

DE LA RECHERCHE À L'INDUSTRIE

Diffraction X en réflexion sur une installation laser : du LULI2000 au LMJ

FORUM ILP, le 27 septembre 2021

A. Denoeud, S. Brygoo, B. Fraisse, A. Sollier, L. Videau (CEA-DAM)

J.-A. Hernandez (ESRF), A. Benuzzi-Mounais, T. Vinci, A. Ravasio, A. Berlioux (LULI), E. Brambrink (XFEL)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Intérêt : étudier l'arrangement cristallin de matériaux comprimés

- Identifier le diagramme de phase (P, ρ, T) de matériaux solides
- Etudier la cinétique des changements de phase solide/solide et solide/liquide
- Mesurer les courbes de fusion de matériaux fortement comprimés

Introduction

Réarrangement cristallin sous compression

Introduction

Intérêt : étudier l'arrangement cristallin de matériaux comprimés

- Identifier le diagramme de phase (P, ρ, T) de matériaux solides
- Etudier la cinétique des changements de phase solide/solide et solide/liquide
- Mesurer les courbes de fusion de matériaux fortement comprimés

Diffraction X et Grands Instruments :

2

Introduction

Intérêt : étudier l'arrangement cristallin de matériaux comprimés

- Identifier le diagramme de phase (P, ρ, T) de matériaux solides
- Etudier la cinétique des changements de phase solide/solide et solide/liquide
- Mesurer les courbes de fusion de matériaux fortement comprimés

Diffraction X et Grands Instruments :

* Comprimer fortement la matière

- Par choc ou par rampe laser
- Installation laser de puissance :
 - Premiers tests au LULI en 2019
 - Puis au LMJ à partir de 2022

* Comprimer fortement la matière

- Par choc ou par rampe laser
- Installation laser de puissance :
 - Premiers tests au LULI en 2019
 - Puis au LMJ à partir de 2022

Maitriser les conditions (P,T) atteintes

- Diagnostics optiques {VISAR et SOP}
- Simulations hydrodynamiques (ESTHER)

* Comprimer fortement la matière

- Par choc ou par rampe laser
- Installation laser de puissance :
 - Premiers tests au LULI en 2019
 - Puis au LMJ à partir de 2022

Maitriser les conditions (P,T) atteintes

- Diagnostics optiques {VISAR et SOP}
- Simulations hydrodynamiques (ESTHER)

Créer une source X intense, monochromatique et courte temporellement

 Interaction d'un laser intense avec un matériau bien choisi (émission K_α ou He_α)

* Comprimer fortement la matière

- Par choc ou par rampe laser
- Installation laser de puissance :
 - Premiers tests au LULI en 2019
 - Puis au LMJ à partir de 2022

Maitriser les conditions (P,T) atteintes

- Diagnostics optiques {VISAR et SOP}
- Simulations hydrodynamiques (ESTHER)

Créer une source X intense, monochromatique et courte temporellement

 Interaction d'un laser intense avec un matériau bien choisi (émission K_α ou He_α)

* Détecter le signal X diffracté...

• Utilisation *d'image plates* et de filtres

* Comprimer fortement la matière

- Par choc ou par rampe laser
- Installation laser de puissance :
 - Premiers tests au LULI en 2019
 - Puis au LMJ à partir de 2022

Maitriser les conditions (P,T) atteintes

- Diagnostics optiques {VISAR et SOP}
- Simulations hydrodynamiques (ESTHER)

Créer une source X intense, monochromatique et courte temporellement

 Interaction d'un laser intense avec un matériau bien choisi (émission K_α ou He_α)

* Détecter le signal X diffracté...

• Utilisation *d'image plates* et de filtres

… sans être aveuglé par le rayonnement X provenant de partout...

- Utilisation d'un blindage adéquat :
 - Boîtier lourd + Filtres
 - Design de la cible principale

Cea Diffraction X et installations laser : historique

a) Premières expériences anglo-saxonnes (VULCAN, JLF) Kalentar et al., PRL 95 (2005) ; Hawreliak et al., PRB 83 (2011)

- * <u>Technique</u> : Simples IP entourant l'échantillon, géométrie en réflexion face avant
- * Inconvénients : Problème de bruit au-delà de 30 GPa, Conditions hydrodynamiques sondées non homogènes

Cea Diffraction X et installations laser : historique

a) Premières expériences anglo-saxonnes (VULCAN, JLF) Kalentar et al., PRL 95 (2005) ; Hawreliak et al., PRB 83 (2011)

- * <u>Technique</u> : Simples IP entourant l'échantillon, géométrie en réflexion face avant
- * Inconvénients : Problème de bruit au-delà de 30 GPa, Conditions hydrodynamiques sondées non homogènes

b) Spectromètre X franco-japonais résolu spatialement (GEKKO, LULI) Denoeud et al., PNAS 113 (2015)

- * Technique : Utilisation d'un cristal analyseur défocalisé pour filtrage spectral, géométrie en réflexion face arrière
- * Inconvénients : Plage angulaire de collection très réduite, Pas de diffraction 2D : impossibilité d'étudier des monocristaux

Cea Diffraction X et installations laser : historique

a) Premières expériences anglo-saxonnes (VULCAN, JLF) Kalentar et al., PRL 95 (2005) ; Hawreliak et al., PRB 83 (2011)

- * <u>Technique</u> : Simples IP entourant l'échantillon, géométrie en réflexion face avant
- * Inconvénients : Problème de bruit au-delà de 30 GPa, Conditions hydrodynamiques sondées non homogènes

b) Spectromètre X franco-japonais résolu spatialement (GEKKO, LULI) Denoeud et al., PNAS 113 (2015)

- * Technique : Utilisation d'un cristal analyseur défocalisé pour filtrage spectral, géométrie en réflexion face arrière
- * Inconvénients : Plage angulaire de collection très réduite, Pas de diffraction 2D : impossibilité d'étudier des monocristaux

c) Diffractomètre en transmission américain (OMEGA, NIF) Rygg et al., RSI 83 (2012); Rygg et al., RSI 91 (2020)

- * <u>Technique</u> : Boîtier blindé, géométrie en transmission, compression par rampe de matériaux en étaux
- Inconvénients : Intégration des conditions hydrodynamiques sur toute l'épaisseur de la cible, impossibilité d'étudier des matériaux sous choc, impossibilité d'étudier des matériaux lourds sur une installation kJ type LULI2000

Cea Diffraction X en réflexion sur l'installation LULI2000

Intérêts de la configuration en réflexion :

- * Sonder des conditions hydrodynamiques homogènes en face arrière des échantillons d'intérêt...
- * ... sans être limité dans la dynamique de compression (choc, rampe, multi-choc, ...)
- * Stopper le rayonnement X provenant de la couronne en incluant un matériau adéquat dans la cible principale
- * Etudier des matériaux lourds avec une source X générée sur une installation de type LULI2000

Cea Diffraction X en réflexion sur l'installation LULI2000

Intérêts de la configuration en réflexion :

- * Sonder des conditions hydrodynamiques homogènes en face arrière des échantillons d'intérêt...
- * ... sans être limité dans la dynamique de compression (choc, rampe, multi-choc, ...)
- * Stopper le rayonnement X provenant de la couronne en incluant un matériau adéquat dans la cible principale
- * Etudier des matériaux lourds avec une source X générée sur une installation de type LULI2000

Cea Diffraction X en réflexion sur l'installation LULI2000

Intérêts de la configuration en réflexion :

- * Sonder des conditions hydrodynamiques homogènes en face arrière des échantillons d'intérêt...
- * ... sans être limité dans la dynamique de compression (choc, rampe, multi-choc, ...)
- * Stopper le rayonnement X provenant de la couronne en incluant un matériau adéquat dans la cible principale
- * Etudier des matériaux lourds avec une source X générée sur une installation de type LULI2000

C22 Géométrie détaillée de la plateforme expérimentale LULI2000

Denoeud et al., RSI 113 (2021)

Cea Performances du diagnostic

- * Larges plages angulaires de collection ($2\vartheta \approx [30^\circ, 150^\circ], \varphi > [-50^\circ, 50^\circ]$) : Etude possible des monocristaux / textures
- * Résolutions & précisions :
 - Temporelles : $\delta \tau \approx 500 \text{ ps}$ (He_a LULI) / $\delta \tau \approx 700 \text{ ps}$ (He_a LMJ) / $\delta \tau < 10 \text{ ps}$ (K_a PETAL, à tester)
 - Spatiales : $\delta\theta < 0.2^{\circ} / \sigma_{instr} (\theta, \phi) \approx 0.5 \text{ à } 2^{\circ}$

Denoeud et al., RSI 113 (2021)

* 3 techniques de calibration in situ approuvées

Caractérisation des performances à froid sur une phase complexe (Bi-I)

Développement d'un logiciel de dépouillement

Cea Performances du diagnostic

- * Larges plages angulaires de collection ($2\vartheta \approx [30^\circ, 150^\circ], \varphi > [-50^\circ, 50^\circ]$) : Etude possible des monocristaux / textures
- * Résolutions & précisions :
 - Temporelles : $\delta \tau \approx 500 \text{ ps}$ (He_a LULI) / $\delta \tau \approx 700 \text{ ps}$ (He_a LMJ) / $\delta \tau < 10 \text{ ps}$ (K_a PETAL, à tester)
 - Spatiales : $\delta\theta < 0.2^{\circ} / \sigma_{instr} (\theta, \phi) \approx 0.5 \text{ à } 2^{\circ}$

Denoeud et al., RSI 113 (2021)

* 3 techniques de calibration in situ approuvées

Caractérisation des performances à froid sur une phase complexe (Bi-I)

Développement d'un logiciel de dépouillement et de prévisions

Etude de matériaux choqués :

- Stratégie : sonde des derniers µm d'une cible comprimée par choc :
 - Sonde d'une partie froide : calibrant temporel
 - Sonde d'une zone choquée homogène
- Idéal pour étudier les courbes de fusion de matériaux choqués

Commissariat à l'énergie atomique et aux énergies alternatives

Etude de matériaux choqués :

- Stratégie : sonde des derniers µm d'une cible comprimée par choc :
 - Sonde d'une partie froide : calibrant temporel
 - Sonde d'une zone choquée homogène
- Idéal pour étudier les courbes de fusion de matériaux choqués
 - Montée en densité du fer hcp jusqu'à 12 g/cm³

Etude de matériaux choqués :

- Stratégie : sonde des derniers µm d'une cible comprimée par choc :
 - Sonde d'une partie froide : calibrant temporel
 - Sonde d'une zone choquée homogène
- Idéal pour étudier les courbes de fusion de matériaux choqués
 - Montée en densité du fer *hcp* jusqu'à 12 g/cm³
 - Expérience LULI2000 2022 : étude des métaux
 - Sujet de thèse proposé

Etude de matériaux comprimés par rampe :

- Stratégie américaine : Compression du matériau d'intérêt fin placé en étaux entre deux diamants :
 - Multi-compressions jusqu'à stabilisation
 - Possibilité de sonder des conditions hydrodynamiques homogènes pendant plusieurs ns
 - Calibration interne par la fenêtre de diamant

Etude de matériaux comprimés par rampe :

- Stratégie américaine : Compression du matériau d'intérêt fin placé en étaux entre deux diamants :
 - Multi-compressions jusqu'à stabilisation
 - Possibilité de sonder des conditions hydrodynamiques homogènes pendant plusieurs ns
 - Calibration interne par la fenêtre de diamant
 - Observation de la transition bcc-hcp à 13 GPa

Commissariat à l'énergie atomique et aux énergies alternatives

Etude de matériaux comprimés par rampe :

- Stratégie américaine : Compression du matériau d'intérêt fin placé en étaux entre deux diamants :
 - Multi-compressions jusqu'à stabilisation
 - Possibilité de sonder des conditions hydrodynamiques homogènes pendant plusieurs ns
 - Calibration interne par la fenêtre de diamant
 - Observation de la transition *bcc-hcp* à 13 GPa
- Autre possibilité pour approcher l'isentrope : sonde ps des derniers μm d'un matériau épais (LMJ-Brambrink)

- Intérêt géophysique *
 - Ramp compression of iron in the TPa regime: a way to investigate super-earths' interiors

Diagramme de phase du fer

Simulation hydrodynamique prévisionnelle

Commissariat à l'énergie atomique et aux énergies alternatives

- Intérêt géophysique
 - Ramp compression of iron in the TPa regime: a way to investigate super-earths' interiors
- * Adaptation du diffractomètre dans l'environnement LMJ
 - Très nombreux défis physiques et techniques :
 - Adaptation à l'environnement X LMJ-PETAL
 - Contraintes de taille et de poids
 - Contraintes de supportage et d'alignement
 - Compatibilité Irradiation & pointage simultané des faisceaux LMJ / PETAL / EOS-Pack
 - Contraintes de matériaux PETAL-compatibles
 - Contraintes débris

10

- Intérêt géophysique
 - Ramp compression of iron in the TPa regime: a way to investigate super-earths' interiors
- * Adaptation du diffractomètre dans l'environnement LMJ
 - Très nombreux défis physiques et techniques :
 - Adaptation à l'environnement X LMJ-PETAL
 - Contraintes de taille et de poids
 - Contraintes de supportage et d'alignement
 - Compatibilité Irradiation & pointage simultané des faisceaux LMJ / PETAL / EOS-Pack
 - Contraintes de matériaux PETAL-compatible
 - Contraintes débris
- * 1^{ère} partie :
 - 2 tirs sans compression : Etude de la source X et du blindage extérieur
 - 1 tir avec source X K_{α} (PETAL, 10 ps)
 - 1 tir avec source X He_{α} (LMJ, 700 ps, 6-8 quads)
 - 1 tir avec compression : Etude du blindage interne à la cible principale (rayonnement X de couronne)

- Intérêt géophysique
 - Ramp compression of iron in the TPa regime: a way to investigate super-earths' interiors
- * Adaptation du diffractomètre dans l'environnement LMJ
 - Très nombreux défis physiques et techniques :
 - Adaptation à l'environnement X LMJ-PETAL
 - Contraintes de taille et de poids
 - Contraintes de supportage et d'alignement
 - Compatibilité Irradiation & pointage simultané des faisceaux LMJ / PETAL / EOS-Pack
 - Contraintes de matériaux PETAL-compatible
 - Contraintes débris
- 1^{ère} partie :
 - 2 tirs sans compression : Etude de la source X et du blindage extérieur
 - 1 tir avec source X K_{α} (PETAL, 10 ps)
 - 1 tir avec source X He $_{\alpha}$ (LMJ, 700 ps, 6-8 quads)
 - 1 tir avec compression : Etude du blindage interne à la cible principale (rayonnement X de couronne)
- ★ 2^{ème} partie :
 - 4 tirs de physique avec différentes compressions (modification des énergies laser, du profil d'impulsion, du choc initial)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

DE LA RECHERCHE À L'INDUSTRIE

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Ceal Installations et conditions hydrodynamiques atteignables

Diagramme de phase du SiO₂

Ceal Optimisation de la source X

Source X au LULI2000 :

- * Emission He_{α} (interaction laser ns / solide)
- ***** Δτ ≈ 0,5 − 1 ns
- ★ $E \approx 5 å 8 \text{ keV}$ (backlighter : V, Mn, Fe, Cu)
- * Optimisation du RSB avec :
 - I ≈ 2.10¹⁵ W/cm² : Confirmation des résultats de Coppari *et al.*, RSI 90 (2019)
 - l'utilisation d'un feuille en spéculaire
 - une distance source X-échantillon importante (max autorisé : 30 mm)
- * Optimisation de la mono-chromaticité :
 - Utilisation d'un spectromètre X
 - En baissant de l'intensité...
 - … mais certaines raies restent encore visibles et nécessitent d'être vigilant dans l'interprétation

Ceal Exemple : Transitions de phase du bismuth comprimé par rampe

Commissariat à l'énergie atomique et aux énergies alternatives

Adrien Denoeud

Forum ILP - 27 septembre 2021

Cea Diffraction X du fer comprimé par rampe laser dans le régime TPa

Driver : Compression par choc + rampe laser

- Atteinte de conditions hydrodynamiques extrêmes d'intérêt géophysique
- Premier choc + rampe : compression douce de fer soit solide en phase hcp, soit liquide

Diagnostic principal 2 : VISAR ($\omega/2\omega$) + SOP

- Mesure du chemin thermodynamique (P-T) indépendant de la diffraction X
- Temps de sonde > temps de compression (> 30 ns)

Commissariat à l'énergie atomique et aux énergies alternatives

Cea Logiciel de prévision et de dépouillement iDIFFX

Commissariat à l'énergie atomique et aux énergies alternatives