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Quantum bounds

The most famous bound: the uncertainty principle
1
AxAp = Eh

Most distinctive feature of how quantum mechanics differs from the
classical world

More recently new bounds on physical time scales

3/29



Towards a bound on chaos

Lyapunov exponent

Classical
5q(t) ) ) ) 8q(t)
— | = ~ t
5400) Hq(1), p(0)}|~=e

Quantum

2
((ita(, pOn) ) = e
<
Larkin and Ovchinikov (1969) 8a(0)

NB: Focus on operators/observables, not on wavefunction
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Out-of-Time-Order Correlations

—([A(£), B(0)]*) = (A(£) B(0) B(0) A(1)) + (B(0) A(t) A(£) B(0))

—(A(5)B(0)A(1) B(0)) — (B(0) A() B(0) A(1))

4-point Out-of-Time-Order Correlation (OTOC)

(A(1)B(0) A1) B(0))

(o) = %Tr [e7PHe]
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Bound on chaos

Regularized OTOC

1
A [e P A(t)e PP B(0)e P4 A(H)e PT'*B(0)] = a — eeM
for t; < t < tgp,

2nT
A< —
17}

Maldacena, Shenker and Stanford (2016)
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Sachdev-Ye-Kitaev (SYK) model

Hsyx ==Y JijkiXiXiXkX1
ijkl

i xjt=26i JijxGaussian i.i.d. variables
Sachdev, Ye (1993)

Kitaev (2015)
» Asymptotically saturates the bound
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Planckian time scales and transport coefficients

T T f
XTp=—
T

Same dependence on T for very different systems

No details of the system — Universality

Shortest possible time scale in many-body systems?
Conjectured bounds on transport coefficients (e.g. viscosity)

Chowdhury, Georges, Parcollet, Sachdev (2021)
Hartnoll, Mackenzie (2021)
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Correlations and responses

S(1) = %Tr [e PH A1) A(0)] = C(8) — iRR(1)
Symmetrized correlation function
C(t) = 1n e‘ﬁHl{A(t) A(0)}
- Z 2 ’

Response function (Kubo formula)

x(®) =0(0)2R(1) = H(t)éTr [e PH1A(D), A0)]]
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An intermediate regulated function

F(t) = %Tr [e—%ﬁHA(t) e 2PH A(0)

Meaning in ETH
Agp = (E)Sop+e B2 f(E,w)Ryp

E=(eqt+e€p)/2 W =€, —€g

M. Srednicki (1999)

o = = = T 9ac
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FDT in the frequency domain

hImR(w)—tanh(h'[; )C( )
C(a))—cosh(h'[z3 )F( )

AilmR(w) = sinh (hg ) F(w)
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FDT in the time domain domain

o
O

L,
R F C

Going from one function to the other via convolutions or differential
operators
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FDT in the time domain domain (1)

C(1) = cos (@i) Fo)
2 dt
R = sin(@i)F(t)
7o 2 ar

Classically i— 0

C(t) =F(1) x(6) =0(H)2R(t) =-0(1r)o.C(1) (1)
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FDT in the time domain domain (2)

F(1) = fdt,gg(t— tC(t)

Blurring function

() =FT L l _e_ 1
gatty= coshfifw/2| m coshQt
T 1
Planckian scale Q:n_—_

h_TQ
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Blurring functions

c(@)

» Smooths out the details on a scale =A/T
» Suppression of high frequency components F(w) = Cosch(%
> gq(t) = 6(t) forh—0
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t-FDT with (integrated) response
F(1) = foo dt' f(t—t"R()
:E%;Q+l;[ﬁgu—t@+ﬁgu+ﬂﬂumﬂ

t t
wmzf x(t’)zzf R()
0 0

f(=FT

L ‘ = 1tanth
sinhifw/2| B

Blurring function foalt) = (coshhQr)?
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OTOCs as two point functions (1)

%Tr[e—ﬁH/zA(t)A(())e—ﬁH/ZA(t)A(O)]

1

— Y e BBl A) © A1 AD) 8 AO)]fi)

ij
1

= ETr [e_ﬁzHA(t)A(O)P] o Sa,ap(f)

H=HeI+I®H A=A®A Plij=|ji) fo=pI2
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OTOCs as two point functions (2)

Faap(t) o Tr [e‘ﬁTZHA(t)e_%ZHA(O)P] — MSS
Ca (D) o< Tr [e P A (1), AOP} |

Raap(t) o Tr [e‘ﬁzH[A(t),A(O)P”



Behaviour of C and F

At for t; < t < tgp,

Faap(t) ~a—ce
Canap(t) = b—5e"! for t; < t < tgpy

0<dx1 Ol<ex1

Exponential behavior from positive defined squared commutator
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Bound on chaos from FDT

B hp d
t-FDT C(t) —cos( 5 dt)F(t)

If F(t) =eet then C(t)—cos( )F(t)

Sign argument

cos(hﬁ21)>0 for AS%

Tsuji, Shitara, Ueda (2018)
Pappalardi, Foini, Kurchan (2021)
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FDT as a blurring

/ / / __Ez
F(r) —fdt galt—1)C(1r) gal(r) = ~ cosh 1

A

6%

CHHx e ™ t>1y

Suppose
> If a<Q integrand peaked at t' =t

> If a>Q dominated by short times
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Bound on the decay of R

Cty=Ae ™ t>1,

Qt —tlT

F() = A e 4t cqe”
cosfal2

20 [
cQ:—f dre C(p)
T J-0co

+orox e

R(t) = Atanfal2e  +coe ™+ x e7 /7

Therefore, if cq #0 the rate of F and R is bounded:

nT

L _ oo
A
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Bound on the decay of C

If cq =0 one can repeat the same starting from R(f#) which decays
exponentially

F(t)=C(t)=e "7

4Q [
rm:—f dre Y R(p)
T J-co

If roq #0 the rate of F and C is bounded:

1<ZQ_271T
T )
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No proof of bound
caz?foodte_mC(t)zo

4Q [
Faq = —f dte ¥ R(n =0
T J-co

Sum rules — Relation between short and long times

Analyticity properties of F(f) in the strip

£ DA
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Blurring for exponentially increasing functions

C(H)=Cy—Ae™  for t; << t < gy,

A

c,— C(t)

> If a<Q integrand peaked at ' =t
» If a>Q dominated by large times

Q with B, — bound on chaos
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Conclusions

e Bound on chaos as a consequence of FDT
e Quantum FDT induces blurring on a Planckian scale
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