorentz boost, amounts to perform the following transformation on the function ξ

ξ(x+, x−)→ ξ′(x+, x−) = e−2ψ(x+,x−)ξ(x+, x−). (2.62)

Randers–Papapetrou frame The light-cone frame is not well suited for the Carrollian limit,
which is the ultra-relativistic limit reached at vanishing k, and emerging at the null-infinity
conformal boundary of a flat spacetime (subject of next section). As discussed in [19], Car-
rollian fluid dynamics is elegantly reached in the Randers–Papapetrou frame, where

ds2 = −k2 (Ωdt − bxdx)2 + adx2 (2.63)

with all three functions of the coordinates t and x.
A generic velocity vector field u reads:

u = γ (∂t + vx∂x) . (2.64)
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It is convenient to parametrize the velocity vx (see [19]) as13

vx =
k2Ωβx

1 + k2βββ · bbb
⇔ βx =

vx

k2Ω
(

1 − vxbx
Ω

) (2.65)

with Lorentz factor

γ =
1 + k2βββ · bbb

Ω
√

1 − k2βββ2
. (2.66)

The velocity form and its Hodge-dual read:

u = − k2
√

1 − k2βββ2
(Ωdt − (bx + βx)dx) , ∗u = k

√
a Ωγ (dx − vxdt) , (2.67)

while the corresponding vector is

∗ u =
k√

a
√

1 − k2βββ2

(
bx + βx

Ω
∂t + ∂x

)
. (2.68)

We can determine the form of the heat current q, which must be proportional to ∗u, in
terms of a single component qx. We find

χ =
qx

k
√

a Ωγ
=

qx √a
√

1 − k2βββ2

k
. (2.69)

Similarly, for the viscous stress tensor

τ =
τxx

aΩ2γ2 = τxxa
(
1 − k2βββ2) . (2.70)

Performing a local Lorentz boost (2.32) on the hydrodynamic frame does not affect the
geometric objects Ω, bx or a, and is thus entirely captured by the transformation of the vector
βββ. Parameterizing the boost in terms of a Carrollian vector BBB = Bx∂x as

coshψ = Γ =
1√

1 − k2BBB2
, sinhψ = Γk

√
a Bx =

k
√

a Bx
√

1 − k2BBB2
, (2.71)

we get:

βββ′ =
βββ + BBB

1 + k2βββ · BBB
, (2.72)

as expected from the velocity rule composition in special relativity. Using (2.35), we also

13With these definitions, βx transforms as the component of a genuine Carrollian vector βββ = βx∂x, when
considering the flat limit of the bulk spacetime. Notice that βx + bx = −Ωux

ku0
. We define as usual bx = axxbx,

βx = axxβx, vx = axxvx with axx = 1/axx = a, bbb2 = bxbx, βββ2 = βββ · βββ = βx βx and bbb · βββ = bxβx .
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obtain

ε′ =
1

1 − k2BBB2

((
1 + k2BBB2) ε − k

√
a Bx2χ + k2BBB2τ

)
, (2.73)

χ′ =
1

1 − k2BBB2

((
1 + k2BBB2)χ − k

√
a Bx(2ε + τ)

)
, (2.74)

accompanying (2.36). Together with (2.69) and (2.70), we finally reach:

q′x√
a

=
((

1 + k2BBB2)χ − k
√

a Bx(2ε + τ)
)

k
(
1 + k2 (βββ · BBB + (βββ + BBB) · bbb)

)

(1 − k2βββ2)
1/2 (1 − k2BBB2)

3/2
, (2.75)

τ′
xx
a

= τ

(
1 + k2 (βββ · BBB + (βββ + BBB) · bbb)

)2

(1 − k2βββ2) (1 − k2BBB2)
. (2.76)

2.2 Carrollian fluids

The Carrollian geometry

The Carrollian geometry R ×S is obtained as the vanishing-k limit of the two-dimensional
pseudo-Riemannian geometryM equipped with metric (2.63). In this limit, the line S in-
herits a metric14

dℓ2 = adx2, (2.77)

and t ∈ R is the Carrollian time. Much like a Galilean space is observed from a spatial frame
moving with respect to a local inertial frame with velocity w, a Carrollian frame is described
by a form bbb = bx(t, x)dx. The latter is not a velocity because in Carrollian spacetimes motion
is forbidden. It is rather an inverse velocity, describing a “temporal frame” and plays a dual
role. A scalar Ω(t, x) also remains in the k → 0 limit (as in the Galilean case, see [19] – this
reference will be useful along the present section).

We define the Carrollian diffeomorphisms as

t′ = t′(t, x) and x′ = x′(x). (2.78)

The ordinary exterior derivative of a scalar function does not transform as a form. To over-
come this issue, it is desirable to introduce a Carrollian derivative as

∂̂x = ∂x +
bx

Ω
∂t, (2.79)

transforming as a form. With this derivative we can proceed and define a Carrollian covari-
ant derivative ∇̂x, based on Levi–Civita–Carroll connection

γ̂x
xx = ∂̂x ln

√
a . (2.80)

14This metric lowers all x indices.
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As we will see in 3.2, in the framework of flat holography, the spatial surface S emerges
as the null infinity I + of the Ricci-flat geometry. The geometry of I + is equipped with a
conformal class of metrics rather than with a metric. From a representative of this class, we
must be able to explore others by Weyl transformations, and this amounts to study conformal
Carrollian geometry as opposed to plain Carrollian geometry (see [34]).

The action of Weyl transformations on the elements of the Carrollian geometry on a sur-
face S is inherited from (2.15)

a → a
B2 , bx →

bx

B , Ω → Ω
B , βx →

βx

B , (2.81)

where B = B(t, x) is an arbitrary function. However, the Levi–Civita–Carroll covariant
derivatives are not covariant under (2.81). Following [19], they must be replaced with Weyl–
Carroll covariant spatial and time metric-compatible derivatives built on the Carrollian ac-
celeration ϕx and the Carrollian expansion θ,

ϕx =
1
Ω

(∂tbx + ∂xΩ) = ∂t
bx

Ω
+ ∂̂x ln Ω, (2.82)

θ =
1
Ω

∂t ln
√

a , (2.83)

which transform as connections:

ϕx → ϕx − ∂̂x lnB, θ →Bθ − 1
Ω

∂tB. (2.84)

In particular, these can be combined in15

αx = ϕx − θbx, (2.85)

transforming under Weyl rescaling as

αx → αx − ∂x lnB. (2.86)

The spatial Weyl–Carrol derivative is

D̂xΦ = ∂̂xΦ + wϕxΦ, (2.87)

for a weight-w scalar function Φ, and

D̂xVx = ∇̂xVx + (w − 1)ϕxVx, (2.88)

15Contrary to ϕx, αx is not a Carrollian one-form, i.e. it does not transform covariantly under Carrollian
diffeomorphisms (2.78).
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for a vector with weight-w component Vx. It does not alter the conformal weight, and is
generalized to any tensor by Leibniz rule.

Similarly we define the temporal Weyl–Carroll derivative by its action on a weight-w
function Φ

1
Ω
D̂tΦ =

1
Ω

∂tΦ + wθΦ, (2.89)

which is a scalar of weight w + 1 under (2.81). Accordingly, the action of the Weyl–Carroll
time derivative on a weight-w vector is

1
Ω
D̂tVx =

1
Ω

∂tVx + wθVx. (2.90)

This is the component of a genuine Carrollian vector of weight w+ 1, and Leibinz rule allows
to generalize this action to any tensor.

The Weyl–Carroll connections have curvature. Here, the only non-vanishing piece is the
curvature one-form resulting from the commutation of D̂x and 1

ΩD̂t, which has weight 1:

Rx =
1
Ω

(∂tαx − ∂x(θΩ)) =
1
Ω

∂t ϕx − θϕx − ∂̂xθ. (2.91)

Carrollian fluid observables

A relativistic fluid satisfying Eq. (2.1) will obey Carrollian dynamics in the ultra-relativistic
limit, reached at vanishing k. The original relativistic fluid is not at rest, but has a veloc-
ity parametrized with βββ = βxdx (see (2.65)), which remains in the Carrollian limit as the
kinematical “inverse-velocity” variable. We will keep calling it abusively “velocity”. This
variable transforms as a Carrollian vector and allows to define further kinematical objects.

• We introduce the acceleration γγγ = γxdx

γx =
1
Ω

∂tβx. (2.92)

This is not Weyl-covariant, as opposed to

δx =
1
Ω
D̂tβx = γx − θβx =

√
a

Ω
∂t

βx√
a

, (2.93)

which has weight 0.

• The suracceleration is the weight-1 conformal Carrollian one-form

Ax =
1
Ω
D̂t

1
Ω
D̂tβx =

1
Ω

∂t

(
1
Ω

∂tβx − θβx

)
. (2.94)
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It can be combined with the curvature (2.91), which has equal weight,

sx = Ax +Rx =
1
Ω

∂t

(
1
Ω

∂tβx − θβx

)
+

1
Ω

∂t ϕx − θϕx − ∂̂xθ. (2.95)

This appears as a conformal Carrollian total (i.e. kinematical plus geometric) suraccel-
eration, and enables us to define a weight-2 conformal Carrollian scalar:

s =
sx√

a
. (2.96)

The latter originates from the Weyl curvature F of the pseudo-Riemannian ascendent
manifoldM :

s = − lim
k→0

kF. (2.97)

Notice that the ordinary scalar curvature of M given in (2.27) is not Weyl-covariant
(see (2.28)) and can be expressed in terms of Carrollian non-Weyl-covariant scalars of
R ×S :

R =
2
k2

(
θ2 +

1
Ω

∂tθ

)
− 2

(
∇̂x + ϕx

)
ϕx. (2.98)

Besides the inverse velocity, acceleration and suracceleration, other physical data de-
scribe a Carrollian fluid.

• The energy density ε and the pressure p, related here through ε = p. The Carrollian
energy and pressure are the zero-k limits of the corresponding relativistic quantities,
and have weight 2. It is implicit that they are finite, and in order to avoid inflation of
symbols, we have kept the same notation.

• The heat current πππ = πx(t, x)dx of conformal weight 1, inherited from the relativistic
heat current (see (2.2)) as follows:16

qx = k2πx + O
(

k4
)

. (2.99)

This translates the expected (see (2.69)) small-k behaviour of χ:

χ = χπk + O
(
k3) , (2.100)

16In arbitrary dimensions one generally admits qx = Qx + k2πx + O
(
k4) (see [19]), which amounts assuming

χ =
χQ
k + χπk + O

(
k3). This is actually more natural because vanishing χQ is not a hydrodynamic-frame-

invariant feature in the presence of friction. Keeping χQ , 0, however, is not viable holographically in two
boundary dimensions because it would create a 1/k2 divergence inside the derivative expansion. Since the Car-
rollian limit destroys anyway the hydrodynamic-frame invariance, our choice is consistent from every respect.
Ultimately these behaviours should be justified within a microscopic quantum/statistical approach, missing at
present.
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leading to
πx =

χπ√
a

. (2.101)

• The weight-0 viscous stress tensors ΣΣΣ = Σxxdx2 and ΞΞΞ = Ξxxdx2, obtained from the
relativistic viscous stress tensor τ

k2 ∗ u ∗ u as

τxx = −Σxx

k2 − Ξxx + O
(
k2) . (2.102)

For this to hold, following (2.70), we expect

τ =
τΣ

k2 + τΞ + O
(
k2) , (2.103)

and find (in the Carrollian geometry, indices are lowered with axx = a):

Σx
x = −τΣ, Ξx

x = −τΞ − βββ2τΣ. (2.104)

As we will see later, this is in agreement with the form of τ for the relativistic systems
at hand (see Eqs. (2.98) and (3.2)).

• Finally, we assume that the components of the external force density behave as follows,
providing further Carrollian power and tension:





k
Ω f0 =

f
k2 + e + O

(
k2
)

,

f x = hx

k2 + gx + O
(
k2
)

.
(2.105)

Hydrodynamic equations

The hydrodynamic equations for a Carrollian fluid are obtained as the zero-k limit of the
relativistic equations (see [19]):

−
(

1
Ω

∂t + 2θ

)(
ε − βββ2Σx

x
)
+
(
∇̂x + 2ϕx) (βxΣx

x) + θ
(
Ξx

x − βββ2Σx
x
)

= e, (2.106)

θΣx
x = f , (2.107)

(
∇̂x + ϕx

)
(ε − Ξx

x) + ϕx
(
ε − βββ2Σx

x
)
+

(
1
Ω

∂t + θ

)
(πx + βx (2ε − Ξx

x)) = gx, (2.108)

−(∇̂x + ϕx
)

Σx
x −

(
1
Ω

∂t + θ

)
(βxΣx

x) = hx. (2.109)

Generically, the above equations are not invariant under Carrollian local boosts, acting
as

β′
x = βx + Bx (2.110)
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(vanishing-k limit of (2.72)). This should not come as a surprise. Such an invariance is exclu-
sive to the relativistic case for obvious physical reasons, and is also known to be absent from
Galilean fluid equations, which are not invariant under local Galilean boosts. Nevertheless,
as we will see in Sec. 4, in specific situations a residual invariance persists.

3 Three-dimensional bulk reconstruction

3.1 Anti-de Sitter

Three-dimensional Einstein spacetimes are peculiar because the usual derivative expansion
terminates at finite order. This happens also for the Fefferman–Graham expansion (see
e.g. [21]). The reason is that most geometric and fluid tensors vanish (like the shear or the
vorticity), reducing the number of available terms compatible with conformal invariance.
Indeed, following the original fluid/gravity works [1–4], the ansatz for the bulk Einstein
metric is a power expansion in 1/r such that boundary Weyl transformations (2.15) are com-
pensated by r →B(t, x)r. The boundary metric has weight −2, the forms u and ∗u (velocity
and dual fluid velocity) weight −1, whereas the energy and heat densities of the fluid have
weight 2. The Weyl connection A has (anomalous) weight zero, as the form dr. With these
data we obtain:

ds2
Einstein = 2

u
k2 (dr + rA) + r2ds2 +

8πG
k4 u (εu + χ ∗ u) , (3.1)

where A is displayed in (2.18), ε and χ being the energy and heat densities of the fluid (as
opposed to higher dimension, the heat current appears explicitly in the ansatz). These enter
the fluid energy–momentum tensor (2.14) together with τ, which carries the anomaly:

τ =
R

8πG
=

1
4πGk2

(
Θ2 − Θ∗2 + u(Θ)− ∗u(Θ∗)

)
(3.2)

(we keep the conformal state equation ε = p). For a flat boundary this trace is absent, but
Weyl transformations bring it back.

The precise coefficients of the eligible terms in the ansatz are determined by the radial-
evolution subset of Einstein’s equations, and this is already taken care of in expression (3.1),
utterly locking the r-dependence. The remaining Einstein’s equations further constrain the
boundary data, i.e. the metric and the fluid. Summarizing, the metric (3.1) provides an
exact Einstein, asymptotically AdS spacetime, with R = 6Λ = −6k2, under the necessary and
sufficient condition that the non-conformal fluid energy–momentum tensor (2.14) obeys

∇µ
(
Tµν + Dµν

)
= 0, (3.3)
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where Dµν is a symmetric and traceless tensor which reads:

Dµνdxµdxν =
1

8πGk4

((
u(Θ) + ∗u(Θ∗)− k2

2
R
)(

u2 + ∗u2)− 4 ∗ u(Θ)u ∗ u
)

. (3.4)

On the one hand, the holographic energy–momentum tensor is the sum Tµν + Dµν, and this
can be shown following the Balasubramanian–Kraus method [35].17 On the other hand, the
holographic fluid is subject to an external force with density

fν = −∇µDµν. (3.5)

Its longitudinal and transverse components are





uµ fµ = − 1
4πG

(
∗u(F) + 2Θ∗F + 1

2 ΘR
)

,

∗uµ fµ = 1
8πG (∗u(R) + Θ∗R) .

(3.6)

Combining (2.30), (3.2) and (3.6) we find the following equations:




(uµ + ∗uµ)Dµ (ε + χ) = 1

4πG ∗ uµDµF,

(uµ − ∗uµ)Dµ (ε − χ) = 1
4πG ∗ uµDµF.

(3.7)

Notice that eventually these equations are Weyl-covariant (weight-3) despite the conformal
anomaly.

An important remark is in order regarding the holographic fluid. Rather than Tµν, we
could have adopted Tµν + Dµν as its energy–momentum tensor. The latter would have been
decomposed as in (2.2), with ε̃ = p̃ and χ̃ though (τ̃ = τ since Dµν has vanishing trace):

ε̃ = ε +
1

8πGk2 (u(Θ) + ∗u(Θ∗))− R
16πG

, (3.8)

χ̃ = χ − 1
4πGk2 ∗ u(Θ). (3.9)

We did not make this choice for two reasons: (i) in the formula (3.1) we used ε and χ rather
than ε̃ and χ̃ for reconstructing the bulk; (ii) ε and χ/k are finite in the limit of vanishing
k, whereas ε̃ and χ̃/k are not. This last fact is not an obstruction, but it would require to
reconsider the Carrollian hydrodynamic equations developed in Ref. [19] and applied here.

Expression (3.1) is the most general locally AdS spacetime in Eddington–Finkelstein coor-
dinates. The corresponding gauge includes but does not always coincide with BMS.18 From

17For this computation we used the conventions of [36].
18There is no definition of Eddington–Finkelstein gauge. Within the three-dimensional derivative expansion,

one can nevertheless refer to it as a gauge because the r-dependence is fixed. This does not exhaust all free-
dom, but allows comparison with BMS. Actually, fluid/gravity approach is not meant to lock completely the
coordinates for describing the most general solution in terms of a minimal set of functions.
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that perspective, this result is new although it may not contain any new solutions compared
e.g. to Bañados’ [18], all captured either in BMS or in Fefferman–Graham gauge (see [20]).
The bonus is the hydrodynamical interpretation. Here the corresponding fluid is defined
on a generally curved boundary and has an arbitrary velocity field. This should be con-
trasted with the treatment of three-dimensional fluid/gravity correspondence worked out
in Refs. [2, 3], where the host geometry was flat, avoiding the issue of conformal anomaly.
Furthermore the fluid was assumed perfect by hydrodynamic-frame choice, which permits
a subclass of Bañados solutions only, as we will see in Sec. 4 by computing the conserved
charges.

For practical purposes, we can work in light-cone coordinates, introduced in Eq. (2.51).
Using the expression (2.54) for the congruence u, and solving the fluid equations (3.7), we
obtain the fluid densities ε and χ in terms of two arbitrary chiral functions ℓ±(x±):

ε =
e2ω

4πG

(
ℓ+
ξ

+ ξℓ− − 3(∂+ξ)2

4ξ3 +
∂2
+ξ

2ξ2 +
(∂−ξ)2

4ξ
− ∂2

−ξ

2

)
, (3.10)

χ =
e2ω

4πG

(
− ℓ+

ξ
+ ξℓ− +

3(∂+ξ)2

4ξ3 − ∂2
+ξ

2ξ2 +
(∂−ξ)2

4ξ
− ∂2

−ξ

2
+

∂+ξ∂−ξ

ξ2 − ∂+∂−ξ

ξ

)
. (3.11)

Gathering these data together with (2.57) inside (3.1) provides, in the gauge at hand, the gen-
eral class of locally AdS three-dimensional spacetime with curved conformal boundary. The
conformal factor exp2ω can be apparently reabsorbed by setting r to r expω, thus bringing
(3.1) to its flat-boundary form.19 One should nevertheless be careful when making claims
based on coordinate redefinitions, even in seemingly safe situations, because they can po-
tentially alter global properties. Indeed, as discussed in Ref. [37], ω is expected to bring
different asymptotics and new charges, and the corresponding solutions might generalize
Bañados’ family. In our subsequent analysis of Sec. 4.1, we will set ω = 0. As we will shortly
see, the arbitrary function ξ(x+, x−) is also insidious regarding the charges, and focusing on
it will be sufficient for the scope of this work.

We could proceed and display similar expressions in the Randers–Papapetrou boundary
frame, describing the general locally anti-de Sitter spacetimes in terms of the three geomet-
ric data Ω(t, x), bx(t, x) and axx = a(t, x), and whatever integration functions would appear
in the process of solving the hydrodynamic equations (3.7). Usually, this resolution cannot
be conducted explicitly as it happens in light-cone coordinates, and we end up with an im-
plicit description of the bulk metric. We should quote here that a specific example of curved
boundary20 was investigated in Ref. [38], outside of the fluid/gravity framework, and the
output agrees with our general results. We should also stress, following the discussion of

19This should be contrasted with the more intricate situation regarding this conformal factor inside the analo-
gous formula in Fefferman–Graham gauge, Eq. (2.21) of Ref. [20].

20In that case Ω = exp2β, bx = 0, a = 1 and, in our language, the fluid velocity would have been u =−k2e2βdt,
i.e. comoving.
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footnote 18, that the Randers–Papapetrou boundary frame produces in (3.1) order-r dtdx
components absent in the BMS gauge.

3.2 Ricci-flat

Our starting point is the finite derivative expansion of an asymptotically AdS3 spacetime,
Eq. (3.1). The fundamental question is whether the latter admits a smooth zero-k limit.

We have implicitly assumed that the Randers–Papapetrou data of the two-dimensional
pseudo-Riemannian conformal boundaryI associated with the original Einstein spacetime,
a, b and Ω, remain unaltered at vanishing k, providing therefore directly the Carrollian data
for the new spatial one-dimensional boundary S emerging at I +. Following again the
detailed analysis performed in [19], we can match the various two-dimensional Riemannian
quantities with the corresponding one-dimensional Carrollian ones:

u = −k2 (Ωdt − (bx + βx)dx) + O
(

k4
)

, ∗u = k
√

a dx + O
(
k3) (3.12)

and
Θ = θ + O

(
k2
)

,
a = k2 (ϕx + γx)dx + O

(
k4
)

,
A = θΩdt + (αx + δx)dx + O

(
k2
)

,

(3.13)

where the left-hand-side quantities are Riemannian, and the right-hand-side ones Carrollian
(see (2.82), (2.83), (2.85), (2.92), (2.93)).

The closed form (3.1) is smooth at zero k. In this limit the metric reads:

ds2
flat =− 2(Ωdt − bbb − βββ) (dr + r (ϕϕϕ +γγγ + θ (Ωdt − bbb − βββ)))

+ r2dℓ2 + 8πG (Ωdt − bbb − βββ) (ε (Ωdt − bbb − βββ)−πππ) ,
(3.14)

Here dℓ2, Ω, bbb = bxdx, ϕϕϕ = ϕxdx and θ are the Carrollian geometric objects introduced ear-
lier. The bulk Ricci-flat spacetime is now dual to a Carrollian fluid with kinematics captured
in βββ = βxdx and γγγ = γxdx, energy density ε (zero-k limit of the corresponding relativistic
function), and heat current πππ = πxdx (obtained in Eqs.(2.99), (2.100) and (2.101)).

For the fluid under consideration, there is also a pair of Carrollian stress tensors originat-
ing from the anomaly (3.2). Using expressions (2.98) and (2.103), we can determine τΣ and
τΞ, and Eqs. (2.104) provide in turn the Carrollian stress:

Σx
x = − 1

4πG

(
θ2 +

∂tθ

Ω

)
, Ξx

x =
1

4πG

((
∇̂x + ϕx

)
ϕx − βββ2

(
θ2 +

∂tθ

Ω

))
. (3.15)

This is the advertised Carrollian emanation of the relativistic conformal anomaly.
Expression (3.14) will grant by construction an exact Ricci-flat spacetime provided the
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conditions under which (3.1) was Einstein are fulfilled in the zero-k limit. These are the
set of Carrollian hydrodynamic equations (2.106), (2.107), (2.108) and (2.109), with Carrol-
lian power and force densities e, f , gx, hx obtained using their definition (2.105) and the
expressions of fµ displayed in (3.6) (we use for this computation the expression of the scalar
curvature (2.98), and sx as given in (2.95)). Equations (2.107) and (2.109) are automatically
satisfied, whereas (2.106) and (2.108) lead to21





1
Ω
D̂tε +

1
4πG

(
2sx

Ω
D̂tβ

x +
βx

Ω
D̂tsx + D̂ xsx

)
= 0,

D̂xε − βx

Ω
D̂tε +

1
Ω
D̂t (πx + 2εβx) = 0.

(3.16)

The unknown functions, which bear the fluid configuration, are ε(t, x), πx(t, x) and βx(t, x).
These cannot be all determined by the two equations at hand. Hence, there is some redun-
dancy, originating from the relativistic fluid frame invariance – responsible e.g. for the ar-
bitrariness of ξ(x+, x−) in the description of AdS spacetimes using the light-cone boundary
frame. More will be said about this in Sec. 4.2.

Equations (3.16) are Carroll–Weyl covariant. The Ricci-flat line element (3.14) inherits
Weyl invariance from its relativistic ancestor. The set of transformations (2.81), (2.84) and
(2.86), supplemented with ε →B2ε and πx →Bπx, can indeed be absorbed by setting r →Br,
resulting thus in the invariance of (3.14). In the relativistic case this invariance was due to
the AdS conformal boundary. In the case at hand, this is rooted to the location of the one-
dimensional spatial boundary S at null infinity I +.

We would like to close this chapter with a specific but general enough situation to encom-
pass all Barnich–Troessaert Ricci-flat three-dimensional spacetimes. The Carrollian geomet-
ric data are bx = 0, Ω = 1 and a = exp2Φ(t, x), and the kinematic variable of the Carrollian
dual fluid βx is left free. Hence (3.14) reads:

ds2
flat = −2(dt − βxdx) (dr + r (∂tΦdt + (∂t − ∂tΦ)βxdx))

+r2e2Φdx2 + 8πG (dt − βxdx) (εdt − (πx + εβx)dx) , (3.17)

where ε(t, x) and πx(t, x) obey Eqs. (3.16) in the form




(∂t + 2∂tΦ) ε +

1
4πG

(2sx (∂t + ∂tΦ) βx + βx (∂t + 3∂tΦ) sx + (∂x + ∂xΦ) sx) = 0,

∂xε + (∂t + ∂tΦ)πx + 2ε∂t βx + βx∂tε = 0.
(3.18)

21We remind that Weyl–Carroll covariant derivatives are defined in Eqs. (2.87), (2.88), (2.89) and (2.90). Here
ε, βx , πx and sx have weights 2, 1, 1 and 3. For example D̂xsx = ∇̂xsx + 2ϕxsx = 1√

a ∂̂x(
√

a sx) + 2ϕxsx.
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Here, sx takes the simple form

sx = ∂2
t βx − ∂t (βx∂tΦ)− ∂t∂xΦ. (3.19)

For vanishing βx, the results (3.17) and (3.18) coincide precisely with those obtained in
[20] by demanding Ricci-flatness in the BMS gauge. Here, they are reached from purely
Carrollian-fluid considerations, and for generic βx(t, x), the metric (3.17) lays outside the
BMS gauge.

4 Two-dimensional flat boundary and conserved charges

We will now restrict the previous analysis to Ricci-flat and Weyl-flat boundaries, both in
AdS and Ricci-flat spacetimes. This enables us to compute the conserved charges following
[22–24], and analyze the role of the velocity and the heat current of the boundary fluid.

4.1 Charges in AdS spacetimes

The flatness requirements are equivalent to setting R = 0 and F = 0. In the light-cone frame
(2.51), this amounts to (see (2.57) and (2.58))

ω = 0 and ξ(x+, x−) = − ξ−(x−)
ξ+(x+)

, (4.1)

where the minus sign is conventional.
Using the general solutions (3.10) and (3.11) in the bulk expression (3.1), and trading the

chiral functions ℓ± for L± defined as (the prime stands for the derivative with respect to the
unique argument of the function)

ℓ± =
1

(ξ±)2

(
L± − (ξ±′)2 − 2ξ±ξ±′′

4

)
, (4.2)

we obtain the following metric:

ds2
Einstein = −1

k

(√
− ξ−

ξ+
dx+ −

√
− ξ+

ξ−
dx−

)
dr

+

(
L+

k2 − r
2k

√
−ξ+ξ− ξ+′

)(
dx+

ξ+

)2

+

(
L−
k2 − r

2k

√
−ξ+ξ− ξ−′

)(
dx−

ξ−

)2

+

(
r2 +

r
2k

1√
−ξ+ξ−

(
ξ+′ + ξ−′)+ L+ + L−

k2ξ+ξ−

)
dx+dx−. (4.3)

This metric depends on four arbitrary functions: ξ+(x+) and ξ−(x−) carrying information
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about the holographic fluid velocity (see (2.54)), and L+(x+), L−(x−), which together with
ξ+(x+) and ξ−(x−) shape the energy–momentum tensor – here traceless due to the bound-
ary flatness. Indeed we have

ε = − 1
4πG

L+ + L−
ξ+ξ−

, χ =
1

4πG
L+ − L−

ξ+ξ−
, (4.4)

and in turn
T±± =

L±
4πG(ξ±)2 . (4.5)

In three dimensions, any Einstein spacetime is locally anti-de Sitter. Hence, there ex-
ists always a coordinate transformation that can be used to bring it into a canonical AdS3

form (say, in Poincaré coordinates). This is a large gauge transformation whenever the orig-
inal Einstein spacetime has non-trivial conserved charges. The determination of the latter is
therefore crucial for a faithful identification of the solution under consideration. It allows to
evaluate the precise role played by the above arbitrary functions.

The charge computation requires a complete family of asymptotic Killing vectors. Those
are determined according to the gauge, i.e. to the fall-off behaviour at large-r. The family
(4.3) does not fit BMS gauge, unless ξ± are constant. This is equivalent to saying that the fluid
has a uniform velocity, and can therefore be set at rest by an innocuous global Lorentz boost
tuning ξ+ = 1 and ξ− = −1.22 We will first focus on this case, where the asymptotic Killing
vectors are known, and move next to the other extreme, demanding the fluid be perfect, i.e.
in Landau–Lifshitz hydrodynamic frame. In the latter instance we will have to determine
this family of vectors beforehand, as the gauge will no longer be BMS. Investigating the
general situation captured by (4.3) is not relevant for our argument, which is meant to show
that fluid/gravity holographic reconstruction is hydrodynamic-frame dependent.

As we will see, the charges computed following [22–24], and displayed in Eqs. (4.16) and
(4.29), coincide in both cases with the modes of the energy–momentum tensor (4.5). How-
ever, they obey a different algebra due to the distinct asymptotic behaviour of the associated
metric families.

Dissipative static fluid As anticipated, this class of solutions is reached by demanding
ξ± = ±1, while keeping L± arbitrary. We obtain

ds2
Einstein = −1

k
(
dx+ − dx−

)
dr + r2dx+dx− +

1
k2

(
L+dx+ − L−dx−

)(
dx+ − dx−

)
, (4.6)

which is the canonical expression of Bañados solutions in BMS gauge. Following (4.4), the
boundary fluid energy and heat densities are ε = 1/4πG (L+ + L−) and χ = −1/4πG (L+ − L−).

22Observe that one may reabsorb ξ+ and ξ− by redefining dx± → ξ±dx± and r → r/√−ξ+ξ− inside (4.3). This
does not prove, however, that ξ± play no role, and this is why we treat them separately.
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Therefore the heat current is not vanishing, and in the present hydrodynamic frame the fluid
is at rest and dissipative.

The class of metrics (4.6) are form-invariant under

ζ = ζr∂r + ζ+∂+ + ζ−∂− (4.7)

with

ζr = − r
2
(
Y+′ + Y−′)+ 1

2k
(
Y+′′ − Y−′′)

− 1
2k2r

(L+ − L−)
(
Y+′ − Y−′) , (4.8)

ζ± = Y± − 1
2kr

(
Y+′ −Y−′) , (4.9)

for arbitrary chiral functions Y+(x+) and Y−(x−). These vector fields generate diffeomor-
phisms, which alter the functions appearing in (4.6) according to

−Lζ gMN = δζ gMN =
∂gMN

∂L+
δζ L+ +

∂gMN

∂L−
δζ L− (4.10)

with
δζ L± = −Y±L′

± − 2L±Y±′ +
1
2

Y±′′′. (4.11)

The last term in this expression is responsible for the emergence of a central charge in the
surface-charge algebra. These vectors obey an algebra for the modified Lie bracket (see e.g.
[20]):

ζ3 = [ζ1,ζ2]M = [ζ1,ζ2]− δζ2 ζ1 + δζ1 ζ2 (4.12)

with23 ζa = ζ (Y+
a ,Y−

a ) and
Y±

3 = Y±
1 Y±′

2 −Y±
2 Y±′

1 . (4.13)

The surface charges are computed for an arbitrary metric g of the type (4.6) with global
AdS3 as reference background. The latter has metric ḡ with L+ = L− = −1/4 i.e. ε = −1/8πG

and χ = 0. The final integral is performed over the compact spatial boundary coordinate
x ∈ [0,2π]:

QY [g − ḡ, ḡ] =
1

8πkG

∫ 2π

0
dx
(

Y+

(
L+ +

1
4

)
−Y−

(
L− +

1
4

))
. (4.14)

These charges are in agreement with the quoted literature,24 and their algebra is determined

23Here δζ2 ζ1 stands for the variation produced on ζ1 by ζ2, and this is not vanishing because ζ1 depends

explicitly on L±: δζ2 ζ1 =
(

∂ζN
1

∂L+
δζ2 L+ +

∂ζN
1

∂L−
δζ2 L−

)
∂N .

24Some relative-sign differences are due to different conventions used for the light-cone coordinates, here
defined as x± = x ± kt.
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as usual:
{QY1 , QY2} = δζ1 QY2 = −δζ2 QY1 . (4.15)

Introducing the modes

L±
m =

1
8πkG

∫ 2π

0
dx eimx±

(
L± +

1
4

)
(4.16)

the algebra reads:

i
{

L±
m, L±

n
}
= (m − n)L±

m+n +
c

12
m
(
m2 − 1

)
δm+n,0 ,

{
L±

m, L∓
n
}
= 0. (4.17)

This double realization of Virasoro algebra with Brown–Henneaux central charge c = 3/2kG

was expected for Bañados solutions (4.6).

Perfect fluid with arbitrary velocity In Landau–Lifshitz frame the heat current vanishes
(χ = 0) and the boundary conformal fluid is perfect. Equation (4.4) requires for this

L+ = L− =
M
2

, (4.18)

with M constant, while it gives for energy density ε = −M/4πGξ+ξ−. As for the general case,
the reconstructed bulk family of metrics

ds2
Einstein = −1

k

(√
− ξ−

ξ+
dx+ −

√
− ξ+

ξ−
dx−

)
dr

+

(
M
2k2 − r

2k

√
−ξ+ξ− ξ+′

)(
dx+

ξ+

)2

+

(
M
2k2 − r

2k

√
−ξ+ξ− ξ−′

)(
dx−

ξ−

)2

+

(
r2 +

r
2k

1√
−ξ+ξ−

(
ξ+′ + ξ−′)+ M

k2ξ+ξ−

)
dx+dx− (4.19)

is not in BMS gauge, unless ξ± are constant. Again this latter subset is entirely captured by
ξ± = ±1, and the resulting solution is BTZ together with all non-spinning zero-modes of
Bañados family [39–41]:

ds2
Einstein = −1

k
(
dx+ − dx−

)
dr + r2dx+dx− +

M
2k2

(
dx+ − dx−

)2 . (4.20)

The asymptotic structure rising in (4.19) is now respected by the following family of
asymptotic Killing vectors

η = ηr∂r + η+∂+ + η−∂−, (4.21)

expressed in terms of two arbitrary chiral functions ǫ±(x±)

ηr = − r
2
(
ǫ+′ + ǫ−′) , η± = ǫ±. (4.22)
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These vectors, slightly different from those found for the dissipative boundary fluids (4.7),
(4.8), (4.9), appear as the result of an exhaustive analysis of (4.19). They do not support sub-
leading terms, and since they do not depend on the the functions ξ±, they form an algebra
for the Lie bracket:

[η1,η2] = η3 (4.23)

with ηa = η (ǫ+a ,ǫ−a ) and
ǫ±3 = ǫ±1 ǫ±′

2 − ǫ±2 ǫ±′
1 . (4.24)

They induce the exact transformation

−LηgMN = δηgMN =
∂gMN

∂ξ+
δηξ+ +

∂gMN

∂ξ+′ δηξ+′ +
∂gMN

∂ξ−
δηξ− +

∂gMN

∂ξ−′ δηξ−′ (4.25)

with
δηξ± = ξ±ǫ±′ − ǫ±ξ±′. (4.26)

Following the customary pattern, we can determine the conserved charges, with global
AdS3 as reference background, now reached with ξ± = ±1 and M = −1/2 (again ε = −1/8πG

and χ = 0):

Qǫ [g − ḡ, ḡ] =
1

16πkG

∫ 2π

0
dx
(

ǫ+
(

1
ξ+2 − 1

)
− ǫ−

(
1

ξ−2 − 1
))

, (4.27)

as well as their algebra:
{Qǫ1 , Qǫ2} = δη1 Qǫ2 = −δη2 Qǫ1 . (4.28)

Defining now

Z±
m =

1
16πkG

∫ 2π

0
dx eimx±

(
1

ξ±2 − 1
)

(4.29)

we find
i
{

Z±
m , Z±

n
}
= (m − n)Z±

m+n +
m

4kG
δm+n,0 ,

{
Z±

m , Z∓
n
}
= 0. (4.30)

The central extension of this algebra is trivial. Indeed, it can be reabsorbed in the following
redefinition of the modes Z±

m

Z̃±
m = Z±

m +
1

8kG
δm,0. (4.31)

Therefore, (4.30) becomes

i
{

Z̃±
m , Z̃±

n
}
= (m − n)Z̃±

m+n,
{

Z̃±
m , Z̃∓

n
}
= 0. (4.32)

The algebra at hand (4.32) is de Witt rather than Virasoro,25 and this outcome demonstrates

25The absence of central charges occurs also in [37] for the same reason, i.e. a modification of the asymptotic
behaviour.
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the already advertised result: the family of locally anti-de Sitter spacetimes obtained holo-
graphically from two-dimensional fluids in the Landau–Lifshitz frame overlap only partially
the space of Bañados solutions. This overlap encompasses the non-spinning BTZ and excess
or defects geometries provided in (4.20).

4.2 Charges in Ricci-flat spacetimes

The absence of anomaly in the Carrollian framework is equivalent to setting Σx
x = Ξx

x = 0
(see (3.15)), whereas the Weyl–Carroll flatness requires s = 0 (see (2.96)). This amounts to
taking Ω = a = 1 and bx = 0,26 and with those data s = 0 reads

∂2
t βx = 0. (4.33)

In the Carrollian spacetime at hand, the fluid equations of motion (3.16) are





∂tε = 0,

∂xε + ∂t(πx + 2εβx) = 0.
(4.34)

Equations (4.33) and (4.34) can be integrated in terms of four arbitrary functions of x:
ε(x), ̟(x), λ(x) and µ(x). We find

βx(t, x) =
λ(x)
2ε(x)

− t
2

∂x ln µ(x), (4.35)

πx(t, x) = −2ε(x)βx(t, x) + ̟(x)− t∂xε(x) (4.36)

(this parameterization of βx will be appreciated later). The Ricci-flat (even locally flat) holo-
graphically reconstructed spacetime from these Carrollian fluid data is obtained from the
general expression (3.14):

ds2
flat =− 2(dt − βxdx) (dr + r∂tβxdx) + r2dx2

+ 8πG
(
ε(dt − βxdx)2 − πxdx(dt − βxdx)

)
,

(4.37)

where βx and πx are meant to be as in (4.35) and (4.36).
On the one hand, the arbitrary functions ε(x) and ̟(x) are reminiscent of the functions

L±(x±) (or ε(t, x) and χ(t, x)) present in the AdS solutions. A vanishing-k limit was indeed
used in Ref. [25] to obtain ε(x) and ̟(x) from L±(x±). On the other hand, λ(x) and µ(x) re-
mind ξ±(x±), and are indeed a manifestation of a residual hydrodynamic frame invariance,
which survives the Carrollian limit. Considering indeed the Carrollian hydrodynamic-frame

26Actually the absence of anomaly requires rather Ω = Ω(t), a = a(x) and bx = bx(x), which can be reabsorbed
trivially with Carrollian diffeomorphisms.
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transformations (2.110)
β′

x = βx + Bx, (4.38)

in the present framework (Σx
x = Ξx

x = 0), and using Eqs. (2.73), (2.74), (2.75), (2.76), (2.99),
(2.100), (2.101), we obtain the transformations:

ε′ = ε, π′
x = πx − 2εBx, (4.39)

which leave the Carrollian fluid equations (4.34) invariant. The new velocity field β′
x is

compatible with the Weyl–Carroll flatness (4.33) provided the transformation function Bx is
linear in time, hence parameterized in terms of two arbitrary functions of x. This is how λ(x)
and µ(x) emerge.

Observe also that the residual Carrollian hydrodynamic frame invariance enables us to
define here a Carrollian Landau–Lifshitz hydrodynamic frame. Indeed, combining (4.36)
and (4.35) we obtain

πx(t, x) = −λ(x) + ̟(x) + tε(x)∂x ln
µ(x)
ε(x)

. (4.40)

Adjusting the velocity field βx such that

̟(x) = λ(x) and
ε(x)
µ(x)

= ε0 (4.41)

with ε0 a constant, makes the Carrollian fluid perfect: πx = 0.
In complete analogy with the AdS analysis, we will first compute the charges for vanish-

ing velocity βx = 0 (which is given by λ(x) = 0 and µ(x) = 1) in terms of ε(x) and ̟(x), and
next perform the similar computation for perfect fluids with velocity βx parameterized with
two arbitrary functions λ(x) and µ(x). Here empty Minkowski bulk is realized with µ = 1,
λ = 0, ̟ = 0 and ε0 = −1/8πG.

As for the AdS instance discussed in Sec. 4.1, the class (4.37) is not in the BMS gauge,
unless βx is constant, which can then be reabsorbed by a global Carrollian boost (constant
Bx).27 We will first discuss this situation, where the asymptotic Killings are the canonical
generators of bms3. Outside the BMS, we will determine the asymptotic isometry for metrics
reconstructed from perfect fluids, and proceed with the surface charges and their algebra.
Our conclusion is here that asymptotically flat fluid/gravity correspondence is sensitive to
the residual hydrodynamic-frame invariance.

27The functions λ(x) and µ(x) entering (4.37) via (4.36) and (4.35) can be reabsorbed in any case by performing
the coordinate transformation dx → dx√

µ(x)
, dt → 1√

µ(x)
(dt + βxdx) and r → r

√
µ(x) . This leads to the same

form as the one reached by setting µ = 1 and λ = 0, i.e (4.42).
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Dissipative static fluid The metric (4.37) for vanishing βx takes the simple form (again the
prime signals a derivative)

ds2
flat = −2dtdr + r2dx2 + 8πG

(
εdt − (̟ − tε′

)
dx
)

dt, (4.42)

compatible with BMS gauge with asymptotic Killing vectors

ζ = ζr∂r + ζt∂t + ζx∂x, (4.43)

where

ζr = −rY′ + H′′ + tY′′′ +
4πG

r
(
̟ − tε′

)(
H′ + tY′′) , (4.44)

ζt = H + tY′, (4.45)

ζx = Y − 1
r
(

H′ + tY′′) . (4.46)

Here H and Y are functions of x only. Vectors (4.44), (4.45), (4.46) are the vanishing-k limit of
(4.7), (4.8), (4.9), reached by trading light-cone frame as x± = x ± kt, and setting Y±(x±) =
Y(x)± k (H(x) + tY′(x)).

This family of vectors produces the following variation on the metric fields:

−Lζ gMN = δζ gMN =
∂gMN

∂ε
δζε +

∂gMN

∂ε′
δζε′ +

∂gMN

∂̟
δζ̟, (4.47)

with

δζε = −2εY′ − Yε′ +
Y′′′

4πG
, (4.48)

δζ̟ = − H′′′

4πG
+

1
H
(
εH2)′ − 1

Y
(
̟Y2)′ . (4.49)

Their algebra closes for the same modified Lie bracket (4.12) with ζa = ζ (Ha,Ya) and

Y3 = Y1Y′
2 −Y2Y′

1 H3 = Y1H′
2 + H1Y′

2 − Y2H′
1 − H2Y′

1. (4.50)

We can compute the charges of g in (4.42), using Minkowski as reference background ḡ.
They read:

QH,Y[g − ḡ, ḡ] =
1
2

∫ 2π

0
dx
[

H
(

ε +
1

8πG

)
− Y̟

]
. (4.51)

With a basis of functions expimx for H and Y, we find the standard collection of charges

Pm =
1
2

∫ 2π

0
dx eimx

(
ε +

1
8πG

)
, Jm = −1

2

∫ 2π

0
dx eimx̟, (4.52)
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which coincide with the computation performed e.g. in [25]. Using

{QH1,Y1 , QH2,Y2} = δζ1 QH2,Y2 = −δζ2 QH1,Y1 , (4.53)

we obtain the following surface-charge algebra:

i{Jm, Pn}= (m − n)Pm+n +
c

12
m
(
m2 − 1

)
δm+n,0 , i{Jm, Jn}= (m − n)Jm+n , {Pm, Pn} = 0

(4.54)
with c = 3/G. This is the bms3 algebra, and this analysis demonstrates that a non-perfect
Carrollian fluid, even with βx = 0, is sufficient for generating holographically all Barnich–
Troessaert flat three-dimensional spacetimes. This goes along with the analogue conclusion
reached in AdS for Bañados spacetimes.

Perfect fluid with velocity Consider now the resummed metric (4.37) assuming (4.41). We
obtain

ds2
flat = −2(dt − βxdx)

(
dr − rµ′

2µ
dx
)
+ r2dx2 + 8πGε0µ (dt − βxdx)2 (4.55)

with βx given by

βx =
1

2µ

(
λ

ε0
− tµ′

)
. (4.56)

Unless βx is constant, the metrics (4.55) are not in BMS gauge. The BMS subset is entirely
captured by µ = 1, λ = 0 with resulting solutions plain Minkowski (ε0 = −1/8πG) and the
non-spinning zero-modes of Barnich–Troessaert family:

ds2
flat = −2dtdr + r2dx2 + 8πGε0dt2. (4.57)

The asymptotic isometries of (4.55) are now generated by28

η = ηr∂r + ηt∂t + ηx∂x, (4.58)

expressed in terms of two arbitrary functions h(x) and ρ(x)

ηr = −rρ′, ηt = h + tρ′, ηx = ρ. (4.59)

The algebra of asymptotic Killing vectors closes for the ordinary Lie bracket

[η1,η2] = η3 (4.60)

28Again the fields (4.58), (4.59) are alternatively obtained by an appropriate zero-k limit of (4.21) and (4.22).
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with ηa = η (ha,ρa) and

ρ3 = ρ1ρ′2 − ρ2ρ′1, h3 = ρ1h′2 + h1ρ′2 − ρ2h′1 − h2ρ′1. (4.61)

It respects the form of the metric

−Lη gMN = δηgMN =
∂gMN

∂µ
δηµ +

∂gMN

∂µ′ δηµ′ +
∂gMN

∂λ
δηλ (4.62)

with

δηλ = −2λρ′ − ρλ′ + ε0
(
2µh′ + hµ′) , (4.63)

δηµ = −2µρ′ − ρµ′. (4.64)

The charges of g in (4.55) are computed as usual with Minkowski as reference back-
ground ḡ. They read:

Qh,ρ[g − ḡ, ḡ] =
1
2

∫ 2π

0
dx
[

h
(

ε0µ +
1

8πG

)
− ρλ

]
. (4.65)

With a basis of unimodular exponentials for h and ρ, we find now

Mm =
1
2

∫ 2π

0
dx eimx

(
ε0µ +

1
8πG

)
, Im = −1

2

∫ 2π

0
dx eimxλ, (4.66)

and {
Qh1,ρ1 , Qh2,ρ2

}
= δη1 Qh2,ρ2 = −δη2 Qh1,ρ1 (4.67)

provide the surface-charge algebra:

i{Im, Mn} = (m − n)Mm+n −
m
4G

δm+n,0 , i{Im, In} = (m− n)Im+n , {Mm, Mn} = 0. (4.68)

As for the anti-de Sitter case, the central extension of this algebra is trivial. By translating the
modes

M̃m = Mm − 1
8G

δm,0, (4.69)

we obtain

i
{

Im, M̃n
}
= (m − n)M̃m+n, i{Im, In} = (m − n)Im+n ,

{
M̃m, M̃n

}
= 0. (4.70)

This algebra, which could have been obtained from (4.32) in the zero-k limit, has no cen-
tral charge. Therefore, our computation shows unquestionably that holographic locally flat
spacetimes based on perfect Carrollian fluids – fluids in Carrollian Landau–Lifshitz frame –
cover only in some measure the family on Barnich–Troessaert solutions. Among those one
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finds (4.57).

5 Conclusion

We can now summarize our achievements. The motivations of the present work have been
twofold: (i) reconstruct asymptotically anti-de Sitter and flat three-dimensional spacetimes
using fluid/gravity holographic correspondence in a unified framework; (ii) investigate the
emergence of hydrodynamic-frame invariance and its potential holographic breakdown.

Solutions to three-dimensional vacuum Einstein’s equations have been searched system-
atically since the seminal work of BTZ, and their asymptotic symmetries as well as the cor-
responding conserved charges are thoroughly understood. In parallel, many aspects of their
boundary properties in the anti-de Sitter case were discussed before the advent of the holo-
graphic correspondence, and lately for the flat case in relation with the BMS asymptotic sym-
metries. However, setting up a precise correspondence between a general two-dimensional
relativistic fluid defined on an arbitrary background and a three-dimensional anti-de Sit-
ter spacetime was only superficially analyzed, whereas the possible relationship among flat
spacetimes and Carrollian fluid dynamics had never been considered. This has been the core
of our inquiry.

Because relativistic fluid dynamics in two spacetime dimensions is rather simple, it al-
lows to perform an exhaustive and exact study of the equations of motion, and of their
form invariance under hydrodynamic-frame transformations – local Lorentz boosts. We
have assumed for commodity a conformal equation of state, keeping the fluid non-conformal
though (i.e. with non-zero viscous bulk pressure). Hence, the relativistic fluid is described
by an arbitrary velocity field, the energy and heat densities, and the viscous pressure, all
transforming appropriately under local Lorentz boosts so as to keep the energy–momentum
tensor invariant. The extreme situation corresponds to the Landau–Lifshitz frame, where
the heat current vanishes and the energy–momentum tensor is diagonal.

Three-dimensional Einstein spacetime reconstruction is then achieved with the deriva-
tive expansion, following the usual pattern of higher dimensions. Here it is not an expan-
sion but a finite sum, involving all boundary data. Holographic fluids have an anomalous
viscous pressure proportional to the curvature of the host geometry. Owing to this fact, the
holographic fluid does not move freely, but is subject to a force, entirely determined by its
kinematical configuration and by the geometry. Using light-cone coordinates and confor-
mally flat boundary makes it easy to obtain the general fluid configuration, and a general
and closed expression for locally anti-de Sitter spacetimes, in a gauge which is less stringent
than BMS.

With this general result, it is possible to address the question of whether a boundary
fluid configuration observed from different hydrodynamic frames gives rise to distinct bulk
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geometries. This is discussed in the simpler (but sufficient for the argument) case of flat
boundaries with vanishing Weyl curvature, for which the fluid is conformal (no trace). The
reconstructed bulk geometries are then described in terms of two pairs of chiral functions, ξ±

and L±. The former parameterize the velocity of the fluid, while the latter its energy and heat
densities. With these data two extreme configurations emerge: (i) a fluid at rest with heat
current; (ii) a fluid with arbitrary velocity and vanishing heat current (hence perfect since
the viscous pressure is also zero) i.e. in the Landau–Lifshitz frame. For both cases one de-
termines the bulk asymptotic Killing vectors together with the algebra of conserved surface
charges. In the first instance, the left and right Virasoro algebras appear with their canonical
central charges. In the second, the central charges can be reabsorbed by a redefinition of the
elementary modes, demonstrating thereby that the bulk-metric derivative expansion is sen-
sitive to the boundary-fluid hydrodynamic frame. In particular, the Landau–Lifshitz frame
fails to reproduce faithfully all Bañados’ solutions, contrary to the common expectation.

The above pattern has been resumed for the Ricci-flat spacetimes. The conformal bound-
ary is now at null infinity, and is endowed with a Carrollian 1 + 1-dimensional structure.
Boundary dynamics is carried by a Carrollian fluid, obeying a set of hydrodynamic equa-
tions for energy and heat densities, two viscous stress scalars as well as a kinematic variable
referred to as “inverse-velocity”. Generically, these equations do not exhibit any sort of
hydrodynamic-frame invariance.

The reconstruction of three-dimensional Ricci-flat spacetimes is achieved by considering
the vanishing-k limit of the anti-de Sitter derivative expansion, which is finite. Information is
supplied in this Ricci-flat derivative expansion by the Carrollian fluid defined at null infinity.
In particular, the original conformal anomaly is carefully identified as a source of Carrollian
stress.

As for Einstein spacetimes, we do not consider the most general situation, but impose
equivalent restrictions: absence of anomaly and zero Weyl–Carroll curvature. The derivative-
expansion gauge is slightly less restrained than BMS, and a residual hydrodynamic-frame-
like invariance emerges, which allows to treat the same Carrollian dynamics from two equiv-
alent perspectives: (i) a Carrollian fluid with vanishing inverse velocity and non-zero heat
current; (ii) a Carrollian fluid with inverse velocity and vanishing heat current (i.e. a sort of
Carrollian Landau–Lifshitz frame). Although equivalent from the Carrollian-fluid perspec-
tive, these two patterns lead to Ricci-flat spacetimes with different surface charge algebras.
The former family fits in BMS gauge and reproduces all Barnich–Troessaert spacetimes with
the appropriate charges. The algebra is bms3 with central charge. The set of Ricci-flat met-
rics obtained with a Carrollian perfect fluids exhibit an algebra whose central charge can be
ultimately reabsorbed.

The above is the bottom line of our work. Our findings raise several questions that we
briefly sort in the following as possible physical applications, in three dimensions or beyond,
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and on either side of the fluid/gravity holographic correspondence.
At the first place, it is legitimate to ask where the origin of the hydrodynamic-frame in-

variance breaking stands. We have implicitly or explicitly stated in our presentation that
the responsible agent was fluid/gravity duality. This view is supported by the explicit ex-
pressions of surface charges (Eqs. (4.16), (4.29), (4.52) and (4.66)), which appear as modes
of the energy–momentum tensor for the relativistic fluid (or its Carrollian descendants), ir-
respective of the chosen velocity field. The breaking then occurs in the structure of the al-
gebra, which is sensitive to the bulk-metric asymptotic behaviour, itself depending on the
boundary-fluid velocity congruence. This reasoning is not a proof, and does not exclude
that relativistic fluids might be, in their own right, globally sensitive to the locally arbitrary
velocity field.29 Furthermore, our discussion has been confined to three bulk dimensions,
where the observed breaking is necessarily global, as opposed to local (in three dimensions
asymptotically AdS or flat translates into locally AdS and Minkowskian). Nothing excludes
a priori that in higher dimension, other obstructions of purely local nature emerge against
the free choice of a relativistic congruence. The possible breakdown of the Landau–Lifshitz-
frame paradigm has been quoted indeed for three-dimensional fluids in [42], in relation with
the entropy current. No general concrete results are available at present though, and these
questions remain relevant both for fluid dynamics and for the subject of fluid/gravity corre-
spondence.

The second important issue concerns the systematic analysis of asymptotic Killing vec-
tors and conserved charges for the fall-offs suggested by the derivative expansion. This ques-
tion is valid in both anti-de Sitter (Eq. (3.1), or the further restricted versions presented in
Sec. 3.1) and flat spacetime (Eq. (3.14) and other realizations in Sec. 3.2). In this respect, one
should remind that the investigation of fall-off conditions generalizing Brown–Henneaux’s
was carried in Refs. [37, 43–45]. Finding solutions to Einstein’s equations obeying these
more general asymptotic behaviours, i.e. standing beyond Bañados or Barnich–Troessaert,
persists, and is worth pursuing in our framework (see the comment after Eq. (3.11) and
Ref. [46]). In parallel, the Ricci-flat case calls for a deeper Hamiltonian understanding of the
charges within the appropriate intrinsic Carrollian setup recently developed in [47].

This latter comment opens Pandora’s box for Carrollian physics, i.e. physics in the ultra-
relativistic regime, which is generally unexplored in a systematic fashion. Our study of
Sec. 2.2, and Eqs. (2.106)–(2.109) in particular, exhibit the dynamics of two-dimensional
ultra-relativistic fluids. It is remarkable that these physical systems are dual to Ricci-flat
spacetimes. Equation (3.1) is instrumental in setting this duality: it starts from the ordinary
relativistic regime and reaches the Carrollian limit, from the gravitational side, as a Ricci-
flat limit. This formalism is expected to have genuine physical applications in many-body
one-dimensional systems – and beyond one space dimension, as discussed in [11].

29Changing hydrodynamic frame is a gauge transformation. As such, it can affect global properties.

37



Last and aside from the interplay between gravity and fluids, a purely hydrodynamic
issue was also discussed, which remains puzzling: the entropy current. No microscopic
definition or closed expression exist and this object is usually constructed order-by-order in
the derivative expansion, physically restricted to comply with fundamental laws. In rela-
tivistic systems, this current is expected to be hydrodynamic-frame invariant, by essence of
this invariance. Hence, any obstruction to the existence of such a frame-invariant current
might dispute or hamper the freedom of choosing at wish the fluid velocity field. In two di-
mensions, we have the possibility to implement frame invariance exactly and we proposed
a closed expression, which however is not unique and deserves further investigation. One
should understand whether and why this is the proper choice, and possibly wonder if it pro-
vides a helpful guideline for handling the entropy current in systems of dimension higher
than two. Ultimately, in the spirit of considering its Carrollian limit, one should try to give a
meaning to entropy in ultra-relativistic systems.
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Abstract

We show that the geometry of a black hole horizon can be described as a Carrollian
geometry emerging from an ultra-relativistic limit where the near-horizon radial coor-
dinate plays the role of a virtual velocity of light tending to zero. We prove that the
laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour
equations, are Carrollian conservation laws obtained by taking the ultra-relativistic limit
of the conservation of an energy–momentum tensor; we also discuss their physical in-
terpretation. We show that the vector fields preserving the Carrollian geometry of the
horizon, dubbed Carrollian Killing vectors, include BMS-like supertranslations and su-
perrotations and that they have non-trivial associated conserved charges on the horizon.
In particular, we build a generalization of the angular momentum to the case of non-
stationary black holes. Finally, we discuss the relation of these conserved quantities to
the infinite tower of charges of the covariant phase space formalism.

ar
X

iv
:1

90
3.

09
65

4v
2 

 [
he

p-
th

] 
 7

 M
ay

 2
02

0



Contents

1 Introduction 1

2 Near-horizon geometry and dynamics 3

2.1 Intrinsic and extrinsic geometry of the horizon . . . . . . . . . . . . . . . . . 3

2.2 Raychaudhuri and Damour equations . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Bulk symmetries and associated charges . . . . . . . . . . . . . . . . . . . . 6

3 Near-horizon or ultra-relativistic limit 9

3.1 Carrollian geometry: Through the Looking-Glass . . . . . . . . . . . . . . . 9

3.2 Horizon dynamics as ultra-relativistic conservation laws . . . . . . . . . . . . 11

3.3 Conserved charges on the horizon . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Perspectives 17

1 Introduction

In the membrane paradigm formalism [1–3], the black hole event horizon is seen as a two-
dimensional membrane that lives and evolves in three-dimensional spacetime. This viewpoint
was originally motivated by Damour’s seminal observation that a generic black hole horizon is
similar to a fluid bubble with finite values of electrical conductivity, shear and bulk viscosity
[4–6]. It was moreover shown that the equations governing the evolution of the horizon take
the familiar form of an Ohm’s law, Joule heating law, and Navier-Stokes equation. The
membrane paradigm developed by Thorne and Macdonald for the electromagnetic aspects,
and by Price and Thorne for gravitational and mechanical aspects, combines Damour’s results
with the 3 + 1 formulation of general relativity, where one trades the true horizon for a
2+1-dimensional timelike surface located slightly outside it, called “stretched horizon” or
“membrane”. The laws of evolution of the stretched horizon then become boundary conditions
on the physics of the external universe, hence making the membrane picture a convenient
tool for astrophysical purposes. In order to derive the evolution equations of the membrane,
a crucial step in [3] was to renormalize all physical quantities (energy density, pressure, etc)
on the membrane, as they turned out to be divergently large as one approaches the real
horizon. We will show that a better approach to this issue is to interpret the near-horizon
limit as an ultra-relativistic limit for the stretched horizon, where the radial coordinate plays
the role of a virtual speed of light. This ultra-relativistic limit results in the emergence of
Carrollian physics at the horizon.

The Carroll group was originally introduced in [7] as an ultra-relativistic limit of the
Poincaré group where the speed of light is tending to zero (as opposed to the more familiar
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non-relativistic limit leading to the Galilean group). Recently, there has been a renewed
interest in Carrollian physics due to its relation to asymptotically flat gravity. The symmetry
group of asymptotically flat spacetimes is the Bondi-Metzner-Sachs (BMS) group; it is an
infinite-dimensional extension of the Poincaré group, and its connection with soft theorems
has shead a new light on the infrared structure of gravitational theories [8]. Interestingly,
the BMS group was also shown to be isomorphic to a conformal extension of the Carroll
group in [9], while the dynamics of asymptotically flat spacetimes has been rephrased in
terms of ultra-relativistic conservations laws on null infinity [10]. This leads to think that
theories holographically dual to asymptotically flat gravity should be ultra-relativistic and
enjoy a Carrollian symmetry [11]. Actually, it is now understood that any null hypersurface is
endowed with a Carrollian geometry1 [10,12–16] and that the associated constraint equations
are ultra-relativistic conservation laws [17]. The aim of this paper is to give a complete
analysis of this statement at the level of another physically interesting null hypersurface, the
horizon of a black hole. The Carrollian symmetry emerging at the horizon was also used
in [18] to explain the vanishing of Love numbers for the Schwarzschild black hole.

The recent focus on the symmetries of near-horizon geometries has been motivated by the
fact that they exhibit, in some instances, a BMS-like algebra composed of supertranslations
and superrotations [19–32]. Moreover, one can associate non-trivial charges to these large
diffeomorphisms: they generate the so-called soft hair on black holes [22–25], which were
pointed out to have implications for the information paradox. We will show that this rich
symmetry structure is in fact naturally encoded in the Carrollian geometry of the horizon. To
do so, we will interpret the near-horizon limit as an ultra-relativistic limit, where the radial
coordinate ρ plays the role of a virtual speed of light for constant ρ hypersurfaces. This
will allow to define proper, rather than ad hoc, finite quantities on the horizon. Moreover,
we will prove that the laws governing the dynamics of the black hole horizon are Carrollian
conservation laws. These are the ultra-relativistic equivalent of the conservation of an energy–
momentum tensor. Through the near-horizon analysis, we will derive the isometries of the
induced Carrollian geometry on the horizon and show that they include supertranslations
and superrotations. We will also construct associated conserved charges; in particular, the
one associated with superrotations will provide a generalization of the angular momentum
for very generic non-stationary black holes. Finally, the relation of these conserved quantities
to the charges of the covariant phase space formalism will also be discussed.

The paper is organized as follows: in Sec. 2, we introduce a suitable coordinate system
for the study of near-horizon geometries. We define the intrinsic and extrinsic objects of
the horizon and write the constraint equations governing the dynamics, i.e. the null Ray-
chaudhuri and Damour equations. We then review the set of vector fields preserving the
near-horizon metric and the derivation of their associated surface charges defined in the co-
variant phase space formalism. In Sec. 3, we present the Carrollian geometry associated
with the black hole horizon. By identifying the radial coordinate ρ as the square of a virtual
speed of light for constant ρ hypersurfaces, we interpret the near-horizon limit (ρ→ 0) as an
ultra-relativistic limit and compute the horizon Carrollian geometric fields. We then define

1Carrollian geometry is the degenerate geometry that one obtains when taking the ultra-relativistic limit
of a Lorentzian metric. It is composed of a non-degnerate metric on spatial sections and a transverse vector
field that corresponds to the time direction.
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the energy–momentum tensor associated with a constant ρ hypersurface in terms of its ex-
trinsic curvature. The analysis of its scaling w.r.t. the radial coordinate allows us to define
the Carrollian momenta which are the ultra-relativistic equivalent of the energy–momentum
tensor. We give a physical interpretation of those quantities in terms of energy density, pres-
sure, heat current and dissipative tensor. Ultra-relativistic conservation laws are written in
terms of the Carrollian momenta and are shown to match perfectly the null Raychaudhuri
and Damour equations. Finally, we consider the Killing fields which preserve the Carrollian
geometry induced on the horizon and construct associated conserved charges. The latter
provides a generalization of the angular momentum for non-stationary black holes. We ex-
tend this analysis to conformal Killing vectors of the Carrollian geometry and show that the
charges are now conserved provided a conformal state equation involving the energy density
and the pressure is satisfied. We also write an interesting relation between these conserved
charges and the one obtained in the covariant phase space formalism. We conclude in Sec. 4
with a discussion of open questions.

2 Near-horizon geometry and dynamics

In this section, we describe the near-horizon geometry of a black hole and its dynamics.
To do so, we introduce a coordinate system adapted to the study of the spacetime geometry
near a null hypersurface. This will allow us to define the intrinsic and extrinsic geometry
of the horizon. The projection of Einstein equations on the horizon gives rise to two con-
straint equations on the extrinsic geometry, the null Raychaudhuri equation and the Damour
equation. These are the constraints that we ultimately want to interpret as ultra-relativistic
conservation laws. Finally, we turn to the asymptotic symmetries preserving the form of
the near-horizon geometry we have introduced, and present the associated charges computed
through the covariant phase space formalism. They have the particularity of being generically
non-integrable.

2.1 Intrinsic and extrinsic geometry of the horizon

We consider a D-dimensional spacetime whose coordinates are xa = (xα, xA), with xα =
(v, ρ) where v is the advanced time and ρ the radial coordinate. The surfaces of constant v
and ρ are (D − 2)-dimensional spheres Sv,ρ and parametrized by xA (A = 3, · · · , D), the set
of all these angular coordinates will be denoted x. Throughout the paper, when we refer to
spatial objects, it will be with respect to the angular coordinates. The constant v surfaces
are null, and constant ρ are timelike. Finally, we assume the existence of a horizon H sitting
at ρ = 0.

It is alway possible to find a coordinates system, usually called null Gaussian coordinates,
such that the near-horizon geometry is given by [33]2

ds2 = −2κρdv2 + 2dρdv + 2θAρdvdx
A + (ΩAB + λABρ)dxAdxB +O(ρ2), (2.1)

2See also [34], p. 48 for a review.

3



Figure 1: The horizon is a null hypersurface situated at ρ = 0 and Σρ is a timelike constant ρ
hypersurface near the horizon. We define also four vectors that are useful for our analysis, the
null vector ~L is the normal to the horizon while ~N is transverse but also null. The spacelike
vector ~n is the normal to Σρ and the timelike vector ~̀ is the normal to a constant v section
of Σρ.

where κ, ΩAB, λAB, θA in principle depend on the coordinates x and v. The spatial metric ΩAB

will be used to raise and lower spatial indexes. We will sometime refer to the D-dimensional
spacetime as the bulk.

There are now two types of geometrical objects we can define on H: the first ones are
intrinsic and the others extrinsic. In a Hamiltonian perspective, they are canonical conjugate
of each other. Moreover, the canonical momenta satisfy constraint equations that are imposed
by the gravitational dynamics [35,36]. The induced geometry on H is degenerate and reads

ds2H = 0 · dv2 + 0 · dvdxA + ΩABdx
AdxB, (2.2)

the intrinsic geometry being then entirely specified by the spatial metric in this gauge. We
now perform a decomposition of the bulk metric adapted to the study of null hypersurfaces:

gab = qab + LaNb +NbLa, (2.3)

where
~L = La∂a = ∂v − ρθA∂A + κρ∂ρ and N = Nadx

a = dv, (2.4)

are respectively a null vector and a null form. They satisfy N(~L) = 1 and will allow us to
define all the extrinsic curvature elements of H. The vector ~L coincides with the normal to
the horizon on H, and has the particularity of being also tangent to the horizon. On the
other hand the vector ~N ≡ g−1(N) is transverse to the horizon and together with ~L they
define qab, the projector perpendicular to ~L and ~N . In his work [5, 6], T. Damour maps the
black hole dynamics to the hydrodynamics of a fluid living on the horizon, and the vector
~L defines the fluid’s velocity through ~LH = ∂v + vA∂A. We have vA = 0, as we have chosen

4



comoving coordinates, i.e., in Damour’s interpretation the fluid would be at rest but on a
dynamical surface3.

The extrinsic geometry of the horizon is captured by a triple (ΣAB, ωA, κ̃) where ΣAB is
the deformation tensor (or second fundamental form), ωA is the twist field (Hajicek one-form)
and κ̃ the surface gravity, defined as follows:

ΣAB =
1

2
qaAq

b
BL~Lqab, ωA = qaA(NbDaLb) and LbDbLa = κ̃La, (2.5)

where L denotes the Lie derivative, and Da is the Levi-Civita associated with gab. Using the
bulk metric (2.1), these quantities become on H

ΣAB =
1

2
∂vΩAB, ωA = −1

2
θA and κ̃ = κ. (2.6)

We see that κ really plays the role of the surface gravity and that θA is proportional to
the twist. The deformation tensor gives rise to two new extrinsic objects: its trace and its
traceless part, which are respectively the horizon expansion and the shear tensor:

Θ = ΩABΣAB = ∂v ln
√

Ω,

σAB =
1

2
∂vΩAB −

Θ

D − 2
ΩAB,

(2.7)

where
√

Ω is the volume form of the spatial metric. The scalar expansion Θ measures the
rate of variation of the surface element of the spatial section of H.4 It is possible to show,
under the assumption that matter fields satisfy the null energy condition and that the null
Raychaudhuri equation (see next section) is satisfied, that Θ is positive everywhere on H,
which implies that the surface area of the horizon can only increase with time (see e.g. [37]).

2.2 Raychaudhuri and Damour equations

Those quantities being defined, we can deduce from Einstein equations two conservation
laws (or constraint equations) that belong to H: the null Raychaudhuri equation [38] and
Damour equation [5, 6], which are respectively

LaLbRab = 0 and qaAL
bRab = 0; (2.8)

they are thus given by projections of vacuum Einstein equations on the horizon. The first
one is scalar and the second one is a vector equation w.r.t. the spatial section of H. Using
the near-horizon geometry (2.1), the null Raychaudhuri equation becomes

∂vΘ− κΘ +
Θ2

D − 2
+ σABσ

AB = 0, (2.9)

3As pointed out in [3], one can always set vA = 0, namely the spatial coordinates xA can always be taken
to be comoving, except at caustics.

4By definition, a non-expanding horizon has Θ = 0.
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where σAB = ΩACΩBDσCD. This equation describes how the expansion evolves along the null
geodesic congruence ~L and is a key ingredient in the proofs of singularity theorems. Damour
equation5 becomes

(∂v + Θ) θA + 2∇A

(
κ+

D − 3

D − 2
Θ

)
− 2∇Bσ

B
A = 0, (2.10)

where ∇A is the Levi-Civita connection associated with ΩAB. Damour has interpreted this
last equation as a (D−2)-dimensional Navier-Stokes equation for a viscous fluid; notice that
the fluid velocity is not appearing here because we have chosen a comoving coordinate system
as explained earlier.

It is useful to know what these equations become when considering the conformal gauge,
i.e. when the spatial metric can be written as a conformal factor times a purely spatial
metric:

ΩAB = γ(v,x)Ω̄AB(x). (2.11)

One can check that this is equivalent to asking the shear to be zero. If we make this choice,
Ω̄AB disappears and the two conservation equations read

∂2vγ −
1

2
γ−1(∂vγ)2 − κ∂vγ = 0,

∂vθA + 2∂Aκ+ (D − 3)γ−1∂A∂vγ − (D − 3)γ−2∂Aγ∂vγ +
(D − 2)

2
γ−1θA∂vγ = 0.

(2.12)

In particular, one can verify that these equations reproduce the field equations studied in [20]
in the D = 3 and D = 4 cases.

2.3 Bulk symmetries and associated charges

We now turn our attention to the bulk symmetries of the near-horizon gauge. The vector
fields χ = χa∂a that preserve the shape of the metric (2.1) were shown in [20] to involve of
a smooth arbitrary function f(v,x), which depends on the advanced time and the sphere
coordinates, and a vector field of the sphere Y A(x); they are given by

χv = f(v,x),

χρ = −∂vfρ+
1

2
θA∂Afρ

2 +O(ρ3),

χA = Y A(x) + ΩAC∂Cfρ+
1

2
λAC∂Cfρ

2 +O(ρ3),

(2.13)

and in any dimension D. We will call them asymptotic Killing vectors even though the gauge
introduced does not involve a notion of infinity. We notice an important feature, which is
that these vector fields projected on the horizon become

χ = f(v,x)∂v + Y A(x)∂A projected on H, (2.14)
5Raychaudhuri and Damour equations are called respectively the “focusing equation” and the “Hajicek

equation” in Price-Thorne [3]. The tidal-force equation expresses components of the Weyl tensor in terms of
the evolution of the shear, and will not play a role here.
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and as f and Y A are totally generic for the moment, this is exactly the infinitesimal version
of a particular type of diffeomorphisms on the horizon that we will define in Sec. 3: the
Carrollian diffeomorphisms. Following [19, 20], we will call f a supertranslation and Y A a
superrotation. They act on the horizon fields in the following way:

δχκ = Y A∂Aκ+ ∂v(κf) + ∂2vf,

δχΩAB = f∂vΩAB + LY ΩAB,

δχθA = LY θA + f∂vθA − 2κ∂Af − 2∂v∂Af + ∂vΩAB∂
Bf,

δχλAB = f∂vλAB − λAB∂vf + LY λAB + θA∂Bf + θB∂Af − 2∇A∇Bf.

(2.15)

To each of these vector fields preserving the near-horizon metric, one can associate a surface
charge through the covariant phase space formalism [39].6 More precisely, the quantity which
is constructed at first is not a charge, but rather the field-variation of a charge (namely a
one-form in the configuration space). For an on shell metric g and variation h ≡ δg, it is
given by:

δ/Qχ[g, h] =

∮

Sv,ρ

kχ[g, h], (2.16)

where χ is an asymptotic Killing vector and kχ[g, h] is a one-form w.r.t. the field configuration
space but a (D − 2)-form w.r.t. the spacetime. It is defined as follows:7

kχ[g, h] =

√−g
8πG

(dD−2x)ab

(
χa∇ch

bc − χa∇bh+ χc∇bhac +
1

2
h∇bχa − hcb∇cχ

a

)
, (2.17)

where h = gabhab and (dD−2x)ab = 1
2(D−2)!εabc1...cD−2

dxc1 ∧ . . . ∧ dxcD−2 . The δ/ is a notation
that emphasizes the fact that the charges (2.16) are a priori non-integrable (namely not δ-
exact). In the integrable case, Qχ represents the generator of the associated infinitesimal
transformation χ. Computing δ/Q[g, h] for the metric written in the horizon gauge (2.1),
the associated preserving vector fields (2.13) and integrated on a spatial section of H, one
obtains [20]:

δ/Q(f,Y A)[g, δg] =
1

16πG

∮

SD−2

dD−2x

(
2fκδ

√
Ω + 2∂vfδ

√
Ω− 2f

√
ΩδΘ +

1

2
f
√

Ω∂vΩABδΩ
AB

− Y Aδ(θA
√

Ω)

)
.

(2.18)
We can see that these charges are not integrable in full generality, due to the presence of
the three following terms: 2f

√
ΩδΘ, 2fκδ

√
Ω and 1

2
f
√

Ω∂vΩABδΩ
AB. The authors of [20]

circumvent this issue by restricting the phase space to the configurations where κ is a constant.
They also use the fact that they work in four dimensions to choose a spatial metric related
to the usual metric on the 2-sphere by a Weyl transformation. We would like instead for the
moment to keep all possible dependencies of the fields.

6See also [40] for a pedagogical introduction to this formalism.
7There is actually an ambiguity in this definition (see [40]), as one can add to the definition of kχ[g, h] the

term α
√−g
16πG (dD−2x)ab

(
hcb∇aχc + hcb∇cχa

)
, where α is any constant. But one can show that for the metric

and vector fields at hand, this term vanishes when evaluated on the horizon.
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When surface charges are non-integrable, there is still a way to obtain a representation of
the asymptotic Killing algebra through the definition of a modified bracket [41]. To do so,
we split δ/Qχ into an integrable part Qint

χ and a non-integrable part Ξχ:

δ/Qχ[g, δg] = δ(Qint
χ [g]) + Ξχ[g, δg], (2.19)

where

Qint
χ [g] =

1

16πG

∮

SD−2

dD−2x
√

Ω

(
2fκ+ 2∂vf −

2

D − 2
fΘ− Y AθA

)
, (2.20)

and
Ξχ[g, δg] = − 1

8πG

∮

SD−2

dD−2x
√

Ω f

(
δκ+

D − 3

D − 2
δΘ− 1

2
σABδΩ

AB

)
. (2.21)

From this splitting8 we can see directly why, for three-dimensional bulk spacetimes, the
condition δκ = 0 considered in [20] was sufficient to insure integrability of the charges (the
shear vanishes by definition and the factor (D− 3) cancels the contribution of the expansion
in (2.21)). We now define the following modified Dirac bracket

{Qint
χ [g], Qint

η [g]}∗ ≡ δηQ
int
χ [g] + Ξη[g,Lχg]. (2.22)

It was first introduced in [41] for the study of the BMS charges in four dimensions, which
are also generically non-integrable. They also noticed that the splitting is not unique in the
sense that for some Nχ[g] we can always choose

Q̃int
χ = Qint

χ −Nχ with Θ̃χ + δNχ. (2.23)

However, we will see that the separation (2.20), (2.21) we have chosen happens to be rele-
vant in the Carrollian anaysis that we perform in Sec. 3. This modified bracket defines a
representation of the asymptotic Killing algebra: indeed, letting (f1, Y

A
1 ) and (f2, Y

A
2 ) to be

two asymptotic Killing fields, one can show that

{Qint
(f1,Y A1 ), Q

int
(f2,Y A2 )}∗ = Qint

(f12,Y A12)
, (2.24)

where f12 = f1∂vf2− f2∂vf1 +Y A
1 ∂Af2−Y A

2 ∂Af1 and Y A
12 = Y B

1 ∂BY
A
2 −Y B

2 ∂BY
A
1 . We notice

that this algebra does not involve any central extension. A direct consequence of (2.24) is
that the non-integrable part of the charges plays the role of a source for the non-conservation
of Qint. Indeed choosing (f2, Y

A
2 ) to be (1, 0) we obtain

δ(1,0)Q
int
χ [g] +Qint

(∂vf,0)[g] = −Ξ(1,0)[g,Lχg], (2.25)

moreover δ(1,0) acts like a time derivative on the fields (2.15), so we finally obtain

d

dv
Qint
χ [g] = −Ξ(1,0)[g,Lχg]. (2.26)

8This splitting coincides with expression obtained in [36] in the Hamiltonian framework, while another
splitting was considered in [20] for the case κ = cst.
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3 Near-horizon or ultra-relativistic limit

One of the particularity of null hypersurfaces is that they are equipped with a degenerate
induced metric Ω in the sense that there exists a vector field ~u that belongs to its kernel:

Ω(., ~u) = 0. (3.1)

In the case of the horizon described above, Ω = ΩAB(v,x)dxAdxB and ~u = f(v,x)∂v, for any
function f on H. It was understood, for example in [13,14,18], that this defines a Carrollian
geometry, the natural non-Riemannian geometry that ultra-relativistic theories couple to.
This means that any null hypersurface can be thought of as an ultra-relativistic spacetime.
In particular, for the near-horizon geometry presented above, we are going to show that the
limit ρ → 0, can be understood as an ultra-relativistic limit where √ρ plays the role of
a virtual velocity of light c. Notice that this parameter should not be confused with the
physical velocity of light of the bulk spacetime that is set to 1 in (2.1).

This feature has strong consequences on the dynamics of the horizon, i.e. the null Ray-
chaudhuri and Damour equations: indeed, we will show that they match ultra-relativistic
conservation laws written in terms of the Carrollian geometry and the Carrollian momenta,
sort of ultra-relativistic equivalent of the energy–momentum tensor.

Finally, we will study the symmetries and charges associated with the horizon that we in-
terpret as Carrollian Killing, defined as the vector fields onH that preserve the Carrollian ge-
ometry. In some instances, the symmetry algebra will be shown to have a BMS-like structure
in the sense that it includes superrotations and supertranslations on the horizon [19,20,32].

3.1 Carrollian geometry: Through the Looking-Glass

Carrollian geometry emerges from an ultra-relativistic (c → 0) limit of the relativistic
metric and was shown to have a rich mathematical structure and interesting dynamics [7,
9, 10, 12, 13, 16, 42]. It was shown in [10, 16] that the c → 0 limit of relativistic general-
covariant theories is covariant under a subset of the diffeomorphisms dubbed Carrollian
diffeomorphisms

v′ = v′(v,x) , x′ = x′(x), (3.2)

whose infinitesimal version is given by the vector fields

ξ = f(v,x)∂v + Y A(x)∂A, (3.3)

for any f and Y A. This suggests that space and time decouple and an adequate parametriza-
tion to study the ultra-relativistic limit is the so-called Randers–Papapetrou parametrization,
where the metric is decomposed as9

a =

(
−c2α2 c2αbA
c2αbB ΩAB − c2bAbB

)

{dv,dxA}
−→
c→0

ΩABdx
AdxB. (3.4)

9Any spacetime metric can be parametrized in that way.
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After the limit is performed, one thus trade the metric a for α(v,x) the time lapse, bA(v,x) the
temporal connection, and ΩAB(v,x) the spatial metric. These functions define the Carrollian
geometry and one can check that they transform covariantly under Carrollian diffeomor-
phisms (see Sec. 2 of [10] for a complete presentation). Out of the Carrollian geometry, one
can build the following first-derivative quantities:

ϕA = α−1(∂vbA + ∂Aα),

β = α−1∂v ln
√

Ω,

ξAB = α−1
(

1

2
∂vΩAB −

ΩAB

D − 2
∂v ln

√
Ω

)
,

ωAB = ∂[AbB] + α−1(b[A∂B]α + b[A∂vbB]);

(3.5)

they are respectively, the Carrollian acceleration, expansion, shear and vorticity. They also
transform covariantly under Carrollian diffeomorphisms, and will play an important role in
the Carrollian conservation laws we will discuss in the next section.

Let us come back to the black hole near-horizon metric (2.1). On each constant ρ hyper-
surface, called Σρ in Fig. 1, it induces a Lorentzian signature metric that becomes degenerate
when taking the near-horizon limit:

a = ds2ρ=cst =

(
−2ρκ ρθA
ρθB ΩAB + ρλAB

)

{dv,dxA}
−→
ρ→0

ΩABdx
AdxB. (3.6)

If we now compare this induced metric with the Randers–Papapetrou one, we are tempted
to make the following identifications:10

c2 = ρ, α =
√

2κ, and bA =
θA√
2κ
. (3.7)

We thus identify the radial coordinate with the square of a virtual speed of light for the
Lorentzian spacetime Σρ. As the horizon is located at ρ = 0, it is an ultra-relativistic
spacetime endowed with a Carrollian geometry given in terms of the surface gravity, the
twist and the induced spatial metric ΩAB. After this identification, we can re-express the
first-derivative Carrollian tensors (3.5) in terms of the extrinsic geometry of the horizon (2.6):

ϕA =
1

2κ

(
∂Aκ+ ∂vθA −

θA
2κ
∂vκ

)
,

β =
Θ√
2κ
,

ξAB =
1√
2κ
σAB,

ωAB =
1

2

(
∂AθB√

2κ
+

2θA∂Bκ+ θA∂vθB
(2κ)3/2

)
− (A↔ B).

(3.8)

We notice that the Carrollian expansion and the Carrollian shear are proportional respectively
to the expansion and the shear of the horizon defined extrinsically in Sec. 2.1.

10One notices that, following this identification, we should also have λAB = −bAbB , which becomes λAB =
− θAθB2κ . This would then impose a constraint on the near-horizon geometry, but we will actually not have to
do that as λAB will always appear at subleading order in the equations we are going to consider.
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3.2 Horizon dynamics as ultra-relativistic conservation laws

We now turn our attention to the gravitational dynamics of the horizon. Consider again
the hypersurface Σρ near ρ = 0. Its unit normal is given by

n =
dρ√
2κρ

, (3.9)

and allows us to define the extrinsic curvature and the momentum conjugate to the induced
metric:

Tab =
1

8πG
(Kaab −Kab), (3.10)

where Ka
b = acbDcna is the extrinsic curvature of Σρ, K = Ka

a its trace and aab = gab − nanb
is the projector on the hypersurface perpendicular to n.11 This hypersurface is sometimes
referred to as the stretched horizon or membrane, while Tab is called the “membrane energy–
momentum tensor” [2, 3, 28].12 Einstein equations ensure that it is conserved:

∇̄jT
ji = 0, (3.11)

where the index i refers to {v,x}, and ∇̄i is the Levi-Civita connection associated with
the induced metric (3.6). The membrane is then interpreted as a fluid whose equations of
motion are given by this conservation law. One notices that (3.11) describes the dynamics
of a relativistic fluid that lies in the (D − 1)-dimensional spacetime given by the constant ρ
hypersurface and equipped with the metric a. We are going to show that, to obtain the null
Raychaudhuri (2.9) and Damour equations (2.10), one has to take the near-horizon limit of
this conservation law which, at the level of the fluid, is interpreted as an ultra-relativistic
limit through the identification ρ = c2.

Using (2.1), we compute the membrane energy–momentum tensor near the horizon,

8πGT vv =
Θ

2
√

2(ρκ)
3
2

+O(1/
√
ρ),

8πGT vA = − 1

2
√

2ρκ3/2
(
∂Aκ+ θA(κ+ Θ)

)
+O(

√
ρ),

8πGTAB = − 1√
2ρκ

(
ΩAB(κ+ Θ− ∂vκ

2κ
) +

1

2
∂vΩ

AB

)
+O(

√
ρ).

(3.12)

We now decompose T ij into the Carrollian momenta, which are defined such that they are
independent of the speed of light and covariant under Carrollian diffeomorphisms [10],

8πGT vv = c−3α−2E +O(c−1),

8πGT vA = c−1α−1(πA − 2bBAAB) +O(c),

8πGTAB = −2c−1AAB +O(c),

(3.13)

11The projector aab coincides with (3.6) when one consider its {v,A} components only.
12In those papers, the approach is to study this membrane energy–momentum tensor for a small ρ and use

it to define the fluid quantities like the energy density, the pressure, etc. The problem is that those quantities
diverge when ρ is sent to zero. Their solution is to rescale them by hand to obtain finite quantities. We
propose another approach and define the Carrollian momenta that are finite on the horizon and well suited
for the ultra-relativistic interpretation.
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with E a scalar, πA a spatial vector and AAB a spatial symmetric 2-tensor. They are the ultra-
relativistic equivalent of an energy–momentum tensor. They can be thought of respectively as
the energy density, the heat current and the total stress tensor. The latter can be decomposed
into its trace and traceless part

AAB = −1

2

(
PΩAB − ΞAB

)
, (3.14)

which are interpreted respectively as the pressure and the dissipative tensor.

Comparing (3.12) with (3.13), we read the following Carrollian momenta:

E =
1√
2κ

Θ,

P = − 1√
2κ

(
κ+

D − 3

D − 2
Θ− ∂vκ

2κ

)
,

ΞAB = − 1√
2κ
σAB,

πA = −1

2

(
∂Aκ

κ
+
θB

2κ
∂vΩBA +

θA
2κ2

∂vκ

)
.

(3.15)

We have obtained that the energy density is proportional to the expansion of the horizon.
The pressure is related to the combination

µ = κ+
D − 3

D − 2
Θ, (3.16)

which is referred to in [36] as the “gravitational pressure” and receives corrections from the
time evolution of the surface gravity. The dissipative tensor is proportional to the shear of
the horizon (2.7). The heat current πA is harder to interpret but we notice that it receives a
contribution from the gradient of κ, which can be thought of as a local temperature on the
black hole horizon (see the discussion at the end of [31]).

These Carrollian momenta satisfy conservation equations that are given by the ultra-
relativistic (i.e. near-horizon) limit of the energy–momentum conservation (3.11).13 Using
the decompositions for the metric (3.4) and the energy–momentum tensor (3.13), we obtain:

(
α−1∂v + β

)
E − AABα−1∂vΩAB = 0,

2
(
∇̂A + ϕA

)
AAB − EϕB −

(
α−1∂v + β

)
πB = 0.

(3.17)

These equations14 are covariant w.r.t. Carrollian diffeomorphisms, in the sense that the first
one transforms like a scalar and the second one like a spatial vector and they are independant
of c (or ρ, the radial coordinate). We have introduced a new object ∇̂A, which is a Carroll-
covariant derivative:

∇̂Av
B = ∂̂Av

B + γ̂ABCv
C , (3.18)

13This limit was considered for the first time for a relativistic fluid in [16].
14These conservation equations were also shown to reproduce the constraint equations on the null infinity

for asymptotically flat spacetimes in the Bondi gauge, see [10].
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where
∂̂A = ∂A +

bA
α
∂v and γ̂ABC =

1

2
ΩAD

(
∂̂BΩDC + ∂̂CΩDB + ∂̂DΩBC

)
. (3.19)

If vA transforms like a spatial vector, i.e. v′A = ∂x′A
∂xB

vB under a Carrollian diffeomorphism
(3.2), then ∇̂Av

B will transform like a spatial 2-tensor. One can check that this would not be
the case for the usual Levi-Civita connection associated with ΩAB. The first equation of (3.17)
can be interpreted as a conservation of energy on a curved background, but an exotic one:
indeed, one would expect the gradient of the heat current to appear while here it is absent
even when the heat current is non zero. This feature is a signature of the ultra-relativistic
limit [16].

The main result of this section is that, considering the Carrollian geometry (3.7) and the
Carrollian momenta (3.15) and after a lenghty computation, one can show that the scalar
equation is exactly the null Raychaudhuri equation (2.9) while the spatial one gives the
Damour equation (2.10). This confirms that the dynamics of a black hole is mapped to
ultra-relativistic conservation laws when the near-horizon radial coordinate is identified with
a virtual speed of light.

3.3 Conserved charges on the horizon

Using the results of the previous section we would like now to build conserved charges
associated with the horizon. The idea is to use the techniques we know from relativistic
physics to build charges on a constant ρ hypersurface and then send the radial coordinate
to zero to obtain conserved charges on the horizon. The latter will be conserved on shell
and associated to the symmetries of the induced Carrollian geometry on the horizon. At the
end of this section, we discuss their relationship with the one obtained through the covariant
phase space formalism in Sec. 2.3.

Charges associated to Carrollian Killing fields on the horizon

Consider again the energy–momentum tensor of the membrane (3.10): vacuum Einstein
equations imply that it is conserved:

∇̄jT
ji = 0. (3.20)

It is thus possible to build a conserved current associated with any vector field of Σρ that
satisfies the Killing equation for the induced metric aij:

∇̄iξj + ∇̄jξi = 0, (3.21)

where we recall that ∇̄i is the Levi-Civita associated with a. This current is given by
J i = ξjT

ji; it is conserved
∇̄iJ

i = 0, (3.22)
and allows to build, for any small ρ, a conserved charge w.r.t. the v coordinate:

Qρξ =

∮

Sv,ρ

dD−2x
√
q `iJ

i, (3.23)
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where
qAB = ΩAB + ρλAB +O(ρ2) and ` =

√
2κρ dv +O(ρ

3
2 ), (3.24)

are respectively the induced metric on a spatial section of the constant ρ hypersurface, i.e.
Sv,ρ, and the unit timelike normal to the spatial section in the constant ρ hypersurface, see
Fig. 1.

We are now ready to perform the near-horizon limit of this construction. We consider first
the Killing equation for the vector ξ that we decompose as ξ = f(v,x)∂v + Y A(v,x)∂A. The
zero-ρ limit of (3.21) becomes

∂vY
A = 0,

f∂vκ+ Y A∂Aκ+ 2κ∂vf = 0,

f∂vΩAB +∇AYB +∇BYA = 0.

(3.25)

The first thing to notice is that the near-horizon limit of the Killing equation imposes the
vector field ξ to be Carrollian! Moreover, these three equations have an interesting ge-
ometrical interpretation: indeed, consider the degenerate metric induced on the horizon
Ω = ΩAB(v,x)dxAdxB and the vector field ~v = α−1∂v (where α is given by the identification
(3.7)), they are equivalent to asking

Lξ~v = 0 and LξΩ = 0. (3.26)

Following [13], the triple (H, Ω, ~v) defines a non-Riemannian geometry called weak Carroll
manifold.15 The latter is the natural structure that appears when one wants to study ultra-
relativistic symmetries. Things appear to be consistent: we have considered the symmetries
of the relativistic metric a, i.e. its Killing vector fields, then we have taken the near-horizon
limit, interpreted as an ultra-relativistic limit for ρ = c2, and we obtain the symmetries of
the corresponding Carrollian geometry. These symmetries given by Eq. (3.26) will be called
Carrollian Killing symmetries.

We can also perform the near-horizon limit of the charge (3.23) using the value of the
membrane energy–momentum tensor derived in Sec. 3.2; we obtain

Qρξ −→ρ→0
Cξ =

1

16πG

∮

SD−2

dD−2x
√

Ω

(
−2fΘ− Y A

(
θA +

∂Aκ

κ

))
. (3.27)

This charge is conserved provided that the null Raychaudhuri and the Damour equations are
satisfied and the couple (f, Y A) satisfies the Carrollian Killing equations (3.25). Taking the
trace of the last equation of (3.25) we obtain fΘ = −∇AY

A, therefore the integration on the
sphere of this term vanishes. The charge becomes

Cξ =
−1

16πG

∮

SD−2

dD−2x
√

ΩY A

(
θA +

∂Aκ

κ

)
. (3.28)

This is a sort of generalization of the angular momentum to the case of non-stationary black
holes. We would like indeed to stress that in this formula, ΩAB, κ and θA depend generically

15The Carrollian geometry also involves the temporal connection bA but is does not appear in the definition
of Carrollian Killings.
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on both v and xA, so the conservation of this charge is really non-trivial. Therefore, to any
isometry of the induced Carrollian geometry on the horizon, we have associated a charge that
is conserved on-shell.

When we consider the case κ = cst and ΩAB = Ω̄AB(x), the solutions to the Carrollian
Killing equations are a supertranslation f = T (x) together with a real Killing of the metric
Ω̄AB and if one considers the near-horizon geometry of a Kerr black hole and the spatial
Killing Y = ∂ϕ, this charge reproduces the constant angular momentum J [20].

The conformal case

The same analysis can be carried out for a conformal Killing on the constant ρ hypersurface
Σρ, i.e. a vector ξ that satisfies

∇̄iξj + ∇̄jξi = 2λaij, (3.29)

where λ(v,x) is any function. We can build the same current by projecting ξ on the energy–
momentum tensor. However, if λ 6= 0, the associated charge will be conserved on-shell only
if T ij satisfies the tracelessness condition

T ii = 0. (3.30)

The near-horizon limit of the conformal Killing equation is

∂vY
A = 0,

f∂vκ+ Y A∂Aκ+ 2κ∂vf = 2κλ,

f∂vΩAB +∇AYB +∇BYA = 2λΩAB.

(3.31)

Again, it admits a nice interpretation as the conformal isometries of the weak Carroll manifold
induced on the horizon. Indeed, (3.31) is equivalent to

Lξ~v = −λ~v and LξΩ = 2λΩ, (3.32)

and, according to [13], this is the definition of the level-2 conformal isometries of (H, g, ~v);
we will call them conformal Carrollian Killing vectors. To any conformal Carrollian Killing
ξ we can associate the following charge:

Cξ =
1

16πG

∮

SD−2

dD−2x
√

Ω

(
−2fΘ− Y A

(
θA +

∂Aκ

κ

))
, (3.33)

which is the same as in the previous section, obtained through the near-horizon limit of Qξ.
The only difference is that, if λ 6= 0, this charge will not be generically conserved on-shell. It
is generically conserved only if the near-horizon limit of the tracelessness condition (3.30) is
satisfied, i.e.

S ≡ Θ + κ− ∂vκ

2κ
= 0, (3.34)
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where the function S has been defined through

T ii −→
ρ→0

−1

8πG
√

2κ
√
ρ
S. (3.35)

Asking S to be zero is a non-trivial additional constraint on the surface gravity and the
expansion, that we will call the conformal state equation. Indeed, if we reintroduce the
Carrollian momenta (3.15) we obtain that

S = 0 ⇔ E = (D − 2)P . (3.36)

We recognize the usual state equation satisfied by the energy and the pressure of a conformal
fluid (see [43] or [16]).

We consider now the case κ = cst and ΩAB = Ω̄AB(x), the corresponding Carrollian
Killings are given by

ξ =

(
v

D − 2
∇AY

A + T (x)

)
+ Y A(x)∂A, (3.37)

where T is a supertranslation and Y A is a conformal Killing of Ω̄AB. When the spatial metric
is chosen to be the round metric on SD−2 we obtain the bmsD algebra. The conformal state
equation becomes κ = 0. This constraint is obviously very restricting but actually, in this
particular case, we will not have to impose it to obtain conserved charges. Indeed the charge
Cξ becomes

Cξ =
−1

16πG

∮

SD−2

dD−2x
√

Ω̄Y AθA, (3.38)

and the Damour equation becomes
∂vθA = 0. (3.39)

So, for any value of κ, this charge associated to a conformal Carrollian Killing of the type
(3.37) is manifestly conserved on-shell, but insensitive to the supertranlsation T .

Relationship with the bulk analysis

Finally, in both the non-conformal and conformal case, we can relate Cξ to the integrable
part of the charges obtained through the covariant phase space formalism in Sec. 2.3. Indeed,
consider an asymptotic Killing (f, Y A) (2.13); as already stated in Sec. 2.3, its projection
on the horizon is a generic Carrollian vector field. We can further ask the latter to be
a (conformal-)Carrollian Killing, thus considering the subset of asymptotic Killings whose
projection on the horizon provides an isometry of the induced Carrollian geometry. If we do
so, one can show that

C(f,Y A) = Qint
(f,Y A) −

1

8πG

∮

SD−2

dD−2x
√

ΩfS, (3.40)

where we notice the mysterious appearance of the function S that defines the conformal
state equation (3.36). This equation holds up to boundary terms that are vanishing when
integrated on the sphere and if the couple (f, Y A) satisfies the Carrollian Killing equations
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(3.25) or its conformal version (3.31). This equality is off-shell; if we further impose the
equations of motion and perform a time derivative we obtain

d

dv
Qint

(f,Y A) =
1

8πG

∮

SD−2

dD−2x
√

Ω
[
f∂v + ∂vf −∇AY

A
]
S. (3.41)

We conclude that the non-conservation of Qint
(f,Y A), for (conformal-)Carrollian Killing vectors,

will be sourced by the function S. Therefore we have established a connection between the
conservation of the charges and the conformality of the Carrollian momenta associated with
the horizon. A last remark is that these very compact results are valid for the splitting we
have made in Sec. 2.3 between the integrable and non-integrable part of the charge, it would
be interesting to determine how they get modified under the change of splitting (2.23).

4 Perspectives

This analysis sets an indubitable connection between Carrollian and near-horizon physics,
the main result being that the dynamics of the black hole horizon is given by an ultra-
relativistic conservation law. In the membrane paradigm, the “fluid” describing the horizon
is supposed to satisfy the Damour-Navier Stokes equation, which a priori is a non-relativistic
equation but for a Galilean fluid (i.e. when the speed of light is infinite). We want to
point out that, instead, the fluid behaves more like a Carrollian one. This observation is
emphasized by the fact that the energy conservation satisfied on the horizon seems very
different from the one that a usual Galilean fluid would satisfy, as it does not involve the
gradient of the heat current (see first equation of (3.17)), while it is perfectly interpreted in
terms of an ultra-relativistic energy conservation. All these remarks lead to the conclusion
that the ultra-relativistic approach seems to be more appropriate to the study of horizon
dynamics. In [16], the authors study the ultra-relativistic limit of a relativistic fluid; it would
be interesting to see how this translates in the horizon analysis. One could also study the
thermodynamics of such a fluid, especially its entropy current, and see if we can relate it to
the black hole entropy.

Another question is the role of the function S introduced to define the conformal state
equation. It would be interesting to understand better its status at the level of the charges.
Indeed, the exact same relationship was found in the context of asymptotically flat grav-
ity between the Carrollian charges and the charges obtained through covariant phase space
formalism [10]. In that case, the function S (called σ there) was representing the flux of gravi-
tational radiation through null infinity and was therefore responsible of the non-conservation
of the charges. At the level of the horizon, the function S could have the same kind of
physical interpretation which would be worth clarifying.

Finally, let us mention two other interesting directions. The first one would be to add other
fields to source the bulk energy–momentum tensor and see how this analysis get modified,
in particular their influence on the charges. The second one is the specific case of extremal
black holes. We have not mentioned them in this paper since their study would require strong
modifications in our analysis (for instance, Carrollian momenta for κ = 0 would diverge as
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one can see from (3.15)). The study of Carrollian physics for extremal black holes will be
the subject of future works.
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Abstract

We study the concept of Carrollian spacetime starting from its underlying fiber-bundle structure. The
latter admits an Ehresmann connection, which enables a natural separation of time and space, preserved
by the subset of Carrollian diffeomorphisms. These allow for the definition of Carrollian tensors and
the structure at hand provides the designated tools for describing the geometry of null hypersurfaces
embedded in Lorentzian manifolds. Using these tools, we investigate the conformal isometries of general
Carrollian spacetimes and their relationship with the BMS group.

1 Introduction

The Carroll group was discovered by Lévy-Leblond in 1965 [1] as a dual contraction of the Poincaré group,
operating at vanishing rather than infinite velocity of light. The increasing interest in non-Minkowskian
spacetimes possessing nonetheless boost-like isometries, has led to more systematic studies of Carrollian
constructions. Besides the intrinsic value of the latter (along with Newton–Cartan), the resurgence in the
area has been sustained by the parallel growth of two distinct albeit related fields of application. The first
involves codimension-one null hypersurfaces in Lorentzian i.e., hyperbolic pseudo-Riemannian manifolds.
The second concerns the development of flat holography.

Carroll structures were introduced in [2–4] as alternatives to Riemannian or Newton–Cartan geome-
tries.1 According to these authors, Carroll structures consist of a d+ 1-dimensional manifold C equipped
with a degenerate metric g and a vector field E, which defines the kernel of the metric, i.e. g(E, . ) = 0.
In this definition, the Carroll group emerges as the isometry group of flat Carrollian structures, whereas
general diffeomorphisms are always available. Because of the field E, the Carroll structure defines a natural
separation between time and space, and a subset of diffeomorphisms arises, the Carrollian diffeomorphisms,
which preserves this separation.

Given their defining properties, Carroll structures are expected to arise systematically as geometries
on null hypersurfaces of relativistic spacetimes, because the induced metric inherited from the embedding
is degenerate (see e.g. [6]). There are several notable instances of null hypersurfaces. Generally, null
hypersurfaces occur as components of the boundary of causal diamonds and related structures, relevant in
the study of entanglement. One also finds null hypersurfaces in other important physical situations, such as
black-hole horizons and the hypersurfaces appearing at light-like infinity of asymptotically flat spacetimes
(commonly designated as I±). The latter makes the bridge with asymptotically flat holography, in which
the putative dual degrees of freedom are expected to be defined precisely on this null-infinity hypersurface.

∗Centre de Physique Théorique, Centre National de la Recherche Scientifique, Institut Polytechnique de Paris.
1See also the earlier publication [5] on geometries with degenerate metric.
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In fact, asymptotically flat holography has been probably the first arena of application of Carrollian
physics [7,8], not so much because of the geometric structure the boundary is endowed with (its Carrollian
nature was identified much later), but for the emergence of the BMS symmetry. The BMS group was
discovered in 1962 by Bondi, van der Burg, Metzner and Sachs [9, 10] as the asymptotic isometry group
of asymptotically flat spacetimes towards light infinity, and became popular lately in relation with null
hypersurfaces and flat holography (see e.g. [11, 12]). It was in particular proven [3] that the bms(d + 2)
algebra is isomorphic to the conformal Carroll algebra ccarr(d + 1) for d = 1, 2. This is yet another sign
corroborating the triangle “Carroll–null–BMS”.

The aim of the present work is to revisit this web of relationships and provide an alternative perspective
to some of its aspects. Our analysis follows two paths. On the one hand, we define a Carrollian spacetime
in terms of a fiber bundle accompanied with a Carroll structure. The ingredients are thus an Ehresmann
connection, a degenerate metric and a scale factor,2 all assumed a priori time- and space-dependent.
This provides us with a geometric understanding of the appearance of Carrollian diffeomorphisms and
the reduction of spacetime tensors to Carrollian tensors. Carrollian spacetimes with the above set of
ingredients are also naturally revealed in null embedded hypersurfaces. On the other hand, we discuss
the conformal isometry algebra of general Carrollian spacetimes. In the shearless case (properly defined
shortly), we generally recover the familiar algebra of transformations. In two and three dimensions, the
algebra coincides with BMS, whereas in arbitrary dimension it appears as the semi-direct product of the
conformal isometry group of the metric with supertranslations. The strength of our results resides in their
wide validity for shearless but otherwise arbitrary Carrollian geometries. In the literature there have been
other proposals made for a notion of geometry defined on null embedded hypersurfaces, the “universal
structures”, (see e.g., [15]). Different such proposals may lead to different algebras that preserve the given
structure, with subsequently a potential choice of partial gauge fixing.

2 Carrollian Spacetimes as Fiber Bundles

The Intrinsic Definition

A d + 1-dimensional Carrollian spacetime C is elegantly described in terms of a fiber bundle, with one-
dimensional fibers, and a d-dimensional base S thought of as the space, the fiber being the time. As usual,
the bundle structure provides a projection π : C → S, which defines in turn a surjective linear map between
the corresponding tangent bundles, dπ : TC → TS. It is convenient to choose a local coordinate system
x = {t,x} such that the action of the projector simplifies to π : (t,x) → x, that is, t is the fiber coordinate.

One can define a vertical subbundle as V = ker(dπ). The above coordinate set has been chosen such
that V is given by all sections of TC proportional to ∂t (vectors of the vertical tangent subspace V(t,x) are
of the form W t∂t). In order to split the tangent space T(t,x)C into a direct sum of vertical and horizontal
components, V(t,x) ⊕H(t,x), smooth everywhere i.e. valid for the tangent bundle, TC = V ⊕H, one needs
an Ehresmann connection. With this connection, the linear map dπ restricted to H(t,x) sets a one-to-
one correspondence between H(t,x) and TxS. This allows to lift vertically vectors W = W i∂i ∈ TxS to
W̄ = W iEi ∈ H(t,x), where

Ei = ∂i + bi∂t, i = 1, . . . , d (1)

provide a basis forH(t,x). The Ehresmann connection is encoded in the one-form field bbb = bi(t,x)dx
i ∈ T ∗C.

The Ehresmann connection has many facets. On the one hand, it provides a lift of curves in S onto
curves in C such that the tangent vectors to the latter are horizontal. On the other hand, it makes it
possible to realize the splitting TC = V ⊕H through the definition of the projector p acting on TC with

2Note that these ingredients all appear within the context of Carrollian fluids and the fluid-gravity correspondence, as in
Refs. [13,14].
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image V and kernel H:
p = ∂t ⊗ (dt− bi(t,x)dx

i). (2)

We will call the fiber bundle C a Carrollian spacetime, once endowed with a degenerate metric g whose
one-dimensional kernel coincides with the vertical subbundle V :

g(X, . ) = 0, ∀X ∈ V. (3)

In the local coordinate system this imposes the metric be of the form

g = gij(t,x) dx
i ⊗ dxj . (4)

providing a time-dependent notion of distances.
At this point of the presentation, it is worth mentioning that the triple (C, V, g) corresponds to the

definition of a weak Carrollian structure given in [2]. Together with this triple, the Ehresmann connection
defines a Leibnizian structure [16–18]. From the spacetime viewpoint, the fiber-bundle structure and the
accompanying Ehresmann connection are the key ingredients for the intrinsic horizontal versus vertical
splitting of the tangent bundle, and more generally of any tensor bundle.

The coordinate system {t,x} is adapted to the splitting at hand, as is any new chart obtained through
the transformation

t 7→ t′(t,x) and x 7→ x′(x). (5)

The motivation for introducing the fiber-bundle structure is, among others, to make these diffeomorphisms
natural, being a reparameterization of the fiber coordinate at each spatial point and a change of coordinates
on the base, respectively. With this, the Jacobian matrix Jµ

ν = ∂x′µ
∂xν is upper triangular:

(
J(t,x) Ji(t,x)

0 J j
i (x)

)
, (6)

since

dt′ = J(t,x)dt+ Ji(t,x)dx
i, dx′j = J j

i (x)dx
i, (7)

or equivalently

∂t = J(t,x)∂′
t, ∂i = Ji(t,x)∂

′
t + J j

i (x)∂
′
j . (8)

These diffeomorphisms were called Carrollian in [13]. Every spacetime tensor field can be decomposed
intrinsically into vertical and horizontal components, the latter transforming tensorially under Carrol-
lian diffeomorphisms. These components are the Carrollian tensors introduced in [13]. An example of
Carrollian tensor is the degenerate metric (4), whose components transform as

g′ij = J−1k
i J

−1ℓ
jgkℓ (9)

i.e., as a rank-(0, 2) Carrollian tensor field. In order to maintain p in Eq. (2) invariant, the components of
the Ehresmann connection must transform as:

b′j = J−1i
j (Jbi + Ji) . (10)

For reasons that will become clear in the course of the paper, it is convenient to introduce a density
Ω(t,x), transforming under Carrollian diffeomorphisms as:3

Ω′(t′,x′) = J(t,x)−1Ω(t,x). (11)

3Observe that bbb transforms as a Carrollian connection density. Strictly speaking, the Ehresmann connection is thus bbbΩ. To
avoid confusion, we should mention that the latter combination was precisely used as bbb in [13,14].
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With this density, one defines a new basis vector of V(t,x) as

E = Ω(t,x)−1∂t. (12)

Together with the H(t,x) basis vectors Ei defined in (1), we obtain a frame Eµ, µ = 0, . . . , d, adapted to
the split tangent space and transforming canonically under Carrollian diffeomorphisms (E0 ≡ E):

E′ = E and E′
i = J−1j

i Ej. (13)

The dual coframe, generically referred to as eeeµ, µ = 0, . . . , d, is (eee0 ≡ eee)

eee = Ω
(
dt− bjdx

j
)

and eeei = dxi, i = 1, . . . , d (14)

with eeei transforming as in (7) and eee′ = eee.
Any vector W ∈ TC is decomposed in the above frame as W = W 0(t,x)E+W i(t,x)Ei, while any form

ωωω ∈ T ∗C is ωωω = ω0(t,x)eee + ωi(t,x)eee
i. In this basis, the vertical and horizontal components are reduced,

i.e., do not mix under Carrollian diffeomorphisms. The vertical components remain invariant, while the
horizontal transform tensorially under Carroll diffeomorphisms:

W ′0 = W 0, W ′i = J i
jW

j, ω′
0 = ω0, ω′

i = J−1j
i ωj. (15)

From the horizontal perspective W 0 and ω0 are scalars, and we refer to them as Carrollian scalars, whereas
W i and ωi are components of a Carrollian vector and a Carrollian one-form. The same reduction properties
are valid for rank-(r, s) tensor fields in T (r,s)C. Notice that one can use gij = g(Ei, Ej) and its inverse gij

for lowering and raising spatial indices i, j, . . . amongst Carrollian tensors.
In terms of the frame (1), (12), and the coframe (14), the action of the exterior derivative on the generic

one form ωωω reads:
dωωω = (E(ωi)− Ei(ω0))eee ∧ eeei + Ek(ωi)eee

k ∧ eeei. (16)

One can define the Ehresmann curvature as

deee = ϕϕϕ ∧ eee+ ̟̟̟ = ϕi eee
i ∧ eee+ 1

2̟ij eee
i ∧ eeej, (17)

which exhibits a pair of genuine Carrollian tensors. The purely horizontal piece ̟̟̟ is a Carrollian two-form,
which we will call the Carrollian torsion.4 It has components

̟ij = −Ω (Ei(bj)− Ej(bi)) . (18)

The vertical-horizontal mixed components

ϕi = ΩE(bi) + Ei(ln Ω), (19)

define a Carrollian one-form ϕϕϕ, the acceleration. Both appear in the Lie bracket of the basis vectors:

[Ei, Ej ] = −̟ijE, [Ei, E] = −ϕiE, (20)

which is dual to (17).
A natural question to ask is whether H can be thought of as the tangent bundle of codimension-

one hypersurfaces in C. If this holds, C is foliated by a family of hypersurfaces modeled on S. This is
indeed possible whenever H is an integrable distribution in TC. The corresponding integrability condition
originates from Fröbenius’ theorem stating that the Lie bracket of horizontal vectors must be horizontal,
or equivalently, that the vorticity of the normal (vertical) vector should vanish: ̟ij = 0. In other words,
the Ehresmann curvature should have no horizontal component.

Besides the above Carrollian tensors emanating from the Ehresmann connection, others can be defined
using the metric g. Those are of two kinds.

4The quantity − 1
2
̟ij is also referred to as the Carrollian vorticity of the vector field E [13].
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1. The first is based on first time-derivatives (the metric components are generically functions of both
t and x):

θ = E
(
ln
√

det g
)
=

1

2
gikE(gki), ζij =

1

2
E(gij)−

θ

d
gij , (21)

referred to as expansion and shear (gij are the components of the inverse of g). They are respectively
a Carrollian scalar and a Carrollian symmetric and traceless rank-two tensor. The latter vanishes if
and only if the time dependence in the metric is factorized: gij(t,x) = e2σ(t,x)g̃ij(x), in which case
the expansion reads θ = dE(σ). This instance will turn out to play a significant role later in the
discussion of BMS symmetry (Sec. 3).

2. The second class is second-order in derivatives, and corresponds to the curvature of a generalized
Levi–Civita connection. This is a canonical connection, which defines a horizontal parallel transport
i.e. a covariant derivative acting on Carrollian tensors and producing new Carrollian tensors. It was
introduced in [13] as D = E+γ, dubbed Levi–Civita–Carroll, with γ the Christoffel–Carroll symbols:

γijk(t,x) =
1

2
gil (Ej(glk) +Ek(glj)− El(gjk)) = Γi

jk + cijk, (22)

where Γi
jk are the ordinary Christoffel symbols and

cijk(t,x) =
Ω

2
gil (bjE(glk) + bkE(glj)− blE(gjk)) . (23)

This connection, also cast as D = ∇ + c with ∇ the Levi–Civita connection, is metric-compatible
(Dkgij = 0), and since γi[jk] = 0, the torsion is exclusively encoded in the commutator of Ei’s, i.e. in

̟ij . Its curvature tensors can be worked out following [13]. As opposed to the ordinary Levi–Civita
connection for Riemannian manifolds, the Levi–Civita–Carroll is not the unique metric-compatible
and torsionless connection one can define on TC. This question has been addressed e.g. in [17,18].

In the spirit of [2–4], one can introduce the concept of flat Carrollian spacetime given in an adapted
coordinate system by

gij = δij , Ω = 1, bi = const. (24)

For this case, the Ehresmann curvature ̟ij as well as the acceleration ϕi, the shear ζij and the expansion
θ vanish, as do the Christoffel–Carroll symbols written above. Carrollian flatness implies the Ehresmann
connection being a pure gauge.

Realization on Null Hypersurfaces

We would like now to discuss the appearance of the above structures on null hypersurfaces C of a Lorentzian
spacetime M. The pull-back g of the ambient metric on null hypersurfaces is degenerate with one-
dimensional tangent subbundle kernel V , and from this perspective the Carrollian structure encompassed
in the triple (C, V, g) emerges naturally. This feature has been discussed by several authors, the more com-
plete account being in the already quoted Ref. [6]. Our fiber bundle with Ehresmann connection approach,
which is designed for separating explicitly Carrollian time and space, emerges naturally in null embeddings.
This requires appropriate gauge-fixing in the ambient Lorentzian spacetime.5

We will illustrate the above in the case of a d + 2-dimensional spacetime M foliated with null hyper-
surfaces. In this case the ambient metric reads

ds2M = gabdx
adxb = −2ΩΞ

(
dt− bidx

i + θtdr − biθ
idr
)
dr + gij

(
dxi + θidr

) (
dxj + θjdr

)
, (25)

5See [19] for a recent discussion on foliations and symmetries that preserve them.

5



where Ω, Ξ, bi, θ
t, θi and gij depend on all the coordinates (r, t,x) and t is a retarded time. The constant-r

leaves of the foliation Cr define d + 1-dimensional null hypersurfaces because the pull-back of the metric,
gr = gij(r, t,x)dx

idxj, is indeed degenerate. The diffeomorphisms that preserve the form of this metric are

r 7→ r′(r), t 7→ t′(r, t,x), x 7→ x′(r,x). (26)

Defining as usual

Ja
b =

∂x′a

∂xb
, (27)

the various quantities involved transform as

Ω′ =
(
J t
t

)−1
Ω (28)

b′j = J−1i
j

(
J t
t bi + J t

i

)
(29)

g′ij = J−1k
i J

−1ℓ
j gkℓ (30)

Ξ′ = (Jr
r )

−1 Ξ (31)

θ′t =
(
J t
r

)−1 (
J t
t θ

t − J t
r + J t

i θ
i
)

(32)

θ′i =
(
J t
r

)−1 (
J i
jθ

j − J i
r

)
. (33)

Therefore, we see that Ω, bi and gij transform on every leaf as they do on a Carrollian spacetime, eqs. (11),
(10), and (9). Hence, the diffeomorphisms (26) are interpreted as Carroll diffeomorphisms on each leaf Cr.
The other elements Ξ, θt and θi were not present in the intrinsic definition of the previous section. This is
not surprising as they account for the non-trivial r-dependence of the residual gauge symmetry (26). For
simplicity we will fix locally Ξ = 1 and θt = θi = 0. This is achievable using (and therefore fixing) the
r-dependence of the diffeomorphism (26). Henceforth the bulk metric simplifies to

ds2M = −2Ω
(
dt− bidx

i
)
dr + gijdx

idxj, (34)

with the residual gauge freedom (5):

r 7→ r, t 7→ t′(t,x), x 7→ x′(x). (35)

Indeed, if we were to describe a single null hypersurface, it would also be natural to set, Ξ = 1, and θi and
θt to zero in its neighborhood. Under the coordinate change (35), gij , bi and Ω still transform according
to (11), (10), and (9). One can show that Cr equipped with these data is a d + 1-dimensional Carrollian
spacetime, in the lines we have discussed earlier. For this we need to exhibit the Ehresmann connection.

The ambient metric (25) allows to define two independent null vector fields,6 sections of TM:

ℓ =
1

Ω
∂t, n = ∂r, ℓ · n = 1. (36)

The corresponding forms in T ∗M are

ℓℓℓ = −dr, nnn = Ω
(
dt− bidx

i
)
. (37)

Hence, the vector field ℓ is normal to Cr. Since it is null, it is also tangent to Cr and belongs therefore to
TCr. Being the kernel of the degenerate metric gr on Cr, it spans the vertical subbundle Vr. The horizontal
subbundle Hr is given by the set of vectors X in TCr that are orthogonal to n:

X · n = 0; (38)

6Our choice of gauge fixing differs from other works as [6,20].
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but since X ∈ Hr, by definition
X · ℓ = 0. (39)

Thus, writing X = Xr∂r +Xt∂t +Xi∂i, Eqs. (38) and (39) lead to Xr = 0 and Xt − biX
i = 0, so that

X ∈ Hr ⇔ X = Xi (∂i + bi∂t) = XiEi. (40)

Consequently, the field bi(r, t,x) plays the role of an Ehresmann connection for each null leave Cr, as one
could have anticipated. Notice also that the tensor pab = ℓanb has non-zero components ptt and pti. These
define a Carrollian tensor, which is the vertical Ehresmann projector p introduced in (2).

Given the above embedding of null hypersurfaces Cr, we can determine their extrinsic geometry. This
is generally captured by three quantities: the surface gravity, the deformation tensor and the twist, all
built with the projector onto Hr ⊂ TCr:

hab = δab − naℓb − ℓanb. (41)

Lowering an index we find that the non-zero components are hij = gij(r, t,x) and the surface gravity
vanishes with our choice of ℓ. The other extrinsic quantities are respectively given by

Dab =
1

2
hachbdLℓ hcd,

ωa = hbanc∇bℓ
c,

(42)

where ∇a stands for the Levi–Civita connection of gab. In addition, the deformation tensor is reduced to
the expansion and the shear:

Θ = habD
ab =

1

2
habLℓ hab,

σab = Dab − Θ

d
hab.

(43)

For the geometry at hand, the non vanishing components of the extrinsic tensors, at every r, coincide with
the Carrollian tensors defined on Cr (see (19), (21)):

ωi = −1

2
∂tbi −

1

2Ω
(∂iΩ+ bi∂tΩ) = −1

2
ϕi,

Θ =
1

Ω
∂t ln

√
g = θ,

σij =
1

2Ω
∂tgij −

Θ

d
gij = ζij .

(44)

The reduced bulk covariance (26), which preserves the form (25), corresponds precisely to the Carrollian
diffeomorphisms (5), for which these objects are genuine tensors.

In conclusion, before we turn to the investigation of conformal isometries, the message is that the
definition of Carrollian spacetimes as fibre bundles with Ehresmann connection and a degenerate metric
is adapted to the description of families of embedded null hypersurfaces where, on any leaf, the induced
geometry is Carrollian.

3 Conformal Carrollian Isometries

Carrollian spacetimes C have been introduced in Sec. 2 irrespective of any isometry properties. Carrollian
diffeomorphisms are not isometries. They are a subgroup of the full diffeomorphism group, compatible with
the intrinsic splitting in vertical versus horizontal components of the tangent bundle TC, made possible
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thanks to the Ehresmann connection. The Carroll group emerges precisely on the tangent space at a point.
Suppose indeed that we trade the H basis vectors Ei for a set of vectors Êı̂, orthonormal with respect to
g: g

(
Êı̂, Ê̂

)
= δı̂̂. The tangent space is now everywhere spanned by {E, Êı̂, ı̂ = 1, . . . , d}, whereas for the

cotangent space the basis is {eee, êeeı̂, ı̂ = 1, . . . , d} with êeeı̂
(
Ê̂

)
= δı̂̂. Automorphisms of the tangent space

preserving the vertical vector field E and the orthonormal nature of the H basis are generally as follows:

(
E′ Ê′

ı̂

)
=
(
E Ê̂

)
(
1 Bk̂R

k̂
ı̂

0 R̂
ı̂

)
(45)

with Rk̂
ı̂(t,x) the elements of a d-dimensional orthogonal matrix and Bk̂(t,x), d numbers. The explicit

dependence on the coordinates underlines that this transformation needs not be the same at every point
of C. These transformations are the d+ 1-dimensional Carroll boosts (the full Carroll group also includes
spacetime translations). They rotate the horizontal frame and coframe, and produce a rotation plus a shift
proportional to B on the Ehresmann connection. This latter statement can be made explicit by writing

Êı̂ = Ej
ı̂∂j + bı̂∂t; (46)

the transformation (45) thus implies

E′j
ı̂ = Ej

k̂R
k̂
ı̂ and b′ı̂ =

(
bk̂ +Ω−1Bk̂

)
Rk̂

ı̂. (47)

The Carroll boosts play for the tangent bundle of a Carrollian spacetime the same role as the Lorentz
group does for the tangent bundle of a pseudo-Riemannian manifold.

The Carroll group appears also as the isometry group of the flat Carroll manifold introduced in Eqs.
(24). These isometries are diffeomorphisms generated by vectors ξ such that Lξg = 0, LξE = 0, and
shifting the Ehresmann connection by an arbitrary constant. One finds:

ξ0 = βjx
j + γ, ξi = ωi

jx
j + ǫi (48)

with all entries constant and ωkj = δkiω
i
j antisymmetric. These are precisely the (d+ 2)(d+ 1)/2 genera-

tors of the Carroll algebra carr(d+ 1).
We would like to enter now the core of our discussion about conformal Carrollian isometries for generic

Carrollian spacetimes. We will first define them, and then solve the associated differential equations under
the assumption of the absence of shear. This will enable us to exhibit a rather universal algebra, which
gives a generalized version of the infinite-dimensional conformal Carroll algebra ccarr(d+ 1).

We define Carrollian conformal Killing vector fields ξ by imposing

Lξg = λg, (49)

where λ(t,x) is an a priori arbitrary function. Setting ξ = f(t,x)E + ξi(t,x)Ei we obtain:

Lξg =
(
2gij∂tξ

i
)
dtdxj +

((
Ω−1f + bkξ

k
)
∂tgij + ξk∂kgij + gik∂jξ

k + gjk∂jξ
k

)
dxidxj (50)

=
(
2Ω−1gij∂tξ

i
)
eeeeeej +

(
2f
(
ζij +

1
dθgij

)
+Diξj +Djξi

)
eeeieeej, (51)

where Di stands for the Levi–Civita–Carroll connection introduced in (22). Observe that the time depen-
dence of the metric enters these expressions explicitly and one might expect it to alter significantly the
structure of the conformal isometry algebra. At the same time one should also stress that in the absence of
time dependence, neither the Ehresmann connection nor the scale factor Ω(t,x) play a role in the analysis
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of conformal properties, which would reduce to the analysis in [2–4].7 The first term of (51) translates
through Eq. (49) into

∂tξ
i(t,x) = 0. (52)

This imposes that ξ is the generator of a Carrollian diffeomorphism (it ensures the vanishing entry in (6)
since it imposes ξi(t,x) = Y i(x)), and this is assumed systematically here. Hence the core of the definition
of conformal Carrollian isometries is in the second term of (51), leading to

2f

(
ζij +

1

d
θgij

)
+DiYj +DjYi = λgij . (53)

The trace of this equation determines λ,

λ(t,x) =
2

d

(
fθ +DiY

i
)
(t,x), (54)

and substitution back into (53) then gives

DiYj +DjYi −
2

d
DkY

kgij = −2fζij. (55)

At the present stage, the equations to be solved for finding the components of the conformal Killing
vectors f(t,x) and Y i(x) are Eqs. (55), which are a set of time-dependent partial differential equations
sourced by the Carrollian shear.

In the Carrollian case under consideration, as a consequence of the degenerate nature of the metric, this
set – in other words Eq. (49) – is not sufficient for defining conformal Killing fields. In order to proceed, we
must refine our definition of the latter. We will further impose vanishing shear for the Carrollian spacetime,
and with this the full conformal algebra can be unravelled without any further restriction on the Carrollian
data gij , Ω and bi, generalizing thereby the range of validity of the results obtained in [2–4].

We note that for ξ = f(t,x)E+Y i(x)Ei, the Lie derivative of the vertical vector field E is itself vertical,
satisfying

LξE = µE, (56)

where
µ(t,x) = −E(f)− ϕiY

i. (57)

A precise definition of the conformal Carrollian Killing vectors is reached by setting a relation among the
a priori independent functions λ(t,x) and µ(t,x). The guideline for this is Weyl covariance, because a
desirable feature for conformal Killing fields is their insensitivity to Weyl rescalings of the metric.

We define Weyl rescalings as g 7→ g/B(t,x)2 and bbb invariant (this is required for the spatial vectors
Ei in (1) to remain well-defined), supplemented with Ω(t,x) 7→ B(t,x)−zΩ(t,x) for some real number z,
the dynamical exponent. Under such rescalings, ξ has Weyl weight zero which implies that Y i and f have
weights zero and −z. Therefore λ(t,x) and µ(t,x) transform as

λ 7→ λ− 2Y iEi(lnB), µ 7→ µ+ zY iEi(lnB). (58)

Thus, the combination 2µ+ zλ is Weyl covariant (actually invariant). Setting it to zero

2µ(t,x) + zλ(t,x) = 0 (59)

is compatible with the basic expected attributes of Killing vectors, as stressed earlier.
Equations (49) and (59) define our conformal Killing fields. It should be mentioned that (59) was intro-

duced in [2–4] with z = −2/N and N a positive integer, following the requirement that Lξ

(
g ⊗ E⊗N

)
= 0.

7Notice that ξ =
(
Ω−1f + bkξ

k
)
∂t + ξi∂i. Equation (50) depends on bk and Ω only through ξt ≡ Ω−1f + bkξ

k.
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Leaving z arbitrary does not support such a geometrical interpretation, but is nonetheless consistent. The
case z = 1 (i.e., N = 2), where time and space equally dilate, pertains when the Carrollian spacetime
emerges on an embedded null hypersurface in a pseudo-Riemannian geometry.

The combination of (54), (57) and (59) leads to8

DiY
i − d

z
ϕiY

i − d

z

(
E(f)− z

d
θf
)
= 0. (60)

Summarizing, the conformal isometry group as defined in (49) and (59) for a Carrollian spacetime described
in terms of Ω(t,x), bi(t,x) and gij(t,x) is the set of solutions f(t,x) and Y i(x) of Eqs. (55) and (60) for
a given choice of z.

At this point we will restrict our analysis to Carroll spacetimes with vanishing shear, ζij = 0, because
in this case the system (55, 60) can be solved. As stated previously, ζij vanishes if and only if the time
dependence of the metric is conformal:

gij(t,x) = e2σ(t,x)g̃ij(x). (61)

Recall now that (55, 60) are Weyl covariant. Performing a Weyl rescaling with B(t,x) = e2σ(t,x) removes
the time-dependence from the metric, while it transforms the other fields as

Ω̃(t,x) = e−zσ(t,x)Ω(t,x), ϕ̃i(t,x) = ϕi(t,x)− z(∂i + bi(t,x)∂t)σ(t,x), θ̃(t,x) = 0. (62)

The Killing field is invariant, ξ̃ = ξ = f̃ Ẽ + Y iEi with Ẽ = ezσE, and this leads to

f̃(t,x) = e−zσ(t,x)f(t,x), Ỹ i(x) = Y i(x), Ỹi(x) = g̃ij(x)Y
j(x). (63)

Equations (55) and (60) finally become equations for f̃(t,x) and Y i(x):

∇̃iYj + ∇̃jYi =
2

d
∇̃kY

kg̃ij , (64)

Ω̃−1∂tf̃ =
z

d
∇̃kY

k − ϕ̃kY
k, (65)

where ∇̃i is the Levi–Civita connection for g̃ij .
The first equation is an ordinary conformal Killing equation, and its solutions {Y i(x)} are the generators

of the conformal group for S equipped with a metric g̃ij(x). Given any such vector in H solving (64),

ξ̄Y = Y i(x)Ei = Y i(x) (∂i + bi(t,x)∂t) (66)

(the subscript “Y ” stresses that the vector field at hand depends on the set {Y i(x)}), Eq. (65) provides a
solution for f̃(t,x):

f̃(t,x) = T (x) +
z

d

∫ t

dt∗ Ω̃ (t∗,x)
(
∇̃iY

i(x) − d

z
ϕ̃i (t

∗,x)Y i(x)

)
. (67)

Here T (x) is an arbitrary smooth function of weight −z, which specifies any conformal Carrollian Killing
field.

Before we further investigate this family of conformal Carrollian Killing vectors, we should pause and
make contact with previous results reached in the already quoted literature. The situation that has been
studied in [4] corresponds in our language to σ = 0 and Ω = 1. This means in particular that the metric is
time-independent. In Ref. [4] no Ehresmann connection was introduced. We could therefore set it to zero,

8The left-hand side of Eq. (60) can actually be recast using Weyl-covariant derivatives, based on the Weyl connection
AAA = 1

z
ϕϕϕ+ 1

d
θeee, which transforms as AAA 7→ AAA− d lnB.
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or better leave bi(t,x) unspecified, because, as mentioned earlier for a time-independent metric, it is not
expected to play any role in the conformal algebra. Indeed, using (64) we find the precise family of vectors
ξ̄Y as in (66), which combined with (67) lead to

ξT,Y =
(
T (x) +

z

d
t∇̃iY

i(x)
)
∂t + Y i(x)∂i (68)

irrespective of bi(t,x) (again the subscript “T, Y ” reminds the dependence on {T (x), Y i(x)}). Therefore
the corresponding algebra is infinite-dimensional and emerges as the semi-direct product of the conformal
group of g = g̃(x) on S, generated by Y i(x)∂i, with supertranslations. For a flat, or conformally flat metric
on S, the spatial conformal algebra in d dimensions is so(d + 1, 1), and the conformal Carrollian Killing
fields (68) span9 ccarrN (d + 1) = so(d + 1, 1) ⋉ TN , where z = 2/N . The standard conformal Carrollian
algebra ccarr(d + 1) refers to dynamical exponent z = 1 (level N = 2): ccarr(d + 1) = ccarr2(d + 1). This
algebra emerges as the null-infinity isometry algebra of asymptotically flat d + 2-dimensional spacetimes
in Bondi gauge, bms(d+ 2).10

Our general analysis embraces the above case, by including time dependence in the spatial metric g and
a general scale factor Ω(t,x) on top of the Ehresmann connection bi(t,x). Despite these generalizations,
as a direct consequence of the factorized time dependence in the metric (see (61)) due to the requirement
of vanishing shear, the structure of the conformal Carrollian Killing vectors remains unaltered i.e., as in
(68): their algebra is the semi-direct product of the conformal group of g̃(x) on S with supertranslations
at dynamical exponent z. This statement is shown as follows.

Using (67), we obtain the general conformal Carrollian Killings as vector fields in TC:

ξT,Y =

(
T (x) +

z

d

∫ t

dt∗ Ω̃ (t∗,x)
(
∇̃iY

i(x)− d

z
ϕ̃i (t

∗,x)Y i(x)

))
Ẽ + Y i(x)Ei. (69)

We can unravel the structure of these conformal Carroll Killings and of their algebra by introducing an
invariant local clock:

C(t,x) ≡
∫ t

dt∗ Ω̃ (t∗,x) . (70)

This in fact is a specific instance of Cγ =
∫
γ Ω̃(dt − b) with γ a path in C. In (70), C(t,x) appears as a

local function because the path runs along a vertical fibre starting at, say, the zero section, reference to
which we have suppressed.11 Using (19) and (70) we reach the following identity:

∫ t

dt∗ Ω̃ (t∗,x) ϕ̃i (t
∗,x) = Ei (C(t,x)) , (71)

which enables us to express (69) as

ξT,Y =
(
T (x)− Y iEi (C(t,x)) +

z

d
C(t,x)∇̃iY

i(x)
)
Ẽ + Y i(x)Ei. (72)

The invariant clock defines a Carrollian diffeomorphism (see (5)) with t′ = C(t,x) and x′ = x. Under
this diffeomorphism Ω̃ → 1, Ẽ → ∂t′ , while (72) reads now precisely as (68) with t traded for t′. This

9This algebra is defined in the literature for integer N .
10As before, strictly speaking this is valid for d = 1 and 2 (where furthermore g̃ is always conformally flat). For higher d,

it was presumed to hold by some authors [3]. However, gauge conditions exist for the Bondi-gauge null-infinity behavior of
asymptotically flat spacetimes that render bms(d+ 2) finite-dimensional [21], and with this choice ccarr2(d+ 1) 6= bms(d+ 2).
This does not exclude that less restrictive gauge fixing might be considered leading to other, possibly infinite-dimensional
bms(d+ 2) algebras for d ≥ 3.

11We refer to C(t,x) as invariant local clock because it defines an integration measure on each one-dimensional fiber, a
proper time.
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demonstrates the earlier statement about the algebra of conformal Carrollian Killing vectors of a shearless
Carroll spacetime.

Summarizing, shearless Carrollian spacetimes, i.e. spacetimes equipped with a metric of the form
gij(t,x) = e2σ(t,x)g̃ij(x), have a conformal isometry algebra that depends only on g̃(x), d and z: it is
the semi-direct product of the conformal algebra of S equipped with g̃(x) and supertranslations at level
N = 2/z. This conclusion is valid irrespective of Ω(t,x) and bi(t,x). On the one hand, Ω(t,x) can
disappear from the expression (72) of the Killings upon an appropriate Carrollian diffeomorphism driven
by the invariant local clock. Hence its presence does not affect the algebra. On the other hand, although
the Ehresmann connection bi(t,x) cannot be removed with Carrollian diffeomorphisms (unless its field
strength ̟̟̟ and acceleration ϕϕϕ vanish), it cancels out between the last two terms in (72). This is not
insignificant though, and we would like to discuss it in the remaining of the present chapter.

The set of vectors Y = Y i(x)∂i ∈ TS with {Y i(x)} solving (64) realize the conformal algebra of g̃:

[
Y, Y ′] =

[
Y i∂i, Y

′j∂j
]
= Y ′′k∂k = Y ′′ (73)

with
Y ′′k = Y i∂i(Y

′k)− Y ′i∂i(Y k). (74)

These vectors act generally on functions φ(x). One may instead contemplate a realization in terms of
Carrollian vectors ξ̄Y ∈ H as in (66) acting on functions Φ(t,x) of C. In this case,

[
ξ̄Y , ξ̄Y ′

]
= ξ̄[Y,Y ′] − ̟̟̟(Y, Y ′)E = ξ̄[Y,Y ′] − ˜̟̟̟ (Y, Y ′)Ẽ ∈ V ⊕H, (75)

where ̟̟̟(Y, Y ′) = ̟ijY
iY ′j and ˜̟̟̟ = e−zσ̟̟̟. Because of the Ehresmann connection, this realization is

not faithfully the conformal algebra (73) of g̃, except if the Carrollian torsion is zero (horizontal piece of
the Ehresmann curvature), which coincides with the condition for H to be integrable12 (or if the action is
limited to functions of x only, which is not what we want). Furthermore the extra V -term is not a central
extension, unless the Carrollian acceleration vanishes (in this case E and Ei commute).

The expression in parentheses present in (72) suggests to define, for each set {Y i(x)} associated with
a solution of (64), a Carrollian operator MY acting on any function Φ(t,x) of C as

MY (Φ) ≡ Y iEi(Φ)−
z

d
Φ∇̃iY

i. (76)

The mapping Y → MY is a representation of the group of conformal Killing vectors of g̃, which however is
again not faithful as the commutator exhibits an extra term, similar to the one in (75), possibly vanishing
in the same circumstances:

[MY ,MY ′ ] (Φ) ≡ MY (MY ′(Φ))−MY ′ (MY (Φ)) = M[Y,Y ′](Φ)− ˜̟̟̟ (Y, Y ′)Ẽ(Φ). (77)

Using now the map (76) and ξ̄Y ∈ H given in Eq. (66), the conformal Killing field in TC, Eq. (72), is
recast as

ξT,Y =
(
T (x)−MY (C)(t,x)

)
Ẽ + ξ̄Y . (78)

For vanishing T (x), the representation MY defines a lift of ξ̄Y = Y iEi ∈ H → TC through the map

ξ̄Y 7→ ξ0,Y = ξ̄Y −MY (C)Ẽ. (79)

This lift provides a faithful and Carrollian ( i.e., acting on functions of t and x) realization of the conformal
isometry algebra (73) of g̃ on TC, thanks to the cancellation of the extra term appearing in (75) and (77).

12Generally, one expects invariants that prevent the horizontal part of the Ehresmann connection from being flat. For
example, in d = 2, one might have non-zero Chern class c = 1

2π

∫
S
̟̟̟.
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Even though the Ehresmann connection does not appear ultimately in the conformal algebra, when non-
vanishing, it adjusts for making compatible the realization of the algebra with Carrollian diffeomorphism
invariance. This is yet another of its numerous facets. For non-vanishing T (x), we obtain the following
commutation relations for the complete conformal Carrollian Killing fields (78):13

[
ξT,Y , ξT ′,Y ′

]
= ξMY (T ′)−MY ′ (T ),[Y,Y ′]. (80)

This is the usual pattern for conformal Carrollian and BMS algebras.

4 Conclusions

In this work, we have considered Carrollian geometries from various perspectives: their defining properties,
their emergence on embedded null hypersurfaces and their conformal symmetries. We have emphasized the
interpretation of Carrollian spacetime as a fiber bundle endowed with an Ehresmann connection. Realized
by a one-form field, this connection defines the splitting of the tangent bundle into vertical and horizontal
components. The vertical component coincides precisely with the kernel of a degenerate metric, which is
the last piece of equipment for a Carroll structure. It is worth stressing that all defining fields (Ehresmann
connection, metric and scale factor) have been assumed space and time-dependent throughout the paper.

The vertical versus horizontal canonical separation is preserved by the subset of Carrollian diffeomor-
phisms. These enable the reduction of spacetime tensors into purely spatial components, the paradigm
being Carrollian torsion and acceleration, emerging as reduced components of the Ehresmann curvature.
Other geometric objects can be introduced using the degenerate metric, such as shear and expansion, and
even further based on a horizontal connection, which we only alluded to when discussing the Christoffel–
Carroll symbols. Investigating the types of connections that can be defined on the full tangent bundle
TC is an interesting subject that has been discussed in the literature, but remains incomplete and worth
pursuing.

The above ingredients (Ehresmann connection, vertical and horizontal subbundles) arise naturally
on null hypersurfaces embedded in Lorentzian spacetimes, and specific tensors such as Carrollian shear,
acceleration and expansion are inherited from the ambient geometry. Our analysis was here confined to
the instance of genuine null foliations, but can be adapted to the case of boundary null hypersurfaces, such
as black-hole horizons or null infinities.

The last element of our investigation concerns symmetries, and more specifically conformal isometries of
Carrollian spacetimes. Contrary to pseudo-Riemannian geometries, the definition of (conformal) isometries
cannot rely solely on the Killing equation for the metric, because the latter is degenerate. Here we complied
with the standard definition of the conformal Carrollian Killing vectors, and additionally restricted our
analysis to the case of shearless Carrollian structures. Although seemingly innocuous, as time dependence
remains general both in the scale factor and in the Ehresmann connection, this limitation is quite severe.
Indeed time dependence of the metric is factorized and this ultimately drives us to the standard semi-direct
product of the conformal isometry algebra of the metric with supertranslations. This is infinite-dimensional
and coincides with ccarrN (d+1), for conformally flat spatial metrics. One thus recovers bms(d+2) in d = 1
and 2, and possibly in higher dimension with some appropriate definition of the BMS algebra. Our study
has the virtue of sustaining the robustness of the format already known to emerge in static Carrollian
spacetimes without scale factor or Ehresmann connection. It stresses the role of the shear, but leaves open
the probe of the conformal Carrollian isometries, when the latter is non-zero. It also illustrates another
subtle role of the Ehresmann connection, which allows to lift without alteration the conformal isometry
algebra of the metric from the basis tangent bundle TS to the Carrollian tangent bundle TC.

Although relatively confined, our investigation touches upon several timely and perhaps deep issues.
Conformal symmetries and in particular the BMS algebra are known to appear as the backbone of conserved

13We use here the identity Ẽ (MY (C)) = ϕ̃iY
i − z

d
∇̃iY

i.

13



charges in asymptotically flat spacetimes. Alongside, the role of null hypersurfaces has been appreciated
in flat holography, where they are expected to replace the time-like foliations relevant in anti-de Sitter
holography. In particular, their symplectic structure should play a significant role in giving an alternative
reading of the gravitational degrees of freedom. Clearly, Carrollian spacetimes and their symmetries are
the central concepts in all these developments, which deserve further analysis, possibly in the lines of our
current work.
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Abstract: We explore holographic entanglement entropy for Minkowski spacetime in three
and four dimensions. Under some general assumptions on the putative holographic dual,
the entanglement entropy associated to a special class of subregions can be computed using
an analog of the Ryu-Takayanagi formula. We refine the existing prescription in three
dimensions and propose a generalization to four dimensions. Under reasonable assumptions
on the holographic stress tensor, we show that the first law of entanglement is equivalent to
the gravitational equations of motion in the bulk, linearized around Minkowski spacetime.
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1 Introduction

The AdS/CFT correspondence has been a fruitful avenue to understand quantum gravity in
asymptotically AdS spacetimes. A question of interest is whether the holographic principle
makes sense in more general spacetimes, such as our own universe. Some proposals have
been made for de Sitter [1], Kerr [2] or warped AdS [3, 4]. The asymptotically flat case
is particularly interesting because it can be obtained as a flat limit of AdS [5, 6]. Other
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approaches to flat space holography exist, such as applying AdS/CFT on hyperbolic folia-
tions of Minkowski spacetime [7] or using the recently discovered equivalence between BMS
Ward identities and Weinberg’s soft theorems [8].

The flat space limit of AdS is an ultra-relativistic limit, or Carrollian limit, of the dual
field theory. Already at the level of the symmetries, one can show that the conformal Carroll
group is the BMS group [9], which is the symmetry group of asymptotically flat gravity [10].
More precisely, the conformal Carroll group associated with the future boundary, i.e. null
infinity I+, is isomorphic to BMS3 when I+ = R × S1 and to BMS4 when I+ = R × S2.
Therefore, the putative dual theory should enjoy a Carrollian symmetry. Recent works
have been able to match the gravitational dynamics with ultra-relativistic conservation
laws [11, 12]. This suggests that the holographic duals of asymptotically flat spacetimes
should be Carrollian CFTs [13].

An important insight from AdS/CFT is the role of entanglement in the emergence of
the bulk spacetime from the field theory degrees of freedom. The Ryu-Takayanagi prescrip-
tion [14], and its covariant generalization [15], have lead to a more precise understanding of
bulk reconstruction [16, 17] and a landmark result was the derivation of the gravitational
equation, linearized around AdS, from the first law of entanglement in the CFT [18–20].
This suggests that linearized gravity can be understood as the thermodynamics of entangle-
ment. Jacobson’s earlier result [21], and its more recent refinements [22, 23], suggest that
this connection is very general and goes beyond asymptotically AdS spacetimes. In this
paper, we show that a similar result holds for flat space holography in three and four dimen-
sions, under some general assumptions that allow us to use an analog of the Ryu-Takayanagi
prescription.

Entanglement entropies in 3d Minkowski spacetime were considered in [24] and were
matched with computations in conjectured dual theories. We will follow the geometrical
picture proposed in [25], where the authors used a generalization of the CHM transforma-
tion [26], to propose an RT prescription for flat spacetime. This requires some assumptions
on the putative dual theory which are given in full details below. Under the same work-
ing assumptions, we refine their 3d prescription to include perturbations and propose a
generalization to 4d.

This paper is organized as follows. In Sec. 2 we detail our working assumptions on
flat holography. This allows us to use an analog of the Ryu-Takayanagi prescription in
Minkowski spacetimes. We review and generalize the existing 3d prescription in Sec. 3 to
include perturbations. In Sec. 4 we prove that the gravitational equations, linearized around
3d Minkowski, follow from the first law of entanglement.1 In Sec. 5 we perform a flat limit
of AdS3, also considered in [6, 28], to identify the holographic stress tensor associated
of 3d Minkowski, a necessary ingredient for the proof. In Sec. 6 we generalize the RT
prescription to 4d Minkowski and prove that the first law of entanglement is equivalent to
the gravitational equations of motion. Our proof is valid for general theories of gravity.

1Before submitting our paper, we learned that another group is currently pursuing similar ideas [27].
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2 Working assumptions on flat holography

Holography in asymptotically flat spacetimes is not well understood. The putative dual field
theory should be defined on null surfaces and it is not clear how one should understand
objects such as local operators or path integrals. Therefore, to obtain a well-defined equiva-
lent of the Ryu-Takayanagi prescription, we need some general assumptions on holography
in flat spacetime which are listed below:

• (Assumption 1) There exists a quantum system living on the future boundary I+,
such that we can associate a Hilbert space H to any slice Σ of constant retarded time
u. To any bulk configuration on Σ, we can associate a state in H. For the purpose
of this work, we could also weaken this assumption by taking the bulk configurations
to be only linear perturbations of Minkowski.

• (Assumption 2) For a subregion A of ∂Σ among a special class, we can associate
a density matrix ρA. If the Hilbert space factorizes on subregions, we expect that
ρA = TrĀ|0〉〈0| where Ā is the complement of A on the slice and |0〉 is the Minkowski
vacuum. We allow ρA to be only defined on some subspace Hcode of H.

The domain of dependence D of A is defined to be the union of all the images of A under
translation along the u direction. This is simply the ultra-relativistic limit of the Lorentzian
domain of dependence. Indeed, in this limit, the width of the lightcone vanishes (see Fig.
2 for an illustration). Following [25], we define a generalized Rindler transformation to
be a symmetry transformation on I+ which maps D to a spacetime which has a thermal
circle.2 The generator ζA of the thermal identification, which is called the modular flow
generator, is required to annihilate the vacuum and leave D and ∂D invariant. A Rindler
transformation is a generalization of the CHM conformal transformation [26].

• (Assumption 3) If we can find a Rindler transformation, the density matrix can be
written as ρA = U−1e−KAU where KA is the operator that generate translations
along the thermal circle and U is a unitary operator acting on the Hilbert space
which implements the symmetry transformation. For this definition to make sense,
KA needs to be bounded from below in Hcode.

From the knowledge of the boundary modular flow ζA, one can find a bulk modular flow
ξA. It is the Killing vector field of Minkowski spacetime which asymptotes to ζA.

• (Assumption 4) The expectation value δ〈KA〉 for a linear perturbation of the vacuum
is computed by the Iyer-Wald energy δEgrav

A associated to the Killing vector ξA of the
corresponding bulk configuration on Σ.

• (Assumption 5) The von Neumann entropy SA = −Tr ρA log ρA is computed by the
area3 of the special bulk surface Ã that is preserved by the bulk modular flow ξA and
is homologous to A. This is the analog of the Ryu-Takayanagi (RT) prescription and
Ã will be called the RT surface.

2This means that one coordinate of the new spacetime should have an imaginary identification x ∼ x+iβ.
3Or the adequate functional for other theories than Einstein gravity.
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These assumptions can be derived for holographic CFTs with AdS duals. There, the special
class of entangling regions are spatial balls in the boundary CFT. Also, Assumptions 3 and
5 were obtained in [26] and Assumption 4 is a consequence of the AdS/CFT holographic
dictionary. The RT prescription for more general entangling regions was derived in [29, 30].

In this work, we want to consider the implications of the above assumptions for flat
holography. In particular, we will investigate the consequences of the first law of entan-
glement δSA = δ〈KA〉 which is valid for any quantum system where these objects can be
defined. Paralleling the AdS story [19], we will show that the linearized gravitational equa-
tions of motion are equivalent to the first law. We believe that although the microscopic
theory is not well understood, this approach can provide valuable insights about holography
in non-AdS spacetimes.

The results that we have proven can also be phrased purely in classical gravity. We have
shown that for linearized perturbations of Minkowski spacetime, the gravitational equations
of motion are equivalent to the first law

δSgrav
A = δEgrav

A , (2.1)

for a set of boundary regions A among a special class, and where Sgrav
A is the gravitational

entropy of the surface Ã defined to be the surface homologous to A and fixed by the
Killing vector field ξA. The existence of a holographic theory such that δSgrav

A = δSA
and δEgrav

A = δ〈KA〉 provides a microscopic realization and an interpretation in term of
entanglement which renders the first law automatic.

3 Ryu-Takayanagi prescription in 3d Minkowski

We consider three-dimensional flat spacetime in Bondi gauge

ds2 = −du2 − 2dudr + r2dφ2, (3.1)

where u = t− r. The boundary is the null infinity I+ (at r =∞) and the boundary metric
is degenerate:

ds2 = 0× du2 + dφ2. (3.2)

Let’s pick a region A on I+. We would like to compute the entanglement entropy associated
to A in a putative holographic theory living on I+. This can be computed with an analog
of the Ryu-Takayanagi formula, which was proposed in [25]. In this section, we will review
and refine this prescription.

3.1 Review of the 3d prescription

In [25], the authors proposed an RT prescription for 3d Minkowski spacetime by using a
"generalized Rindler method". This consists of finding a transformation, which satisfies the
same properties as the Casini-Huerta-Myers conformal mapping [26]. One should look for
a symmetry transformation which maps the domain of dependence D of a subregion A to a
Rindler spacetime characterized by a thermal identification. The modular flow generator,
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which is the generator of the thermal identification, is required to annihilate the vacuum
and to leave D and ∂D invariant.

Let’s consider an interval A on the boundary, it is characterized by its sizes `u and `φ in
the u and φ directions. The authors of [25] were able to find a Rindler transformation for A
and to derive a boundary modular flow. Then, the Rindler transformation was extended into
the bulk by finding a suitable change of coordinates. The bulk image of the transformation
is a flat space cosmological solution [31], which is the flat space analog of the hyperbolic
black hole in AdS3. This maps the entanglement entropy into thermal entropy, which is
computed geometrically from the area of the horizon of the flat space cosmological solution.
This leads to the following picture: the RT surface is the union of three curves

Ã = γ+ ∪ γ ∪ γ−, (3.3)

where γ± are two light rays emanating from the two extremities ∂A of the interval and γ is
a bulk curve connecting γ+ and γ−. In Einstein gravity, the entanglement entropy is then
obtained as

SA =
Length(γ)

4G
. (3.4)

We illustrate this procedure in Fig. 1. This prescription is consistent with computations in
conjectured dual theories [24]. This RT surface was also shown in [32] to correspond to an
extremal surface. See also [33] for a discussion on the replica trick in this context.

We would like to consider more general theories of gravity and derive a first law. In
a more general context, the RT configuration is the same but the entanglement entropy is
given by Wald’s functional

SA =

∫

Ã
Q[ξA] (3.5)

where ξA is the bulk modular flow reviewed below. As we will show, it is important to
integrate over Ã here, instead of just γ, if we want to have a first law. In Einstein gravity,
(3.5) reduces to (3.4) because Wald’s functional vanishes when integrated on γ+ and γ−.

Generalized Rindler method. We are now going to review how the generalized Rindler
method is implemented in [25]. The Rindler transformation in the 2d boundary theory is

u =
sin(

`φ
2 )

cosh ρ+ cos(
`φ
2 )

(
τ +

`u

2 sin(
`φ
2 )

sinh ρ

)
, (3.6)

φ = arctan

(
sin(

`φ
2 ) sinh ρ

1 + cos(
`φ
2 ) cosh ρ

)
.

The thermal identification is given by ρ ∼ ρ + 2πi. The boundary modular flow is the
thermal generator 2π∂ρ which is

ζA =
2π

sin(
`φ
2 )

[(
−u sinφ +

`u cosφ

2 tan (
`φ
2 )
− `u

2 sin (
`φ
2 )

)
∂u +

(
cosφ− cos(

`φ
2 )
)
∂φ

]
. (3.7)

This modular flow generates a transformation of BMS3 since it can be written as

ζA = (uY ′(φ) + T (φ))∂u + Y (φ)∂φ, (3.8)
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Bulk Boundary

`u 6= 0

γ+

γ−

γ

A

A

Bulk Boundary

`u = 0

γ+

γ−

A

A

Figure 1: Examples of Ryu-Takayanagi surfaces in 3d Minkowski spacetime

where Y (φ) corresponds to a superrotation and T (φ) to a supertranslation. It is depicted
together with its Wick rotated version in Fig. 2. A simple shape for the region A when
`u 6= 0 is a portion of sinusoid with equation

u =
`u

2 sin(
`φ
2 )

sinφ , (3.9)

although the precise shape doesn’t matter in the computation of the entanglement entropy.
The bulk modular flow can be found by looking for a Killing vector of 3d Minkowski which
asymptotes to ζA. It takes the form

ξA =
2π

sin(
`φ
2 )

[(
u sinφ+

`u

2 tan(
`φ
2 )

cosφ− `u

2 sin(
`φ
2 )

)
∂u (3.10)

+

(
cos(

`φ
2 )− cosφ− u

r
cosφ+

`u

2 tan(
`φ
2 )

sinφ

r

)
∂φ

−
(

(u+ r) sinφ+
`u

2 tan(
`φ
2 )

cosφ

)
∂r

]
.
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The bulk modular flow ξA vanishes on the curve γ. It doesn’t vanish on the two light rays
γ± but is tangent to them. This is enough to guarantee the existence of a first law, as
explained in Sec. 3.3.

Entanglement entropy as Rindler entropy. To understand better the bulk picture
described above, it is useful to go to Cartesian coordinates (t, x, y) defined as

t = u+ r, x = r cosφ, y = r sinφ . (3.11)

In these coordinates, the bulk modular flow becomes

ξA =
2π

sin(
`φ
2 )

[(
y +

`u

2 sin(
`φ
2 )

)
∂t +

(
y cos(

`φ
2 ) +

`u

2 tan(
`φ
2 )

)
∂x +

(
t− x cos(

`φ
2 )
)
∂y

]
,

(3.12)
which is simply a boost, as can be seen by defining new Cartesian coordinates

t̃ =
t

sin(
`φ
2 )
− cot(

`φ
2 )x, x̃ =

x

sin(
`φ
2 )
− cot(

`φ
2 ) t, ỹ = y +

`u

2 sin(
`φ
2 )
. (3.13)

In these coordinates, the modular flow is simply

ξA = 2π
(
ỹ ∂t̃ + t̃ ∂ỹ

)
. (3.14)

In App. A, we confirm that the Rindler thermal circle is the same as the one appearing in
the generalized Rindler transform (3.6).4 This geometry should be seen as the analog of
the hyperbolic black hole in AdS.

We will now review the explicit RT prescription of [25] but in Cartesian coordinates
where the description becomes simpler. This will be important in discussing the more
general prescription in Sec. 3.2 and the 4d generalization in Sec. 6. As depicted in Fig. 1,
we consider two bulk light rays that go to the two extremity points of A on I+. There is
an ambiguity in choosing such light rays, as discussed in Sec. 3.2. The prescription adopted
in [25] is to impose that these two light rays pass through the spatial origin r = 0, which is
natural given a choice of Bondi coordinates. A parametrization of these two light rays is

γ+ :





t = − `u
2 + s

x = s cos(
`φ
2 )

y = −s sin(
`φ
2 )

, γ− :





t = `u
2 + s

x = s cos(
`φ
2 )

y = s sin(
`φ
2 )

. (3.15)

In the limit r → +∞, we have

γ+ :

{
u→ `u

2 ,

φ→ `φ
2

, γ− :

{
u→ − `u

2 ,

φ→ − `φ
2

, (3.16)

4One should remember that in the upper wedge, the Rindler time is spacelike, which is consistent with
the boundary picture, see Fig. 2.
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Modular flow in (u, φ) Modular flow in (u, φL) with φL = iφ

`u = 0

D

Modular flow in (u, φ) Modular flow in (u, φL) with φL = iφ

`u 6= 0

D

Figure 2: Boundary modular flow for 3d Minkowski. The left pictures represents the
modular flow with the entangling region A (in blue) and its domain of dependence D
(shaded) for `u = 0 and `u 6= 0. The right picture is the Wick rotated version with φL = iφ,
where we see that the modular flow circles around a point at infinity. In contrast with
the corresponding AdS/CFT picture (which is Fig. 2 in [20]), the modular flow does not
"transport" the entangling region A but is parallel to it. This suggests that the density
matrix ρA is more naturally associated with the domain of dependence D, as argued by [34]
in the AdS/CFT context. Since they have the same domain of dependence, this suggests
that the case `u = 0 is really equivalent to the case `u 6= 0, as we will explain in Sec. 3.2.
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x̃

t̃

ỹ

γ+

γ−

γ

Figure 3: Ryu-Takayanagi surface in coordinates (t̃, x̃, ỹ) in which the bulk modular flow
is a boost. It is given by Ã = γ− ∪ γ ∪ γ+. The surface γ lies on the Rindler bifurcation
surface (the dashed line) and the light rays γ+ and γ− are tangent to the modular flow.

so that they intersect the two extremities of A on I+ as required. The bulk modular flow
vanishes on the Rindler bifurcation surface

t̃ = ỹ = 0 . (3.17)

The curve γ should be located where the bulk modular flow vanishes. Therefore, it has
to lie on the bifurcation surface. To determine which portion it covers, we should look for
the intersection of γ± with the bifurcation surface which gives two points P+ and P− with
coordinates

P± : t̃ = ỹ = 0, x̃ = ± `u

2 sin2(
`φ
2 )
. (3.18)

The curve γ is then the segment [P−P+]. The resulting RT surface becomes

Ã = γ+ ∪ γ− ∪ γ , (3.19)

where it is understood that we only consider the portions of γ± that connect γ to A. From
the general prescription (3.5), the entanglement entropy of the region A is be given by the
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integral of Wald’s functional on Ã. For Einstein gravity, this reduces to the length of γ and
this leads to

SA =
`u
4G

cot(
`φ
2 ) (Einstein gravity) . (3.20)

We illustrate this prescription in Fig. 3 in the coordinates (3.13) where the modular flow
is a boost. A success of the prescription of [25] is that this reproduces the entanglement
entropies obtained through field theoretic methods in [24]. We can now understand what
is going to happen when we will perturb the bulk geometry: the portion of the bifurcation
surface in consideration will satisfy a first law on-shell (this is true for any Killing horizon)
that will map, through the assumptions we have made earlier, to a first law of entanglement
of a putative dual field theory. This is explained in details in Sec. 3.3.

More RT surfaces. The authors of [25] derived a prescription to compute the entangle-
ment entropies for a particular set of boundary regions. The prescription is summarized
in Fig. 1 with two qualitatively different cases `u = 0 or `u 6= 0. There is a simple way
to generate the RT surfaces associated to more general regions on I+. This can be done
by acting with bulk isometries on the initial configurations. In Minkowski spacetime, we
should act with elements of the Poincaré group. Their actions on I+ are given by BMS3

transformations which transform A into a new region A′. This new region will be a more
complicated curve. The corresponding RT surface Ã′ is simply obtained as the image of Ã
under the bulk isometry. These transformed RT surfaces are depicted in Fig. 4 and play
a crucial role in the proof of the linearized gravitational equations of motion from the first
law of entanglement.

3.2 General 3d prescription

We will explain an important ambiguity in the RT prescription of [25], which we reviewed
above, corresponding to the choice of how the light rays reach infinity. This ambiguity was
also considered in [32]. As a result, we will show that additional RT configurations are
possible.

Infalling light sheaf. This ambiguity is most apparent when we consider the following
fact: the case `u 6= 0 can actually be obtained from the case `u = 0 by acting with the bulk
translation

y → y +
`u

2 sin(
`φ
2 )

. (3.21)

This is apparent from the formula of the bulk modular flow (3.12): the modular flow for
`u 6= 0 is simply the image of the bulk modular flow for `u = 0 under this translation. On
the boundary, this translation becomes

u→ u+
`u

2 sin(
`φ
2 )

sinφ , (3.22)

and maps the boundary interval with `u = 0 to the one with `u 6= 0, see Fig. 2. This fact is
puzzling because it implies that the configuration with `u = 0 and the configuration with
`u 6= 0 are physically equivalent, as they are related by a bulk translation (which should be a
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true symmetry of the Minkowski vacuum). However, the entanglement entropies computed
earlier are not the same for `u = 0 and `u 6= 0, as seen for (3.20).

In fact, this arises because the RT prescription depends on a choice of how the light rays
arrive at infinity, or a choice of infalling light sheaf. For a given point on I+ with coordinates
(u, φ), there are many inequivalent bulk light rays that go to this point, differing by bulk
translations. We define an infalling light sheaf to be a set of light rays whose intersection
with I+ is ∂A. The RT prescription will depend on the choice of such a light sheaf and
acting with a bulk translation will modify this choice. To obtain a good RT prescription,
we must require that the light sheaf satisfies the following two conditions:

1. Each light ray in the light sheaf must intersect the Rindler bifurcation surface.

2. The bulk modular flow must be tangent to the light sheaf.

The first condition is necessary to be able to define an RT surface (which should contain a
portion of the Rindler bifurcation surface) while the second condition ensures the existence
of a well-defined first law as we will show in the next section.

Heuristically, the choice of a light sheaf amounts to a choice of cutoff surface at infinity.
In more mundane language, we are just saying that the entanglement entropy is cutoff
dependent (even though it is finite). It is difficult to be more precise about what we mean
by "cutoff" because the dual theory is not well-understood. We believe that this ambiguity
reflects some properties of the UV structure of the dual theory.

Generalized 3d prescription. In 3d, the boundary ∂A consists of two points B+ and
B−. Hence, the choice of infalling light sheaf is the choice of two light rays γ+ and γ− that
arrive at these points and satisfy the two conditions stated above. An explicit parametriza-
tion of this light sheaf can be given as

γ+ :





t = `u
2 + s+ Y+ sin(

`φ
2 )

x = s cos(
`φ
2 )

y = s sin (
`φ
2 ) + Y+

, γ− :





t = − `u
2 + s− Y− sin(

`φ
2 )

x = s cos(
`φ
2 )

y = −s sin (
`φ
2 ) + Y−

(3.23)

where s ∈ R is a parameter on the light ray and Y+, Y− are arbitrary constants. The
light rays γ± arrive on I+ respectively at the points B±. As required, they intersect the
bifurcation surface ỹ = t̃ = 0 and are tangent to the bulk modular flow. Note that we
have also used the freedom of reparametrization of s to reduce the number of independent
parameters. At the end, we obtain a family of light sheaf parametrized by two arbitrary
constants Y+ and Y−. The light rays γ± intersect the bifurcation surface at x̃ = x̃± with

x̃+ = − `u

2 tan(
`φ
2 )
− Y+ cos(

`φ
2 ), x̃− =

`u

2 tan(
`φ
2 )

+ Y− cos(
`φ
2 ) . (3.24)

The length of γ is therefore given by the separation in x̃ which leads to the entropy

SA =
1

4G

∣∣∣`u cot( `φ2 ) + (Y+ + Y−) cos(
`φ
2 )
∣∣∣ . (3.25)
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The case Y+ = Y− = 0 corresponds to the prescription adopted of [25] described above.
This prescription can also be obtained by requiring that the light rays intersect the line
r = 0, which makes this prescription natural given a choice of Bondi coordinates. Another
simple choice is

Y+ = Y− = − `u

2 sin(
`φ
2 )

. (3.26)

In this case, the two light rays γ+ and γ− intersect at the point

t̃ = x̃ = 0, ỹ = − `u

2 sin(
`φ
2 )

. (3.27)

This gives a vanishing entropy and it corresponds to the case where we have applied a bulk
translation to go from the `u = 0 configuration shown in Fig. 1 to a configuration with
`u 6= 0 in which the light rays γ+ and γ− still meet. We can see that the intersection
point (3.27) is indeed precisely the image of the origin by this translation. We would like
to emphasize that there are no reason to favor one prescription or the other. Instead, we
believe that we are free to choose any light sheaf satisfying the two conditions described
above, and we interpret this choice as reflecting a choice of regulator in the putative dual
theory.

3.3 First law of entanglement

In quantum mechanics, the first law of entanglement is a general property of the von
Neumann entropy, which holds whenever we have a well-defined density matrix. It states
that under a variation ρ→ ρ+ δρ, we have

δS = δ〈K〉, (3.28)

where S = −Tr ρ log ρ and K = − log ρ. The proof uses simple manipulations on density
matrices and is given in [19]. When ρ is the density matrix associated to the boundary
region A, we will denote δSA the entropy variation and δEA = δ〈K〉 the energy variation.
The first law of entanglement states that

δSA = δEA . (3.29)

We would like to compute the corresponding gravitational quantities δSgrav
A and δEgrav

A

under a general perturbation of the metric. Following the general prescription discussed
above, we consider the RT surface Ã = γ+∪γ∪γ− where γ± are given in (3.23). In Einstein
gravity, the gravitational entropy associated to the RT surface Ã is nothing but its area
in Planck units. The variation of the entropy is then computed from the variation of the
area of Ã. We want to allow for general theories of gravity so we introduce Wald’s Noether
charge Q[ξA] associated to the Killing vector field ξA. The variation of the gravitational
entropy is then given by

δSgrav
A =

∫

Ã
δQ[ξA]. (3.30)

– 12 –



The gravitational energy is defined as the boundary term appearing in the expression of
the canonical energy of the region Σ such that ∂Σ = A ∪ Ã. It has the expression

δEgrav
A =

∫

Σ
(δQ[ξA]− ξA ·Θ(δφ)) , (3.31)

where Θ is the presymplectic form. Paralleling the AdS story [19], let’s define the form

χ = δQ[ξA]− ξA ·Θ(δφ) , (3.32)

we will show that χ satisfies the same properties as its AdS counterpart. The bulk modular
flow ξA vanishes on γ. It doesn’t vanish on γ± where it is tangent, nonetheless, the integral
of ξA ·Θ(δφ) on γ± vanishes because ξA · (ξA ·Θ(δφ)) = 0 since Θ is a 2-form. This shows
that

∫
Ã
ξA ·Θ(δφ) = 0 and that we have

δSgrav
A =

∫

Ã
χ . (3.33)

Using similar manipulations as in Sec. 5.1 of [19], we can also show that

δEgrav
A =

∫

A
χ , (3.34)

and that
dχ = −2ξaAδEabε

b , (3.35)

where δEab are the equations of motion. Therefore, the gravitational entropy and energy
satisfy a first law for on-shell perturbations

δSgrav
A = δEgrav

A , (3.36)

which follows from the fact that

δEgrav
A − δSgrav

A =

∫

A
χ−

∫

Ã
χ =

∫

Σ
dχ = 0 . (3.37)

The goal of our paper is to show that the converse also holds: the first law of entanglement
for all the regions A (among a special class) implies the gravitational equations of motion.

Einstein gravity. For pure Einstein gravity, we have

Θ(δg) =
1

16πG
(∇bδgab −∇aδg b

b ) , Q[ξ] = − 1

16πG
∇aξbεab . (3.38)

The expression for χ reads

χ(δg) = δQ[ξA](δg)− ξA ·Θ(δg) (3.39)

=
1

16πG
εab

(
δgac∇cξbA −

1

2
δg c
c ∇aξbA +∇bδgacξcA −∇cδgacξbA +∇aδgccξbA

)
.

We now consider a small perturbation of the metric around Minkowski

gab = ηab + λhab, (3.40)
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such that δgab = λhab, where λ is small. For instance, one can consider a perturbation in
Bondi gauge (see Sec. 5.2 for a complete description),

habdx
adxb =

(
V

r
− 2β

)
du2 − 4βdudr − 2r2Ududr + 2r2ϕdφ2 , (3.41)

where V , β, U are functions of all coordinates, while ϕ depends only on u and r. The
linearized Einstein equation are obtained for small λ:

Rab −
1

2
Rgab = δEab(h)λ+O(λ2) . (3.42)

Using (3.39), we have computed χ explicitly and checked that indeed

dχ = −2ξaδEabε
b . (3.43)

Note that this formula follows from the general derivation given in [2]. It ensures the
validity of the first law for on-shell perturbations. A simple class of asymptotically flat
on-shell perturbations is

ds2 = ηabdx
adxb + λ

(
Θ(φ) du2 + 2

(
Ξ(φ) +

u

2
∂φΘ(φ)

)
dudφ

)
, (3.44)

where Θ and Ξ are arbitrary functions of φ. They were found in [10] and we show how to
obtain them in Sec. 5.2. We focus on an interval A on the slice u = 0 (taking `u = 0) and
with width `φ. We compute explicitly the energy variation

δEA =

∫

A
χ =

1

4 sin(
`φ
2 )

∫ `φ
2

− `φ2
dφ
(

cosφ− cos(
`φ
2 )
)

Ξ(φ) . (3.45)

Note that this can be written in term of the modular flow (3.12) as

δEA =
1

8π

∫

A
dφ ζφA Ξ(φ) . (3.46)

We conclude that this perturbation should be accompanied by a variation of the entropy
for the first law to be satisfied.

Refined prescription. In [25], the RT prescription was proposed only for Minkowski
spacetime. For linearized perturbations at first order, the RT surface Ã is unchanged so we
expect to be able to use the same prescription for perturbed Einstein gravity:

SA =
Length(Ã)

4G
, (3.47)

where the length is computed in the perturbed geometry. For the perturbation (3.44), it
is easy to see that γ+ and γ− are still light rays that intersect at the origin and, since Ã
is the union of them, the prescription would imply that δSA = 0.5 This contradicts the

5We are using here the light sheaf prescription where we impose that the light rays pass through the
origin r = 0. This is the prescription used in [25].
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first law of entanglement because δEA 6= 0. The resolution of this problem comes from the
corner in Ã between γ+ and γ−. We should regulate it by considering a smooth curve Ãreg

arbitrarily close to Ã = γ+ ∪ γ−. In other words, the corner has a non-trivial contribution
to the integral.6 The correct prescription is then

SA =

∫

Ãreg

Q[ξA] = lim
ε→0

∫

Ãε

Q[ξA] , (3.48)

where Ãε is a smooth curve that regulates the corner in Ã = γ+ ∪ γ− and converges to Ã
when ε→ 0. From the fact that dχ = 0 on-shell and that Ãε is a smooth curve homologous
to A, we have ∫

Ãε

χ =

∫

A
χ = δEA , (3.49)

which would not be necessarily true if Ãε had corners. From the definition (3.32) of χ, we
can see that

δSA = lim
ε→0

∫

Ãε

(χ+ ξA ·Θ) . (3.50)

In the limit where ε → 0, the integral of ξA ·Θ vanishes because ξA is tangent to γ± and
vanishes at the corner γ+∩γ− (while Θ is finite at the corner). Therefore, we have checked
the validity of the first law of entanglement for the RT prescription,

δSA = δEA . (3.51)

Note that for Einstein gravity, (3.48) doesn’t reduce to the length of Ãreg because Q[ξA]

computes only the length of the surface on which ξA vanishes. In particular, SA can become
negative for some choices of perturbations. We comment on this in Sec. 3.4.

3.4 Positivity constraints

Let’s consider the interval A with `u = 0 and use the prescription in which the light rays
intersect at the origin, see Fig. 1. In Einstein gravity, the entanglement entropy SA vanishes.
This implies that the state ρA is pure. This is unlike any standard quantum field theory,
where the vacuum entanglement entropy has a universal divergence. This suggests some
form of ultralocality as discussed in [35]: the vacuum factorizes between subregions of a
constant u slice of I+. A perturbation will then create a nonzero entropy

SA = δSA = δEA . (3.52)

From the explicit expression of (3.46), we can see that this expression can become negative.
This is in tension with the fact that von Neumann entropies are always positive. This gives
a constraint on perturbations of the form (3.44) that can be described within a quantum
system on I+ satisfying our assumptions. Imposing that

SA = δEA ≥ 0 (3.53)
6There is a similar problem with the origin in polar coordinates. For example, we have

∫
S1
ε
dθ = 2π for

a circle S1
ε of radius ε. Stokes theorem implies that this integral doesn’t depend on ε. In the limit ε → 0

though, S1
ε reduces to a point which suggests that the integral should be set to zero. This is incorrect

because dθ is not defined at the origin.
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Translation in the bulk Translation in the boundary

Ã′

Ã

A′

A

A′

A

Boost in the bulk Boost in the boundary

Ã′

Ã

A

A′

A

A′

Figure 4: Examples of new RT surfaces obtained by bulk isometries acting on the reference
configuration for `u = 0.

gives a constraint on Ξ(φ) according to (3.46). To understand this better, let’s restrict the
Hilbert space H that contains only the perturbations (3.44) of 3d Minkowski. The condition
(3.53) implies that we should restrict to the subspace Hcode ⊂ H on which δ〈KA〉 ≥ 0.
This implies that the operator KA is bounded from below on Hcode and hence, that the
density operator e−KA is well-defined there. As a result, positivity of the entropy gives a
constraint on the perturbations that can be described within a quantum system satisfying
our assumptions. This is similar to the constraints on AdS perturbations coming from
quantum information inequalities [36–38].

Sign ambiguity. The generalized Rindler method doesn’t fix the sign of the modular flow.
If a path integral formulation can eventually be given, the sign would be fixed from the
choice of the vacuum state. Choosing the new modular flow ζ ′A = −ζA, with new modular
Hamiltonian K ′A = −KA, the condition SA ≥ 0 selects a different subspace H′code ⊂ H: the
subspace on which K ′A is a positive operator. This ensures that for the modular flow ζ ′A,
we have a density operator e−K′A which is well-defined on H′code. Hence, changing the sign
of the modular flow amounts to selecting a different subspace on which ρA is well-defined.
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4 Flat 3d gravity from entanglement

In this section, we show that the first law of entanglement implies the gravitational equations
of motion, linearized around three-dimensional Minkowski spacetime. Our proof is valid
for any theory of gravity, including higher-derivative terms. The generalization to four
dimensions is treated in the Sec. 6.

4.1 General strategy

Let’s consider a general off-shell perturbation of 3d Minkowski. The one-form χ satisfies

dχ = −2ξaδEabε
b, (4.1)

where δEab are the equations of motion for the perturbations and εa = 1
2εabcdx

b ∧ dxc.7 As
explained in (3.37), the first law of entanglement implies that for all surfaces Σ bounded
by A and Ã, we have ∫

Σ
dχ = 0 . (4.2)

We would like to show that this implies that δEab = 0. This is reasonable because we
have a large number of such surfaces Σ. The derivation will be similar to the AdS case [19]
although the RT surfaces are more involved here. Bulk isometries will play a crucial role.

The strategy is to start with some reference configuration. By varying the parameters
of this configuration, we will obtain constraints on the gravitational equations δEab. We
will then act on this configuration with bulk isometries to obtain new constraints. This
amounts to probing the perturbation with new RT surfaces, obtained by applying a bulk
isometry to the reference configuration. The new constraint is obtained by replacing δEab
by its image under the transformation. The logic can be phrased as follows: the first law
of entanglement gives the equation

∫

Σ
ξaδEab(x)εb = 0 . (4.3)

We can consider a new configuration Σ̃ obtained by performing a bulk isometry x → x̃.
The associated bulk modular flow ξ̃a and volume form ε̃b can be obtained by applying the
transformation to ξa and εb, which gives

∫

Σ̃
ξ̃aδEab(x̃)ε̃b = 0 . (4.4)

We are probing the same perturbation δEab with a different RT surface and we emphasize
that δEab(x̃) is now evaluated on the new RT surface Σ̃. Now, we can change variables in
the integral using the inverse bulk isometry x→ x′. This gives

∫

Σ
ξc
(
∂x̃a

∂xc
∂x̃b

∂xd
δEab(x̃(x))

)
εd = 0 . (4.5)

7εabc is a totally antisymmetric tensor such that εurφ =
√−g.
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This shows that if (4.3) allows us to prove that some functional of the equations of motion
vanishes:

F [δEab(x)] = 0, (4.6)

then we immediately have that the same functional but applied to the transformed equations
of motion vanishes:

F
[
∂x̃c

∂xa
∂x̃d

∂xb
δEcd(x̃(x))

]
= 0. (4.7)

This procedure is made mathematically precise in App. B.

4.2 Linearized gravitational equations

We now describe the proof of the gravitational equations, linearized around 3d Minkowski
spacetime. Although the proof is conceptually similar to the AdS case derived in [19], it
is rather more challenging in flat space. In particular, we will have to use different RT
prescriptions as discussed in Sec. 3.2. Bulk isometries will also play an important role in
generating enough constraints on the perturbation.

Reference configuration. The reference configuration is an interval A with `u = 0 at
u = 0 and with length `φ centered at φ = 0. We can parametrize the interval A by

A : u = 0, φ ∈ [− `φ
2 ,

`φ
2 ] . (4.8)

The RT surface Ã consists of two semi-infinite light rays starting at the origin and ending
at the extremities ∂A, as in Fig. 1. The surface Σ at u = 0 which is bounded by A and Ã
can be parametrized by r and φ with

Σ : u = 0, r ≥ 0, φ ∈ [− `φ
2 ,

`φ
2 ] . (4.9)

The bulk modular flow (3.10) evaluated on Σ reduces to

ξA =
2π

sin(
`φ
2 )

(
r sinφ∂r + (cosφ− cos(

`φ
2 ))∂φ

)
. (4.10)

Let’s write explicitly the equation (4.1). In Bondi coordinates, we have

εr = −εu = −r dr ∧ dφ . (4.11)

Hence, the pullback of dχ on Σ is8

dχ|Σ = 2rξaδEardr ∧ dφ . (4.12)

From (4.1), we obtain9

∫ `φ
2

− `φ2
dφ

∫ +∞

0
dr
(
r2sinφ δErr + r

(
cosφ− cos(

`φ
2 )
)
δErφ

)
= 0 . (4.13)

8The 2-form dr ∧ dφ is singular at r = 0 so we need to restrict the integration range to r ≥ ε and take
ε→ 0 at the end. This is always what we will be doing implicitly.

9 We thank Hongliang Jiang for pointing out a mistake in the previous version of this formula.
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Expanding this equation at small `φ implies that
∫ +∞

0
dr (r2∂φδErr(0, r, 0) + rδErφ(0, r, 0)) = 0 . (4.14)

Rotations and time translations. We can consider new configurations obtained by
performing rotations. They are the same as the reference configuration but centered at
φ = φ0. The new RT suraces are obtained as the image under the bulk isometries

φ→ φ+ φ0. (4.15)

The Jacobian of this transformation is simply the identity. Therefore, following the logic
exposed in the previous section, we obtain that the vanishing of the functional (4.14) but
applied to the image of δEab under this isometry:

∫ +∞

0
dr (r2∂φδErr(0, r, φ0) + rδErφ(0, r, φ0)) = 0, (4.16)

for any angle φ0. We can do the same with translation u → u + u0 in retarded time u, to
obtain ∫ +∞

0
dr (r2∂φδErr(u0, r, φ0) + rδErφ(u0, r, φ0)) = 0. (4.17)

light sheaf deformation. We consider the same boundary interval A as in the reference
configuration (4.8). The latter followed the prescription in which the light rays γ+ and γ−
intersect the spatial origin r = 0. This is not the most general prescription, as discussed in
Sec. 3.2. Here, we will use a more general prescriptions to derive more constraints on δEab.
An alternative proof of this step is presented in the App. C.

We consider a more general light sheaf for the interval A. We take the parametrization
(3.23) where we set `u = Y− = 0 and Y+ = Y . The two light rays intersect the bifurcation
surface at x̃ = 0 and x̃ = −Y cos (

`φ
2 ). The first law tells us that for any Y , we have

∫

ΣY

dχ = 0 , (4.18)

where the surface ΣY depends on Y and can be chosen to be any surface such that ∂ΣY =

Ã∪A. In particular, one can choose ΣY = Σ{Y=0} ∪NY , where NY is the strip created by
the union of all the half light rays γ+ given in (3.23) where the parameter Y+ goes from 0

to Y . From (4.18), it then follows that for any Y , we have
∫

NY

dχ = 0 . (4.19)

We now take the derivative with respect to Y and evaluate at Y = 0. The integral reduces
to an integral over the Y+ = 0 light ray and the integrand is contracted with ∂x̃ as the
effect of changing Y+ is to translate the light ray in the x̃-direction. At the end, we get

∫

γ+

∂x̃ · dχ = 0. (4.20)
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where γ+ is the usual light ray from the origin to the point (u, φ) = (0,
`φ
2 ). Converting the

vector to Bondi coordinates, we obtain

∂x̃ =
1

sin(
`φ
2 )

[(
cos(

`φ
2 )− cosφ

)
∂u + cosφ∂r −

sinφ

r
∂φ

]
. (4.21)

The integral is evaluated at φ =
`φ
2 where the expressions for ∂x̃ and for the bulk modular

flow (4.10) simplify to

∂x̃ = cot(
`φ
2 )∂r −

1

r
∂φ, ξA = 2πr ∂r (4.22)

The pullback on γ+ only keeps the dr component so in the expression (4.1) for dχ, we only
have a contribution from εr = −rdr ∧ dφ. As a result, ∂x̃ · dχ|γ+ = −4πr δErr dr and we
obtain ∫ +∞

0
dr r δErr(u0, r, φ0) = 0 , (4.23)

where as above, we have used rotations and time translations to make this expression valid
for any u0 and φ0.

Radial translations. Let’s consider a new configuration which is obtained by translating
the reference configuration by a distance r0 in the direction φ0 of the light ray on which
(4.23) is integrated. In Cartesian coordinates, such a translation is given by

t→ t+ r0, x→ x+ r0 cosφ0, y → y + r0 sinφ0 . (4.24)

These configurations are illustrated in Fig. 4. We can apply the reasoning presented in Sec.
4.1 for these new configurations. In Bondi coordinates, the transformation becomes

u → r + r0 + u−
√
r2 + 2 r r0 cos(φ− φ0) + r2

0 , (4.25)

r →
√
r2 + 2 r r0 cos(φ− φ0) + r2

0 , (4.26)

φ → arctan

(
r sin(φ) + r0 sin(φ0)

r cos(φ) + r0 cos(φ0)

)
. (4.27)

The constraint (4.17) applied to the image of δEab under this isometry gives the new
constraint ∫ +∞

r0

dr (r − r0) δErr(u0, r, φ0) = 0 , (4.28)

where we have also performed the change of variable r → r− r0 in the integral. Taking two
derivatives with respect to r0 shows that

δErr(u0, r0, φ0) = 0 , (4.29)

for any value of u0, r0, φ0. From this, the equation (4.17) simplifies to
∫ +∞

0
dr r δErφ(u0, r, φ0) = 0 . (4.30)
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We use the same radial translation on this equation to obtain the constraint
∫ +∞

r0

dr
(r − r0)2

r
δErφ(u0, r, φ0) . (4.31)

Taking three derivatives with respect to r0 implies that

δErφ(u0, r0, φ0) = 0 , (4.32)

which is true for any value of u0, r0, φ0. Hence, we have shown that

δErr = δErφ = 0 , (4.33)

everywhere in the bulk.

General translations. We consider a general bulk translation δxµ = vµ. This generates
a new family of configurations, illustrated in Fig. 4. Acting with the infinitesimal translation
on δErφ = 0 leads to

(vycosφ− vx sinφ)(r2δEur + δEφφ) = 0 , (4.34)

which implies that
δEφφ = −r2δEur , (4.35)

everywhere in the bulk.

Conservation equation. We now consider the conservation equation

∇a(δEab) = 0 , (4.36)

which is always satisfied by the equations of motion. Here, ∇a is the derivative with
respect to the background Minkowski spacetime. We will use this equation together with
an additional holographic input to cancel the remaining components. Indeed one should
remember that in AdS, the proof requires a holographic input that is the conservation and
the tracelessness of the boundary stress tensor. In a radial Hamiltonian perspective, they
correspond to initial conditions on the boundary surface. In the flat case, similar initial
conditions are required. We will show in the next section how to make sense of a boundary
"stress tensor" and derive its constraint equations using a flat limit in AdS.

For b = u, the conservation equation implies

∂r(δEur) = 0 , (4.37)

which leads to δEur = C0(u, φ) and δEφφ = −r2C0(u, φ). We expect that the trace con-
ditions (5.29) and (5.30) imply that C0 = 0 although we have not been able to show it
conclusively.10 Assuming that this is the case, we obtain

δEur = δEφφ = 0 , (4.38)
10This would be done by turning on an off-shell perturbation in the Bondi gauge such that (5.29) and

(5.30) are violated which would allows us to identify the corresponding components of Einstein equations.
We leave this analysis for future work.
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everywhere in the bulk. The conservation equation for b = φ then gives

δEuφ + r∂r(δEuφ) = 0 . (4.39)

The solution of this equation is

δEuφ =
C2(u, φ)

r
. (4.40)

In the next section, we show that the equation C2 = 0 is precisely the conservation equation
(5.13) of the boundary stress tensor, so we have δEuφ = 0. Finally, the component with
b = r gives

δEuu + r∂r(δEuu) = 0 , (4.41)

with solution
δEuu =

C1(u, φ)

r
. (4.42)

The equation C1 = 0 is the other conservation equation (5.12) of the boundary stress tensor,
so we have δEuu = 0. Hence, we have shown that all the components of the linearized
gravitational equation vanish.

5 Holographic stress tensor in flat spacetime

In AdS, the boundary is a timelike hypersurface which allows for the definition of a non-
degenerate boundary metric whose dual operator is the boundary stress tensor. In flat
space, things are more subtle, because the metric becomes degenerate on the boundary
(its determinant vanishes). This is simply because I+ is a null hypersurface. To have a
good understanding of the flat case, it is helpful to start from its AdS counterpart and
perform a flat limit sending the AdS radius to infinity, we will see that this amounts to
perform a Carrollian limit on the boundary (or ultra-relativistic limit). We will show that
the induced geometry on a null hypersurface contains more than a degenerate metric and
that additional geometrical objects appear naturally when performing the flat limit. The
concept of boundary stress tensor will also have to be modified.

5.1 AdS3 in Bondi gauge

We consider the following metric, written in Bondi gauge:

ds2 =
Ṽ

r
e2β̃du2 − 2e2β̃dudr + r2e2ϕ̃(dφ− Ũdu)2, (5.1)

We are going to consider small perturbations around global AdS, the most generic pertur-
bation in Bondi gauge is given by

β̃ = λβ, Ṽ = −r
(

1 +
r2

`2

)
+ λV, Ũ = λU, ϕ̃ = λϕ, (5.2)

where λ is a small parameter. From now on, all the expressions will be linearized in λ.
Solving the (r, r), (r, u), (r, φ) and (φ, φ)-components of the linearized Einstein equations,

– 22 –



with negative cosmological constant, gives

β = β0(u, φ),

U = −N(u, φ)

r2
+ U0(u, φ) +

2∂φβ0

r
,

V = rM(u, φ) + r

(
−2r2β0

`2
− 2r (∂φU0 + ∂uϕ)

)
.

(5.3)

The flat limit was considered for the case β0 = U0 = 0 in [6]. There are two residual
equations, given by the (u, u) and (u, φ)-components of Einstein equations

∂uM = 2∂φU0 + 2∂2
φU0 − 2∂uβ0 − 4∂u∂

2
φβ0 + 2∂uϕ+ 2∂u∂

2
φϕ+ 2`−2∂φN ,

∂uN =
1

2
∂φM − ∂φβ0 .

(5.4)

The latter can be understood as the conservation of a boundary stress tensor

∇µTµν = 0 , (5.5)

where µ = {u, φ}. The boundary metric and the stress tensor are given by

gµν =

(
−1+4λβ0

`2
−λU0

−λU0 1 + 2λϕ

)
, Tµν =

1

8G
τµν , (5.6)

where

τuu = −`3
(
−1 + λ

(
M + 6β0 + 4∂2

φβ0

))
,

τuφ = `λ
(
2N + `2

(
U0 + 2∂2

φU0 + 2∂u∂φϕ
))
,

τφφ = −`
(
−1 + λ

(
M + 2β0 + 2ϕ+ 2`2∂u∂φU0 + 2`2∂2

uϕ
))
.

(5.7)

This stress tensor can be obtained, for example, through the Brown and York procedure.
It is well-known that the boundary theory is a 2d CFT whose central charge is given by
[39]

c =
3`

2G
, (5.8)

and this is confirmed by computing the anomalous trace of the stress tensor

Tµµ = − c

12
R = − `

8G
R , (5.9)

where R is the scalar curvature of the boundary metric.

5.2 Flat limit and Carrollian geometry

We have now all the ingredients to perform the flat limit. In the bulk, the `→∞ limit of
the metric is given by another metric in the Bondi gauge (5.1) but whose defining functions
are

β̃ = λβ, Ṽ = −r + λV, Ũ = λU, ϕ̃ = λϕ, (5.10)

– 23 –



we notice that this is now a perturbation around Minkowski. Solving the (r, r), (r, u), (r, φ)

and (φ, φ)-components of the linearized Einstein equations, this time without cosmological
constant, gives

β = β0(u, φ),

U = −N(u, φ)

r2
+ U0(u, φ) +

2∂φβ0

r
,

V = rM(u, φ) + r (−2r (∂φU0 + ∂uϕ)) .

(5.11)

The two residual equations, the (u, u) and (u, φ)-components of Einstein equations, are

∂uM = 2∂φU0 + 2∂2
φU0 − 2∂uβ0 − 4∂u∂

2
φβ0 + 2∂uϕ+ 2∂u∂

2
φϕ, (5.12)

∂uN =
1

2
∂φM − ∂φβ0. (5.13)

To be more precise, we have that the (u, u) and (u, φ)-components of the linearized Einstein
equations scale with r as

δEuu =
C1(u, φ)

r
and δEuφ =

C2(u, φ)

r
, (5.14)

such that C1 = 0 ⇔ (5.12) and C2 = 0 ⇔ (5.13). These conditions are the holographic
input we need for the proof of Sec. 4. The difference with the AdS case is that we cannot
recast these two conservation equations as the divergence of a boundary energy–momentum
tensor for the simple reason that there is no non-degenerate boundary metric that allows
us to build the usual covariant derivative. In the following we will show how to obtain the
right geometrical structure to describe the boundary geometry.

To perform the limit on the boundary, it is useful to decompose the boundary metric
and energy–momentum tensor with respect to their scaling with `. We start with the metric

gµν = hµν − `−2nµnν , (5.15)

where

nµ =

(
1 + 2λβ0

0

)
, hµν =

(
0 −λU0

−λU0 1 + 2λϕ

)
. (5.16)

The inverse metric is
gµν = −`2vµvν + hµν , (5.17)

where

vµ =

(
1− 2λβ0

λU0

)
, hµν =

(
0 0

0 1− 2λϕ

)
. (5.18)

This decomposition allows us to define properly the geometry on the null infinity. It will be
composed of a degenerate metric hµν (which induces a real metric on the boundary circle)
whose kernel is given by the vector field vµ which represents the time direction, a temporal
one-form nµ and the pseudo-inverse metric hµν (indeed, as hµν is degenerate, it does not
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enjoy a true inverse). These are the ingredients of a Carrollian geometry [40, 41]. One can
check that they satisfy the following relations

hµνv
ν = 0, hµνnν = 0, vµnµ = 1 and hµσhσν = δµν − vµnν , (5.19)

at first order in λ. These can be taken as the defining relations of a Carrollian geometry.
We will also make use of the scalings of the Christoffel symbols with `:

Γµνρ = `2Xµ
νρ + Y µ

νρ + `−2Zµνρ, (5.20)

where Xµ
νρ, Y µ

νρ and Zµνρ can be written in terms of the Carrollian geometry as11

Xµ
νρ = −1

2
vνvσ(∂νhσρ + ∂ρhσν − ∂σhνρ), (5.21)

Y µ
νρ = γµνρ + vµvσ

(
n(ν∂ρ)nσ − (∂σn(ν)nρ)

)
+ vµ∂(νnρ), (5.22)

Zµνρ = hµσ
(
(∂σn(ν)nρ) − n(ν∂ρ)nσ

)
, (5.23)

where γµνρ = 1
2h

µσ(∂νhσρ + ∂ρhσν − ∂σhνρ) is the Levi-Civita of the pseudo metric hµν .
The boundary energy–momentum tensor scales with ` as

Tµν = `3Tµν1 + ` Tµν0 , (5.24)

so the boundary dynamical data decomposes in two pieces, Tµν0 and Tµν1 , defined on I+.
For the perturbation in Bondi gauge, they are given by

Tµν0 =
1

8G

(
0 2λN

2λN 1− λ(M + 2β0 + 2ϕ)

)
, (5.25)

Tµν1 =
1

8G

(
1− λ(M + 6β0 + 4∂2

φβ0) λ(U0 + 2∂2
φU0 + 2∂φ∂uϕ)

λ(U0 + 2∂2
φU0 + 2∂φ∂uϕ) −λ(2∂u∂φU0 + 2∂2

uϕ)

)
. (5.26)

We can now take the ` → ∞ limit of the conservation equations. We obtain the two
following conservation laws, a scalar one and a vector one

nσ
(
∂µT

µσ
1 + Y µ

µρT
ρσ
1 + Y σ

µρT
µρ
1 +Xµ

µρT
ρσ
0 +Xσ

µρT
µρ
0

)
= 0 , (5.27)

hνσ
(
∂µT

µσ
0 + Y µ

µρT
ρσ
0 + Y σ

µρT
µρ
0 + ZµµρT

ρσ
1 + ZσµρT

µρ
1

)
= 0 . (5.28)

In three dimensions, the vector conservation corresponds only to one equation since its pro-
jection on vµ vanishes by definition. These two equations are the analog of the conservation
of the stress tensor in AdS3 and reproduce perfectly the two equations (5.12) and (5.13).
They are the holographic input that we need in the proof in Sec. 4 to cancel the integration
constants C1 and C2.

11One can check that Y µνρ is a torsionless "compatible" Carrollian connection [40], which means that it
parallel transports vµ and hµν .
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There is also a Carrollian equivalent of the relation between the trace of Tµν and the
scalar curvature. It is obtained simply by taking the ` → ∞ of the formula (5.9) which
splits into two equations:

hµνT
µν
0 − nµnνTµν1 = −R0

8G
, (5.29)

hµνT
µν
1 = −R1

8G
, (5.30)

where R0 and R1 are two Carrollian scalar curvatures defined as

R0 = RY − 2vµvν
(
∂[αZ

α
ν]µ + Y β

µ[νZ
α
α]β + Zβµ[νY

α
α]β

)
+ 2hµν

(
Zβµ[νX

α
α]β +Xβ

µ[νZ
α
α]β

)
,

R1 = −2vµvν
(
∂[αY

α
ν]µ + Y β

µ[νY
α
α]β + Zβµ[νX

α
α]β +Xβ

µ[νZ
α
α]β

)
(5.31)

+2hµν
(
∂[αX

α
ν]µ + Y β

µ[νX
α
α]β +Xβ

µ[νY
α
α]β

)
,

and RY is the scalar curvature associated with Y µ
νρ:

RY = hµν
(
∂αY

α
νµ − ∂νY α

αµ + Y β
µνY

α
αβ − Y β

µαY
α
νβ

)
. (5.32)

Equations (5.29) and (5.30) are the third holographic input that we have to impose for the
proof in Sec. 4. They are the equivalent of the tracelessness condition for the holographic
stress tensor in AdS, that one has to impose on top of its conservation. For the Bondi
perturbation, R0 and R1 are given by

R0 = −4∂2
φβ0 , (5.33)

R1 = 2(∂φ∂uU0 + ∂2
uϕ) . (5.34)

Finally, we can focus on the case β0 = U0 = ϕ = 0, which is the space of solutions
considered in Sec. 3.3 (see [10]). The two cuvature elements R0 and R1 vanish, therefore it
corresponds to a "flat" Carrollian geometry on the boundary (we also have that Xµ

νρ, Y µ
νρ

and Zµνρ vanish). Moreover, the two pieces of boundary dynamical data simplify to

Tµν0 =
1

8G

(
0 2λN

2λN 1− λM

)
, (5.35)

Tµν1 =
1

8G

(
1− λM 0

0 0

)
, (5.36)

and their two conservation laws become

∂uM = 0 , (5.37)

∂φM = 2∂uN . (5.38)

The solutions are given by M = Θ(φ) and N = u
2∂φΘ + Ξ(φ). One can check that with

these defining functions, together with β0 = U0 = ϕ = 0, the line element (5.1) becomes
(3.44):

ds2 = ηabdx
adxb + λ

(
Θ(φ) du2 + 2

(
Ξ(φ) +

u

2
∂φΘ(φ)

)
dudφ

)
+O(λ2), (5.39)

which is the metric perturbation we have used for exact on-shell computations.
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6 Generalization to 4d

In this section, we give the Ryu-Takayanagi prescription in 4d that follows from the as-
sumptions given in Sec. 2. We find a Rindler transformation and describe the corresponding
entangling regions and RT surfaces. We show that the general RT prescription depends on
the choice of an infalling light sheaf, i.e. a choice of bulk light rays which intersects I+

at the boundary ∂A of the entangling region. Using these RT surfaces, we show that the
gravitational equations of motion are equivalent to the first law of entanglement, assuming
that the constraints on the boundary stress tensor imply the vanishing of δEua at infinity.
Our proof is valid for any theory of gravity, including higher-derivative terms.

6.1 Ryu-Takayanagi prescription in 4d Minkowski

Rindler transformation. We describe a transformation which satisfies the assumptions
of the generalized Rindler method. It maps the coordinates (u, θ, φ) on I+ into the coordi-
nates (τ, ρ, η) according to

u =
τ

cosh ρ
, (6.1)

θ = arctan (sinh ρ) +
π

2
,

φ = η .

This can be compared with the 3d case (3.6). It is in fact a BMS4 superrotation, which
maps the round sphere into a conformally flat space

dθ2 + sin2θ dφ2 =
1

cosh2ρ
(dρ2 + dη2) . (6.2)

It is a Rindler transformation because the space that we obtain has a thermal identification

ρ ∼ ρ+ 2πi . (6.3)

The modular flow ζA is the generator of this thermal circle, given by

ζA = 2π∂ρ = −2π (u cos θ ∂u + sin θ ∂θ) . (6.4)

This vector belongs to the BMS4 algebra and hence annihilates the vacuum, as required for
a boundary modular flow. To obtain the bulk modular flow, we can look for a Killing of 4d
Minkowski which asymptotes to ζA. We obtain

ξA = −2π

(
u cos θ ∂u − (r + u) cos θ ∂r +

(r + u)

r
sin θ ∂θ

)
. (6.5)

Note that this is much simpler than trying to find the gravitational solution which is dual
to a thermal state, i.e. the flat space analog of the hyperbolic black hole, which is what we
do in App. A.
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Watermelons. We focus on entangling regions that lie on the slice u = 0 as other con-
figurations can be obtained by acting with bulk isometries. The entangling regions A are
given by patches on the sphere at infinity that are invariant under the flow. They are
"watermelon slices" whose boundaries follow the flow and with width `φ. They can be
parametrized as

− `φ
2 ≤ φ ≤

`φ
2 , 0 ≤ θ ≤ π , (6.6)

and are represented in Fig. 5. The domain of dependence D and its boundary ∂D can be
checked to be invariant under the flow.12

Generalized Rindler transformations. When the sphere is written in complex coor-
dinates

z = eiφcot( θ2), z̄ = e−iφcot( θ2) , (6.7)

we observe that the Rindler transformation (6.1) can be written as

z → e−w, z̄ → e−w̄, (6.8)

where w = ρ − iη, w̄ = ρ + iη. This suggests a way to obtain more general Rindler
transformations, obtained by acting with a Möbius transformation on the sphere. Let’s
consider the following transformation

u → cos θ0

cosh ρ + cos η sin θ0
τ , (6.9)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

which is a BMS4 transformation. The boundary modular flow is the vector 2π∂ρ given by

ζA = − 2π

cos θ0
(u cos θ ∂u + k) , (6.10)

where k is a conformal Killing of the sphere given by

k = (sin θ − sin θ0 cosφ) ∂θ + sin θ0 cot θ sinφ∂φ . (6.11)

The bulk modular flow is

ξA =
2π

cos θ0

(
(u+ r) cos θ ∂r −

u

r
sin θ ∂θ

)
+ ζA . (6.12)

It is obtained as the Killing vector of 4d Minkowski spacetime which matches with ζA on
the boundary. The transformation described in (6.9) has also the thermal identification
ρ ∼ ρ + 2πi. It is a one-parameter generalization of the previous Rindler transformation
(6.8), obtained by considering a more general conformal Killing k of the sphere.

12The boundary ∂A is not fixed pointwise by the flow, which is different from the AdS case or in 3d
Minkowski. This is inevitable for 4d Minkowski because there is no conformal Killing on the sphere which
admits a one-dimensional set of fixed points [42].
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"Watermelon slice" with θ0 = 0 Deformed watermelon with θ0 > 0

Disk at `φ = π Smaller disk at `φ = π

Ã

A

Ã

A

Ã

A

Ã

A

Figure 5: Examples of entangling regions (in blue) and associated RT surfaces (in red) for
4d Minkowski on the constant u = 0 slice. They are associated to the modular flow (6.10)
and its bulk extension (6.12).

Generalized watermelons. To understand the entangling regions associated to this
modular flow, we should look at regions on S2 that are preserved under k. There are two
fixed points given by

P− : (θ, φ) = (θ0, 0), P+ : (θ, φ) = (π − θ0, 0) . (6.13)

The vector field k is a flow from P− to P+. The entangling regions are deformed "water-
melons slices" whose boundaries are tangent to this flow, as depicted in Fig. 5. The domain
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of dependence D and its boundary ∂D can be checked to be invariant under the flow. An
entangling region A can be parametrized by

− `(θ) ≤ φ ≤ `(θ), θ0 ≤ θ ≤ π − θ0 , (6.14)

where `(θ) satisfies the condition

`′(θ) = (kφ/kθ)
∣∣∣
φ=`(θ)

, (6.15)

which ensures that the boundary ∂A is tangent to the vector field k. This makes sure that
A and ∂A are preserved under the modular flow. Explicitly, we obtain

tan `(θ) =
cos(2θ0)− cos(2θ)

2 sin θ

(
cot(

`φ
2 ) sin θ + sin θ0

√
1 + cot2(

`φ
2 )− sin2θ0

sin2θ

) , (6.16)

where `φ parametrizes the width of the entangling region. For θ0 = 0, we have `(θ) = `φ/2.
At small `φ, we have

`(θ) =

(
1− sin θ0

sin θ

)
`φ
2

+O(`2φ) . (6.17)

At the special value `φ = π
2 , the watermelon becomes a disk on the sphere. This is illustrated

in Fig. 5. The opening angle of the disk is π − 2θ0.

Ryu-Takayanagi surfaces. The entangling regions described above are the generaliza-
tion of the 3d story with `u = 0. The bulk modular flow (6.12) is very similar to the bulk
modular flow in three dimensions (3.10). The RT surfaces associated to the above regions
are easy to describe, they lie on the slice u = 0 and are the union of all light rays starting
at the origin and ending on ∂A. We illustrate this prescription in Fig. 5 by representing
the sphere at infinity on the slice u = 0. The entangling regions A are in blue and the RT
surfaces Ã are in red. We also represent the boundary modular flow on the sphere. The
entanglement entropy of the region A is then given by

SA =

∫

Ã
Q[ξA] . (6.18)

For Einstein gravity in the Minkowski vacuum, the areas of all these RT surfaces vanish
because they have a null tangent vector everywhere.

Perturbations. As an illustration, we can consider on-shell perturbations of 4d Minkowski
in the Bondi gauge. The flat metric is given by

ds2 = −du2 − 2dudr + r2γijdx
idxj , γijdx

idxj = dθ2 + sin2θ dφ2 , (6.19)

we consider the linearized on-shell perturbations studied in [43] with Cij = 0, which corre-
sponds to setting the gravitational wave aspect to zero. Asymptotically, the perturbation
reads

huu =
2

r
M(xi) +O(r−2), hui =

1

r
Ni(xi) +O(r−2), hij = O(1) . (6.20)
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The subleading pieces in r should not contribute to the charges at infinity. This allows us
to compute δEA in a similar way as in the previous section. We obtain on a slice u = 0

δEA =
3

8 cos θ0

∫

A
dθdφ [(cosφ sin θ0 − sin θ)Nθ(θ, φ)− cot θ sinφ sin θ0Nφ(θ, φ)] , (6.21)

which can be written in terms of the boundary modular flow (6.10) as

δEA =
3

16π

∫

A
dθdφ ζiANi(θ, φ) . (6.22)

Exactly as in the 3d case, the entropy has to be computed using the refined prescription
(3.48) where we regulate the corner of the RT surface. The fact that δEA = SA, which
has to be positive, gives some constraints on the perturbations that can be described by
a quantum system on I+ satisfying our assumptions, similar to the discussion in Sec. 3.4.
These constraints impose the functions Ni in the perturbation to be such that (6.22) is
positive for a given region A. This selects a subspace Hcode on which KA is bounded from
below and this makes the density operator e−KA is well-defined.

6.2 General 4d prescription

In this section, we discuss the general RT prescription in 4d, in the same spirit as the
3d discussion of Sec. 3.2. Given a boundary entangling region, we will describe the most
general choice of light sheaf that satisfies the requirements to give a good RT configuration.
That is, the light sheaf must connect ∂A to the Rindler bifurcation surface and the modular
flow must be tangent to it. As explained in the 3d case, the first condition ensures that we
can define an RT surface (as a portion of the Rindler bifurcation surface) and the second
condition is required to have a well-defined first law.

Modular flow for non-zero `u. In Cartesian coordinates (t, x, y, z), the bulk modular
flow given (6.5) takes the following form

ξA =
2π

cos θ0
[z ∂t + z sin θ0 ∂x + (t− x sin θ0) ∂z] . (6.23)

We note that this it is similar to the 3d bulk modular flow at `u = 0. This suggests the
following generalization for `u 6= 0 in 4d, obtained by performing a bulk translation

z → z +
`u

2 cos θ0
, (6.24)

which leads to

ξA =
2π

cos θ0

[(
z +

`u
2 cos θ0

)
∂t +

(
z sin θ0 +

`u tan θ0

2

)
∂x + (t− x sin θ0) ∂z

]
. (6.25)

Going back to Bondi coordinates (u, r, θ, φ) and taking the limit r → +∞, we obtain the
corresponding 4d boundary modular flow, which reads

ζA =
2π

cos θ0

[(
−u cos θ +

`u
2 cos θ0

(1− sin θ0 sin θ cosφ)

)
∂u (6.26)

+ (sin θ0 cosφ− sin θ) ∂θ + sin θ0 cot θ sinφ∂φ

]
.
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One can check that this modular flow follows from a generalized Rindler transform, which
is the previous Rindler transform (6.9) with a different transformation for u

u → cos θ0

cosh ρ + cos η sin θ0

(
τ +

`u
2 cos θ0

sinh ρ

)
, (6.27)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

and which remains a BMS4 transformation. The generator of the thermal circle 2π∂ρ
reproduces the boundary modular flow given above. This was guaranteed to work because,
as in 3d, the case `u 6= 0 is simply the image of the case `u = 0 by a bulk translation, which
becomes on the boundary

u→ u+
`u

2 cos θ0
cos θ . (6.28)

On the boundary, this bulk translation changes the shape of the region A which is the same
as before but with an extension in u:

u =
`u

2 cos θ0
cos θ , θ ∈ [θ0, π − θ0] . (6.29)

Similarly to 3d, the bulk modular flow (6.25) is simply a boost. This can be seen explicitly
by defining new coordinates

t̃ =
1

cos θ0
t− tan θ0 x, x̃ =

1

cos θ0
x− tan θ0 t, z̃ = z +

`u
2 cos θ0

, (6.30)

in which the modular flows is given by

ξA = 2π
(
z̃ ∂t̃ + t̃ ∂z̃

)
. (6.31)

In App. A we show that, exactly like in the 3d case, there exists a change of coordinates
in the bulk defined on the exterior of a Rindler horizon that maps to the transformation
(6.27) on the boundary.

RT prescription. In 4d, the prescription where we impose that the light rays pass
through the origin r = 0 is inconsistent in the case `u 6= 0 because most light rays won’t
have an intersection with the bifurcation surface. Instead, we should consider the most
general light sheaf which satisfies the requirements necessary for a good RT configuration,
as was done in Sec. 3.2 for the 3d case. We will take all these choices of light sheaf to be
equally physical, reflecting a choice of UV cutoff in the putative dual theory.

The boundary of A on I+ has two pieces ∂A = B+∪B− which can be parametrized as

B+ : φ = `(θ), θ0 ≤ θ ≤ π − θ0 , (6.32)

B− : φ = −`(θ), θ0 ≤ θ ≤ π − θ0 .
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where `(θ) is defined in (6.16), while their extension in the u−direction is given by (6.29).
The most general light rays that arrive at a point (θ, φ) = (θ,±`(θ)) on I+ can be
parametrized as follows in Cartesian coordinates

γ+(θ) :





t = s+ T+(θ)

x = s sin θ cos `(θ) +X+(θ)

y = s sin θ sin `(θ) + Y+(θ)

z = s cos θ + Z+(θ)

, γ−(θ) :





t = s+ T−(θ)

x = s sin θ cos `(θ) +X−(θ)

y = s sin θ sin `(θ) + Y−(θ)

z = s cos θ + Z−(θ)

,

(6.33)
and the arbitrary functions T±(θ), X±(θ), Y±(θ), Z±(θ) reflect the ambiguity in choosing
these light rays. This ambiguity will be partially fixed by imposing the necessary require-
ments. Firstly, the light rays γ+(θ) and γ−(θ) should intersect I+ at ∂A, so that the value
of u at infinity is given by (6.29). Then we should impose that all these light rays intersect
the bifurcation surface of the Rindler horizon associated with the bulk modular flow, i.e.
t̃ = z̃ = 0. To do this, we impose that after transforming (6.33) to the new Cartesian
coordinates (6.30), z̃ and t̃ become proportional. This also imposes the relation

z̃ = f(θ) t̃, f(θ) =
cos θ cos θ0

1− cos `(θ) sin θ tan θ0
. (6.34)

Denoting the two light sheafs

γ+ = {γ+(θ) | θ ∈ [θ0, π − θ0]} , (6.35)

γ− = {γ−(θ) | θ ∈ [θ0, π − θ0]} ,

we see that γ+ and γ− span over the quadrant t̃ ≥ |z̃| because the function f(θ) is a bijection
between the interval [θ0, π− θ0] and the interval [−1, 1]. To find the region γ, which is a 2d
surface in 4d, we should consider the intersection of γ± with the bifurcation surface, which
is the plane (x̃, ỹ). From the explicit parametrization, we find that the intersection of γ±
with this plane is restricted to the lines

x̃± cos θ0 tan(
`φ
2 ) ỹ = 0 . (6.36)

Lastly, we should impose that the modular flow is tangent to the light sheaf γ+ ∪ γ− which
is required to have a well-defined first law. This is necessary because we need ξA · Θ to
vanish when integrated on the light sheaf, see the paragraph below for more details. To do
this, we consider the two tangent vectors

∂xµ

∂θ
∂µ,

∂xµ

∂s
∂µ , (6.37)

and we require that the modular flow ξA can be written as a linear combination of those.
For the light sheaf γ+, we find that this is only possible if the light sheaf γ+ intersects
the bifurcation surface at a single point P+. That is, we need all the light rays in γ+ to
converge to the same point P+ on the bifurcation surface. We have a similar condition
on γ− which should intersect the bifurcation surface at a single point P−. These points
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cannot be arbitrary in the plane (x̃, ỹ) since they have to belong to the lines given in (6.36).
Importantly, P+ and P− don’t have to be the same. Enforcing all these constraints, we are
able to fix the functions T±(θ), X±(θ), Y±(θ), Z±(θ) and we can write the following simpler
parametrization for the light sheafs

γ±(θ) :





t = ∓ỹ± sin θ0 tan(
`φ
2 ) + s,

x = ∓ỹ± tan(
`φ
2 ) + s sin θ cos `(θ)

y = ỹ± ± s sin θ sin `(θ)

z = − `u
2 cos θ0

+ s cos θ

. (6.38)

In this parametrization, the light sheafs γ± intersect the bifurcation surface t̃ = z̃ = 0 at
P+ and P− whose coordinates are given by

P± : t̃ = z̃ = 0, ỹ = ỹ±, x̃ = ∓cos θ0 tan(
`φ
2 )ỹ± . (6.39)

The simplest choice is to take P− = P+. The RT configuration that we obtain is the one
described in the previous section (up to a bulk isometry) and the RT surface has a conical
shape. We can also have configurations where P− and P+ are separated. In this case, we
should add additional light rays to close the light sheaf. To do this, we define new light
sheafs γN and γS consisting of light rays that go from the two poles of ∂A given by

N : (θ, φ) = (θ0, 0), S : (θ, φ) = (π − θ0, 0) , (6.40)

and intersect the bifurcation surface. It turns out that it is possible to make such a light
ray intersect an arbitrary point on the bifurcation surface. For example, a parametrization
of γN and γS can be given as

γN (v) :





t̃ = s cos θ0,

x̃ = XN (v)

ỹ = YN (v)

z̃ = s cos θ0

, γS(v) :





t̃ = s cos θ0,

x̃ = XS(v)

ỹ = YS(v)

z̃ = −s cos θ0 ,

(6.41)

where v parametrizes the different light rays in the light sheafs γN and γS . These light
sheafs satisfy our requirements: they intersect I+ at the two poles N and S (with the
required value of u) and the bulk modular flow is tangent to them. The intersection of γN
with the bifurcation surface is at s = 0 and gives a curve CN : (x̃, ỹ) = (XN (v), YN (v))

parametrized by v. Similarly, γS intersects the bifurcation surface at the curve CS : (x̃, ỹ) =

(XS(v), YS(v)). Both of those curves must connect P+ to P−. The total light sheaf is given
by γ+ ∪ γN ∪ γS ∪ γ−. This configuration is illustrated in Fig. 6.

The surface γ is the portion of the bifurcation surface which is in the interior of the
contour formed by CN and CS . It is depicted in the plane (x̃, ỹ) in Fig. 7. The RT surface
Ã is the union of the total light sheaf with γ. The entanglement entropy of A is given by

SA =

∫

Ã
Q[ξA] . (6.42)
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(x̃, ỹ)

t̃

z̃

γ+

γ−

γ

γS
γN

Figure 6: Ryu-Takayanagi configuration in coordinates (t̃, x̃, ỹ, z̃) in which the bulk modu-
lar flow is a boost. The RT surface Ã is given by the union of the light sheaf γ−∪γN∪γS∪γ+

with the surface γ on the Rindler bifurcation surface (x̃, ỹ). See Fig. 7 for an illustration
of γ in the (x̃, ỹ)-plane. The modular flow is tangent to the light sheafs γN , γS because
they are portions of the Rindler horizons and to γ−, γ+ because they are half-cones whose
transverse sections are hyperbolas which are tangent to the boost.

In Einstein gravity, the integration of Wald’s functional on the light sheaf vanishes so the
entanglement entropy of A is given by the area of the region γ

SA =
Area(γ)

4G
. (6.43)

The possible regions γ can be obtained by the following procedure: put two points P± on
the two lines (6.36) (depicted in grey in Fig. 7). Then, connect them by two arbitrary
curves CN and CS so that their union has a well-defined interior. This interior is the region
γ and the entropy is given by the area of γ (in Einstein gravity). We see that as in 3d, the
entropy is sensitive to the choice of light sheaf, which should reflect a choice of UV cutoff
in the putative dual field theory.
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Generic case Configuration used in proof

P+

P−
CN

CS

γ

P+

P−
CN

CS
γ

~n ~m
x̃

ỹ

x̃

ỹ

Figure 7: Ryu-Takayanagi configuration in the Rindler bifurcation surface (x̃, ỹ). This
surface intersects the light sheafs γ+ and γ− at the points P+ and P−, which are restricted
to lie on the lines (6.36) (in gray). The light sheafs γN and γS intersect the bifurcation
surface at the curves CN and CS (in orange). These light sheafs are represented in Fig. 6.

First law of entanglement. We have the following definitions

δSA =

∫

Ã
δQ[ξA], δEA =

∫

A
χ , (6.44)

the first law states that these two expressions are equal on-shell. The 3d derivation of Sec.
3.3 can be carried out in 4d. In this derivation, the first law follows from the fact that

∫

Ã
ξA ·Θ[δg] = 0 , (6.45)

which holds whenever ξA is tangent to Ã. This is the case here since ξA vanishes on γ and
is tangent to the light sheaf (this was one of our requirements). As a result, all the RT
surfaces described here satisfy a first law for perturbations.

6.3 Linearized gravitational equations

In this section, we prove that the four-dimensional linearized gravitational equations follow
from the first law of entanglement. The proof is very similar to the three-dimensional case
described in Sec. 4, to which we refer for more details.

Reference configuration. We consider a watermelon A at u = 0 with `u = 0. The first
law of entanglement gives the equation

∫ π−θ0

θ0

dθ

∫ `(θ)

−`(θ)
dφ

∫ +∞

0
dr ξaδEabε

b = 0 , (6.46)
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where εa = 1
6εabcddx

b∧dxc∧dxd and `(θ) is defined in (6.16) and contains the parameter `φ
which parametrizes the width of A. The dependence on `φ enters in a complicated fashion.
However, we can differentiate with respect to `φ at `φ = 0, where we can use the expansion
(6.17). This leads to

∫ π−θ0

θ0

dθ

(
1− sin θ0

sin θ

)∫ +∞

0
dr ξaδEabε

b = 0 , (6.47)

where the LHS is evaluated at φ = 0. In Bondi coordinates, we have

εr = −εu = −r2sin θ dr ∧ dθ ∧ dφ . (6.48)

The bulk modular flow (6.12) evaluated at u = 0 and φ = 0 is given by

ξA =
2π

cos θ0
(r cos θ ∂r − (sin θ − sin θ0) ∂θ) , (6.49)

so the integral becomes

0 =

∫ π−θ0

θ0

dθ (sin θ − sin θ0)

∫ +∞

0
dr
(
−r3cos θ δErr + r2(sin θ − sin θ0) δErθ

)
. (6.50)

The expansion around θ0 = π
2 implies that

∫ +∞

0
dr
(
r3∂θδErr + 2 r2δErθ

)∣∣
(u,θ,φ)=(0,

π
2 ,0)

= 0 . (6.51)

Rotations and time translations. As in the 3d case, we can consider new configurations
obtained by performing rotations. They are the same as the reference configuration but
centered at φ = φ0. We can also consider a translation u → u + u0 in retarded time u.
The Jacobians of these transformations are the identity which implies that the expression
(6.51) becomes

∫ +∞

0
dr
(
r3∂θδErr + 2 r2δErθ

)∣∣
(u,θ,φ)=(u0,

π
2 ,φ0)

= 0 , (6.52)

for any u0 and φ0.

light sheaf deformation. We consider the same boundary region A but with the more
general configuration described in Sec. 6.2. For the proof, we consider the configuration
depicted on the right of Fig. 7. We put P+ at the origin and P− at a distance ` from P+

on one of the axis and we connect them by the two curves CN and CS , as represented on
the figure. The configuration is parametrized by the length ` of the segment [P+P−] and
the overture angle α at P−. The first law of entanglement gives

I(α, `) =

∫

Σ(α,`)
dχ = 0 , (6.53)

where Σ, the interior of the RT surface, depends on these two parameters α and `. Let’s
denote by n the vector normal to the segment CS

n = cos(
`φ
2 )∂x̃ + cos θ0 sin(

`φ
2 )∂ỹ , (6.54)
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Taking the derivative of (6.53) with respect to α and evaluating at α = 0, we obtain
∫ +∞

0
ds

∫ `

0
dv (n · dχ) = 0 , (6.55)

where we have used the fact that γN (6.41) can be parametrized by s and v. The vector
tangent to CS is given by

m = cos(
`φ
2 )∂ỹ − cos θ0 sin(

`φ
2 )∂x̃ . (6.56)

We can now take the derivative with respect to ` and evaluate at ` = 0.
∫ +∞

0
dr (m · (n · dχ))|(θ,φ)=(θ0,0) = 0 (6.57)

We have reduced the integral to a light ray going from the origin to the point of ∂A with
(θ, φ) = (θ0, 0) (and u = 0 as we are considering a region A with `u = 0). We can then go
to Bondi coordinates. From the change of coordinates, we can compute

m = −sin θ0 sin(
`φ
2 ) ∂r −

cos θ0 sin(
`φ
2 )

r
∂θ +

cos(
`φ
2 )

r sin θ0
∂φ , (6.58)

n = cos(
`φ
2 ) tan θ0 ∂r +

cos(
`φ
2 )

r
∂θ +

cot θ0 sin(
`φ
2 )

r
∂φ ,

when evaluated at θ = θ0 and φ = 0. In the definition (4.1) of dχ, the non-trivial contri-
bution comes from

εr = −εu = −r2 sin θ dr ∧ dθ ∧ dφ . (6.59)

Hence, we obtain that

m · (n · dχ)|γN = 2
(

1− sin2θ0 sin2(
`φ
2 )
)
ξaAδEardr . (6.60)

The bulk modular flow at (u, θ, φ) = (0, θ0, 0) is simply given by

ξA = 2πr ∂r (6.61)

Hence, we obtain
∫ +∞

0
dr rδErr(0, r, θ0, 0) = 0 , (6.62)

As previously, we can act with rotations and time translations to show that we have
∫ +∞

0
dr rδErr(u0, r, θ0, φ0) = 0 , (6.63)

for arbitrary u0, θ0, φ0.
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Radial translations. Let’s consider a new configuration which is obtained by translating
the reference configuration by a distance r0 in the direction (θ0, φ0) of the light ray on which
(6.63) is integrated. In Cartesian coordinates, such a translation is given by

t→ t+ r0, x→ x+ r0 cos θ0 cosφ0, y → y + r0 cos θ0 sinφ0, z → z + r0 sin θ0 .

(6.64)
This leads to the new constraint

∫ +∞

r0

dr (r − r0) δErr(u0, r, θ0, φ0) = 0 , (6.65)

where we have also performed the change of variable r → r− r0 in the integral. Taking two
derivatives with respect to r0 shows that

δErr(u0, r0, θ0, φ0) = 0 , (6.66)

for any value of u0, r0, θ0, φ0. From this, the equation (6.52) simplifies to
∫ +∞

0
dr r2 δErθ(u0, r,

π
2 , φ0) = 0 . (6.67)

We use the same radial translation on this equation to obtain the constraint
∫ +∞

r0

dr
(r − r0)2

r
δErθ(u0, r,

π
2 , φ0) . (6.68)

Taking three derivatives with respect to r0 implies that

δErθ(u0, r0,
π
2 , φ0) = 0 , (6.69)

which is true for any value of u0, r0, φ0.

Vanishing of δErθ everywhere. The equation (6.69) at φ0 = 0 shows that δErθ vanishes
on the semi-infinite line LP given by (θ, φ) = (π2 , 0). Let’s now consider rotations in the
plane (x, z). Under such rotations, LP covers the full disk in the y = 0 plane, shown in
orange in Fig. 8. The Jacobian of this transformation, when evaluated at φ = 0, is diagonal
in Bondi coordinates because it simply corresponds to a shift in θ. It is given explicitly by

∂xa

∂x̃b
=




1

1

1

cosα− cot θ sinα


 , (6.70)

so we obtain δErθ = 0 when evaluated on this disk. For any point on this disk, we can
then consider a rotation in the (x, y)-plane, whose Jacobian is the identity. This shows that
δErθ = 0 vanishes everywhere inside the ball. This implies that

δErθ = 0 , (6.71)

everywhere in the bulk. This procedure is illustrated in Fig. 8.
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y
x

z

P
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Figure 8: Illustration of the proof that δErθ = 0. After showing that δErθ vanishes on
the orange line LP , we use the (x, z)-rotation (orange arrow) to show that δErθ = 0 in the
orange disk. With the (x, y)-rotation (gray arrow), we can show that δErθ = 0 everywhere
in the ball. These transformations all have diagonal Jacobians where they are evaluated so
they don’t mix δErθ with other components.

Boosts and rotations. We now act with boosts and rotations on the previous configu-
rations to generate more constraints on δEab. Transforming the equation δErθ = 0 under
the infinitesimal (x, z)-rotation, the (t, y)-boost and the (t, x)-boost, we obtain

δErφ = δEθφ = δErr = 0, δEθθ = −r2δEur . (6.72)

Then, the image of δEθφ = 0 under the (x, z)-rotation implies that

δEφφ = −r2sin2θ δEur . (6.73)

Conservation equation. As in 3d, we consider the conservation equation

∇a(δEab) = 0 , (6.74)

which is always satisfied by the equations of motion. For b = r, this implies that

∂r(δEur) = 0 , (6.75)

which leads to

δEur = C0(u, φ), δEθθ = −r2C0(u, φ), δEφφ = −r2sin2θ C0(u, φ) . (6.76)

We expect that an analysis similar to the 3d one in Sec. 5 can be performed in 4d and that
it will lead to a trace condition and three conservation equations for the holographic stress
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tensor in 4d Minkowski. A proof of this statement will require a detailed analysis of the
flat limit of perturbed AdS4 in Bondi gauge, which we leave for future work. From now
on, we will assume that these boundary conditions ensure the vanishing of the components
δEua at leading asymptotic order. The trace condition, similar to (5.29) and (5.30) in 3d,
should imply that C0 = 0, leading to

δEur = δEθθ = δEφφ = 0 , (6.77)

everywhere in the bulk. The conservation equation (6.74) for b = θ, φ gives

∂r(δEuθ) +
2

r
δEuθ = 0, ∂r(δEuφ) +

2

r
δEuφ = 0 . (6.78)

The solutions of these equations are

δEuθ =
C1(u, θ)

r2
, δEuφ =

C2(u, φ)

r2
. (6.79)

We expect that the conservation of the boundary stress tensor implies that C1 = C2 = 0,
leading to δEuθ = δEuφ = 0. Finally, the conservation equation (6.74) for b = u gives

∂r(δEuu) +
2

r
δEuu = 0 . (6.80)

which is solved by

δEuu =
C3(u, φ)

r2
, (6.81)

and C3 = 0 is expected to follow from the conservation of the boundary stress tensor. Thus,
we have shown that all the components of the linearized gravitational equation vanish.

7 Conclusion

In this paper, we have considered holographic entanglement entropy in asymptotically flat
spacetimes. Under some general assumptions on the dual field theory, an analog of the
Ryu-Takayanagi formula was obtained in [25] to compute the entanglement entropies of 3d
Minkowski spacetime. We have refined and generalized this prescription and showed that
it satisfies a first law when perturbations are considered. Using this RT prescription, we
have shown that the first law of entanglement is equivalent to the linearized gravitational
equations of motion. We have also extended all these results to 4d.

This result could have also been phrased purely in classical gravity, although it is natural
to motivate it from the perspective of holography. It will be important to understand better
the dual field theory, and try to prove the assumptions detailed in Sec. 2. Some recent
progress in this direction include [13, 44–52].

Another line of research would be to push further the consequences of the RT prescrip-
tion described here. One could hope to get some hints on the microscopic definition of the
dual field theory, or show that one of the assumptions was incorrect. An important feature
of our analysis is the importance of the choice of an infalling light sheaf. We believe that
this is a hint towards the UV structure of the dual theory, which we hope to investigate
in future work. The RT formula in AdS has given rise to a wealth of results connecting
quantum information to the emergence of spacetime. It would be interesting to investigate
these ideas in asymptotically flat spacetimes, using the RT prescription described here.
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A Bulk Rindler transformation

In this appendix, we describe the bulk extension of the generalized Rindler transform (3.6)
on the boundary. The image of Minkowski spacetime under this bulk transformation turns
out to be the upper wedge of a Rindler spacetime.

Bulk Rindler transformation in 3d. We describe the change of coordinates that brings
the metric in Bondi coordinates to the upper wedge of a Rindler spacetime. The Cartesian
coordinates are related to Bondi coordinates using

t = u+ r, x = r cosφ, y = r sinφ, (A.1)

and the coordinates in which the modular flow is a boost are

t̃ =
t

sin(
`φ
2 )
− cot(

`φ
2 )x, x̃ =

x

sin(
`φ
2 )
− cot(

`φ
2 ) t, ỹ = y +

`u

2 sin(
`φ
2 )
. (A.2)

We define new coordinates (τ̃ , ρ) satisfying

t̃ = eτ̃cosh ρ, ỹ = eτ̃ sinh ρ. (A.3)

These coordinates only cover the upper wedge t̃2 − ỹ2 > 0. In these coordinates the bulk
metric and modular flow are given by

ξA = 2π∂ρ, ds2 = e2τ̃ (−dτ̃2 + dρ2) + dx̃2. (A.4)

We recognize the Rindler metric and the bulk modular flow generates the (spacelike) Rindler
evolution. The Rindler horizon is situated at τ̃ = −∞. To obtain the bulk extension of the
generalized Rindler transform, consider the new coordinates {τ, x̃, ρ} satisfying

τ = eτ̃ − x̃, (A.5)

defined only for τ > −x̃. The metric becomes

ds2 = −dτ2 − 2dτdx̃+ (τ + x̃)2dρ2, (A.6)

and the bulk modular flow is still ξA = 2π∂ρ. The Rindler horizon is at τ = −x̃. Finally,
the bulk transformation is obtained by writing the new coordinates in terms of Bondi
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coordinates {u, r, φ}:

τ = −x̃+


 1

sin2(
`φ
2 )

(
r + u− r cos

(
`φ
2

)
cosφ

)2

− 1

4

(
`u

sin(
`φ
2 )

+ 2r sinφ

)2



1/2

,

x̃ =
r cosφ

sin(
`φ
2 )
− cot(

`φ
2 ) (r + u),

ρ = arccoth

(
r + u− r cos(

`φ
2 ) cosφ

`u
2 + r sin(

`φ
2 ) sinφ

)
. (A.7)

This coordinate system allows us to perform an asymptotic limit r →∞, which gives

τ =
2u sin(

`φ
2 )− `u sinφ

2 cosφ− 2 cos(
`φ
2 )

, (A.8)

ρ = arccoth

(
1− cos(

`φ
2 ) cosφ

sin(
`φ
2 ) sinφ

)
. (A.9)

One can check that this is exactly the inverse of the boundary generalized Rindler trans-
formation (3.6), reproduced below

u =
sin(

`φ
2 )

cosh ρ+ cos(
`φ
2 )

(
τ +

`u

2 sin(
`φ
2 )

sinhρ

)
, (A.10)

φ = arctan

(
sin(

`φ
2 ) sinh ρ

1 + cos(
`φ
2 ) cosh ρ

)
.

Bulk Rindler transformation in 4d. The same procedure can be carried out in 4d.
Again, consider the bulk transformation from Bondi coordinates to Rindler coordinates in
the upper wedge:

t = u+ r, x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, (A.11)

followed by

t̃ =
t

cos θ0
− tan θ0 x, x̃ =

x

cos θ0
− tan θ0 t, ỹ = y, z̃ = z +

`u
2 cos θ0

, (A.12)

and then
t̃ = eτ̃cosh ρ, z̃ = eτ̃ sinh ρ, x̃ = µ cos η, ỹ = µ sin η, (A.13)

where the last two spacelike coordinates are mapped to polar coordinates: µ ∈ [0,∞[ and
η ∈ [0, 2π[. In these coordinates, the metric and the bulk modular flow become

ξA = 2π∂ρ, ds2 = e2τ̃ (−dτ̃2 + dρ2) + dµ2 + µ2dη2. (A.14)

Exactly like in 3d, we recognize the Rindler metric and the bulk modular flow generates
the (spacelike) Rindler evolution. The Rindler horizon is at τ̃ = −∞. To obtain the bulk
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extension of the boundary generalized Rindler transform, we consider the new coordinates
{τ, µ, ρ, η}, such that

τ = eτ̃ − µ, (A.15)

defined only for τ > −µ. The metric becomes

ds2 = −dτ2 − 2dτdµ+ (τ + µ)2dρ2 + µ2dη2, (A.16)

while the bulk modular flow is still given by ξA = 2π∂ρ. The new radial coordinate is µ and
by taking the limit µ → ∞ we confirm that the boundary metric is indeed the degenerate
flat metric dρ2 + dη2. The Rindler horizon is at τ = −µ. Finally, the bulk transformation
is obtained by writing the new coordinates in Bondi coordinates:

τ =

√(
r + u

cos θ0
− r sin θ tan θ0 cosφ

)2

− 1

4

(
`u

cos θ0
+ 2r cos θ

)2

(A.17)

−
√
r2 sin2θ sin2φ+

(
r sin θ cosφ

cos θ0
− tan θ0 (r + u)

)2

, (A.18)

µ =

√
r2 sin2θ sin2φ+

(
r sin θ cosφ

cos θ0
− tan θ0 (r + u)

)2

, (A.19)

ρ = arctanh

(
`u
2 + r cos θ0 cos θ

(r + u)− r sin θ0 sin θ cosφ

)
, (A.20)

η = arctan
(

r cos θ0 sin θ sinφ

r sin θ cosφ− sin θ0 (r + u)

)
. (A.21)

This allows us to perform the asymptotic limit r →∞ which gives

τ =
u cos θ0 − `u

2 cos θ√
(sin θ0 sin θ cosφ− 1)2 − cos2θ0 cos2θ

, (A.22)

ρ = arctanh

(
cos θ0 cos θ

1− sin θ0 sin θ cosφ

)
, (A.23)

η = arctan

(
cos θ0 sin θ sinφ

sin θ cosφ− sin θ0

)
.

One can check that this is precisely the inverse of the boundary generalized Rindler trans-
formation (6.27), reproduced below

u → cos θ0

cosh ρ + cos η sin θ0

(
τ +

`u
2 cos θ0

sinh ρ

)
, (A.24)

z → sin θ0 + ew(1 + cos θ0)

sin θ0 ew + (1 + cos θ0)
,

z̄ → sin θ0 + ew̄(1 + cos θ0)

sin θ0 ew̄ + (1 + cos θ0)
,

where z = eiφ cot
(
θ
2

)
and w = ρ− iη.
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B Precisions on the general strategy

In this appendix, we make precise the general strategy explained in Sec. 4.1. Let g : M →M

be a bulk isometry, i : Σ → M the original RT surface and ig = g ◦ i : Σ → M the image
of this surface through isometry. The original RT surface is associated to a bulk modular
flow ξ to which corresponds a two-form dχ[ξ]. The pullback of this two-form on Σ is

i∗(dχ[ξ]) = ξa(i(σ))δEab(i(σ))
1

2
εbcd(i(σ))

∂xc

∂σα
∂xd

∂σβ
dσα ∧ dσβ, (B.1)

where σ stands for the coordinates on the two-dimensional manifold Σ. Suppose that from
the vanishing of the integral of this two-form on Σ, we have been able to derive that some
functional of δEab vanishes at i(σ),

F [δEab(i(σ))] = 0 , (B.2)

for some ā, b̄. We can now consider another surface, (g◦i)(Σ) inM and we call its associated
bulk modular flow ξg. We should consider the pullback on the corresponding two-form
dχ[ξg] because

∫

(g ◦ i)(Σ)
dχ[ξg] =

∫

Σ
i∗gdχ[ξg] . (B.3)

The pullback is given by

i∗g(dχ[ξg]) = ξag (g ◦ i(σ))δEab(g ◦ i(σ))
1

2
εbcd(g ◦ i(σ))

∂gc

∂xe
∂gd

∂xf
∂xe

∂σα
∂xf

∂σβ
dσα ∧ dσβ. (B.4)

Now we can insert the identity matrix δab = ∂ga

∂xc
∂xc

∂gb
to impose the equality of two b-index,

leading to

i∗g(dχ[ξg]) = ξag (g ◦ i(σ))δEab(g ◦ i(σ))
∂gb

∂xg

(
∂xg

∂gh
1

2
εhcd(g ◦ i(σ))

∂gc

∂xe
∂gd

∂xf

)
(B.5)

× ∂x
e

∂σα
∂xf

∂σβ
dσα ∧ dσβ.

Now we can use the fact that g is an isometry, while εhcd is the volume form to obtain than the
parenthesis is actually 1

2ε
g
ef (i(σ)). Moreover we know that the modular flow for the image

surface is the image of the modular flow of the initial surface under the g-transformation:
ξag (g ◦ i(σ)) = ∂ga

∂xb
ξb(i(σ)). Finally, we obtain

i∗g(dχ[ξg]) = ξi(i(σ))

(
∂ga

∂xi
∂gb

∂xg
δEab(g ◦ i(σ))

)
1

2
εgef (i(σ))

∂xe

∂σα
∂xf

∂σβ
dσα ∧ dσβ, (B.6)

which, is exactly (B.1) with the replacement

δEab(i(σ))→ ∂gc

∂xa
∂gd

∂xb
δEcd(g ◦ i(σ)) , (B.7)
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which implies that (B.2) ensures that

F
[
∂gc

∂xa
∂gd

∂xb
δEcd(g ◦ i(σ))

]
= 0 . (B.8)

For example, if we can show that some components of δEab vanish using a set of RT sur-
faces, we immediately obtain that other components, obtained by applying bulk isometries
according to (B.8), will also vanish.

C Alternative proof in 3d

In this appendix, we provide an alternative to the step in the 3d proof of Sec. 4.2 where
we used the light sheaf deformation. Here, we insist on doing this step using only RT
configurations where the light rays γ+ and γ− pass through the spatial origin r = 0. We
will consider such configurations with `u 6= 0 described in (3.1) which is the prescription
used in [25]. Although a better and equivalent13 derivation is presented in the main text,
it is instructive to perform this step as presented here.

We should note that if we consider only the surfaces with `u = 0 (and with light rays
passing through r = 0), together with their image under bulk isometries, then the first law
does not imply the gravitational equations: these surfaces don’t provide enough constraints.
Indeed, the only constraint that we obtain is

δErφ + r∂rδErφ − r∂φδErr = 0 , (C.1)

and its image under bulk isometries. This does not imply that δEab = 0 as it’s possible to
find explicit counterexamples.

Hence, we need to consider RT surfaces with `u 6= 0 (still requiring that the light rays
pass through r = 0). The computation becomes simpler in the limit of small `u. More
precisely, we consider

`u = λ ε2, `φ = ε , (C.2)

where we take ε to be small. We would like to compute

I =

∫

Σ
ξaδEabε

b (C.3)

in an expansion around ε = 0. The first law of entanglement will constrain δEab to be
such that I = 0. It turns out that limε→0 I = 0 for any perturbation, so we don’t get any
constraint at zero order in ε. To compute I at first order in ε, it is enough to consider the
surface Σ at first order in ε14. The configuration simplifies because the points B+ and B−

13This is because all the configurations described in Sec. 3.2 can be transformed with a bulk translation
to a configuration where the two light rays pass through the line r = 0.

14This can be justified as follows. Denoting iε : S →M the embedding of Σε in M , we have

I =

∫

Σε

ξaε δEabε
b =

1

2

∫

S

ξaε (iε(σ))δEab(iε(σ))εbcd(iε(σ))(Jε)
c
α(Jε)

d
βdσ

α ∧ dσβ (C.4)

where (Jε)
c
α is the Jacobian of the embedding. This shows that, to compute the leading non-trivial term

of I, it is enough to take iε at first order in ε, which corresponds to taking the surface Σε at first order in ε.
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are at u = O(ε2). Hence, we have

B+ : (u, φ) =
(

0,
ε

2

)
, B− : (u, φ) =

(
0,−ε

2

)
, (C.5)

to first order in ε. We also have the following parametrization for the light rays

γ+ : (t, x, y) =
(
−2η + s,−2η + s,

ε

2
(−2η + s)

)
, s ≥ 0 (C.6)

γ− : (t, x, y) =
(

2η + s, 2η + s,−ε
2

(2η + s)
)
, s ≥ 0 ,

where we only kept the terms at first order in ε. The curve γ is simply a straight line
connecting the two points

P+ : (t, x, y) = (−2η,−2η,−ηε), P− : (t, x, y) = (2η, 2η,−ηε). (C.7)

We can show that γ− stays at u = 0 everywhere and that γ+ is at u = 0 for s ≥ 2η, which
corresponds to all its points before it crosses the origin. Let’s call γ̃− the segment that
connects the origin to P−, which , which is in the continuation of γ− past P−. The plane
surface bounded by γ−, γ̃− and γ+ (up to the origin) lies on the constant slice u = 0. It
has the same shape as the RT surface for `u = 0 depicted in Fig. 1.

The additional piece consists in another triangle, bounded by γ, γ̃− and γ̃+, where γ̃+

is the piece of γ+ connecting the origin to P+. This is the triangle T = P−P+O. Let’s
introduce coordinates

x+ = t+ x, x− = t− x (C.8)

In these coordinates, we have (at first order)

P+ : (x+, x−, y) = (−4λ, 0,−λε) (C.9)

P− : (x+, x−, y) = (4λ, 0,−λε)

We see that the triangle T = P+P−O can be parametrized as follows

x− = 0, −λε ≤ y ≤ 0, |x+| ≤ −
4y

ε
(C.10)

The integration over the triangle is

I =

∫ 0

−λε
dy

∫ −4y/ε

4y/ε
dx+ F (x+, x−, y) , (C.11)

where F is the appropriate integrand. We can redefine y = ηεỹ so that it becomes

I = λε

∫ 0

−1
dỹ

∫ −4λỹ

4λỹ
dx+F (x+, x−, λεy) . (C.12)

We now come back to the full integral

I =

∫

Σ
ξaδEabε

b , (C.13)
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which we want to evaluate at first order in ε. The integral splits in an integral over the
pizza slice and an integral over the triangle

I = IP + IT . (C.14)

The integral over the pizza slice is

IP =

∫ ε/2

−ε/2
dφ

∫ +∞

0
dr r ξaδEar . (C.15)

The integral over the triangle is found by looking at the metric in the (x+, x−, y) coordinates.
We have ∂± = 1

2(∂t ± ∂x) so that

gµν =
1

2




0 −1 0

−1 0 0

0 0 1


 , gµν = 2




0 −1 0

−1 0 0

0 0 1


 . (C.16)

The volume form on the triangle is

εx+ = −2εx− = dy ∧ dx+ (C.17)

this implies that

IT =

∫ 0

−ηε
dy

∫ −4y/ε

4y/ε
dx+ ξaδEax+ . (C.18)

Both integrals IP and IT can be computed explicitly at first order in ε. We now take
derivatives of the result with respect to η. The first law gives I = 0 so for any η we have

∂3
ηI|η=0 = 0. (C.19)

On the other hand, one find that

∂3
ηIP |η=0 = O(ε2) , (C.20)

∂3
ηIT |η=0 = −16πε (δErr(0, 0, 0)− 2δEur(0, 0, 0) + 2δEuu(0, 0, 0)) +O(ε2) ,

which provides the new constraint

δErr(0, 0, 0)− 2δEur(0, 0, 0) + 2δEuu(0, 0, 0) = 0 . (C.21)

Following the general strategy, we obtain a new constraint by acting with the translation

t̃ = t+ r0, x̃ = x+ r0 cosφ0, ỹ = y + r0 sinφ0 . (C.22)

Evaluating the result at φ = φ0, we obtain

δErr(0, r0, φ0)− 2δEur(0, r0, φ0) + 2δEuu(0, r0, φ0) = 0 , (C.23)

for any r0, φ0. We can then consider time translations to show that this relation holds at
any u. Finally, acting with a boost in the (t, x)-plane and evaluating at φ = 0 leads to

δErr(u0, r0, φ0) = 0 , (C.24)

for any u0, r0, φ0. The rest of the proof follows.
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namiques à bord. Une attention particu-
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comme le bord conforme d’AdS ou l’infini
nul de l’espace plat. Le bord d’AdS est de
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pseudo-Riemannienne. En particulier, la li-
mite plate dans l’intérieur de l’espace-temps
correspond à cette limite ultra-relativiste sur
le bord. Nous verrons aussi comment les sy-
métries de la gravité asymptotiquement plate
se traduisent par des symétries globales de
cette géométrie exotique de bord. Cette ana-
lyse est d’une importance capitale pour la

correspondence fluide/gravité car le fluide
vit sur le bord. Dans ce contexte nous im-
posons des conditions d’intégrabilité sur le
fluide du bord qui permettent une resomma-
tion de l’expansion aux dérivées en AdS. La
limite plate produit la notion de fluide Carrol-
lien sur le bord dont l’expansion hydrodyna-
mique se traduit par une expansion aux déri-
vées dans l’intérieur, ce qui donne une notion
de correspondence fluide/gravité en espace
plat. Un deuxième type de bord que nous étu-
dions est celui formé par l’horizon d’un trou
noir. Ici, un autre genre de correspondence
fluide/gravité existe : le paradigme des mem-
branes. Nous revisitons ce concept et propo-
sons une interprétation nouvelle des équa-
tions de Damour–Navier–Stokes en terme de
lois de conservation ultra-relativistes.
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mal boundary is pseudo-Riemannian since
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Riemannian geometry. In particular, the flat
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translate into global symmetries of this exo-
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dence since the fluid is expected to live on the
boundary. In this context we find integrability
conditions on the boundary fluid that allow
for a resummation of the so-called Derivative
Expansion in AdS. The flat limit gives rise to
the notion of Carrollian fluid on the boundary
whose hydrodynamical expansion maps to a
flat version of the Derivative expansion in the
bulk, thus providing a notion of fluid/gravity
correspondence in flat space. A second type
of boundary that we study is the one for-
med by the horizon of a black hole. There,
another type of fluid/gravity correspondence
exists : the membrane paradigm. We revisit
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tion of the Damour–Navier–Stokes equation
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